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1. Introduction

In order to describe nature we have to make predictions that are con-
sistent with what is seen in experiments. In the theory of quantum
interactions our best current approximation of the real world is the
standard model of particle physics which describes how fundamental
particles behave at energy scale below 1-10 TeV. The standard model
has proven to possess an incredibly predictive power by surviving many
high precision tests run at the LHC over the last decade, including the
discovery of Higgs boson [1]. Beside these many excellent results a lot of
open question and problems remain unanswered, most notably the quest
for a dark matter candidate, unification of the fundamental forces and
fine tuning problems related to the Higgs mass. A possible solutions is
given by supersymmetry (SUSY), which is an extension to the standard
space time symmetry which relates fermionic and bosonic particles.

A first check to the validity of extensions of the standard model would
then be the discovery of supersymmetric particles. High precision cal-
culations in perturbative quantum field theory (QFT), which are cur-
rently the next-to-next-to-leading-order (NNLO) quantum chromody-
namics computation with several scales [2], are needed in order to pos-
sibly check these predictions. Independently of this phenomenological
applications supersymmetric theories are interesting objects by them-
selves as the highly non trivial constraints coming from supersymmetry
and the holographic correspondence [3, 4] pave a way to study QFTs
in the strongly coupled, non-perturbative, regime. This could help us
understand the dynamics of strongly correlated systems which can be
usually only studied through numerical simulations. Especially in the
recent years there has been a rich and intense development in both per-
turbative and non-perturbative results for QFTs. These developments
have come from a better understanding of the mathematical structure
of observables and by a clever use of symmetries and constraints.

In the case of perturbative computations the common method to
keep track of all the contributions to a perturbative scattering relays on
Feynman graphs and integrals, see for example tab. 1.1. The number
of terms appearing in this perturbative calculation becomes very large
very quickly, moreover this approach seems to break some symmetries of
the theory which must re-emerge when extracting physical observables.

Starting from the work of Bern, Dixon, Dunbar and Kossower [5, 6],
where unitarity based methods have been developed to efficiently con-
struct integrands, in the last years a lot of new ideas have been developed
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p1

p2 p3

p4 p1

p2 p3

p4

p1

p2 p3

p4 p1

p2

p3p4

Table 1.1. Some contributions to the gg → gg scattering at 2 loop.

to simplify the standard approach to perturbative calculations1. For ex-
ample using generalized unitarity [9] we are able to directly construct
an ansatz for the amplitude and fixing it by solving the so called ”cut
equations”. This avoids the problem of summing the individual contri-
butions constructed from Feynman rules.

A lot of these developments have come from SUSY theories, more no-
tably N = 4 super Yang-Mills theory, which is a gauge theory with the
maximal amount of supersymmetry, in the planar limit. In this limit we
are sending the gauge group rank to infinity, suppressing the non pla-
nar contributions to the perturbative processes as they are subleading
in rank. One example of such a contribution is the second element of
the second column of tab. 1.1.

The rich structure of N = 4 in the planar limit, which is characterized
by its dual super conformal symmetry, allows one to obtain sharp con-
straints on the form of amplitudes [10]. It is then possible, for example,
to construct an all loop integrand for any number of particles [11] and
it has also been shown that a more compact local integrand form exists
[12]. Moreover it is possible to represent amplitudes using more geomet-
rical objects such as the Grassmanian [13] and the Amplituhedron2 [15],
which avoid the requirement of locality or unitary and exploit the full
symmetries of the theory. Still in N = 4 it was noted in [16] that Inte-
grals appearing in amplitudes computations have an iterated structure.
The symbol map, introduced in the same work, is a compact represen-
tation of such iterative structure and with physical constraints coming
from special limits of scattering processes it can be used to bootstrap
the amplitude directly [17]. Results at higher loops and multiplicity
were obtained by imposing Steinmann relations [18,19], which are strin-

1For a detailed review see [7, 8]
2Of which there seems to exist a non planar extension [14].
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gent constraints on the type of entries that can appear in the symbol.
In the case of non planar contribution less is known as the structure is
more involved nontheless some results were obtained [20, 21] for a spe-
cial class of integrals by requiring cancellation of conformal anomalies.
When the symmetries are not enough to fix the amplitude completely
one has to directly compute Feynman integrals. An important part of
this thesis is based on the computations of integral by parts (IBP) iden-
tities. These reduce the number of integrals appearing in an amplitude
by relating a starting integral to a linear combination of a finite set
of master integrals (MI). There exist algorithmic ways of constructing
such identities [22, 23], for some easier examples it is actually possible
to have analytic expressions for the coefficients appearing in front of the
MI [24,25]. For higher point and higher loop cases the computer power
needed for the Gaussian elimination in the last step of the computation
is a major bottleneck. To overcome this limitation one would like to
reduce the number of integrals appearing in the intermediate step [26],
and so the complexity of the generated system of equations, or to use
a partial or complete numeric approach, based on the rational recon-
struction method [27].

Lastly the actual computation of Feynman integrals has seen several
development in the last years, most notably for integrals that can be
expressed as multiple polylogarithms (Mpl) [28]. For this space of func-
tions several methods exist to perform the computation in a somehow
algorithmic way [29–31], as for some cases physical intuition and clever
parametrization are required. In the case of multiple scales the space of
functions is extended to elliptic multiple polylogarithms [32] which are
not as well understood and for which methods for direct computation
[33,34] are currently being developed. A simpler class of Feynman inte-
grals, those that evaluate to zeta and multiple zeta values, have shown
to posses an interesting algebraic structure [35] closely related to num-
ber theory. Lastly it is important to mention that completely numerical
implementation of unitarity method have been developed through the
years [36] and have obtained several interesting results for NLO compu-
tations [37].

For non-perturbative results, in the last years several developments
have been obtained for SUSY theories from localization [38,39] and inte-
grability [40]. Integrability requires that the scattering matrix factorizes
in pairwise interactions. It can also be proven that for integrable scat-
tering, in two dimension, there can not be particle production and the
outgoing momenta are just a permutation of the incoming. In the planar
limit N = 4 is conjectured to be an integrabile theory and most notably
this property has been used for obtaining the spectrum of the theory at
finite coupling [41,42]. In the past years a new fundamental object has
been introduced, the hexagon form factor [43], which allows to compute
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structure constants, in principle, at finite coupling. Structure constant,
which are three point-functions coefficients, together with anomalous di-
mension fully characterize conformal field theories such as N = 4. Form
factors are fundamental objects in integrable theories and are defined as
matrix element of local operator with the vacuum of the theory and an
n-particle state. It has also been noticed that the hexagon form factor
arises as a fundamental bulding block for four or higher-point functions
[44] and also, surprisingly, in non-planar contributions [45].

The thesis is organized as follows. In chapter 2, which is based on
papers I, III and V, we introduce the method of IBP identities. We
focus on a particular representation of the Feynman integrals, known
as the Baikov representation. In this framework we present the dif-
ferent tools used for obtaining IBP relations and introduce the notion
of cuts and syzygy relations. We conclude by introducing the Laplace
expansion of a symmetric matrix and a new efficient way for comput-
ing IBP identities. In chapter 3, based on the work done in paper IV,
we focus our interest in computing Feynman integrals. We briefly in-
troduce the different methods used in recent applications and then we
tackle the problem of computing two-point integrals at five loops. We
start by introducing a series of constraints that can be derived from
IBP identities on the ε-expansion of the integrals in D = 4− 2ε dimen-
sions. We then explain how stronger constraints can be obtained by
looking at particular limits of four-point conformal integrals. We con-
clude by mentioning a method for computing two-point integrals using
constraints coming from vacuum diagrams. We conclude in chapter 4 by
presenting some recent work, papers II and VI, aimed at obtaining per-
turbative results in N = 4 SYM theory in D = 4 dimensions. We start
by briefly explaining some property of this theory and how integrability
in the planar limit allows for a bootstrap of different quantities. We
then introduce the hexagon proposal for computing three-point func-
tions. In the final part we explain how to compute structure constants
from the four-point function of four protected operator. Moreover we
explain a new method, using constraints coming form the hexagon pro-
posal for three-point functions, for fixing the integrand of the four-point
correlation function of protected operators of different weight, up to five
loops.

12



2. Integration by parts identities

A fundamental tool for the study of amplitudes in perturbation theory
are integration by parts (IBP) identities [22, 46]. The idea behind this
method is to use algebraic relations, generated from the integration of
a total derivative, to reduce integrals1 appearing in the amplitude to a
finite [47] set of master integrals (MI),

I =

N∑
i=1

ci(χj , D) Ii , (2.1)

where the coefficients ci depend in general on the external kinematical
invariants χj , the dimension, D, and the Ii are dimensional regularized
Feynman integral with L-loops, n propagators and E independent ex-
ternal momenta. These integrals have m independent scalar products
generated by the combination of the loop and external momenta. As
elements that appear both in the numerator and denominator simplify,
we can define, for each set of n propagators, the m− n remaining com-
binations as irreducible scalar products (ISP).

A generic integral takes the form

I(ν1, . . . , νm;D) ≡
∫ L∏

j=1

dD`j
iπD/2

Nn,m
Dν1

1 · · ·D
νn
k

, νi ≥ 0 , (2.2)

where the numerator is defined as Nk,m = D
νn+1

n+1 · · ·Dνm
m and each prop-

agator Dj is a quadratic combination of external and loop momenta. A
total derivative can then be written explicitly as

0 =

∫
dD`1
iπD/2

. . .
dD`L
iπD/2

L∑
j=1

∂

∂`µj

vµj
Dν1

1 · · ·D
νm
m

, (2.3)

where the vector vµj is a polynomial in the scalar products of external
and loop momenta.

