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Abstract

Recent experimental and theoretical studies have found evidence of coupled in-
teractions between magnons and phonons. The aim of this study is to construct
a model of coupled magnons and phonons, as well as analysing their frequency
spectrum. The model is derived by quantizing spin and lattice degrees of free-
dom, and the frequency spectrum is derived by solving the equations of motion.
We found that both the strength and the composition of the coupled interactions
affect the frequencies of magnons and phonons, with emphasis on the magnons.
Their frequencies are imaginary close to the center of the Brillouin zone, which
opens questions for future research.
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Popular Science Summary [Swedish]

Atomernas Frammande Varld

Atomer finns néstan Overallt: i marken du gar pa, i luften du andas, i maten
du ater, i maten du inte dter och i all annan materia som du kan se och ta pa.
Atomer ar mycket sma men tillsammans kan de bilda stora objekt. Vissa material
innehaller atomer av olika slag, ordnade pa olika sétt. Det finns ocksa material
som bara innehaller en typ av atomer, exempelvis koppar.

Bilden visar atomer i ett kubiskt monster [1].

Forestéll dig en kopparplat, dar atomerna &r ordnade i ett kubiskt monster
och dér alla atomer ar kopparatomer. Kopparatomer vill garna halla ett lagom
avstand sinsemellan, varken for néra eller for langt ifran varandra. Om en atom
flyttar lite pa sig kommer alla dess grannatomer att flytta lite pa sig at samma
hall, eftersom de stravar efter att halla samma avstand till varandra. Detta medfor
att nérliggande atomer till grannarna ocksa flyttar pa sig och sa vidare. En atom
som flyttar pa sig leder alltsa till en vag av forflyttningar som gar genom alla andra
atomer i kopparplaten. En sadan vag av forflyttning kallas for en fonon. Men det
slutar inte hér.



Atomerna forflyttar sig inte bara fram och tillbaka i vagor i kopparplaten. De
snurrar ocksa runt sin egen axel pa ett liknande sdtt som jorden roterar runt
jordaxeln. I atomernas vérld kallas denna rotation fér spinn: de spinner runt
sin egen axel sa att sdga. Spinnet dr inte alltid i samma riktning, det vinglar lite,
vilken nérmast liknas vid jordaxeln som vinglar fram och tillbaka i en cirkelrorelse.

Bilden visar hur jordaxeln vinglar. Atomers spinn
vinglar pa ett liknande sétt. I bada fallen kallas
fenomenet precession. [2]

Inte nog med att atomerna vill halla samma avstand till varandra, de vill
dessutom spinna i takt med sina grannar. Det vill sdga atomernas spinn stravar
efter att vingla pa ett liknande sétt som narliggande atomers spinn. Om en atom
andrar sitt spinn, kommer det att paverka spinnet hos nérliggande atomer, vilket
i sin tur kommer att paverka narliggande atomers spinn och sa vidare. En atom
som andrar sitt spinn leder alltsa till en spinnvag som gar genom alla atomer i
kopparplaten. En sadan spinnvag kallas for en magnon.

Nu borjar det intressanta. Hur néra tva atomer befinner sig varandra paverkar
ocksa deras spinn. Dessutom, atomers spinn paverkar hur ndra de vill vara sina
grannar. Detta far konsekvenser for magnonerna och fononerna. Nér en atom nér-
mar sig en annan atom leder det till att den andra atomen andrar sitt spinn. Detta



leder till att grannarna till den andra atomen ocksa éndrar sina spinn, eftersom
de vill spinna i takt. Alltsa, en forflyttning av en kopparatom paverkar spinnva-
gorna i kopparplaten. Pa ett liknande sett kan en atoms spinn paverka vagorna av
forflyttning som gar genom kopparplaten. Vi kallar detta for att magnonerna och
fononerna &ar kopplade.

I den hér studien har jag skapat en modell som beskriver kopplade magnoner
och fononer. Modellen visar alltsd hur atomernas spinn- och forflyttningsvagor
paverkar varandra. Jag har ocksa undersokt hur snabba och starka vagorna é&r.
Syftet med studien dr helt enkelt att battre forsta atomernas frimmande varld. En
av mina slutsatser dr att magnonerna &r kinsligare dn fononerna. Det ar liattare
for en fonon att dndra pa en magnon &an tvirtom, det vill siga det &r ldttare for
en forflyttningsvag att dndra pa en spinnvag dn tvartom. En annan slutsats &r
att saval kopplingens styrka mellan magnonerna och fononerna som séttet dessa
ar kopplade pa, paverkar deras fart och styrka. Ytterligare en slutsats ar att
langsamma magnoner beter sig mérkligt — de verkar inte ha en bestdmd styrka.
Min studie har inte lyckats forklara varfor det ar sa. Forhoppningsvis kan framtida
studier gora det.
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1. Introduction

Ions in solid materials interact with each other. The most relevant interactions
occur between nearest neighbouring ions and are mediated by the underlying elec-
tronic structure. Although these interactions are local, they give rise to waves that
propagate through the material. The quantized modes of these waves are called
phonons. In many solid materials, phonons can be approximated by harmonic
oscillators. Another property of ions is spin. Similarly to the translational inter-
actions, there are spin-spin interactions between ions that give rise to spin-waves.
The quantized modes of these waves are called magnons and they can also be ap-
proximated by harmonic oscillators. At least in homogeneous magnetic materials
with a very large ion-magnon ratio and with small fluctuations in the spin. [3]

There are also coupled interactions between magnons and phonons. Evidence
of this is found in body-centered cubic iron [4,5] and in Europium Oxide [6].
Additionally, a recently published theoretical paper derives, from first principles,
a framework for the dynamics of coupled magnetizations and lattice degrees of
freedom [7]. To gain more insight, this study aims to develop a model of cou-
pled magnons and phonons by quantizing the magnetization and lattice degrees
of freedom. Further, the frequency spectrum of the developed model should be
investigated. This theoretical study might lead to a better understanding of ex-
perimental results concerning the frequencies of magnons and phonons in solid
materials.

Here, it is assumed that the material is a solid with crystal structure, that
is, it can be represented by a lattice. Further assumptions and approximations
for the development of the model are as follows: localized electrons at the same
positions in different unit cells, localized spin-moments, one spin at each lattice site,
same spin-spin interaction for each unit cell and the spin-spin interaction tensor is
neglected. The coupled interactions between magnons and phonons are evaluated
in the static limit, assumed to be equal for each unit cell and the symmetric
tensor contribution of the coupled interactions between magnons and phonons is
neglected. For the derivation of the frequency spectrum, it is assumed that the
system is in thermodynamic equilibrium. Numerical calculations are made with
a specific choice of parameters described in section 3.3. Moreover, the word ion
does not necessarily imply a charged system in this thesis: atoms are considered
special cases of ions. Vectors are written in bold text and natural units are used
throughout the thesis: the speed of light, the reduced Planck constant and the
Boltzmann constant are all dimensionless and equal to one.



2. Model

2.1. Free Phonons

Phonons are quantized vibrational modes of ions. Free phonons can be approxi-
mated by harmonic oscillators:

1
Hy=) wpn (CLL,\ak,)\ + 5) : (2.1)
kA

where wg ) is the frequency of a phonon with crystal momentum k and mode
number A. Let a = (a4, ay, a,) denote the lattice constant, m the mass of each ion
and K the force constant. Then, the phonon frequency is

4K, . k-a
Whp = W/\ sin? (T) (2.2)

We can note that w_gy = wgx. The phonon creation g and destruction ag_
operators obey bosonic commutation relations:

T _ T T _
[ak,)\y akr’x} = Qe AQpr yr — Qpr 3Gl X = 6k,k’5>\,)\’a
o (2.3)
[ak,M ak’)\’] =0, [ak,m ak’,X} = 0.

Further, the phonon destruction operator acting on the state of no phonons is
equal to zero: ag |0 >,= 0. [3]

The ions also interact with surrounding electrons, causing an electron-phonon
interaction. Here, I assume that the electrons are localized: they cannot recoil, and
their kinetic energy is neglected. Thus, the Hamiltonian for the electron-phonon

interaction is
Hey = (anr +alyy ) €57 Foa (1), (2.4)
gk

where Fy, ) (r;) is the effective matrix element of the electron-phonon interaction
at the position of electron j r;. The Hamiltonian of phonons and electrons if no
other interactions are present is H, = Hy + H.,. |3]



2.2. Free Magnons

A homogeneous magnetic system with the same spin on each site can be described
by the Heisenberg model. I will only consider nearest neighbour interactions. How-
ever, the strength of the spin-spin interactions in one direction might be different
than in the other two directions. Such a system can be described by the anisotropic
Heisenberg Hamiltonian:

:—AZ}VJ; @2}# pie) (2.5)

where J denotes the coupling constant in the z-direction and J; denotes the
coupling constant in the xy-plane. The spin vector at site j is denoted by S; =

(Sj(x), Sj(.y) , SJ(Z)); the first, second and third components correspond to its spin in

the x-, y- and z-directions, respectively. S](-Jr) = S](z) +z'Sj(»y) and S](_) = S](-JC) - iS](y)
are the spin raising and lowering operators, respectively. The subscript notation
J+0 means nearest neighbour § of site j, and ), is the summation over all nearest
neighbours. [3]

To rewrite the model in terms of bosonic magnon operators, I start by using
the Holstein-Primakoff transformation |8]:

bt

bib,
=28 1—3%
25

f7ﬁ1—§% 20
Vi- 55

y:s—@%

J

where S denotes spin, which is the same for all spin sites: S = |S;|. The magnon
creation b} and destruction b; operators obey bosonic commutation relations:

%mﬂ:@h
b, ] =0, 1)
Hmﬂzg

Additionally, the destruction operator acting on the state of no magnons is equal
to zero: b;|0 >,,= 0. Note that J,; is the Kronecker delta of j and [:

1 ifj=1
51 = Y (2.8)
0 if 7 # 1.



Later, in this thesis, the d-symbol will have a third meaning, namely the Dirac
delta function:

| S@)i()dz = £(0), (29

where n € ZT and f is a compactly supported continuous function [9]. To clarify,
the 0 notations have three different meanings depending on their context:

e Nearest neighbour if § is in the subscript,
e Kronecker delta if d;; has two subscripts j and [,
e Dirac delta function if 6(x) is a function of an n-dimensional real vector «.

By assuming that the fluctuations from the ground state are small: b;bj <5,
for all lattice sites j, the Holstein-Primakoff transformation (2.6) becomes

St =25u;,

S; = V28bl, (2.10)
z _ T
S: =S —blb;.

With the aim of expressing the model in reciprocal space, the magnon operators
are Fourier transformed:

1 )
bj _ Ze—zkerbk7
VN <

T
b; =

1 (2.11)
Z ok R; bL)

VN

where N is the number of lattice sites and R; is the position of site j. In appendix

A.1, it is shown that the anisotropic Heisenberg Hamiltonian (2.5) can be rewritten

in terms of magnon operators in reciprocal space:

Hye = —J\NS*Z + 28 (JjZ — J1Ci)bib — % > Crtblbir bl bie—rsir
k K,k k!

(2.12)
where Z is the number of nearest neighbours. The structure constant is defined
by Cp = > se *Bs where R; is the vector from any lattice site to its nearest
neighbour site 9.

The ions are also influenced by spin-orbit coupling. This coupling induces an
antisymmetric exchange interaction between neighbouring ions, called the anisotropic
Dzyaloshinskii-Moriya interaction:

Hpm =Y Djjis- (S % Syys) (2.13)
3,0



where Dj 5 = <D](.?+5, D](.f/j)M, D](.;?+5
tor between site j and nearest neighbours ¢ of j. The first, second and third
components correspond to the Dzyaloshinskii-Moriya coupling in the z-, y- and
z-directions, respectively. [10]

Under the assumption that the Dzyaloshinskii-Moriya interaction is equal for
all unit cells, I can make the following definitions: Dy, = %Z s Djjrse”* s and
D, = % > s Djj+s. Now, as is shown in appendix A.2, the Hamiltonian in equation
(2.13) can be written in terms of magnon operators in reciprocal space:

Hpyy = = V2SINZ [ (iD§) + DY) bo + (—iDf” + DY) b} - fzSZZD(ZbTbk

/S o (z
+ WZ§ |:(ZD£2,/ + Dgﬂl) bkb;[c/b—k—f—k’ — (ZD( )k:’ + Dk )k’) b;;bkrbk_k/

+ (=D + D) bbbiia — (—iD e + DI ) blbarb o]
(2.14)

) is the Dzyaloshinskii-Moriya coupling vec-

where 0 denotes the vector with all elements equal to zero.

2.3. Coupled Hamiltonian

The effective model for coupled magnetization and lattice dynamics is taken from
reference [7| where it is defined as

Hyg = _‘Z [Qg ( Qi+ T Mj) + M - <7§(,§C) Q;+15 Myﬂ :

(2.15)
The lattice displacement vector of ion j is defined by Q; = R; —R;O) , where R;O) is
the equilibrium position of ion ] The localized spin moment of ion j is denoted by
M;. The interactions tensor T ) defines the electron phonon interaction between

ions ¢ and j, which I rev1ewed in section 2.1. T ) defines the spin-spin interac-
tion. The scalar and vector contributions to the spln—spm interaction are covered
in section 2.2. The tensor contrlbutlon to the spin-spin interaction, however, is
not considered in this thesis. TZ;S and T(SC are the lattice-spin and spin-lattice
interaction tensors, respectively. These 1nteract10ns will be examined in this sec-
tion.

In the static limit is Tz(]) related to Tz(js) by the transpose: {Ti(jsc)}“” =

{ ij }”“, where p and v are explicit Cartesian tensor components. Thus, the



spin-lattice part of the Hamiltonian can be rewritten as

H;}Q:__ (Ql )M+ M- T QJ)
(2.16)
(2]

where T; ;, T; ; = (T @ 7w 7 ) and T are the scalar, vector and symmetric

Bj i 0 Ty
second-rank tensor decompositions of T” ), respectively. I will only consider the
scalar and vector contributions to the lattice-spin interactions in the following
calculations. [7]
The aim is to rewrite the Hamiltonian from equation (2.16) in terms of magnon
and phonon operators in reciprocal space. Hence, the lattice displacement vector
is evaluated in reciprocal space through the following expansion:

1 .
. 2 t ik-R;
&= kA 2mNwg, S <ak”\ * af’“) e (2.17)

The phonon polarization vector &\ = <§,gx2\, k. A,gk )\> is antisymmetric with

respect to the crystal momentum of phonons: &k = —&_k , and it is assumed to
approach zero faster than the square root of the free phonon frequency when the
crystal momentum approaches zero:

o
1m ——-
k—0 /Wi \

The first, second and third components of the polarization vector are the phonon
polarizations in the x-, y- and z-directions, respectively. The localized spin moment
relates to the spin vector through the Gyromagnetic ratio: M; = ~S; [11].

Now, I can express the scalar decomposition of the spin-lattice Hamiltonian
(2.16) in terms of magnon and phonon operators in reciprocal space:

3 =2 (22 (oot {5 [ (02

kA
() i J () pt
+€k,>\ <bk - b_k>i| _'_ Z£k7)\bk'bk+k/}) 5
VN 5

where it is assumed that the scalar decomposition of the lattice-spin interaction
tensor is equal for all unit cells: Ty = £ > 5T jpee” ® 8 and Ty = 2 > 5T} j+s-
The derivation can be found in appendix A.3.

=0. (2.18)

(2.19)



I can also express the vector decomposition of the spin-lattice Hamiltonian
(2.16) in terms of magnon and phonon operators in reciprocal space:

g _
S Z wk,\
S (@) ¢(2) i () £(2) i
<35 [Tk &) (bk _ b_k> TPl (bk ol )
_TIE:Z)’SI(;,?\ (bk: - bT_k) + Z.TIS:Z)&S,/;\ (bk + bik)}

o 5 (kb — ) } ,

where it is assumed that the vector decomposition of the lattice-spin interaction
tensor is equal for all unit cells: T}, = %25 T; ;s * R and Ty = %25 T s

(2.20)

Ti(j), Tl(g), Tz(j) are the first, second and third components of the vector decom-

position of the lattice-spin interaction tensor. This derivation can be found in
appendix A.4.
The total Hamiltonian of coupled magnons and phonons is

Hy =H, + Hy, + Hpy + Hiy + Hiy)

:_J||NS2Z+ZWM +ZF,M <ak,\+a M) +>° (Gkbk+Gika_k)
k
+ Zwk ,\ak 2Ok + Z Gka bk, + Z <ak AT a_k )\) <Ek,)\bk + Ejk)\bT_k)

+ \/ﬁz Z (1D + D) bbby — (D + DI ) bbb e

( @D(” + DY ) bibk bk — (—inffkr + D,Fj’jk,) b;cbk'bik%’}
' LZ > o=
N o VIRA

J
=L ST Ch bbby e

(ot al ) (TG + T~ TOER) b

k.k! k!
(2.21)
with
e = 280y Z — 257, C, — V2iSZDY, (2.22)
Flya = Z Fia(ry)e™™, (2.23)
J



Ge = —V2NS3Z (zD((f) + Dé”) Sieo (2.24)

and

(2.25)
+ [T0e) TP el) - TP6D + TP )

Again, this Hamiltonian is valid given a material with crystal structure with one
spin at each lattice site. It is also assumed that all interactions are between
nearest neighbours and of equal strength for all unit cells. The electrons and the
ionic spin moments are assumed to be localized, where the localized electrons are
assumed to be at the same positions in all different unit cells. The spin fluctuations
are assumed to be small and the tensor contribution of the spin-spin interaction
is neglected. Moreover, the coupled interactions between magnons and phonons
are considered in the static limit and their symmetric tensor decomposition is
neglected.

The Hamiltonian can be simplified by making two more assumptions. Firstly,
it is assumed that the square root of the number of lattice sites is much larger
than the number of magnons: v N > >k bLbk. Secondly, it is assumed that all
localized electrons are at the same positions within different unit cell, implying
that Y Fy(r;)e®™ = 37 F*,(r;)e® ™ [3]. The final Hamiltonian is

H = Z Wk,)\aL,\ak,A + Ek,ABL,\ﬁk,)\
kA (2.26)

+ (ak,,\ + atkA) (Ek,Aﬁk,A + Eik,Aﬁi,m) + Kgas

with
Q) = A\ T Ik,A and /Bk)\ = by + Jie s (2.27)
where
0 ifk=0,
T x = —Flixek e k2 Ef k20 (2.28)
—wk,AEk,A6—k,,\Ek,>\+2E;A|Ek,x‘2(6—k,x—€k,,\)
SNSZ (ipf) - Df?) if k — 0,
Jk”\ - 2F ke xe—k 2 Fr 2 if k 7& 0 ) (2'29)

*Wk,Aek,AE—k,A+2E,261A(Efk,)\*ek,))
J 8?7 1
Kgy=— ”L + Wk, (5 - ’[k:,/\‘z)
— un| Jen” = 21k (ExpJip + B3I g n)

(2.30)

8



and € = ¥. L denotes the number of phonon modes: L =, 1. The equations
above are derived in appendix A.5.

We will call the new operators oy », O‘L, v By and 5,1’ , the shifted phonon de-
struction, shifted phonon creation, shifted magnon destruction and shifted magnon
creation operators, respectively. These new operators have a shifted equilibrium
point but oscillates with the same frequency as the original operators. The shifted
operators are bosonic:

i _ i _
[Oék,A,Oékg,v = Ok ke’ OA N5 B Bror x| = Okeer

2.31
and [Oék,)\,Oék’,X] = [OJLA,O(L,’/\/} = [ﬁk)\,ﬁk/’)\/] = [ﬁ,l/\,ﬁ;i,’/\,} = 0. ( )
We can note that the Hamiltonian in equation (2.26) approaches the Hamilto-

nian of free magnons and phonons H, + Hj. + Hpys in the limit of zero coupling,

Eix — 0. Also, the Hamiltonian is Hermitian H' = H. These properties are to

be expected.

With a coupling Ej \ # 0, we can observe that there are terms that mix shifted
magnon and phonon operators. The terms that mix destruction and creation
operators (Eik7)\04k,)\6T_k7)\ and Ekv\aT_k,)ﬁk,,\) behave as harmonic oscillators. We
know this because it is possible to introduce a new bosonic operator ¢y, such that
E’k,AcL,)\ckM\ = Eik7)\ak,)\ﬁT_k7/\ + Ek)\OéT_k,)\ﬁk,)\, where E,k7,\ € {R+,0} HOVVGVGI'7
the terms that mix two destruction or two creation operators indicate that the
Hamiltonian does not behave as a harmonic oscillator. The frequency spectrum of
the Hamiltonian in equation (2.26) is examined in the following chapter.



3. Frequency Spectrum

3.1. Equations of Motion & Green’s Function

Applying Heisenberg’s equation of motion [11] to the new operators ay , 04,27 s B

and BL’ ), yields:
i0rap = [ n, H] = W gy + E g aB g x + E;:,,\@Tg,m (3.1)
iataik7A = [Ozikw H] = _W—k,/\aiky)\ — E_ g Bk — Ebﬁ,i,,\, (3.2)

0By = B, H] = Z (Ek,xﬁk,x + B y0-px + EZ,N“L,A/)

o (3.3)
=€kBra — e + Z <€k,>\’<]k,)\’ + EpyQ px + E/:,,\rOéL)\/)
Y
and
iatﬂi,m = [51,“, H] = Z <_€7k,)\’ﬁT_k7)\/ — B _gya_pyn — Efk,)\’OJJ]L)\/)
N
= - E—kﬁik)\ + e paS ) — Z <E—k,A/Jik7X + E_pyva_gy + E—k7/\’a]t7)\/> ;
8 (3.4)

respectively. 0; denotes the partial derivative with respect to time t.
With the aim of calculating the frequency spectrum of the coupled model (2.26),
it is useful to introduce Green’s functions of the new operators ay », OéL v Br,x and

T
5k,,\-

/ .e_ﬁHtr [Ttak)\ (1) a,t,/\ (t’)]
Goe (F =) = =1 tr (e-777) (3.5)

(o ),

gatin (t=t) = =i (Tial, (D awa (¥)) (3.6)

Goin (1= 1) = 1 S (Tir (1) B (1) (37)

)\/

10



and ,
9ot (= 1) = =2 S (Tl (1) B (1)) (3.8)
~

respectively. T; denotes the time ordering operator and tr denotes the trace. [
(without subscripts) is the thermodynamic beta. The angle bracket notation is
used to denote thermodynamic average; its mathematical definition is implied
by equation (3.5). These equations (3.5)-(3.8), are valid when the system is in
thermodynamic equilibrium [3].