IBP relations generated from (2.3) can be schematically represented
as ∑

k

ckIk = 0 , (2.4)

1We assume that all our integrals are scalars, in the sense that they do not have any
Lorentz index appearing in the numerator.
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where the action of the total derivative on the starting integral, beside
making explicit dependence on the χi and D appear, can lower or raise
the indices νi of (2.2). To understand this better let us take as an
example the 1-loop massive tadpole:

I(ν1) =

∫
dDl

1

(l2 −m2)ν1
, (2.5)

and consider the total derivative with vµj = lµ and ν1 = 1,∫
dDl

∂

∂lµ

(
lµ

l2 −m2

)
=

∫
dDl

(
D

l2 −m2
− 2l2

(l2 −m2)2

)
=∫

dDl

(
D − 2

l2 −m2
+

m2

(l2 −m2)2

)
= 0 , (2.6)

which can be compactly rewritten as

m2I(2) + (D − 2)I(1) = 0 . (2.7)

In (2.7) we have integrals with higher propagators powers appearing and
the coefficients of the reductions are dependent on the invariant m2 and
the dimension D. Such higher power propagator integrals are a spurious
effect of IBP identities.

For more complicated cases the number of Integrals appearing and
the form of the coefficients will be more involved. In general to generate
reduction of the form (2.1) we need to first use (2.3) to generate IBP
relations (2.4) and then row reduce the coefficient matrix extracted from
the IBP relations.

I1 I2 . . . Im
IBP1 c1,1 c2,1 . . . cm,1
IBP2 c1,1 c2,1 . . . cm,2

...
...

...
. . .

...
IBPN c1,N c2,N . . . cm,N

Table 2.1. General form of the coefficients matrix extracted from IBP identi-
ties. In general the matrix will be sparse.

The solution of this problem in general is ill posed. To obtain re-
ductions in a systematic way we have to introduce an ordering between
different integrals2 I1(a1, . . . , am) ≺ I2(b1, . . . , bm). In general one wants
to reduce integral to ”simpler” ones3, e.g. with less degree of propaga-
tors. An example of such ordering can be,using the definitions (2.5),

I(ν1) ≺ I(ν2) If ν1 < ν2 ν1, ν2 > 0 . (2.8)

2This idea was first introduced in [23,48]
3In Paper V was actually noted that a partial column swapping generated easier
intermediate coefficients.
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With an ordering it is possible to reduce the ”most complicated” integral
first and express the final relations in term of the ”simplest” MIs. By
applying this method recursively it is possible to construct IBP relations
of the form (2.1).

There exists different implementations of this algorithm [49–55], in
general the difficult part is to solve the system of equations as for higher
loops and number of external momenta the number of unknown grows.In
recent years the main focus has been into using rational coefficients
over some finite field Zp4, with p a prime number, to evaluate the IBPs
reductions numerically and then reconstruct them.

2.1 Baikov representation
In this section we want to present another representation for Feynman
integrals, the Baikov representation [57]. As it will be clear this choice
is made for the purpose of studying IBP relations5 and integrals on
specific cuts6 [59, 60]. Our starting point will be (2.2), we also have
to remember that at each integral we can associate a corresponding
graph, constructed following the Feynman rules. The propagators can
be constructed from the graph by requiring momentum conservation at
each vertex. This choice is not unique as the measure is invariant under
shifts of the loop momenta.

To simplify the notation we introduce the vector:

V = (v1, . . . , vE+L) = (p1, . . . , pE , `1, . . . , `L) , (2.9)

and express every Di as a combination of scalar products xi,j = vi · vj .
As the matrix V is symmetric we find that the total number of scalar
products that can be constructed for L-loops and E external legs is
m = 1

2L(2E+L+1). In order to change the integration variables to the
xi,j we can perform the D dimensional solid-angle integration, as we are
interested in the form of the integrals we can collect all of the prefactors7

in a constant C. By performing the solid angle integration we have
reduced the number of integrations from LD to the m independent
components of V . In order to obtain the Baikov representation we can
now perform a change of variables:

zi = Di , (2.10)

4See for example [56]
5There have been some attempts to use the Baikov representation for calculating the
integrals on cuts [58], the complications come from the region of integration which
is defined for F > 0.
6Given by complexifing the loop momenta and evaluating a residue for a set of prop-
agator Di = 0.
7The form of this can be found, for example, in Paper III.
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Figure 2.1. Feynman diagram for 2-loop two-point integral.

to obtain

I(ν;D) = C

∫
dz1 · · · dzm
zν11 · · · z

νn
k

F
D−L−E−1

2 Nn,m , (2.11)

where now Nk,m = z
νn+1

n+1 · · · zνmm .
The polynomial F is given as the determinant of the Gram matrix

S generated from the vector V after we have imposed the change of
variables (2.10):

S =



x1,1 · · · x1,E x1,E+1 · · · x1,E+L
...

. . .
...

...
. . .

...
xE,1 · · · xE,E xE,E+1 · · · xE,E+L

xE+1,1 · · · xE+1,E xE+1,E+1 · · · xE+1,E+L
...

. . .
...

...
. . .

...
xE+L,1 · · · xE+L,E xE+L,E+1 · · · xE+L,E+L


, (2.12)

We can, as an example, construct the Baikov representation for a 2-
loop two-point integral, represented in fig 2.1. The vector of external
momenta and loop momenta is defined as x = {p, l1, l2} and the Baikov
variables are

z1 = l21 = x2,2 z2 = (l1 − p)2 = x2,2 − 2x1,2 + x1,1

z3 = l22 = x3,3 z4 = (l2 − p)2 = x3,3 − 2x1,3 + x1,1

z5 = (l1 − l2)2 = x2,2 − 2x2,3 + x3,3 . (2.13)

By solving (2.13) we can construct the matrix S,

S =

 p2 1
2(p2 + z1 − z2) 1

2(p2 + z3 − z4)
1
2(p2 + z1 − z2) z1

1
2(z1 + z3 − z5)

1
2(p2 + z3 − z4) 1

2(z1 + z3 − z5) z2

 , (2.14)
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and its determinant

F =
1

4
(−z2

1z4 − z2(z2z3 + (z3 − z4)(z3 − z5)) + z1(z2(z3 + z4)+

(z3 − z4)(z4 − z5))− p4z5 + p2((−z1 + z3)(z2 − z4)+

(z1 + z2 + z3 + z4)z5 − z2
5)) . (2.15)

We now want to clarify why the Baikov representation is optimal for
the study of cuts. In this language the variables zi represent propagators
and numerators, differently from the usual representation they are all
independent variables. To take a cut we have to set the associated
propagator on shell, in the Baikov language this translates into taking
the residue of the integral for a circle of radius ε around zero:∫

dzi
zνii

−→cut

∮
Γε(0)

dzi
zνii

. (2.16)

In general we can compute a k-cut C = {zc1 , . . . , zck} on (2.11) by
taking the residues for the variables {zci} and setting them to zero in
the polynomial F .

We can compute cuts also on integrals with νi > 1 but they require
to solve dimensional shift identities so for our treatment we will focus
on νi = 1.

2.2 Integration by parts
In order to construct IBP identities using the Baikov representation we
will briefly shift to the language of forms. IBPs are constructed from a
total derivative, so we have to generate an ansatz [61] for an m−1-form
which under the action of an external derivative generates an integral
of the form of (2.11):

0 =

∫
d
( m∑
i=1

(−1)i+1ai(z)F (z)
D−L−E−1

2

z1 · · · zn

× dzr1 ∧ · · · ∧ d̂zri ∧ · · · ∧ dzrm

)
, (2.17)

where the ai are general polynomials in zi. By expanding the total
derivative we obtain:

0 =

∫ [ m∑
i=1

( (A)︷ ︸︸ ︷
∂ai(z)

∂zi
+

(B)︷ ︸︸ ︷
D−L−E−1

2F (z)
ai(z)

∂F

∂zi

)
−

n∑
i=1

(C)︷ ︸︸ ︷
ai(z)

zi

]
× F (z)

D−L−E−1
2

z1 · · · zn
dz1· · · dzm . (2.18)
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We can now analyze the terms obtained, (A) is a term in D dimension.
This is the kind of relations we want to construct in order to generate
IBP relations. The (B) part gives a term where the dimension is shifted
to D−2, the shift is generated by the 1/F term. The last one, (C), gives
an term in D dimension with propagators squared. In order to gener-
ate IBP which do not have terms contributing from lower dimensional
identities we can require the polynomials ai(z) to satisfy:

bF +

m∑
i=1

ai
∂F

∂zi
= 0 . (2.19)

As we have seen applying cuts on the Baikov representation is more
efficient on single propagators. Besides, as we have mentioned, integrals
with double propagators do not appear from Feynman rules but are
a spurious result of IBP identities8. So we can further constrain the
coefficient ai(z) such that

zibi = ai , (2.20)

which we can combine with (2.19) to obtain

bF +

n∑
i=1

zibi
∂F

∂zi
+

m∑
j=n+1

aj
∂F

∂zj
= 0 , (2.21)

where we have enforced (2.20) only on the variables associated with
propagators.

2.2.1 Algebraic geometry tools

Before continuing in our description of IBP in Baikov representation is
useful to define some basic elements of algebraic geometry9.We define
the ring of polynomials over a field10 F as P = F[x1, . . . , xn].

Definition 1. An ideal is defined as a subset I ∈ P that contains the
null element and which is closed under the ring operation, f1, f2 ∈ I
then f1 +f2 ∈ I. Moreover for each element h ∈ P we have that hf ∈ I
for each f ∈ I.