The expression for Green’s functions of the shifted phonon destruction, phonon
creation, magnon destruction and magnon creation operators, in reciprocal space,
are derived in appendix A.6 and are found to be as follows:

1 1
gozk:,)\,z y w]g»\a Yo k,\;z 2+ Wk,)\’ (3 9)
1 .
gﬁk:,)\;z = 2 — eg and gﬂfkr,)\;z = 2+ €k7

respectively. By using these functions, the equations of motion (3.1)-(3.4) can be
rewritten as

kN = Gok s (E—k,)\ﬁ—k,)\ + EZ,Aﬁ;Tg,A) ; (3.10)

aik,)\ = —Gat k2 (E—k,/\ﬁ—k,)\ + E?;,ML,A) , (3.11)

6"”)‘ - gﬂk,)\;z

Z <E,:’on_k,,\/ + E,;/\/Oé;rc’)\/) + Z (Ek,)\ljk)\/)] (312)

N N#£X

and

T _
B—k,)\ - _g@T —k,\;z

Z (E—k,,vOé—k,,v + E—k,)\’aL,\/) + Z (G—k,,\'J*k,x)] ;
~ XA
(3.13)

respectively.

3.2. Analytical Solution

The frequencies of the coupled system can be derived by focusing on the phonon
operators (see appendix A.7) or the magnon operators (see appendix A.8). Here,
I'll outline the main points and results of the derivation with focus on the phonon
operators.

11



Inserting equations (3.12) and (3.13) into equations (3.10) and (3.11) yields

—1
E Yo k,)\;zé)\)\/ - Ak,/\,)\/;z _Ak,/\,)\/;z TN Jlk,)\
-1 T = '
> —Ak,)\,)\/;z gaT 7k7/\;zé)\7)\/ — Ak,)\,)\’;z a,k’)\/ J B

with

) ()
Ek7)\7)\/2 + Ek,)\,)\/

(z — e k) (2 + €x)

Ak,/\,)\’;z =

and

Ty =E_k2g6_jore Z (e—kxJorx) = Efagsty 5. Z CR/SOF (3.16)

NF#EX EY
where
B\ = ExnEjy — BB (3.17)
and
EI(;,)A,)\’ = BB ek + B\ Erye k. (3.18)

Let us now introduce Green’s function for coupled phonons:

T
QO 2\ Qg \OU—
Gy = JACRA - TRATERA N (), (3.19)
o Qp A O O Xk )

The trace of this function is
22 (z—e_g) (2 + €x)
(22 —wi,) (2 — ecn) (2 + ex) — 2wpen (Z,\' Ej vz + By

trGAk,)x;z =

) -~ (3.20)

The poles of equation (3.20) are the solutions to following equation:

0=(2" —wi,) (z— k) (z + &) — 2w <Z E,(J)\)A/z + E,(:))\/\,>
)\/

=2t (e —e_p) 2 — (w,%,,\ + eke,k) 22

— (wi/\ [Ek — E_k] + kaA Z E,E:;\),)\/> Z+ w,ZAeke_k — 2wk7,\ Z El(ce,)k,)\”
N N

(3.21)

such that z # €, and z # €_. The frequencies of coupled phonons are the real
part of the branch cut that converge to wg, » when Ej » — 0 and solve the equation
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above. The imaginary part of that branch cut is the decay width of coupled
phonons. Similarly, the frequencies and decay widths of coupled magnons are the
real and imaginary parts, respectively, of the branch cut that converge to €, when

Ek.» — 0 and solve equation (3.21).
The coefficients of equation (3.21) are

_ 2 (e)
Aog, )\ = Wi \ERE—k — 2Wk ) E By

)\/
Ay = —wi e — €_p) — 2w ES)
1k — k) LEk -k kA kAN
)\/
2
Ao\ = —Wi\ — €€k and  agp ) = € — € k.

The branch cuts that solve equation (3.21) are

1 1 Qi)
AAkA = T8k + Sk + 5\/—45'%) — 2pgy — Sy
1 1 Qi)
P2k = T 03k + Sk — 5\/—4SE,A — 2pp ) — S
1 1 Ak A
3k = 708k Sk + 5\/—4513,,\ 2pg\ + Sex
and . )
Y
Zag ) = _Zai’)k,)\ — Sk — 5\/—4513 x— 2Pkt %
with 5
P = Q2 \ — g%i,,\,
1, 1
qr\ = ga:ak,)\ - §a3k,>\a2k,/\ + Qig s

2
AOk,,\ = Q2p \ — 3a3k,>\a1k,)\ + 12@01@,,\7

3 2 2
Agg ) =200y, ) — 903202k 7\A1g,x T 27035, \Cop ) + 27015\ — 72025 200k,

3| Aqgy + \/Ali,,\ - 4A0i,/\
2

1 2 1 Aok
Sy = —4]—— — 2.
5% 2\/ 3pk,/\ + 3 (Qk,,\ + Qrr

The solutions above hold if Qg \ # 0 and Sg \ # 0. [12,13]

Qi =

and
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(3.22)

(3.23)

(3.24)

(3.25)



If E,i;\)v/\, = 0 and € —e_ = 0 for all k, we can observe that zi , = —z4, and

2ok ) = —Z3k.- Hence, in this case, are Ty, = ‘Re (Zuc,,\)‘ and Tog \ = ‘Re (sz’)\)‘
the physical frequencies with yy, , = ‘Im (Zlk,)\ ‘ and Yo , = |Im (z%,\ ‘ as the
corresponding decay widths, respectively.

3.3. Numerical Examples

The physical solutions to equation (3.21) are plotted in the numerical computing
environment Matlab R2018b [14]. The script can be found in appendix B.

In this section, the crystal structure is chosen to be a two-dimensional square
lattice with one ion at each lattice site. The parameters that are varied for the
different plots are the scalar T; ; and vector T; ; decompositions of the lattice-spin
interaction tensor. They are, however, assumed to be the same for all nearest
neighbouring ions (and zero for all other ions): T} ;45 = T and T} s = T. The
phonon polarization is restricted to one direction, implying that there is only
one phonon mode number: A = 1. Moreover, 30 000 lattice sites where used in
each numerical computation, except for figure 3.10 whose computation used 3 000
lattice sites. The constant parameters used in the script are chosen as follows:
a = (1,1,0), m = 1, K; = 100, &1 = (sin(k-a),0,0), S = 1/2, J; = V2,
J. = 1/v2, Dj;is = (1,4,0) and v = 1. They are to be regarded as scaling
parameters, not necessarily corresponding to any experimental values. We can
note that the restriction of one phonon polarization implies that El(c_l)l = 0 and
a square lattice implies that ¢, = €_g. Thus, as discussed in section 3.2, the
frequencies of the coupled system are 1y and xo 1, with the corresponding decay
widths yy, 1 and yay ; , respectively.

In the frequency spectrum plots below are the free magnon and phonon frequen-
cies represented by dashed red and blue lines, respectively. Figure 3.1 only show
the frequencies of free magnons and phonons, while all other frequency spectrums
also shows the frequencies of coupled magnons and phonons. The frequencies of
the physical solutions to equation (3.21) are represented by cyan and magenta
lines. The particle with a frequency represented by the cyan line has a decay
width that is represented by the shaded cyan area. Similarly, the shaded magenta
area represents the decay width of the particle with a frequency represented by
the magenta line.

The x-axis of the frequency spectrum plots shows the crystal momentum within
the first Brillouin zone, displayed by figure 3.2. It starts at I' = (0,0,0), and
increases linearly in the z-direction to X = (7/a,,0,0). Then, it increases linearly
in the y-direction to M = (m/a,,m/a,,0). Finally, it increases linearly in the
(x + y)-direction to I' = (27 /a,, 27 /a,,0). Due to the periodicity of the Brillouin
zone and the symmetry of the square lattice, the last path is identical to the path
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Figure 3.1: Frequency spectrum of free magnons and phonons.
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M
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I X

Figure 3.2: First Brillouin zone of a square lattice,
showing lines of crystal momentum corresponding
to the x-axis in the frequency spectrum plots.
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that starts at (7/a,,7/a,,0) and linearly decreases in the (x + y)-direction to
I' = (0,0,0). The y-axis starts at 0 and increases linearly to 22 (the maximal
value of any computed line is 20). The lines show the real parts of the solutions
and the upper (lower) outer bounds of the shaded areas show the real parts plus
(minus) the absolute values of the corresponding imaginary parts.

Frequency Spectrum

T T
T=100 T={023+0.23i -0.46, 0.46-0.691)

-.\',-' 2
Pa
g "A'-.l\ .-'"ll. \ Y-I
/ ™,
= _f/ kY / / \\\ Y3
E - ____f"' I'-,' ! '\.\
L -~ LY .-" “,

Symmetry Points

Figure 3.3: Frequency spectrum of magnons and phonons with a weak coupling:
T=1land T =(1+1i,—-2,2—3i)/v19.

In figure 3.3 are the lattice-spin scalar and vector decompositions equal to
1 and (1414,—2,2 — 34) //19, respectively, where || (144, —2,2 — 3i) /v/19|| =
1. I call this a weak coupling. We can see that the lines of the solutions to
equation (3.21) are almost identical to the lines of the free magnons and phonons,
except close to the I'-point. Nevertheless, the two solutions do not consistently
follow the free magnon or phonon frequencies when the crystal momentum increase;
they switch between the two. The cyan line, corresponding to equation (3.23),
follows the free phonon frequency at the start. When the free magnon and phonon
frequencies are equal, between symmetry points X and M, it switches to the free
magnon frequency. Then, the next time the free magnon and phonon frequencies
are equal, between symmetry points M and I'; the cyan lines switches back to being
almost identical to the free phonon frequency. The magenta line, corresponding to
equation (3.24), does the opposite: it starts by following the free magnon frequency,
then the free phonon frequency and finally back to the free magnon frequency. We
can also note that the magenta line is always below or equal to the cyan line.
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Hence, we can interpret the magenta and cyan lines as a lower and higher energy
states, respectively.

If we look closely at and around the I'-point of figure 3.3, we can see that the
magenta line is zero and that there is a small magenta-shaded area. I call this the
area of uncertainty. The causes and implications of this area is unknown and will
have to be investigated by future studies. One possibility is that the ground state
is not stable in the frame of reference specified by equation (2.26). An example of
phonon instabilities is discussed in the following reference [15]. Another possibility
is that the assumption of small spin-fluctuations from the ground state is not
valid and the model breaks down. It is also possible that the magnons are in a
Bose-Einstein condensate. The existence of Bose-Einstein condensed magnons is
supported by experiments in TICuCl; [16] and Csy;CuCly [17]. Nevertheless, we
don’t know if that is what is observed here.

To summarize, the coupled states of magnons and phonons can be divided into
a lower and a higher energy state. These states have a similar behaviour to either
the free magnon or the free phonon state, depending on their crystal momentum.
The lower energy state, however, has a distinct difference from the states of free
magnons and phonons. It has a region, close to the I'-point, wherein its frequency
is uncertain.

Frequency Spectrum

T T
T=200 T =(046+046i -0.92, 0.92-1.381)

Freguency
-'_F'_‘_,-"'F’- b "
H-\"‘H.\_“H

/'/
//
Pl

Symmetry Points

Figure 3.4: Frequency spectrum of magnons and phonons with a moderate cou-
pling: T=2and T =2 (1 +14,—2,2 — 3i) /v19.
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Figure 3.4 shows the frequency spectrum of magnons and phonons with a cou-
pling twice as strong as the one in figure 3.3. I call this coupling moderate. If we
compare this with the weakly coupled magnons and phonons shown in figure 3.3,
we can see that the discrepancy between the solid and the dashed lines are bigger.
This is to be expected: the frequencies of the magnons and phonons should change
when we change the strength of the coupling. The largest discrepancies seem the
be around the I'-point: the area of uncertainty is both wider and higher. This
could mean that model breaks down for larger crystal momentums, or that the
hypothetical ground state instabilities or Bose-Einstein condensate covers a wider
range of frequencies within a larger interval of crystal momentum. It could also
mean something else, something that we have not thought of.

We can also note that the magenta line that precedes and follows from the area
of uncertainty is lower in figure 3.4 than in figure 3.3. That is, for small crystal
momentums, the frequencies of the lower energy state decrease when the strength
of the coupling increase. Additionally, the discrepancies between the solid and
the dashed lines are bigger close to the points where the free magnon and phonon
frequencies are equal, compared to the weakly coupled magnons and phonons.
Further, we can note that the discrepancy between the coupled states and the
free phonon is small compared to discrepancy between of the coupled states and
the free magnon. It seems that the phonons are more robust towards the coupled
interactions than the magnons.

In summary, the frequencies of magnons and phonons change if the strength of
the coupling increase. The area of uncertainty becomes bigger and the frequencies
of the lower energy state becomes lower for low crystal momentums. Moreover, the
magnons are more sensitive to changes in the coupling strength than the phonons.

Figure 3.5 shows the frequency spectrums of magnons and phonons with a
strong (top) and a very strong (bottom) coupling: three and five times as strong as
the coupling in figure 3.3, respectively. Here, we can see that the changes observed
in figure 3.4 becomes more significant. The frequencies of the coupled phonons and
magnons change even more, when the strength of the coupling increase. The area
of uncertainty becomes bigger and the frequencies close to the area of uncertainty
becomes even lower than in the cases of weak and moderate coupling. We can also
observe that the magnons are more sensitive to the increasing coupling strength
than the phonons. In conclusion, figure 3.5 establish a pattern of the effects of
coupled interactions, discussed in connection with figure 3.4 and figure 3.3.

Figure 3.6 shows the frequency spectrum of magnons and phonons with a weak
scalar coupling and no vector coupling. This figure looks almost identical to figure
3.4. That is, the frequency spectrum with a pure scalar coupling strength of
one and no vector coupling, is almost identical to the frequency spectrum with
both a scalar and vector coupling strength of two. Thus, in some cases, is the
composition of the coupled interaction more important than its strength: how the
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Figure 3.5: Frequency spectrums of magnons and phonons.

Symmetry Points
The plot at the

top has a strong coupling: 7' =5 and T = 5(1 +1i,—2,2 — 3i) /v/19. The plot
at the bottom has a very strong coupling:7' = 5and T' =5 (1 + ¢, —2,2 — 3i) /V/19.
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Figure 3.6: Frequency spectrum of magnons and phonons with a pure scalar cou-
pling: T'=1and T = 0.

coupled interaction is mediated may affect the frequencies of magnons and phonons
more than the strength of the interaction. This conclusion is supported by figure
3.7, which shows the frequency spectrum with a vector coupling strength of one
and no scalar coupling. This frequency spectrum, with a pure vector coupling, is
slightly different from the one with a pure scalar coupling. The frequencies close
the I'-point are slightly less uncertain for the pure vector coupling compared to
the case of pure scalar coupling. Figure 3.8 further supports this conclusion. It
shows the frequency spectrum with a pure vector coupling of different distribution
than all other plots: T = (5i,—3,1) /v/35, where ||T|| = 1. In this case are
the deviations from the frequency spectrum of free magnons and phonons very
small. One has to look close at the either of the points where the free magnon
and phonon frequencies are equal (including the I'-point), to be able to see any
difference. Conclusively, the composition of the interactions between magnons and
phonons is, in some cases, more important than its strength.

Figure 3.9 shows the frequency spectrum with a scalar coupling strength of one
hundredth compared to the weak coupling in figure 3.3 and no vector coupling. 1
call this a very weak scalar coupling. Here, we can see a shaded magenta area close
to the ['-point as well as a deviation between the solid magenta line and the dashed
red line. This indicates that there is no critical coupling strength above zero, that
completely removes the area of uncertainty. Nor is there any indication of a scalar
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Figure 3.7: Frequency spectrum of magnons and phonons with a pure vector cou-
pling: T=0and T = (1 +1¢,—2,2 — 3i) /V/19.
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Figure 3.8: Frequency spectrum of magnons and phonons with a pure vector cou-
pling of different distribution: 7'=0 and T = (5i,—3,1) /+/35.
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coupling strength different from zero whose frequency spectrum is identical to
the one of free magnons or phonons. It seems that the behavioural changes of
coupled compared to free magnons and phonons are independent of the strength
of the coupled interactions; they are only dependent on the existence or absence
of coupled interactions.

Frequency Spectrum
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Figure 3.9: Frequency spectrum of magnons and phonons, close to the I'-point,
with a very weak scalar coupling: 7'= 0.01 and T" = 0.

Figure 3.10 shows the solutions to equation (A.61) with a weak coupling (cf.
figure 3.3). The solutions are solved with the Matlab function fsolve [14]. As is
seen in the figure, equation (A.61) is not well-behaved numerically, at least not
with my script (see appendix B). I have not analysed the numerical error; thus, we
can only use figure 3.10 for general hints about the behaviour of coupled magnons
and phonons. At some irregular intervals of crystal momentum, it switches solution
or end up at arbitrary frequencies. Besides these irregularities, figure 3.10 looks
like the bottom plot of figure 3.5. That is, the frequency spectrum from equation
(A.61) is similar to the frequency spectrum from equation (3.21) with a coupling
five times as strong. This is not to be expected since they are derived from the
same equations of motion (3.1)-(3.4).

Additionally, the frequencies of the lower energy state are indecisive (they do
not have a continuous dependence on the crystal momentum) close to the I'-point.
This region of indecision overlaps the area of uncertainty in the very strongly
coupled frequency spectrum. This does not rule out any of the three hypotheses
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regarding the area of uncertainty. The indecision might be because of an instable
ground state, an invalid assumption of small spin-fluctuations from the ground
state or a Bose-Einstein condensation of the magnons. Although, in the last case
we would expect a more confined region of indecision, comparable to the area of
uncertainty in figure 3.3. The discontinuous region of frequencies might also be a
consequence of something we have not considered. In summary, figure 3.10 does
not give us any new insight.
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Figure 3.10: Frequency spectrum of magnons and phonons with a weak coupling:
T=1and T = (1+14,-2,2—3i) /+/19. soll and sol2 are solutions to equation
(A.61), solved with the Matlab function fsolve. 3000 lattice sites are used for these
solutions.

The propagated numerical floating point error of the numerical computations is
at the order of 1078 (see appendix B). Each line in the plots connect 30 000 lattice
points, except for figures 3.9 and 3.10 whose lines connect between 150 to 300 and
3 000 points, respectively. Further, each plot is 560 pixels wide and 312 pixels
high. Therefore, any numerical error is at least two orders of magnitude smaller
than the resolution of the plots, except for figures 3.9 and 3.10. The numerical
error in figure 3.9 is of the same order of magnitude or smaller than the resolution.
The numerical error in figure 3.10 is unknown. In conclusion, everything derived
from figures 3.3-3.9 are within the margin of numerical error, and figure 3.10 might
have visible errors.
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4. Conclusions

A model is derived by expressing ionic spin and displacement in terms of magnon
and phonon operators, respectively, and by evaluating their interactions in recip-
rocal space. The model is found to contain mixed terms of magnon and phonon
operators. Some of these terms’ mixes destruction and creation operators and
preserve the harmonic oscillatory behaviour of the magnons and phonons. How-
ever, the model also has terms with two destruction or two creation operators.
These terms indicate a non-harmonic behaviour of the model. To gain more in-
sight, the frequency spectrum of coupled magnons and phonons is derived. This
is initiated by using Heisenberg’s equation of motion and with the introduction of
Green’s functions. The frequencies are then extracted through the poles of Green’s
function. Finally, frequency spectrums are plotted in a numerical computing en-
vironment.

Based on these plots, we can make multiple observations and conclusions.
Firstly, the states of coupled magnons and phonons can be divided into a lower
and a higher energy state. Each of these states have a similar behaviour to either
the free magnon or the free phonon states, depending on their crystal momentum.
Secondly, the magnons are more sensitive to changes in the strength of the coupled
interactions than the phonons are. Thirdly, there is a region around the center of
the Brillouin zone wherein the frequencies of the lower energy state are unknown.
This region seems to appear for any strength of the coupled interaction, and it be-
comes larger with increasing strength. The causes and implications of this region
is unknown. One hypothesis is that the ground state is instable. Another hypoth-
esis is that the assumption of small spin-fluctuations from the ground state is not
valid, causing the model to break down. A third hypothesis is that the magnons
are in a Bose-Einstein condensate. Finally, the composition of the coupled inter-
actions between magnons and phonons are, in some cases, more important that
their strength.