8This requirement also reduces the number of identities involved, making solving the
IBPs system easier.
9For a more detailed introduction and proof of the statement presented here see
[62–64]

10Our main interest in this thesis is the closed field C.
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The ideal is generated by a finite basis of elements I = 〈f1, . . . , fn〉
and each element g ∈ I can be written as

g =
n∑
i

hifi , (2.22)

where hi ∈ P. In general the same ideal can be generated by different
basis of polynomials fi. From the point of view of algebraic geometry
we want to study the locus of the zeros of I.

Definition 2. Given a n dimensional F -Affine space An, the alebraic
set over F of I ∈ P is defined as

Z(I) = {p ∈ An|f(p) = 0 ∀f ∈ I} . (2.23)

Before continuing is useful to introduce the notion of a Gröbner Basis
(GB) of an ideal. As we have said the same ideal can be represented
using different generators. In general if we want to test if a polynomial
g is in I we have to perform a polynomial division and check that the
reminder is zero. If the degree of g is lower than the degree of the
generators fi of I this is inconclusive. The GB is exactly a basis for
which the membership problem is automatically solved, if the reminder
is null then g ∈ I. The GB is also useful to find the algebraic set of an
ideal Z(I). In order to perform all this computations one has to define
a monomial ordering.

Definition 3. Given all the monomials M ∈ P an ordering ≺ in M
has to satisfy the following conditions. It has to be a total ordering,
such that any m1,m2 ∈ M can be sorted using ≺. The ordering has
to be invariant under multiplication by an element m of M, m1 ≺ m2

also mm1 ≺ mm2. The lowest element of the ordering is the constant
monomial 1.

With a specific ordering we can define the notion of leading term

LT (f) = mN fi =

N∑
i

cimi mi ∈M, ci ∈ F . (2.24)

The GB of an ideal can be algorithmically constructed using the Buchen-
berg algorithm11 which relies on the S-polynomial,

S(f, g) =
LT (g)

gcd(LT (f), LT (g))
f − LT (f)

gcd(LT (f), LT (g))
g , (2.25)

11Or more recent implementations such as the F4 and F5 algorithms by Faugere.
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where g, f ∈ P and gcd is the great common divisor. In general compu-
tations of GB become more complicated as the number of polynomials
and their degree grow.

Another interesting structure that comes up in our study of IBP iden-
tities is the notion of module.

Definition 4. A module M over a ring, R is defined as an Abelian
group, with respect to the operation +, with an associative map R ×
M→M.

For example we can take an ideal, I = 〈f1, . . . , fn〉 ∈ P, and define a
module of the ideal as

M(I) = f1e1 + · · ·+ fnen , (2.26)

where ei is a n-dimensional unit vector in the ith direction. For each
module we can define a submodule, which we call a syzygy, which is
generated by the elements satisfying

a1 · f1 + · · ·+ an · fn = 0 . (2.27)

The syzygy of a module characterizes its independent generators. With
this in mind we can look back at equations (2.19) and (2.21) and and
recognize them as syzygys [26] of the modules generated by

〈F, ∂F
∂z1

, . . . ,
∂F

∂zm
〉 and 〈F, z1

∂F

∂z1
, . . . , zk

∂F

∂zk
, . . . ,

∂F

∂zm
〉 . (2.28)

From a more geometrical point the solutions to (2.19) can be seen as
the tangent vectors to the hypersurface F = 0 [65, 66], while solutions
to (2.21) are tangent vectors to z1 . . . znF = 0. The problem of finding
the generators of the IBP identities is then to find the generators of the
syzygys of (2.28). In general this can be done by GB basis computations,
by using for example the software Singular[67], but as we have said the
computations becomes more and more complicated as the generators of
the modules grow in complexity. Already for 2-loops and five external
legs we can not solve (2.21) completely.

2.2.2 On unitarity cuts

Up to now the treatment of IBP relations has been similar to the one
described in the beginning of this chapter, with the extra requirement
that no double propagators appear in order to reduce the number of
integrals involved in the identities.

In [61] the authors describe a method for reconstructing IBPs iden-
tities by using a span of generating cuts. As we have seen the ac-
tion of a cut on the Baikov representation is to calculates the residue
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for a denominator of (2.11) at the origin. As the number of variables
is reduced after a cut, the corresponding syzygy equations on the cut
will be simpler. Let us study what happens when we perform a k-cut
C = {zc1 , . . . , zck}. After taking the residues for the zci variables asso-
ciated with the cut, we are left with a subset of the starting variables
U = {zu1 , . . . , zun−k , zn+1 . . . , zm}, and (2.21) becomes

bF +
n−k∑
i=1

zuibui
∂F

∂zui
+

m∑
j=n+1

aj
∂F

∂zj
= 0 . (2.29)

IBPs generated by this system will not have contributions from MIs
that have a propagator zi ∈ C as they are nullified. The IBP relations
constructed in this way will not be complete but by considering a set
of cuts, and merging the final results together, we can reconstruct the
IBPs reductions completely. For example in fig 2.2 are represented all
the cuts needed to reconstruct the IBP identities for the non-planar
hexagon box.

Figure 2.2. Spanning set of cuts for the non-planar hexagon box. This minimal
set of cuts is constructed by finding master integrals that can not be collapsed,
by deleting a propagator or a line in the associated graph, to another master
integral.

The upshot of this method is that the computation of the solutions
of (2.29) is simpler and faster than for the completely uncut case.
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Following this reasoning the simpler cut to study is an n-cut, where
we have nullified all the propagators, which we will call a maximal cut
[68]. The equation for generating the IBPs will then be

0 = bF +
m∑
i=n

ai
∂F

∂zi
, (2.30)

where the sum now runs only over the ISPs. The IBPs generated in
this way will not have contributions from lower integrals as all the de-
nominators are already nullified and they will only give the coefficients
associated with the integral we started from. In Paper I we exploit
those kind of relations to find a basis of MIs given a starting topology.
The idea is to study every subintegral, where we have nullified one or
more propagators, as a maximal cut in order to simplify the computa-
tion of the Syzygys solutions. We can then generate IBPs identities12for
each sub integral and extract all the MIs contributing.

2.3 Laplace expansion
Up to now we have not used the property that the Baikov polyno-
mial F is the determinant of a symmetric matrix13. We can start by
considering the Laplace expansion of a matrix. For a generic matrix
M = (mi,j)i,j=1,...,n, the expansion on the ith row reads as:[

n∑
k=1

mj,k
∂(detM)

∂mi,k

]
− δi,j detM = 0 , 1 ≤ i, j ≤ n . (2.31)

For a symmetric matrix, xi,j = xj,i, as in (2.12), this becomes:[
E+L∑
k=1

(1+δi,k)xj,k
∂F

∂xi,k

]
− 2δi,jF = 0 , (2.32)

Though in principle we can generate E +L equations from the Laplace
expansion, we are interested in only the last L rows as the first E rows
correspond to a derivative with respect to an external momenta.

The change of variables from xi,j to zi can be obtained by acting with
the chain rule. We can then write:

m∑
α=1

(ai,j)α
∂F

∂zα
+ bi,jF = 0 , (2.33)

12This method can be made faster by considering rational kinematics and by working in
a specific rational dimension as the coefficients of the IBP reduction are not important
for finding MIs.

13A similar approach was performed in [69]
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where ai,j and bi,j are

(ai,j)α =
E+L∑
k=1

(1 + δi,k)
∂zα
∂xi,k

xj,k and bi,j = −2δi,j , (2.34)

and where the indices run from E + 1 ≤ i ≤ E + L, 1 ≤ j ≤ E + L
and 1 ≤ α ≤ m. The (ai,j)α generate solutions for (2.33), or in the
previous language (2.19). This gives a way to compute the polynomial
ai without having to relay on any heavy computation14.

Before extending this formalism to the cut and no double propaga-
tor case we want to remark on some properties of these solutions. The
syzygy generators constructed from the Laplace expansion are at most
linear in the zi variables. This can be understood by looking at (2.34),
the xi,j are by construction at most linear in the zi. We can see an
example of this in (2.14) where we have constructed the S matrix for
a simple 2-loop example. Moreover the syzygy generators are homoge-
neous in the zi and kinematics invariants.

As we have seen in section 2.2.1 the set of solutions (ai,j)α, from an
algebraic geometry point of view can be seen as generators of a module,
M1, defined on the complex polynomials in the variables zi, C[zi]. In the
same way the solutions to the no double propagators requirement can
themselves be seen as generators for a module, M2, and can be written
as

M2 = 〈z1e1, . . . , zkek, ek+1, . . . , em〉 , (2.35)

where the ei is the m-dimensional unit vector in the ith direction. As
we are interested in computing solutions that satisfy both equations, or
equivalently (2.21), this correspond to finding the intersection M1 ∩M2

between the two modules. In Paper V we develop an efficient algorithm
to obtain such intersection, by GB computation. As we have mentioned
before the generators for the two modules are at most linear in the
Baikov variables zi which makes the computation more feasible than
with the previous method, section 2.2.

Intersection on cut

As before we are interested in studying the IBP relations on a spanning
cut and not on the complete set of propagators which we have seen is
more computationally efficient. The application of a cut to the modules
M1 and M2 is as before setting the associated variable zi = 0. In general

the cut solution M̂1,where the ̂ sets the cut propagators to zero, by
itself is not a solution as F on a specific cut is not a determinant of a
matrix.

14This kind of solutions are known as the basic canonical IBP identities.
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Figure 2.3. One of the non planar contributions to the five-point amplitude at
two loops.

To obtain solutions on a cut we then have to compute:

M̂1 ∩ M̂2 . (2.36)

Using the method here described in Paper V we computed the reduc-
tions, up to numerators of degree 4, for one of the integrals contributing,
see fig 2.3, to the five gluon amplitude at two loop.