A recommendation for future work is to compare this study with experimental
results. The frequencies of magnons can be measured by inelastic neutron scatter-
ing, for example in chromium (III) bromide [18|. To do this one might have to start
by changing the parameters in appendix B to fit the experimental setup. Other im-
portant work for future studies is to investigate the frequencies of the lower energy
state around the center of the Brillouin zone, theoretically and experimentally.
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Appendix A - Derivations

A.1. Heisenberg Hamiltonian

The expression for the anisotropic Heisenberg Hamiltonian in reciprocal space with
magnon operators, is derived by inserting the Holstein Primakoff transformations
for small fluctuations (2.10) into original expression for the Heisenberg Hamiltonian
(2.5). Finally, I use the Fourier transformed magnon operators (2.11) and carry
out the calculations:

Hye = — Jj Z S2S%.s—J1 Z S:Shs
3,6 3,6

- Z (5 - ojs) (57— bl sbiss) = 2018 Y blbys
7,0

3,5
1 o 1 o,
a3 (5 . >-be,1bk,> (s -S> >-<R]~+Rs>b;,b,,,)
3,0 k,k’ p,p’
1 , ~
—20.8) ) b Ry,
i5 kK’

N

=—J <NSQZ — % > Né(p—p)eP P opin, — 5 > N6 (k—K')blbe
6,p,p’ S,k k!

1 -
+3 > No(k—K +p—p)ePP >'R6bLbk,b§,b,,,>
S,k,k,p,p’
— zjl% > No(k—K)e ™ bl by
ok,k’
J
=~ JINS*Z +2J)SZ Y b — 2.8 Cubibl, — NH S Crowbl bbb i sp
k k k.k’,p
Ji

N > Crmtrbbar b b,

=~ JINS*Z + 25 (JjZ — J.Cr)blby, —
k k.k’ k'

(A.1)

where the structure constant is defined by Cy = Y ;e s,
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A.2. Dzyaloshinskii-Moriya Hamiltonian

The Hamiltonian for the anisotropic Dzyaloshinskii-Moriya interaction is given by
equation (2.13). This is expressed in terms of magnon operators by using the
Holstein-Primakoff transformations for small spin fluctuations (2.10):

Hpu _ZDjjJr& (8 % Sj1s)

( ) (z) o(z (z) a(y) () ol=)
_ZD]]+6 <SJy J+6 Sj Sj?-JF(S’S] S]+5 SJ SJ+6’SJ Sjié S} Sj+5>

J

_Z ( \/7 D5 [(b = 01) (8 = blsbies) = (S = bjts) (bes — bl )|

3980 (5 00) (s 01) = () (5
—ig P, [(b n b) (bM _ b}+5) . (bj . b}) (bj+a + b}+a)}>

_Z ( \/7 Djj+s [S (bj - b; —bjvs + b;”)

;b 5bjs + bIBL by + bbby s — Blb;b) ]
g

ﬂ@ DY [5 <—bj — bl + by + bjM)
+bjb;+ébj+5 + b]bg+6bj+6 - b;'bjbjﬁ b bjbg+6]

~iSDL), 5 [blbsas — bibl )

\/7 Z D+ DY,s) (—280; + bybbyes — blbsbss )

(z) T Tp ot
(=D + DY,s) (—280) + B0 bias — DjbsbL )
~iv25DY), ;b bﬁg}
(A2)

where I used that D, ;s is antisymmetric in the second last equality: Dj ;s =
—Djys;. In the last equality I used that magnons are bosons: [b;,b; 5] = 0.
This is expressed in reciprocal space by using the Fourier transformed magnon
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operators (2.11):

Hpy = \ 5 Z ZDJ?H J(J)+5> <_25bj +bjb;+5bj+6 - b;r'bjbjm)

+ ( iD;) 5+ Da(ya)+6> < 250} + bib} sbss btbjb}*‘;)

V25D, bl o]
25 ’
_ /5 Z (ZD + DY ) (__Zewk-ﬂjbk
J.g+é Jig+é
[ VN4
S R R G R R
k' Vk
N\/_ k kl kll
Z z(k k' —k"). 7Zk'/ RabTbk/ka>
kkl kll

(_ZD]]+5+D]]+5> (_\/_ﬁzekak

Z i(k+k'—k")-R; (k'—k")-R(ng bT b
k k:’ k//
N \% k: k/ k://
Z z(k K'+k")-R ‘k”‘R(s bLbklbLl/)
k: K R
— /QSDJ(;ZJ)JF(; Z ei(k—k/).Rj e—k/.R,;b};bk,]
K.k

_— \/WZZ (iD6” + DY) e Rty 4 (=iD§ + DY) e ot
+ \/ Z ( k'-i—k” + D( ]2:/+k//> U=tk —k")- kabT,bk//

k k/ kll

- ( Dk:" + Dk") k k= k” J bT bklbku
+ (_iD(,x]Z/+k// + D@]lurk//) 6i(k+k,_k").Rj kabL/bkll
_ <_ZD(IIZ:” + D(QIZ:"> (k: k’+k11 ’ b.‘_ bk,b.‘_ .,

- Z_ZD i(k—Fk’)- bTbk,

k,k’
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25N 2 [ (10§ + DY) by + (—iDf? + D) b}] \/_zSZZD(ZbTbk

,/ Z @ 1D y>> Dbl b g — (@D( ), + DY k,) bl i bre_i
+ (—z’D,(f) + D,i”) bibbbaw — (—iD 0 + D2 ) bbbl ]
(A.3)
with Dy, = %25 Dj7j+5e*ik'R5 and Dy = %Z(s Djits.
A.3. Scalar Contribution

The scalar decomposition of the Hamiltonian (2.16) is expressed in terms of phonon
and magnon operators in reciprocal space by inserting the Fourier transformed ex-
pression for displacement (2.17) and spin (2.11), respectively. The relation between
spin and magnetic moment M; = S is also used:

ZTJJ%QJ J+5

1 _
:_ZTJMZZ Wﬁk/\<akk+a—k/\> S

kR,
=—1 Z Tjj+s (ak,/\ + CLk,A) eI E g\
\ /2mek A

7,0,k

—3 7 . S —’L /. .
(,/ Z k(R + R) <bk,+b y ,—M/W;e k(R + Ro) (bk,—bik,)

S — N Z (K —K")-(R;+Ry) bT bk")

klklll

—vy 1 ik-R;
= ——T: s (CLk At a_ ) e 7
e = .

{ \/ Z 67“41 Rjeizk Rs |:€I(€:7B>)\ <bk/ -+ bT_k/) — ngﬁ <bk;/ — bT—k’)]
1 z ’ II ’ II
LT e |

kl kII

30



—z*yZ
Z N
+ _ZTkle—ik"Rj |: (z) (bk/ —i—bT ,) —Zf(y) <bk/ —b ,>]
\/ on - kA “k kA —k

1 z i ’ ”
Ng,(e)\ Z T kl+klle (k —k ) JbT bkn}

<am + aT_k’A> ek R {S&,(;)ATO

k/ k//

AV I () (- 010)) - Skl |
2 (Z e () {@ [ (e + 01,
e (be—0l,) | + \/LN 3 el brswe }) , (A4)
:

with T, = £ > 5 Tjjpee”* B and Ty = 2 35T 4s. In the second last equation
I used that the phonon polarization approaches zero faster than the square root
of the free phonon frequency when the crystal momentum approaches zero, see
equation (2.18).

A.4. Vector Contribution

Similarly to the scalar contribution, the vector decomposition of the Hamiltonian
given by equation (2.16) is expressed in terms of magnon and phonon operators
in reciprocal space by inserting the Fourier transformed expression for spin (2.10)
and displacement (2.17), respectively. The relation between spin and magnetic
moment M; =~ S, is also used:

HY) = Z jats - (Qj X Mjys)
Yy [T% (@< 55205~ Q%) + T (@71 — Q7s13)
J,6

13 (@781 - @517
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(s L 5 o om o)
—z i)
f e ()
ﬁ,ﬂzem o k,>]}

-z 1 ( t )
= ap ) +a_
V2m 2 AT Tk

(v)
TJ j+0

(2)
_TJ j+6

e VR
S (@) o (2) : Y) £(2) f
x Q5 [T (b= by ) + 16 (e + 01, )

ST (- 01y) ~ T (b4 04|
—%— Z (T8 60k b — TEE0 bkw)}
Z N (ak,ﬁa*_k,A)

. {@ (1683 (e~ 1) — 166 (01

) (1) + TG ()

i 5 (6 - L) | a5

with T = £ > 5 Tjjpse”* 8 and Ty = £ > Tjj4s. In the second last equation
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I used that the phonon polarization approaches zero faster than the square root
of the free phonon frequency when the crystal momentum approaches zero, see
equation (2.18).

A.5. Coupled Hamiltonian

If VN >> 3", blbg, the Hamiltonian from equation (2.21) becomes

Hy =H, + Hye + Hpy + Hiy + Hiy)

=~ INSPZ Y AN Pl (aka + L) + D0 (Grbi+ Gl )
ko ko, k

+ Z wk,xaL,\akA + Z exblbi + Z (ak,A + (ILM> (Ek)\bk + Eik,Abik> .
P k kA
(A.6)

Let oy = ag + Ik and B n = bk + Ji\ Where I,y = [ik,)\ and assume that the
Hamiltonian can be written as follows:

_ i T
H = E WA 3Ok X T €k 2B\ Bk
Py

+ (O"M + O‘T—k,,\) (Ek,Aﬁk,A + Ejk,,\ﬁiky)\) + K

= Zwk)‘ <CLL7>\ + I,;/\) (a,m + Ik)\) + €rA (b;fc + J,:’)\) (b + Jk,)\)
P

+ (ak,)\ + an_k:’/\ + Ik,)\ + ]ik)\)
X <Ek,)\ bk + Jren] + By 0 [bik + Jik,/\D + K.\ (A7)

_§ : T * T 2 T
= wk,,\ak’/\akA -+ wky)\fk’)\ 0779\ + a_k)\ + We ’[kh/\‘ + ‘Ek,)\bkbk
k)

+ <€k’AJ27>\bk + Efk,)\J—k,/\bT_k> + €k, |Jk7,\’2 + (ak’)\ + aik7A>
X (Ek,)\bk + Eik,,\bT_k> + (Ek,AJk,A + Eik,,\th,\) (ak,A + GT_h,\)
+ 2jn (Ekvak + Ei,mbik> +20er (Broadior + B 1T 5r) + Kioa.