24



3. Bootstrap of p-Integrals

The computation of Feynman diagrams is important in the evaluation
of scattering amplitudes, correlation functions, structure constant in
conformal field theories and anomalous dimensions. In the last decade
several steps forward have been taken in trying to automatize this dif-
ficult task.

The method of differential equations [29,30,70–78] relies on the fact
that Feynman integrals will, in general, be functions of the external
kinematical invariants, {χi}, and of the dimension D. We can then
write for a given set of MIs I the following differential equation for any
of the invariants χi

∂I({χi}, D)

∂χi
= Ai({χi}, D)I({χi}, D) . (3.1)

where we have applied IBP relations to express the right-hand side of
eq. (3.1) in terms of the MIs I.

In general this system of differential equations is unsolvable. It was
pointed out that for a canonical choice of the master integrals G [74],
which depends on the dimension D, the system can be put in Fuchsian
form and solved by iterative integrals

∂G({χi}, ε)
∂χi

= εAi({χi})G({χi}, ε) , (3.2)

where we have set D = d− 2ε and ε is the dimension regulator. A dif-
ferent approach is direct integration in parametric representation. This
was already used for simpler cases but it was discovered in [31] that for
integrals which are linearly reducible and finite, up to a Γ-function pre
factor, they can be algorithmically computed as iterated integrals over
single valued hyperlogarithms. One implementation of this algorithm is
HyperInt[79]. For p-Integrals the method of differential equations can
not be applied as the dependence on the scale is trivially obtained but
the value of the integral comes from boundary information1. It could be
in principle possible to integrate them using HyperInt but at 5-loops
the required computational power and the problem of finding a set of
finite MIs makes it rather complicated.

1It could be possible to apply the method of Dimensional recurrence and analyticity
[80–82], but the high number of MI appearing makes it a very difficult task.
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In Paper IV we derived a method for computing position space p-
Integrals that relies on a conformal theory setup to generate a set of al-
gebraic constraints to bootstrap their value, we have also implemented
at 5-loops a method developed in [83] for computing the non-planar
5-loop momentum p-integrals.

3.1 Parametric representation
We now want to introduce and derive the parametric (Schwinger) rep-
resentation. It will be useful for studying convergence and for direct
integration of Feynman integrals. To derive it we start from a property
of Γ functions known as the Schwinger trick:

n∏
i

1

Aνii
=

n∏
i

1

Γ(νi)

∫ ∞
0

dxi x
νi−1
i e−xiAi . (3.3)

If now the Ai are the denominators of a generic Feynman integral I
in D dimensions we can study the structure of the arguments of the
exponent: ∑

α

xαAα =
∑
k,w

akwlk · lw + 2
∑
k

bk · lk + c , (3.4)

where bk is a vector of external momenta and c is a combination of
the masses and square of external momenta. We can now perform the
integration over the internal loop momenta by solving the D dimensional
Gaussian integral to obtain:

I(ν1, . . . , νn, D) =
1∏n

i Γ(νi)

(
n∏
i

∫ ∞
0

dxi x
νi−1
i

)
U−D2 e−

F
U , (3.5)

where we have defined

U = det(a) F = det(a)c− (aAdj)
ijbibj , (3.6)

with aAdj = det(a)a−1 is the adjoint matrix of a. The polynomials U and
F are uniform and of degree L and L+ 1 in the Schwinger parameters.
By using this property we can perform a further integration:

λ =
n∑
i

xi αi =
xi
λ
, (3.7)

n∏
i

∫ ∞
0

dxi =

∫ ∞
0

dλ λn−1
n∏
i

∫ ∞
0

dαi δ(1−
n∑
i

αi) . (3.8)
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Having defined the superficial degree of divergence as ω =
∑
i νi−

L
2 (D)

(3.5) becomes2:

I(ν1, . . . , νn, D) = Γ(ω)

(
n∏
i

∫ ∞
0

ανi−1
i dαi
Γ(ai)

)
Uω−d/2

Fω
δ(1−H(α)) .

(3.9)
As we can see from (3.9) inserting a double propagator corresponds to
multiplying the integral by its associated parameter αi. A integral with
a numerator, νj < 0 , will be identified as:

I(ν1, . . . , νj , . . . , νn, D) =

Γ(ω)

 n∏
i6=j

∫ ∞
0

ανi−1
i dαi
Γ(νi)

 ( ∂

∂αj

)νj Uω−d/2
Fω

δ(1−H(α))

∣∣∣∣
αj=0

,

(3.10)

where the variable αj is the one associated to the numerator.

3.1.1 Direct integration

As one example, consider the 1-loop bubble graph, where the integration
can be performed directly,∫

dDl
1

lν1(l − p)ν2
=

Γ(ν1 + ν2 − D
2 )

Γ(ν1)Γ(ν2)

∫ ∞
0

dα1
α
D
2 −ν2−1

1

(α1 + 1)D−ν1−ν2

=
Γ(ν1 + ν2 − D

2 )

Γ(ν1)Γ(ν2)

Γ(D2 − ν1)Γ(D2 − ν2)

Γ(D − ν1 − ν2)
. (3.11)

More generally every integral that contains a sub-bubble in their graph,
see for example fig 3.1, can have the loop momenta associated to it
integrated:∫

dDl

(l)ν1(l − q)ν2
f(pi, li) =

Γ(D2 − ν1)Γ(D2 − ν2)

Γ(D − ν1 − ν2)

∫
1

(q2)ν1+ν2−d/2
f(pi, li) ,

(3.12)
where q represent the rest of the external and loop momenta that are
flowing inside the sub-bubble graph and the function f(pi, li) is the in-
tegral stripped of the momentum l.

In general cases the integration is far more involved, as at higher
loops the number of parameters αi grows and for higher external points
the space of functions which can be obtained becomes more compli-
cated. As we have mentioned in the introduction, fro several masses

2By the Cheng-Wu theorem [84] we can choose a generic Hypersurface H(α) and not
only 1−

∑n
i αi
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Figure 3.1. An example of a graph with a sub-bubble.

the class of functions appearing, in 4 dimensions, are elliptic multiple
polylogarithms for which integration techniques are currently on a case
by case example.

An algorithmic way of performing direct integrations was developed
by Francis Brown [31] and it relies on a class of special functions known
as hyperlogarithms3. This method works for a specific class of integrals
that have the following properties, there has to exists an ordering of the
parameters αi such that after each integration the function

fk(αk+1; . . .) =

∫ ∞
0

dαk fk−1(αk;αk+1, . . .) , (3.13)

can be written as a hyperlogartihm in the next integration variable
αk+1. The parametric representation (3.9) has to be convergent, up
to the overall Γ(ω) factor4. Lastly, the starting integrand has to be a
rational function of the αi, so we need to do an ε expansion prior to
the integration. The integrals computed in this way will be represented
as linear combination of hyperlogarithms. Following [31] we start to
define these functions by taking a finite set of points, that can also
be non constant, σi ∈ Σ ⊂ C. We can then construct the symbol
A = {a0, a1, . . . , an}, where in the entries ai the subscript refers to the
point σi and a0 = 0. Hyperlogarithms are then defined recursively from
the differential equation,

∂zLaiω(z) =
1

z − σi
Lω(z) , (3.14)

where ω is a combination of the elements of A. We also have to impose
the boundary conditions

Lan0 (z) =
1

n!
Log(z)n and lim

z→0
Lω(z) = 0 for ω 6= an0 . (3.15)

The algorithm is then to find the primitive P (αi), which derived gives
the integrand at the previous step, then evaluate P (∞) − P (0) and

3A different approach is developed in [85,86] and was implemented in [87].
4In [79] is described how to regularize divergent integrals in parametric representation.

28



express the result as hyperlogarithms. We want to present an example,

x1 x2

x3

x4

y

Figure 3.2. Four-point conformal integral at 1-loop. The external points
{x1, x2, x3, x4} are fixed by conformal symmetry to be {1, z,∞, 0} and the
edges connecting two vertices are associated to a propagator (xi − xj)2. The
integration is performed over the internal point y.

fig. 3.2, of conformal four-point integral at 1-loop that can be easily
integrated using the method described. The U and F polynomial are

U = α1 + α2 + α3 F = α2α3(z − 1)(z̄ − 1) + α1α2 + α1α3zz̄ . (3.16)

Using the method described in [31] we find that the integral is linearly
reducible and that an order that satisfies (3.13) is {α1, α2, α3}. The
integrand, in D = 4 and following (3.9) having set α3 = 1 and with
ω = 1, reads∫

dα1dα2
1

(1 + α1 + α2) (α2 (α1 + (z − 1)(z̄ − 1)) + α1zz̄)
, (3.17)

which can be integrated directly in α1 to obtain∫
dα2

Log(1 + α2)− Log(α2(z − 1)(z̄ − 1)) + Log(α2 + zz̄)

(α2 + z)(α2 + z̄)
. (3.18)

In order to rewrite the integrand into simpler objects we need to perform
partial fractions, in this case we have

1

(α2 + z)(α2 + z̄)
=

1

z − z̄

(
1

α2 + z̄
− 1

α2 + z

)
. (3.19)

After further integration in α2, and using properties of hyperlogarithms
such as the shuffle relations, we obtain

1

z − z̄
(L1(z)L0(z̄)− L0(z)L1(z̄) + L1,0(z) + L0,1(z̄)− L1,0(z̄)− L0,1(z)) ,

(3.20)
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which can be rewritten, after a change of basis, as the known result for
the 1-loop ladder in terms of classical polylogarithms

Log(zz̄)(Log(1− z)− Log(1− z̄)) + 2PolyLog(2, z)− 2PolyLog(2, z̄)

z − z̄
.

(3.21)
In the cases we are interested in studying, p-integrals, we obtain hyper-
logarithms with arguments 1 which can be written as linear combina-
tions of zeta and multiple zeta values (MZVs),

ζn1,...,nd
:=

∑
1≤k1<···<kd

1

kn1
1 · · · k

nd
d

, (3.22)

3.1.2 Check for convergence

The parametric representation (3.9) is also useful for checking the con-
vergence of Feynman integrals in a specific dimension D. In [88] a
simple algorithm for testing convergence has been introduced. Here we
briefly present the main ideas as they will be useful for the Cut and
Glue method, which we are going to describe later, and in general for
the bootstrap of position space integrals.

Given a Feynman integral in parametric representation (3.9) we define
the set of all propagators as P. We take two disjoint subsets I,V ⊂ P
and define the following transformation on the αk

i ∈ I αi → λαi

j ∈ V αi →
1

λ
αj . (3.23)

For λ → 0 this defines a degree of ”vanishing”, which we identify as
di,j , for the integrand of (3.9) when the αi → 0 and the αj → ∞. For
each of these subsets we can then associate a new superficial degree of
divergence

ωi,j = |I| − |V|+ di,j . (3.24)

Then it can be proven that given the positiveness of all the coefficients
of F , if ωi,j > 0 for all subsets I,V ⊂ P with ∅ 6= I t V ⊆ P, then the
integral is absolutely convergent.

3.2 p-Integrals
Up to now what we have presented methods that can be applied to
generic Feynman integrals. For the rest of the chapter we will focus on a
particular type, massless two-point configurations. We are interested in
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diagrams appearing both in momentum and position space. In position
space we can construct all possible contributing diagrams by considering
propagators

xij = xi − xj , (3.25)

and construct integrals where the integration is performed over some
internal points xi and we have two external points defined such that
x0 = 0 and x2

6 = 1. Generically a 5-loop integral can be written as

I(a) =

∫ 5∏
k=1

dDxk
∏

0≤i<j≤6

1

x
2aij
ij

, (3.26)

where a represents the possible exponents of the 20 propagators. Again
we can associate a graph to an integral I(a) where the propagators xij
represent an edge connecting two vertices i and j, for example

∫
dDx1dDx2dDx3dDx4dDx5

x2
01 x

2
12 x

2
23 x

2
25 x

2
36 x

2
34 x

2
14 x

2
45 x

2
56

=
0 x1

x2 x3

x6

x5x4

.

(3.27)
In the case of momentum space integrals we can not construct a generic
basis 5 that will contain all the possible topologies. In general one has
to construct all possible trivalent graphs6 and associate to each of them
a set of propagators7. For example a non planar topology contributing

5At five Loops
6From a simple graph computation we know that at L-loops for E external momenta
and trivalent vertices we will have maximum P = 3L+E − 3 propagators, which for
our case gives P = 14.
7It is possible in principle by considering a Fourier transformation to obtain the value
of the non-planar momentum or position integrals form one an other, but it requires
to evaluate them with indices depending on ε.
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at five loops is:∫
dDl1dDl2dDl3dDl4dDl5

l21 (l1 − p)2 l22 (l2 + p)2 l24 (l3 + l4)2 l25
×

1

(l1 + l3 + l4 + l5 − p)2 (l1 + l4 + l5)2 (l2 − l3 + p)2
=

= (3.28)

In the case of planar integrals the two are related by a dual transforma-
tion which acts trivially on the propagators, as such we have the choice
of computing them in momentum or position space.

0 x6
p p

Figure 3.3. Duality transformation for a planar 5-loop two-point integral. To
obtain the dual graph we draw an internal point for each loop. We draw two
points outside each graph between the external points. Finally we connect
points which are separated by a single edge.

3.3 Bootstrap of master integrals
In order to compute all the MIs contributing at five loops for two-point
integrals we want to present different methods that do not require any
explicit integration. The idea consists of generating linear equations
that relate different ε orders of the MIs. By solving such systems we
can then constrain values of their ε expansion.

3.3.1 Constraints from IBP identities

A first set of constraints can be extracted directly from IBP identities. In
general Feynman Integrals will diverge, after dimensional regularization
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with D = d − 2ε, up to ε−2L, in the case of p-integral the total degree
is actually only L [89, 90].

For two-point integrals the ci coefficients of (2.1) will depend only
on the dimension D and in general can have poles in the dimensional
regulating parameter ε 8. In general the MIs can be written, ε expanded
as

Ik =
∞∑
i=0

ε−L+iIk,i , (3.29)

we can then rewrite a generic IBP identity (2.1) as:

I(a) =

∞∑
j=0

αj(Ik,i, cj) ε
−L+j−m , (3.30)

where the αj are now linear combination of the numeric IBP coefficients
cj and the master integral coefficients Ik,i.

In (3.3.1) we have taken into account that the IBP coefficients can
have divergences in ε, the starting integral on the other hand has to
diverge, at maximum, as ε−L. We can then write

αj = 0, for 0 ≤ j < m (3.31)

and by solving this system of constraints, we can find relations or van-
ishing orders of different MIs coefficients.

In general MIs at l-loops will contain integrals that are products of
lower-loop MIs, that have sub-bubbles or that are easily computed. By
plugging in this data into (3.31) we obtain a non-homogeneous system
of equations and are able to obtain numerical results for the coefficients
of the MIs. For example at two loop we can obtain all the MIs appear-
ing up to order O(ε2). We start by using IBP relations to express the
topology

=
2(3d− 10)(8− 3d)

(d− 4)2

− 2(d− 3)

d− 4
, (3.32)

in terms of two master integrals {I1, I2}. The second MI is a product
of two bubble integrals (3.11) and as such can be directly evaluated to9

I2 = 1
ε2 . By using the method of sec. 3.1.2 we can moreover show that

the starting integral is convergent. We can now insert the value for the

8For previous work see [91,92].
9Given the usual normalization, known as the G-scheme, where the single bubble is
set to be 1

ε
.
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second MI into (3.32), expand in D = 4− 2ε, and by requiring that the
terms which have poles in ε disappear, we obtain for the first MI:

I1 = − 1

4ε
− 5

8
− 27

16
ε , (3.33)

3.3.2 Constraints from conformal integrals

Constraints coming from IBP relations are not enough to obtain all the
required coefficients appearing in the ε expansions of the 5-loop MIs.

In order to obtain more relations we take advantage of the fact that
two-point integrals appear in the asymptotic expansions [93,94] of higher
point conformal integrals. We can for example consider four-point con-
formal integrals in position space, which are of the same form as (3.26)
but with four external points that we label x1, . . . , x4.

Conformal invariance allows us to set, for example, x1 to the ori-
gin and send x4 to infinity. We can moreover rewrite the integral as
functions of two conformal invariant cross ratios, which we can choose
as

u =
x2

12x
2
34

x2
13x

2
24

and v =
x2

14x
2
23

x2
13x

2
24

. (3.34)

In general these integrals are not known functions. For our purposes
we just need to assume that they are finite. A way to generate finite
integrals is, for example, by studying the N = 4 correlation function of
four 1

2 -BPS operators, see sec. 4.4.
We now take the limit for the points x2 → x1 = 0, in this config-

uration we have two scales, x2
2 � x2

3 and we can use the technique
of asymptotic expansions to expand the integral. For each integration
variable xi we can split the integration into two regions, one where xi
is of order x2 or x3. In these two regimes the denominators are

1

(x2 − xi)2
=
∞∑
n=0

(2x2 · xi − x2
2)n

(x2
i )
n+1

(if x2
2 < x2

i ),

1

(x2 − xi)2
=

∞∑
n=0

(2x2 · xi − x2
i )
n

(x2
2)n+1

(if x2
2 > x2

i ). (3.35)

In each of these regions we obtain a product of a k and (5− k)-loop
p-Integral.
We can now extend the integration in each region to go beyond the ra-
dius of convergence of the Taylor expansion and extend the domain of
integration to the whole space. By doing so we are considering dimen-
sionally regularized integrals.
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Figure 3.4. Magic identity for a 5-loop integral. In the left hand-side we have
exchanged the points (1 2)(3 5) obtaining a different 3-loop subintegral. Dashed
lines represent numerators, dotted and dosh-dotted represent square and cubic
powers.

By performing an IBP reduction of the p-Integrals we can express the
starting conformal integral as a combination of 5-loop MIs. The crucial
step in this approach is that, the starting integral being conformal, its
expansion has to be expressible in terms of the cross-ratios (3.34), which
requires that all dependence on the spurious scales x2

2 and x2
3 must van-

ish. The expansion for the conformal integral to lowest order10 in u and
1− v can then be expressed as

5∑
n=0

n∑
k=0

n−k∑
l=0

βnkl logk(x2
3) logl(u)ε−5+n , (3.36)

where the βnkl are as before linear combination of the ε expansion of
the MIs. Vanishing of the spurious scales and finiteness of the starting
integrals give us

βnkl = 0 , where n < 5 and k ≥ 0,

β5kl = 0 , for k > 0.
(3.37)

We can actually also cast constraints on the finite part of the integral.
If we look at (3.34) we notice that by acting with a pairwise transforma-
tion we leave the u and v cross ratios invariant. Conformal symmetry
constrains them to be invariant under the Klein group

{id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ∼= Z2 × Z2 , (3.38)

where (i j) represent the permutation of the external point i with j.
If we apply this transformation to a given four-point integral we will
obtain an apparently different asymptotic expansion. By requiring that
it has to match the one of the starting integral, we then obtain further
constraints.