The Hamiltonian in equation (A.7) should be that same as in equation (A.6).
Thus, the coefficients in both equations should be equal:

w
—JHNSQZ + Z % = Zwk,A |Ik,>\’2 + €k 2 ’Jk,A’2
kA kA (A.8)

+ 205 (Eendin + B g nd n) + Koy,
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Flyx =wipnIyy + ExpaJiy + EXp T g ns (A.9)

Gk = Z €k7)\¢]]:7)\ + 2[k,)\Ek,)\7 (AlO)
A
S eer = i (A.11)
A

Note that equation (A.9) only holds if F'yy = F'"y , since I x = I*, . Equations
(A.8) and (A.11) can be solved by letting

71527 1 )
Kpy=— +wia | = — [k

L 2
— el Tip]® — 21k (BT + EikAJikA)

(A.12)

and e
Ek’)\ = f, (Al?))

respectively.
Applying equation (2.18) to the definition of Fj » found in reference [3] as well
as to equations (2.23) and (2.25) gives

ilLI(l) Fk’)\ (’I‘j) = O, (A14)
. ! 1 N ik —
IE%F k) = %{}I})ZF&/\ (rj) ™™ =0 (A.15)
J
and
lim Ek:)\ = O, (A16)
k—0

respectively. From equation (A.9) and the limits above, it follows that limg o [\ =
0. Additionally, in the limit of zero crystal momentum, equation (A.10) becomes

VaNS3Z
lim Jy, = lim S (mgﬂ - Dgw) Sreo. (A.17)

—0 k—0 €L

In the case of k # 0, equation (A.10) can be rewritten as follows

kTR
Iy, = ———=. A.18
o= (A.18)
Since I\ = I”} it follows that
B €exJp ) _ _Gik,)\n]—h/\ (A.19)
2 2E ‘
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Inserting the two equations just above into equation (A.9) gives

/ * * *
Flyx =wi i) + Egades + B2 \J g

| TWrACRAE—kA T 2E; 5 (€—kpy — €kp) J
B 2¢_g 2Bk B
implying that
Jir = 2F k xé_kEk (A.21)

5 )
—We A EENE_k )\ T 2Ek7/\ (Efk,)\ — Gk,A)

Inserting this into equation (A.18) yields

1% *
—F' g z€krek iy )

Tjx = (A.22)

—W Ak A€k ALk + 2B |Ek:,)\|2 (E_kx — €k,))

A.6. Green’s Functions

Acting with the partial derivative with respect to time at Green’s function of the
shifted phonon destruction operator ag » (3.5) yields:

iOnGagor (t — 1)
=00 (Tiana (£) af (#))
=0, [0t =) (e ()l (1) +0 (' =) {al, (1) arr ()]
) {Dama (B) af, (#))
(t' = 1) (@ (1) Do (1))
Tidhowa (1) af (1))
=5t =) (ana (8),afr )] ) = i (Ti fowat), H ol ()

=5 (=) + wirgarn (6) = i (T (BoraBia() + BinBa(0) ala (1))

I
(o9
—~
~
|
e
—
S
o
=
>
—~
~
~—
Q
x> —+
>
—
~
—
—~~ >~~~ —
+
e
—
~~
|
~

—~

(A.23)
lifx>0
where §(z) = ¢ 0if x <0 [3]. In the second last equality of equation (A.23),
Lifz =0
2

Heisenberg’s equation of motion was used [11]. In reciprocal space id; corresponds
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to a frequency z. Equation (A.23) should hold in the case of no coupling:
1
Z—wga

gOék’A;z - (A24)

Similarly, for Greens function of OzL’)\ I get
iatgafk,)\ (t - t,)
=5 (=) {|afn (1), ()] ) =i (T3 [l a0, H] arr (1))

This should hold independently of the strength of the coupling. Thus, I can eval-
uate in the case of no coupling Ey ) = 0:

10iGatpp (t —1t') = =0 (t = 1t') —wipgatpn (t,1). (A.26)

In reciprocal space this can be written as

(A.25)

1

2+ Wg

(A.27)

goﬁk:,)\;z =

Green’s function for the [y \ operator is defined by equation (3.7). Similarly to
the shifted phonon operators, I can act with i0;:

iatgﬁk,A (t—1t)

:% Z 0, <Tt5k,A (t) B (t,)>
=

=00 1) 1 3 [Bea (08 (O] ) = £ 3 (T Bialt). H) B 1))

)\/
1 X %
=3t =1) = = 3 (Ti [ (t) + By () + B (0] 8L (1)
)\/7)\//

(A.28)

In the case of no coupling Sk » = bx = Sr.n for any A and \'; because J ) = 0 if
Ek» = 0. Equation (A.28) should hold in the case of no coupling:

1009550 (1) = 6 (1 — ') + engpg, (t — 1) (A.29)

In reciprocal space this can be written as

1
IBr e = — e (A‘SO)
Similarly, Green’s function for ﬁ,t ) 18
1
98 k2 2+ €p (A‘Sl)
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A.7. Coupled Phonons

Acting with ga;}/\;z at equation (3.10) and using the equations of motion for Sy »
(3.12) and B, (3.13) gives:

—1
9o kexzVkA
gt
=E_k Bk + Ep 2By n

:E—k,/\gﬁ—k,)\;z Z (E_k7A/ J_k7/\/) + Z (Eik:)\/ak,)\/ _I_ Eik7>\/a1-_k’>\/>]
NN Y
— EI:,)\gﬁTkv/\;z Z (Gk,,\/J;;N) + Z <Ek,,\/04k,x + Ek,,\/OéT_ky,\,)]
NN N

= Z <|:gﬁ—k,)\;zEk,)\E;::,)\/ - g[—}Tk)\;zEl:’)\Ek’)\/] [ak,)\’ —+ Oé,k)«]) + J/k’)\
2\
= Z Ak ;e (ak,A' + OéT_k7/\,) + J/k,A (A.32)
and
g(;fl_k,)ﬁzaik’)\ = Z Ak,)\,)\’;z (ng)\, + aik})«) + J,k;’)\, (ASS)
A\

with
Araviz =98 g ro LBy — 9t B By
Ek,)\E};/\, EZ)\Ek:,N
- 2 — €_p B Z+ €
_Ek,AE;;’/\, (z+ €ex) — B 3B (z—€_g)
B (z —€e_k) (2 + €x) (A.34)
(ExnEi v — EpzEx) 2+ ExaEj, yex + Ej; \Exve
(z—€_g)(z+€)

(=) (€)
_ Ek:,)\,)\’z + Ek,,\,,\/
(z —€_k) (2 + €)

and

S ex =E k795 g r.e Z (e—kxJrx) = Epgsty 5. Z CR/SOR (A.35)
N#X N#X

where I made the following definitions
EIE::\),A’ = ExaEp v — Bz Erx (A.36)
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and
El(:l\,,\/ = EpaEp ver + Ep yEgyve . (A.37)

Writing equations (A.32) and (A.33) in one matrix equation:

—1
§ Yo k,)\;zd)\,)\/ - Ak,)\,)\’;z _Ak,)\,)\’;z [TV J/k,)\
-1 = , .
_AkvAa)‘/§Z ga'i' *k,A;ZdA?A/ - Ak,)\,)\/;z O;Lk:,)\’ J k7)\

i (A.38)

Green’s function for coupled phonons is given by equation (3.19) and it is

repeated here:
T
A O A NO | )
Carp: = GhRA (2). (A.39)
QAp A Oy Vg Xk )

In the limit of no coupling (Ejx — 0), Gag ., reduces to
— goék,)\;z 0 A .40
gAk,)\;z ( 0 gal‘k)\;z) . ( . )

Therefore, the following equation should hold:

Z Q;lk,)\;ﬁ)\,x\' — Ak iz — Ak ANz G (1 0
Y — Ak g;l‘l_k,)\;zé)\,)\/ — Apyys ) O ARAE 0 —-1)°
(A.41)
Solving equation (A.41):
Garn: = Z {(9;11@)\;,35)\,)\’ — Ak,)\,)\’;z) <g;fl_k7>\;z5>\,>\” — Ak,A,X’;z)

)\/7Al/

1
_Ak,/\,)\’Ak,)\,)\”;z}

—1
% Z (gaT _k’)\é)\,/\”/;z — Ak:,)\,/\’”;z Ak,/\,)\“/;z ) ((]:_) _01)

-1
A Ak sz 9o kO — Ak

= Z {([z —wral o — Araniz) (= [+ woga] Oy — Agas)

A/,)\//
-1
—Apax Ak sz}
% Z - [Z + wfk,/\] (5)\,)\’” - Ak:,)\,/\”’;z Ak:,)\,/\”’;z
Ak,)\,)\’”;z [Z — Wk’)\] 6)\7/\/// — Ak,)x,)\’”;z

)\///
« 1 0
0 -1
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1
- 2
=22 4wy 2w Doy Akepviz

y <—Z — Wk = Dy Ak = 2 Ak )

> v Ak =2+ W+ Dy Ak
1
= 2
2% — wi y = 2w\ Dy Ak vz
MRS DVR > Ak (A.42)
= Ak z = Wi = 2o Arai

Taking the trace:
2z

2
2% — W\ — 2Wk,2 2 ox Ak
2z

trGAk,)\;z =

(=) (e)
By xarr B\

22— Win — WA Dy G Gt
22 (z —€e_g) (2 + €)
(22 —wiy) (2 = eok) (2 + €x) — 2wpn <Zx Bz + El(c))\)\)
(A.43)

A.8. Coupled Magnons

Equations (3.10)-(3.13), may also be rewritten in terms of the new magnon oper-
ators:

—1
95 k,A;zﬁk:A

* * T
=> <Ek,>\’a—k,>\’ + Ek,x%,x> + D ek i
N N

= Z B x9a ke (Ek,/\’ﬁk,/\’ + Eik,A’BT—k,,\')
A/
> B nGatkys (Ek,xﬁk,x + Eik,A’ﬁT—k,)\/> + > niy
% N#EX

= Z EZ,,\/ (ga—k,)\’;z - gaTk,A';z) (Ek,/\’ﬁk,/\’ + Eik,)\’ﬁik,)\) + 6k,>\’Jk«\’ (1 - 5A,/\’)
A/

= Z By v (Ek,,\/ﬁk,,\' + Eik,,\/ﬁik,,\/> +exnJen (1 —0an),
A/

(A.44)
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and

—1 * * *
a1 7“;251“ =Y B (Ek,xﬁk,x + E—k,A’BT—k,A’> e g (1= 0ax)
A/

(A.45)
with
Bix = By (9a—kx — otk - (A.46)
Combining equations (A.44) and (A.45) into one matrix equations:
Z <g§1k Az 5)\ N T Bk )\’Ek,)\’ _Bk,)\/Etk,)\’ ﬁk N
=By x By Iot o\ O = BB ) \BE
BT —k, )z kN (A47)

_Z e Jen (1 — 0\ )
€_ k)\/J k>\’<1_5>\>\’) ’

Let us now introduce Green’s function for coupled magnons:

5k,/\5£ v BeaBkx
G L = ’ . A.
Bk,)\,Z < <6,1‘:,)\5Tk7)\ /BTk,)\B_k7)\> > (Z) ( 48)

In the limit of no coupling (Exx — 0), Gpg, .. reduces to

o gﬁk,)\;z 0
gAk)\;z - ( 0 gﬁT_k)\;Z) . (A49)

Therefore, the following equation should hold:

Z 951k7/\;z5,\,,\/ — By B —BryE*y v G B <1 0 )
5 _Bik)\/Ek,/\’ gﬁ_Tl—k7/\;z(S)")‘l - Bik,)\’Ejk,/\’ Bk,Xiz = 0 —-1/)°
(A.50)

Solving this equation:

-1 -1
GCBra: = Z {(95 k,,\;z(s)\J\’ - Bk,A’Ek,/\’> (95T _kvk;z@\,)\“ - Bik,A"Eik,A")