We can also apply this kind of transformation to each four-point sub
integral of our starting integral (see fig 3.4 for an example). These kind
of relations are known in the literature as magic identities [95].

10One could also expand to higher orders of u and v but the main bottleneck is the
IBPs reductions of such complicated integrals.
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3.3.3 Constrains from Cut and Glue symmetry

The methods described up to now work for integrals that are in posi-
tion space. As stated in sec. 3.2, the planar sector is common between
the two different representations. If we want to compute the non-planar
contributions to the momentum space integral we can apply the method
of the cut and glue symmetry (GaC) [83].

We start by studying mass regulated vacuum integrals, χ , at L+ 1-
loops. We will concentrate on vacuum integrals without subdivergences
and with superficial degree of divergence ω = 0. We consider a single
propagator of the starting vacuum integral, which by a change of vari-
ables can always be set to p2, and where we add a mass regulating term
m2. We can in general write the vacuum integral as

χ =

∫
dDp

1

(p2 +m2)
I(p) , (3.39)

where with I we identify an L-loop p-integral obtained by cutting from
the graph of χ the propagator with momentum p.

In D = 4 − 2ε the integral I depends on p as (p2)−1−Lε. By using
(3.12) we can then formally compute the divergent part of χ to be

χ =
C

(L+ 1)ε
+O(ε0) , (3.40)

where C is the value of the p-integral. We then see that by cutting the
integral with different propagators we can generate convergent L-loop
p-integrals that have the same finite value C, see fig. 3.5.

Figure 3.5. Different cuts of 4-loop integrals which give equivalent convergent
3-loop p-integrals.
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This methods gives us relations between different integrals but does
not compute their value C. We can, though, by performing an IBP
reduction of the different convergent p-integrals and matching them
order by order in ε obtain constraints on the ε expansions of the MIs.
This is again a homogeneous system of equations, but as before we can
plug in lower loop data or integrals with sub bubbles. Having already
computed the planar sector of the 5-loop MIs we can use them as a
starting point for this method, either to reduce the number of equations
required, or as a cross check.
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4. Correlation functions in N = 4

N = 4 SYM theory in the planar limit is the ideal playground to develop
new tools and obtain interesting result in a 4 dimensional interacting
conformal field theory (CFT). In the planar limit the theory is conjec-
tured to be integrable, and it is related to a string theory on a AdS5×S5

background by a weak-strong duality [3]. Since the discovery of the in-
tegrable structure in 2002 [96] there has been a lot of developments in
how to efficiently use integrability to compute structure constants and
anomalous dimensions at finite coupling. In particular, a new framework
based on hexagon form factors has been developed for the evaluation
of both structure constants and higher-point functions. In Paper II we
computed a structure constant at the 5-loop order. This order, which is
important as a cross check of the integrability framework, where novel
contributions to the hexagons arise at this order. In Paper VI, using
constraints coming from hexagon form factors, we constructed the inte-
grands for four-point functions of protected 1/2-BPS operators for any
weight k up to five loops.

4.1 CFT
We will start by describing some features of CFTs, which will therefore
be relevant for N = 4 SYM.

Conformal invariance is characterized by transformations that leave
the metric invariant up to a scalar factor [97]. They are generated by
translation Pµ, dilatations D , Lorentz transformations, which comprise
both boosts L0i and rotations Lij , Lµν and special conformal transfor-
mations Kµ

Pµ = −i∂µ D = −ixµ∂µ
Lµν = i (xµ∂ν − xν∂µ) Kµ = −2ixµ(x · ∂) + ix2∂µ (4.1)

In the case of conformal field theories we have states that are labelled
by the dilatation eigenvalue, conformal dimension ∆, and the Lorentz
group SO(1, d − 1) charges. General states can be described by the
insertion of operators at the origin, which simplifies the form of the
commutator with the generator (4.1), and then evolve them with

O(x) = eiP ·xO(0)e−iP ·x . (4.2)
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The generators Pµ and Kµ act as raising and lowering operators,
their action on an operator O(x) creates a new operator with scaling
dimension shifted accordingly. The operators which are annihilated by
the Kµ, and so have the lowest scaling dimension, are called primaries.
The operators constructed by acting on primaries with Pµ are called
descendants. Requiring that the norm of two state is positive definite
gives a bound on the dimension of scalars1 operators ∆ > d

2 − 1.
Beside organizing the operators of the theory in conformal multiplets,

conformal symmetry also casts constraints on correlators of primary op-
erators O(x). A conformally invariant two-point function can be shown
to be of the form

〈O1(x1)O2(x2)〉 =
δ∆1,∆2

|x1 − x2|2∆1
. (4.3)

Also three-point functions can be completely fixed up to a constant,

〈O1(x1)O2(x2)O3(x3)〉 =
C123

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x13|∆1+∆3−∆2
,

(4.4)
where xij = xi − xj and C123 is called structure constant. If we now
try and constrain four-point functions of four operator with the same
weight ∆ we obtain

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
F (u, v)

|x12|2∆|x34|2∆
, (4.5)

which depends on an unknown function of the cross ratios {u, v}, which
are conformal invariant scalar quantities defined as

u =
x2

12x
2
34

x2
13x

2
24

and v =
x2

14x
2
23

x2
13x

2
24

. (4.6)

For higher-point functions the constraints coming from conformal
symmetry become less and less stringent but like in QFTs, in a CFT we
can introduce the notion of operator product expansion (OPE), where
we approximate two operators as a series of local operators. While in
QFTs this is an asymptotic series, for CFTs it is actually convergent.
We can write in general the product of two operators as

O1(x1)O2(0) =
∑
j

C12j |x|∆j−∆1−∆2(Oj(0) + Descendants) , (4.7)

where the sum is over all the possible primary operators that can be
exchanged. This gives us a way to express n function as an infinite sum
over n− 1-point functions. By repeating this procedure we notice that
the knowledge of scaling dimensions, ∆, and OPE coefficients, C123, is
in principle sufficient to obtain any higher-point function.

1A similar bound can be found for traceless symmetric representations ∆l ≥ l+d−2.
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4.2 N = 4 SYM theory and Nc →∞
We will now briefly describe the properties of N = 4 SYM theory [98]
and its planar limit . The fields of the theory organize in a vector
multiplet, with one gauge field Aµ four chiral and anti-chiral spinors
{ΨY

α , Ψ̄α̇Y } and six scalars ΦI , in the adjoint representation of a SU(N)
gauge group. The scalars also transform in a six dimensional represen-
tation of the SO(6) R-symmetry group, while the fermions transform
in the fundamental and anti-fundamental of SU(4).

The bosonic symmetries of the theory are the conformal group SU(2, 2)
and the SU(4) R-symmetry, with supersymmetry they get enhanced to
PSU(2, 2|4). The primaries operator will transform in an infinite di-
mensional, irreducible representation of this algebra. A representation
is shortened when the lowest weight is annihilated by a set of super-
charges, in those case we are left with what are called short representa-
tion. A set of this representations that we want to study are the ones
annihilated by half of the supercharges, also known as 1

2 -BPS.

The 1
2 -BPS operators transform in a traceless and symmetric rep-

resentation of the R-symmetry, we can enforce this by contracting a
scalar single-trace operator with harmonic variables yI obeying the null
condition y · y = 0. We can write the lowest component of the 1

2 -BPS
multiplet as

OL(x, y) = yI1 . . . yILTr(ΦI1 . . .ΦIL) , (4.8)

where the choice of the scalar is be encoded in the polarization vector yI
and L is the length of the operator. In the case of L = 2 we obtain a su-
permultiplet which contains conserved currents and also the Lagrangian
of the theory. Since the bottom component is protected from quantum
correction this implies that also the Lagrangian is protected, the β func-
tions is then zero and the theory is conformal also at the quantum level.

We now want to take the large N limit where we consider contri-
butions in perturbation theory coming only for planar diagrams. We
also take the limit for the coupling gYM being small and define a new
expansion parameter, the t’Hooft coupling,

λ = g2
YMN . (4.9)

As we mention there is a string theory dual to N = 4 SYM, on the
string side the planar limit is equal to taking the string coupling to zero
which constraints the topology of the string world-sheet to have genus
zero. In this large N limit the theory is conjectured to be integrable.

In [96] the authors mapped the problem of finding the anomalous
dimension of single trace operators into finding the spectrum of a spin
chain. A single trace operator can then be seen as a spin chain where
each site transforms in a fundamental representation of PSU(2, 2|4),

V1 ⊗ · · · ⊗ VL . (4.10)
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Figure 4.1. Two equivalent ways of representing a 3→ 3 scattering by pairwise
interaction.

The cyclicity of the trace requires the spin chain to have a shift sym-
metry.

Before continuing it is convenient to recast the scalar fields into com-
plex scalars

Z = Φ1 + iΦ2 Y = Φ3 + iΦ4 X = Φ5 + iΦ6

Z̄ = Φ1 − iΦ2 Ȳ = Φ3 − iΦ4 X̄ = Φ5 − iΦ6 . (4.11)

We choose the vacuum to be the 1
2 -BPS single trace operator

O = Tr[ZL] , (4.12)

we can then construct different single trace operators by inserting some
element of the vector multiplet inside the trace of O. These fluctuations
are organized into representation of su(2|2)2.

As they will be useful later we will introduce some machinery and
tools that come from integrability. Integrability enforces that scattering
of excitations in the spin-chain must factorize into pairwise scattering.
If we take a three particle interaction we have two different ways of
representing it with a 2 → 2 scattering, see fig. 4.1. The consistency
between the two representations gives,

S23S13S12 = S12S13S23 , (4.13)

where the indices {1, 2, 3} represent the three particles that are scatter-
ing. This type of relation is known in the literature as the Yang-Baxter
equation [99] (YBE).

In the case of N = 4 SYM, the scattering S-matrix can be fixed, up
to a prefactor S0 by requiring that it commutes with all the generators
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of the centrally extended psu(2|2) algebra2 [100]. The prefactor S0 can
be fixed by imposing crossing symmetry and unitarity [101] to be

S0(u1, u2) =
x+

1 − x
−
2

x−1 − x
+
2

1− 1
x−1 x

+
2

1− 1
x+
1 x
−
2

1

σ2
, (4.14)

where σ is the BES dressing phase and xi are the Zhukowsky variables.
These variables are useful to parameterize the energy and momentum

eip =
x+

x−
Ep = −i

√
λ

4π

(
x+ − 1

x+
− x− +

1

x−

)
, (4.15)

where x(u)± =
u+
√

(u± i2 )2−4g2

2g and g =
√
λ/2π. A crossing transforma-

tion, which inverts the sign of the momentum and energy, acts on the
xi as

x± → 1

x±
. (4.16)

Up to now we have determined how general excitation on the spin
chain scatter but for physical states we need a further constraint. As we
mentioned physical states are mapped to gauge invariant operators and
we have to require that the spin chain wave-function satisfies periodic
boundary conditions. Let us start with a single excitation that goes
around the spin chain with no interaction then the wave function would
pick up a phase eipL, where L is the length of the chain. By imposing
periodic boundary condition we require

eipL = 1 (4.17)

which gives a quantization condition on the momenta. In general states,
where we have more than one excitation, we have to consider also inter-
action between the different momenta. This requirement give rise, when
applied to each of the excitations, to what are known in the literature
as the Bethe equations

eipiL
∏
j 6=i

S(pi, pj) = 1 . (4.18)

Solutions of the Bethe equations [102,103], Bethe roots, represent phys-
ical quantised momenta3. Once we have obtained the Bethe roots we
can obtain the energy of the spin chain, which maps to the anomalous
dimension. So whenever we want to represent an operator we have to
solve the associated Bethe equations.

2As we have seen before the vacuum breaks the psu(2, 2|2) into su(2|2)2 but for this
algebra the energy is a constant. In order to obtain the N = 4 dispersion relation we
have to add a central extension to the algebra.
3In general one has to solve a more involved system of equations, known as the nested
Bethe equations [104] when the S-matrix is not a simple phase.
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4.3 Integrability of three-point functions
Planar N = 4 SYM is believed to be integrable and in this framework
a lot of tools have been developed to compute different quantities, such
as correlation functions4 [44, 106, 107], amplitudes[108] and anomalous
dimensions [41, 42]. In this section we want to focus our attention on
proposal to compute correlation functions using hexagons form factors
[43]. The main idea of this method is to consider a string three-point
amplitude, depicted in fig 4.2, and perform three cuts along the non
open sides to obtain a pair of hexagons. The form of the hexagons can
then be obtained, as in the case of the N = 4 Beisert S-matrix, by
using residual symmetries and also form factor axioms. The full three-
point function can then be obtained by ”gluing” the two hexagons back
together. We now proceed and bootstrap the form of the hexagons

Figure 4.2. Cutting a three-point function gives us a pair of hexagons. Excita-
tion living on the edges of the three-point function are then split between the
two hexagons. In order to obtain the starting function we need to sum over
the mirror excitations.

form factor and the structure constants. By cutting the three edges we
are dividing the excitations present on the three operators between the
left and right hexagons. We define the set of Bethe roots for the three
different operators as

{u} = α ∪ ᾱ {v} = β ∪ β̄ , {w} = γ ∪ γ̄ , (4.19)

where the bar and unbar quantities are inserted in the right and left
hexagon respectively. The proposal for the form of the structure con-
stants is

C123 =
∑
ψij

∑
{u,v,w}

ωl13(α, ᾱ)ωl12(β, β̄)ωl23(γ, γ̄)Hψij
(α, β, γ)Hψij

(ᾱ, β̄, γ̄) ,

(4.20)

where we have defined the bridge length lij as the number of wick con-
tractions between the operators Oi and Oj ,

lij =
(Li + Lj − Lk)

2
, (4.21)

4And there are some results also for the non planar corrections [45,105].
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and the Li are the length of the operators. The splitting factors

ωlji(α, ᾱ) =
∏
ui∈ᾱ

eilijp(ui)
∏
ui∈α
uj∈ᾱ
ui<uj

S(uj , ui) , (4.22)

take into account that when an excitation in ᾱ is moved from one
hexagon to the other they have to interact with the other Bethe ra-
pidities. The final element of the proposal are the Hexagon form factors
H which are dependent on the set of rapidities appearing on physical
edge and on the states ψij . The latter came from the resolution of the
identity which we have to insert when we glue the hexagon form factors
together. We have to sum over all possible, mirror states ψij that can
be exchange between the two hexagons. In general resumming this type
of mirror excitations is very complicated and this is one of the main
obstacles to obtaining a finite coupling result from this approach5.

We now want to focus our attention on the Hexagon form factor H.
We can think of this as a generic interaction vertex h that is contracted
with the three different spin chains states

〈h|(1〉 ⊗ 2〉 ⊗ 3〉) . (4.23)

In general this seems like a very complicated problem as we have exci-
tations on the three different states.

The Zhukowsky variables functions x(u)± have two branch cuts. We
can now consider what happens if we cross one of the two cuts, which
we define symbolically as u→ uγ , then the Zhukowsky variables will be
analytically continued to

x− → x− x+ → 1/x+ . (4.24)

This analytical continuation can be understood from the Hexagon form
factor as sending an excitation to the next edge, fig. 4.3. Then, by
applying different mirror transformations, we can consider an easier
hexagon where all excitations are on a single edge.

Now we have obtained a simpler object that we can constrain, as in
the case of the Beisert S-matrix, by using the residual symmetry, in this
case a single psu(2|2). This means that the hexagon form factor has to
be annihilated by all the generators, g, of the algebra when acting on a
state χ,

〈h|g|χ〉 = 0 . (4.25)

5In some recent work based on the results of F. Coronado [109, 110], the authors of
[111] were able to provide a determinant formula for gluing back two edges of the
hexagons. There is a previous result for strong coupling [112]
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Figure 4.3. Example of two consecutive mirror transformation. The first trans-
formation send an excitation to the next edge. The second transformation is
equivalent to a crossing (energy and momentum change sign).

In this way we are able to determine the hexagon form factor for both
the single and the two particle case completely. For multi-particle states
the symmetry is not enough but we can make the generic ansatz,

hA1Ȧ1...AnȦn = (−1)f
∏
i<j

hij〈χȦnN . . . χȦ1
1 |S|χAnn . . . χA1

1 〉 , (4.26)

based on the form of the two and single particle case. The only unknown
factor is hij as S is the matrix part of the Beisert scattering matrix. In
order to fix it completely we require crossing symmetry and that it
satisfies the Watson equation [113] for form factors6, obtaining,

h12 =
x− − x−

x− − x+

1− 1
x−x+

1− 1
x+x+

1

σ
, (4.27)

where σ is again the BES dressing factor and the xi are the Zhukowsky
variables (4.15).

We now want to focus our interest in the closed SU(2) and SL(2)
sectors, where we have a single type of excitation, {Y, Ȳ }, or the covari-
ant derivative, {D, D̄}, respectively. By using conformal symmetry we
can set the 3 operators to be located along a line at {0, 1,∞}. We make
this choice for the three BMN vacua,

O1 = Tr[ZL1 ](0) O2 = Tr[Z̄L2 ](∞) O3 = Tr[(Z+Z̄+Y − Ȳ )L3 ](1) .
(4.28)

The third operator is simply a rotated BMN vacuum and excitations
inserted in O1 can only be wick contracted with it, see an example in

6Another test for the multi-particle ansatz is that it satisfies the decoupling condition
for a bound state.
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Figure 4.4. An example where we have excitations only on one operator O1,
the top one, in the SU(2) sector. We can see that the excitations can only wick
contract with the rotated BPS vacuum O3.

fig 4.4. With this choice we are able to preserve the psu(2|2) diagonal
symmetry. It is extremely important to choose these vacua as we need
this residual symmetry to fix the hexagon form factors.

We can now re-write (4.20) using the form of the hexagons obtained.
In order to avoid normalizaton factors that come from combinatorics we
can divide the structure constant by the BPS structure constant,

C•◦◦

C◦◦◦
=

√ ∏
k µ(uk)

Det∂uiφj
∏
i<j S(ui, uj)

A . (4.29)

The measure µ(uk), which come from the hexagon form factor, is the
cost of producing a single excitation. The Gaudin determinant is the
usual factor that appears in form factors computation and it is the nor-
malization of the non-protected state in O1. The product of S-matrices
in the denominator ensures the ansatz is independent of the order cho-
sen for the rapidites in the external operator.. The A factor contains
the different contribution coming from the mirror excitations,

A = A(0,0,0) +A(1,0,0) +A(0,0,1) +A(0,1,0) + . . . , (4.30)

where the indices {i, j, k} count the number of mirror particles inserted
at each edge. The first term A(0,0,0) correspond to the insertion of the
mirror vacuum, with zero excitations when gluing back the mirror edges.
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For Sl(2) excitations we can write

A(0,0,0) =
∑

α∪ᾱ={u}

(−1)|ᾱ|
∏
ul∈α
uk∈ᾱ

ω(ul, uk)

∏
i<j

∏
ul∈α
uk∈ᾱ
ul<uk

hij(ul, uk)
∏
ut∈ᾱ
ur∈α
ut<ur

hij(ut, ur) , (4.31)

where the splitting factor ω is the same as (4.22) and hij is the hexagon
form factor in this sector. When the bridges lij are very large this is the
only contribution as the other mirror excitations are suppressed because
they come with a factor e−lijE

4.3.1 Opposite and adjacent bridge Contribution

We want to present the form of the integrands for the single mirror
excitation in the adjacent and opposite bridge 7.