N\
-1
_Bk,NEik’)\/Bik7>\//Ek7)\//} (A51)
gﬁ—Tl . )\.2(5)\7)\/// — Btk})\"’Eik,)\”’ Bik)\”/Ek,)\”/
X E T _
N BkvAmEik,)\’” gﬁ lk,)\;ZéA,A//’ - Bk,)\”’EkJ\’”

0 2)
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= Z {([2 — Ek] 5,\’)\/ — Bk,/\’Ek,)\’) (— [Z + Efk] (5)\7)\// — Bik,)\”Eik,)\”)

N\
(A.52)
* * -1
_B"h)\'E—k,/\’B—k7,\/’Ek,)\”} (A.53)
> —Z — E_k - 2)\’” Bik,)\’”Ejk,/\’" - Z)\”’ Bik7,\”’Ek,)\W
Z)\/// Bk7)\///Ejk7)\/// —Z + € + Z)\,,, Bk,)\’”Ek,)\”’
(A.54)

= {22 - (Ek - G,k) Z — €p€_j — Z (Bk,)\’Ek:,X — Bik,)\/Eik,X) z (A55)

)\/
—1
)\/
Z + €k + Z/\// Bik )\”Eik NG Z)\// Bik )\//Ek,)\”
X ", : : . (A7)
— ZA” Bk,X’Efk,)\" Z — € — Z)\” Bk,)\”Ek,A"

Evaluating By y:

B :EZ:,A (gafk,)\ - goﬁk,/\;z)

1 1
=F7 —
kA (Z — Wk, z+ u)k)\) (A58)
_2wk7>\E,:7/\

2,2 7
z wk7)\
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The trace of Green’s function of coupled magnons is
tr (Gpi,nz)

= {22 - (Ek - E_k:) Z — €p€_f — Z (Bk,/\/Ek:,/\/ - Bik,)\/Eik,)\/) z

2\
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— Z)\,, Bk,)\”Eik’)\// Z — € — Z)\// Bk,)\”Ek,)\"
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1 1
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2 2 (S 3 €k
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1 1
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)\/
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—21 2
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)\/

|,22|2 — 2w, vRe (22) + Wi\
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Assuming that e, = e_j gives:
tr (Ger,as2)

— {22 — (€p — €_k) 2 — €RE_g
—2Im (2?)
|,z2]2 — 2wg v Re (22) + W}i»

1
el te g (22) —wi, (e +e
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]z2\2 — 2wg v Re (22) + w,i,\,

—2Tm (2?) }

|z2|2 — 2w v Re (22) + w,‘;)\,

s ) o [ —2Im (2?) z + 2exRe (27) — 2w} \ €k -
- z - Ek - Z 4wk7)\/ |Ek7)\/| ’
)\/

|22 — 2wg wRe (22) + W v

—> 4wy By
)\/

2
X {22+€_k—€k— g 4w,2€’,\/|Ek7X|
A/

2Im (22)
X224 > 4wk | Eex|? .
{ ; k,\ | kA | |ZQ|2 . 2(40]@7)\/Re (22) +w;<1:,)\/}
(A.60)

The poles of this function are the solutions to the following equation:

0= (22 — ei) H ’,22 — w,z,)\,f
)\/

+38 Zw;/\,, | B [Im (2%) z — exRe (%) + wi,/\,,ek] H |22 - wi,/\,
A N AN

2

(A.61)

I cannot solve this equation analytically. It can, however, be solved numerically
with the script in appendix B. Figure 3.10 shows the results.
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Appendix B - Numerical Script

The script below is written and executed in Matlab R2018b [14]. The value of T
is determined by line number 29, and the composition and magnitude of T are
determined by line numbers 30 and 32, respectively. The propagated numerical
floating point error is determined by executing the script as is, and comparing the
results with those of the script executed with lines 46-51 uncommented. Figure
3.9 is obtained by uncommenting line numbers 195, 219, 220 and 241-244 (as well
as choosing 7" = 0.01 and T = 0). Figure 3.10 is obtained by uncommenting
line numbers 183-190 and 247-258. The plot found on the title page is obtained
by choosing 7' = 5, T = 5(1 +14,—2,2 — 3i) and uncommenting line numbers
283-318.

% % Frequency Calculations.m

% %

% % This script is a part of a degree project E in physics and it is
% % based upon the calculations in the thesis titled Magnon—Phonon

5/% % Coupling .

% %

% % Jacob Persson, Department of Physics and Astronomy, Uppsala
% % universitet , Uppsala, Sweden.

% %

% % 2018—11—14

% %

% %

5% This is a calculation of the frequency spectrum of coupled magnons
5|/% and phonons. A two—dimensional lattice with rectangular structure
7|% is assumed. The phonon polarization is restricted to one direction

% and only one ion at each lattice site is assumed. Further, the

% Dzyaloshinskii—Moriya coupling constant and the coupling constant
% of the interactions between magnons and phonons are assumed to be
% independent of the distance to the nearest neighbours. The phonon
% polarization is assumed to have a sinus dependence of the crystal
% momentum .

clear all

i| close all

% Parameters to vary:

T s =1; % Scalar coupling strength ,

T v=[14+1i,-2,2—-3%11]; % Vector coupling composition ,

%r v = |5x1i, =3, 2];
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72
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1

o]

| X M = [linspace (X(1

T v = 1«T_v/norm (T _v); % Vector coupling strength ,

+|% Constants:

5\N = 10000; % 1/3 of the number of lattice sites

jla = [1, 1, 0]; % Lattice vector ,

m= 1; % Ton mass,

K = 10"2%[1; 0; 0]; % K(lambda): Force constant of phonons;
xi_s = (1, 0, 0]; % xi(lambda): Phonon polarization strength;
L = nnz(xi_s); % Number of phonon modes,

S =1/2; % Total spin of each ion,

J para = sqrt(2); % Heisenberg coupling in the xy—plane,

J perp = 1/sqrt(2); % Heisenberg coupling in the z—direction ,
D j=[1, 1i, 0]; % Strength of DM-interaction ,
s|gamma = 1; % Gyromagnetic ratio of the ions.

% % Error analysis

% a(l) = a(l) + eps; a(2) = a(2) + eps; m — m + eps;

% K(1) = K(1) + eps; xi_s(1l) = xi_s(1) + eps; S = S +eps;

% J_para J para + eps; J_ perp J perp +eps; D j(1) D j(1) A
% gamma = gamma + eps; D _j(2) = D _j(2) + eps;

% Symmetry points
Gl = [0, 0, 0]; G2 = [2xpi/a(l), 2«pi/a(2), O];

5|X = [pi/a(l), 0, 0]; M=X+ [0, pi/a(2), 0];

% Momentum paths
G M = [linspace (G1(1) ,X(
linspace (G1(2) ,X(2),
) M(1
linspace (X(2) ,M(Z) N
M G = [linspace (M(1 ) 2(1

1) ,N);
N); linspace(G1(3),X(3) ,N)]’;
) N) ;5

)), ll)nspace (X(3) ,M(3) ,N)]’;
N);

% a(l) and a(2) are different from zero.

if a(l) =0 || a(2) = 0
disp(’First or second element of the lattice vector is zero’)
end
3lR_delta = [a(1l), a(2), a(3); a(l), a(2), 0; a(l), a(2), —a(3);
a(1)7 07 3(3)7 a(l)a 07 Oa a(l)v Oa _3(3),
a(l), —a(2), a(3); a(l), —a(2), 0; a(l), —a(2), —a(3);
0, a(2), a(3); 0, a(2), 0; 0, a(2), —a(3);
0, 0, a(3); 0, 0, 0; 0, 0, —a(3); )
0, —a(2), a(3); 0, —a(2), 0; 0, —a(2), —a(3);
_a(1)7 3(2)7 3(3); _a(l)7 3’(2)7 Oa _a’(l)a 3(2)7 _3(3)7
_a(]')7 Oa 3(3)3 _a(1)7 0, 07 _a(l)7 07 3(3)7

eps;

linspace (M(2) ,G2(2) ,N); linspace (M(3),G2(3) ,N)]’;
sk =[G M; X M; M GJ; % Crystal momentum.
k m = —k; % Negative crystal momentum
% R _delta(ion, r): Vector to all nearest neighbours, assuming that



81 73(1 ) *a(g)v 3(3); *3(1)7 *a(g)v O; *a(l)v 73‘(2)7 *3(3)];

s2| if a(3) = 0

83 R _delta(27,:)=[]; R_delta(26,:)=[]; R_delta(24,:)=]];

84 R _delta(23,:)=[]; R_delta(21,:)=[]; R_delta(20,:)=]];

85 R _delta(18,:)=[]; R_delta(17,:)=[]; R_delta(15,:)=[];

86 R delta(14,:)=[]; R_delta(13,:)=[]; R _delta(12,:)=][];

87 R _delta(11,:)=[]; R_delta(9,:)=[]; R_delta(8,:)=[];

88 R _delta(6,:)=[]; R_delta(5,:)=[]; R_delta(3,:)=][];

89 R_delta(2,:)=]];

90 end

91/Z = numel (R_delta) /3; % Number of nearest neighbours.

92
93|% k—dependent coefficients
94|% Structure constants assuming 2 dimensional material:

95| C=0; C_m=0; % C(k) and C(=k), respectively.
96| for lambda=1:length (R _delta(:,1))

o7 C = C +4exp(—1ixk(:,1)*R_delta(lambda,l))

98 + exp(—1lixk(:,2)*R_delta(lambda,2));

99 Cm=Cm+exp(—1li*k m(:,1)*R_delta(lambda,l))
100 + exp(—1lixk m(:,2)*R_delta(lambda,2));

101] end

12| if max(imag(C)) > le—10 || max(imag(C m)) > le—10
103 disp (’Imaginary C’)

04| end

105|C = real (C); Cm= real (Cm);

1w6|D = (1/Z)«D_j.xC; % D(k),

17D m= (1/Z)*D_j.*C m; % D(—k) ,

08| T_sk = (1/Z)+T_sxC; % Scalar—coefficient ,
19| T vk = (1/Z)+T_v.xC; % Vector—coefficient ,

110|% assuming that D, T s och T v is independent of the displacement of
111|% the ions

112
113|% xi(k, xi): Phonon polarization , assuming sinus dependence.
4] xi = xi_s.xsin(sum(k.xa, 2));

115
116|% omega (k,lambda): Free phonon frequency .

17| omega = zeros (Nx3,L);

sl for j=1:L

119 omega (:,j) = sqrt ((4*K(j)/m)=*sin (sum(k.xa, 2)/2).72);
120 end

121
122|% epsilon (k): Free magnon frequency .

123| epsilon = 2xSxJ paraxZsones(length(k(:,1)),1)

124 — 2xSxJ _perpxC — sqrt (2)*1i*S*xZ«D(:,3);

25| epsilon_m = 2xSxJ paraxZxones(length(k m(:,1)),1) ...

126 — 2xS*xJ_perp+C_m — sqrt (2)*1ixS*xZ«D m(:,3); % epsilon(—k).
127

128|% E(k, lambda): Mixed magnon—phonon frequency .

20| E = zeros (length (k) ,L);
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131
132
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140
141
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168
169
170
171
172
173
174
175
176
177

178

for lambda=1:L
E(:,lambda) = gammax sqrt (S)*Z./(2*sqrt (m)+sqrt(omega(:,1))) .x*...
(T_skox(—Tixxi(:,1,1) + xi(:,2,1) )
+ T vk(:,1).xxi(:,3,1) — 1i*T_vk(:,2).xxi(:,3,1)
— T vk(:,3).xxi(:,1,1) + 1i*T vk(:,3).*xxi(:,

[\V]

end
E(isnan(E))=0; % Replace undefined values with zero

% E_epsilon(k, lambda, lambda’) and E _—(k, lambda, lambda’)
E epsilon = zeros(length(k), L, L); E minus = zeros(length(k), L, L);
for lambda=1:L
E epsilon (:,:,lambda) = E.xconj(E(:,lambda)).xepsilon
+ conj (E).«E(:,lambda) .*epsilon_m;
E_ minus(:,:,lambda) = E.xconj(E(:,lambda)) — conj(E).+«E(:,lambda);
end

% a(k, lambda): Coefficients for the equation of the poles of Green’s
% function

a_ 0 = omega. 2.xepsilon.xepsilon_m — 2xomega.xsum(E _epsilon,3);
a_ 1 = — omega. 2.x(epsilon—epsilon_m) — 2xomega.*xsum(E_minus,3) ;
a_ 2 = — omega."2 — epsilon.xepsilon m;

a_ 3 = epsilon— epsilon m;

% Parameters for the solution of the coupled frequencies

% p(k, lambda) and q(k, lambda)

p=a 22— (3/8)xa_3.72;

q= (1/8)*a_3.73 — (1/2)*a_3.xa 2 + a 1;

% Delta_ 0(k, lambda) and Delta 1(k, lambda):

Delta 0 = a 2.72 — 3xa_3.xa_1 + 12xa_ 0;

Delta 1 = 2.xa 2.3 — 9xa 3.xa 2.xa 1 + 27+a 3.7 2.xa 0
+ 27*xa 1.72 — 72xa 2.xa_ 0;

% Q(k, lambda) and S(k, lambda):

Q = ( (Delta_ 1 — sqrt(Delta 1.72 — 4xDelta_0.73))/2).7(1/3);

S = (1/2)xsqrt(—(2/3)*p + (1/3)%(Q + Delta_0./Q));

% Solutions

z 1= —(1/4)%a_3 + S + (1/2)ssqrt(—4%S."2 — 2xp — q./S);
z 2= —(1/4)xa_3 + S — (1/2)xsqrt(—4xS."2 — 2xp — q./9S);
z 3= —(1/4)%a_3 — S + (1/2)xsqrt(—4%S.”2 — 2xp + q./S);
z 4= —(1/4)xa_3 — S — (1/2)*sqrt(—4%5.72 — 2xp + q./S);
% If sum(E_ minus)=0 and \epsilon k = \epsilon {-k} , it is enough to

% look at the absolute values of the real and the imaginary parts of
% solutions 1 and 3.
if sum(sum(max(E_ minus))) > le—10
disp (’E_minus is not 07)
elseif max(abs(epsilon—epsilon _m)) > le—10
disp ( '\ epsilon k — \epsilon {-k} is not equal to 0)
end
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180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
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204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

227

1 = abs(real(z_1)); y_1 abs (imag(z_1));
2 = abs(real(z_2)); y_2 = abs(imag(z_2));

X
X

% % Magnon equation if epsilon=epsilon m

% fun = @Q(z)(magnons(z, omega, epsilon, E));

% options = optimset (’MaxFunEvals’, 40000, 'TolFun’, le—10);
% x01 = x_1+0.1;

% x02 = x 2-0.1;

% zsoll = fsolve (fun, x01);

% zsol2 = fsolve (fun, x02);

% xsoll = abs(zsoll);

% xsol2 abs (zsol2);

% Plots for lambda 1

k p= [sum(G M2); sum(X M,2); sum(M G 2) |; % Plotted momentum.
ax = [ 0 k p(end)+1 0 max(max(omega))+2]; % Axis

Zax = [0 X(1)/100 0 0.001]; % Axis if Ts = 0.01 and Tv=0

f1 = figure(’Position’, [1360, 560, 560, 420%0.745]);

7 9

h3 = plot(k_p, omega(:,1), 'b—’, k p, epsilon(:,1), 'r—",
k p, x 1(:,1), ’¢’, k p, x 2(:,1), 'm’); % Real parts
hold on

% Imaginary parts

tp = 0.3; % Transparency

hl = area(k_p, [x_1(:,1)—=y 1(:,1), 2%y _1(:,1)]);
h1(1).FaceColor = 'none’; hl(1l).LineStyle = ’'none’;
h1(2).EdgeColor = 'none’; h1(2).FaceColor = ’¢’;
h1(2).FaceAlpha = tp;

hold on

h2 = area(k _p, [x_2(:,1)—=y 2(:,1), 2%y _2(:,1)]);
h2(1).FaceColor = 'none’; h2(1).LineStyle = ’none’;
h2(2).EdgeColor = 'none’; h2(2).FaceColor = 'm’;
h2(2).FaceAlpha = tp;

% Title and axes

title ( "Frequency Spectrum’)

xlabel (’Symmetry Points’)

names = {’\Gamma’; ’'X’; 'M’; ’\Gamma’};

set (gea, 'xtick’ [sum(Gl), sum(X), sum(M), sum(G2)],
"xticklabel ’ jnames)

% names {"\Gamma’; ’'X/200’}; % at very small coupling

% set (geca, xtick ', [sum(Gl), sum(X)/200], ’xticklabel ’ names)

ylabel (’Frequency )

set (gea, 'ytick’ ,[])

axis (ax)

% Legend
[T,h legend] = legend(’\omega’, ’'\epsilon’, x 17, 'x 27’y 17,

)

'y 27, ’Location’, ’'northeast’);
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22s| PatchInLegend = findobj(h _legend, type "patch’);
20| set (PatchInLegend (1), 'FaceColor’, ’'c¢’);

230l set (PatchInLegend (2), ’'FaceColor’, m’),

231| set (PatchInLegend (2), 'FaceAlpha’, tp);
232l set (PatchInLegend (1), ’'FaceAlpha’, tp);
233
234|% Display values of the coupling strength

as|txt_ T = [T = 7, num2str(T_s, "%.2f), 7, 7, "{\bfT} = (
236 num?2str (T _v(1),’%.2f7), 7, 7, num2str(T_v(2), %.2f"
237 num2str (T_v(3),’%.2f"), 7)’];

238 text (ax (1) +0.3,ax(4) —1,txt_T)

239
210|% % Display values of the coupling strength at very small coupling
201|% txt T s ['T s *, onum2str (T s,’%.2f7), 7, 7,’T v (7, ...
212|% num?2str (T_v(1),’%.2f7), 7, 7, num2str (T _v(2),"%.2f"),’, 7,

23| % num2str(T_v( )% 280) )

214|% text (ax (1) +0.001,ax(4) —0.0001,txt T s)

245
216|% % Magnons plot

217|% f2 = figure (’Position’, [1360, 560, 560, 420%0.745]);
218|% plot (k_p, omega(:,1), 'b——", k p, epsilon(:,1), 'r——",
249| % k p, xsoll, ’¢’, k p, xsol2, 'm’)

250|% title (’Frequency Spectrum’)

251|% xlabel (’Symmetry Points )

K

)
) ’
) 9

252|% names = {’\Gamma’; ’'X’; 'M’; ’\Gamma’};
253| % set (gea, xtick 7, [sum(Gl), sum(X), sum(M), sum(G2)],
254| % "xticklabel ', names)

255|% legend (’\omega’, ’\epsilon’, ’soll’, ’sol2’, ’Location’,
northeast ') ;

256|% ylabel (' Frequency ’)

257|% set (gea, ytick 7, [])

258| % axis (ax)

259
260|% Removing figure margin

261| ax2 = gca;

262| outerpos = ax2.OQuterPosition;

203) t1 = ax2.TightInset;

261| left = outerpos (1) + ti(1);

265| bottom = outerpos(2) + ti(2);

266) ax2_width = outerpos(3) — ti(1) — ti(3);

267 ax2 _height = outerpos(4) — ti(2) — ti(4);

265| ax2. Position = [left bottom ax2 width ax2 height];
269
270|% Control plots of Q and S: the solutions might not be true if Q=0
271|% or S = 0.

22| £3 = figure (’Position’, [1360, 60, 560, 420]);

273l plot (k_p, abs(Q(:,1)), k p, 4*xabs(S(:,1))."72)

o4 title ('Q_x and 4S x°27)

275| xlabel (Symmetry Points’)

w
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277
278

280
281
282
283
284
285
286
287
288

290
291
292
293
294
295
296
297
298

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

names = {’\Gamma’; ’'X’; 'M’; ’\Gamma’};

set (gea, 'xtick’ ,[sum(Gl), sum(X), sum(M), sum(G2)],

"xticklabel ’ jnames)

ylabel (’Magnitude ")
legend (’Q_x7, ’4S x"27)

%o
%
%o
%o
%o
%o
%
%
%
%o
%o
%
%o
%
%o
%o
%o
%
%
%
%o
%o
%
%
%
%o
%o
%
%
%
%o
%o
%o
%
%
%o
%o

% Front page plot

figure

% Real parts

h4 = plot(k_p, omega(:,1), 'b—=", k p, epsilon (:,1),
k p, x 1(:,1), ’¢’, k p, x 2(:,1), 'm’,

()
k p, zeros(length(k p),1), 'w’);
hold on

Y%Imaginary parts

tp = 0.3; % Transperancy

h5 = area(k p, [x 1(:,1)—=y 1(:,1), 2xy 1(:,1)]);
h5(1).FaceColor = ’none’; h5(1).LineStyle = ’'none’;
h5(2).EdgeColor = ’'none’; h5(2).FaceColor = ’c¢’;
h5(2).FaceAlpha = tp;

hold on

h6 = area(k p, [x 2(:,1)—y 2(:,1), 2xy 2(:,1)]);

h6 (1) .FaceColor = ’none’; h6(1).LineStyle = ’'none’;
h6(2).EdgeColor = ’'none’; h6(2).FaceColor = 'm’;
h6(2).FaceAlpha = tp;

|
o

%Removing figure margin

ax4 = gca;

outerpos = ax4.OuterPosition;

ti = ax4.Tightlnset;

left = outerpos (1) + ti(1);

bottom = outerpos(2) + ti(2);

ax4 width = outerpos(3) — ti(1l) — ti(3);

ax4 height = outerpos(4) — ti(2) — ti(4);
ax4.Position = [left bottom ax4 width ax4 height];

ax3 = [ 0 k p(end) 0 max(max(x_1))];
axis (ax3)

box off

axis off

set (gca, ’visible’, ’off”’)

set (gef, ’color’, [1 1 1])
% axes (’Color’, ’none’,’XColor’, none’)

20

% Axis
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