In general the two different contributions will be proportional, for a
single particle, to ∑

a≥1

∫
du

2π
µγa(u)e−lijEa(u)Int(u, ui) , (4.32)

where we have a sum over the bound states a and integrate over the
mirror rapidity u. As before lij represents the length of the bridge and
here we have µγa which is the measure for a mirror bound state. Now
we want to explicitly compute the integrand Int(u, ui) for the case of a
particle in the adjacent and opposite mirror edge. Pictorially, following
the notation in figure 4.2, we consider the physical edge to be the red
one the adjacent excitations are {ψ12, ψ13} while the opposite is ψ23.
From (4.20) the integrand will be proportional to

Int(u, ui) ∝
∑

χ=Y,Ȳ ,D,D̄

hχhχ̄ , (4.33)

where χ represent a particle/anti-particle pair of virtual excitation liv-
ing in one of the mirror edges. For the adjacent contribution this term
is proportional to the transfer matrix8 T (u−γ |ui). The same argument
can be done for the opposite bridge where we obtain again a quantity
proportional to the transfer matrix T (uγ |ui), but with a different ana-
lytic continuation for the mirror rapidity. In principle one could think

7In [114] a derivation for the multi particle mirror contribution is obtained.
8Where the γ accounts for the mirror transformation.
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that the two effects are of the same order, but the different analytic
continuations appearing in the argument of the transfer matrix, −γ and
γ, make them contribute at different orders. They are suppressed up
to lij + 1-loops for the opposite bridge, while for the adjacent bridge
the corrections kick in at lij + 2. It is important to mention that the
opposite bridge contribution actually completely factorizes9, for every
number of mirror particles, as

A(ni,nj ,nl) = A(ni,0,nl)Bnj , (4.34)

where {ni, nj} are the number of adjacent mirror particles and nj the
opposite. Also Bnj only depends on the length of the opposed bridge.

4.4 Four-Point correlator
We will now shift our attention to four-point function of protected op-
erators. These are the first correlators of protected operator that are
not fixed by symmetry,

〈OL1(x1, y1)OL2(x2, y2)OL3(x3, y3)OL4(x4, y4)〉 , (4.35)

where we have used the notation of eq. (4.8). The correlator can be
expanded in the t’Hooft coupling λ and, using the method of lagrangian
insertions [115], it can be rewritten at every loop order ` as a 4 + ` tree
level integrated correlator

〈OL1(x1, y1)OL2(x2, y2)OL3(x3, y3)OL4(x4, y4)〉`

∼
∫
d4x5 . . . d

4x4+` 〈OL1 . . .OL4L(x5) . . .L(x4+`)〉Born , (4.36)

where the L insertions come from a derivative with respect to the cou-
pling λ.

The tree level correlator is a polynomial in the harmonic variables y
and a rational functions of xi. The external points carry harmonic and
conformal weight Li. The internal points, where we have the Lagrangian
insertions, carry only conformal weight 4. Super-conformal invariance
of the correlator [116–119] imposes that it is proportional to:

R(1, 2, 3, 4) = d2
12d

2
34x

2
12x

2
34 + d2

13d
2
24x

2
13x

2
24 + d2

14d
2
23x

2
14x

2
23

+ d12d23d34d14(x2
13x

2
24 − x2

12x
2
34 − x2

14x
2
23)

+ d12d13d24d34(x2
14x

2
23 − x2

12x
2
34 − x2

13x
2
24)

+ d13d14d23d24(x2
12x

2
34 − x2

14x
2
23 − x2

13x
2
24) . (4.37)

9Possible regularization of the Hexagons can spoil this properties.

48



As we require the correlator (4.35) to have harmonic weight Li at the
point xi we need to absorb the missing Li − 2 weight on the external
points by a suitable combinations of propagators

dij =
y2
ij

x2
ij

, y2
ij ≡ yi · yj , x2

ij ≡ (xi − xj)2 , (4.38)

connecting the external points. The generic form of the 4 + ` tree level

correlator G
(`)
L1,L2,L3,L4

is then

G
(`)
L1,L2,L3,L4

∝ R(1, 2, 3, 4)
∑
{bij}

∏
i<j
i,j∈E

(dij)
bij

 P
(`)
{bij}(x1, . . . , x4+`)∏
p∈E
q∈I

x2
pq

∏
p<q
p,q∈I

x2
pq

,

(4.39)

where we have defined two sets of points, external E and internal I.
Moreover the sum in (4.39) is performed over

{bij}i<ji,j∈E = {b12, b13, b14, b23, b24, b34} (4.40)

such that
∑
j 6=i bij = Li − 2 for all the external points i ∈ E . The

functions P
(`)
{bij}, which are polynomials in the xi, have conformal weight

(1−`) at each point in E∪I. Finally the polynomials P
(`)
{bij} are invariant

under permutation group that leaves invariant the factor∏
i<j
i,j∈E

(dij)
bij . (4.41)

At each loop order we can enumerate the possible polynomials P
(`)
{bij}

that can appear, so in order to fix the integrand we just have to find
the numerical constants multiplying them. In order to do it is useful to

rewrite the integrated P
(`)
{bij} in terms of conformal four-point integrals

at `-loops , I
(`)
k (1, 2, 3, 4),∫

d4x1 . . . d
4x4+`

P
(`)
{bij}(x1, . . . , x4+`)∏
p∈E
q∈I

x2
pq

∏
p<q
p,q∈I

x2
pq

=
∑
k

c
(k)
{bij} I

(`)
k (1, 2, 3, 4) ,

(4.42)

where the unknowns are the numerical prefactors c
(k)
{bij}. As we have seen

in sec. 3.3.2 four-point conformal integral are invariant under pairwise
exchange of the external points, by imposing this and the magic identi-
ties as constraints we can reduce the number of integrals appearing in
the correlation function.
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4.4.1 Structure constants

As we have seen structure constants can be computed by analyzing
three-point functions. Structure constant arise also in the OPE expan-
sion of four-point functions, in the case of protected external operators
they are usually easier to compute and analyze10. In order to extract
structure constants from the four-point correlator we have to consider
the OPE expansion of the fields contained in the correlator. If we take
(4.7) and apply it to the fields at position {x1, x2} and {x3, x4} we
obtain

〈O(x1)O(x2)O(x3)O(x4)〉 =
∑
k

Ck
F∆k,Sk

x4
12x

4
34

, (4.43)

where the sum runs over the possible primary operators that can be
exchanged and the F∆k,Sk are called conformal blocks and are fixed by
conformal symmetry. In four dimensions they are known functions.

We are interested in extracting the structure constant of the Konishi
operator with the shortest 1

2 -BPS operators11. The type of operators
that can be exchanged in an OPE depends on the harmonic weight of
the external operators. By choosing the polarization yI accordingly we
can single out the 20′ contributions in the OPE, in this channel only
the SL(2) descendant of the Konishi appears12. The SL(2) descendant
of the Konishi, with twist τ = ∆ − S = 2, can be studied in a small u
limit of the four-point function as small twist operators are the leading
contributions.

O20′(x, y2)O20′(0, y1) ∼
(
protected

)
+ c20′20′K

y4
12

(x2)1−γK/2
K(x) + . . . ,

(4.44)

Up to now we have just rewritten the four-point function in a specific
limit but in order to extract the value of the structure constant we
need to evaluate the integrals in that limit. To do so we use the fact
that for external operators of length 2, the integrand is known in the
planar limit up to 10-loops13 [120–123]. In this case there is only one
{bij} = {0, 0, 0, 0, 0, 0} and the polynomial P is invariant under the

10We can also extract more data from the OPE than from a single three-point function
at the cost of obtaining sum rules rather than individual OPE data.

11This quantity is interesting from the Hexagon proposal as at 4-loops it is necessary
to regularize the contribution coming from A1,0,1. This could in principle make the
A1,1,1 contribution appear earlier than the expected six loops

12As this operator is in the supermultiplet of the Konishi the two structure constant
are related by a multiplicative factor.

13This has been computed by studying the light-cone limit x212, x
2
23, x

2
34, x

2
14 → 0 where

the correlator exponentiates and it is possible to relate different orders of the pertur-
bative expansion.
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permutation group S4+` of the points xi [119]. We are interested in the
5-loop contribution

P (5) = −1

2
x2
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2
16x
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2
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2
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+
1
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16x
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17x
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19x
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39x
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57x
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+ S9 perm . (4.45)

The 5-loop integrals appearing in the correlation function are cur-
rently unknown but we can study a particular limit where 2 point co-
incide, as we have described in sec 3.3.2 , where the integrals simplify.
From the point of view of the four-point function, when we take this
limit we single out the contribution of a single operator in the OPE of
(4.7). We can then match the two expressions∑
n≥0

λnFn(xi) →︸︷︷︸
x1→x2, x3→x4

1

6x4
13

(c2K(a)u
γK
2 − 1)(1 +O(u) +O(1− v)) ,

(4.46)

where in the right hand-side we have the leading contribution of (4.44),
and for the left-hand side we introduced the notation

F (n) =
x2

12x
2
13x

2
14x

2
23x

2
24x

2
34

n!(−4π2)n

∫
ddx5 . . . d

dx4+n
P (n)(xi)∏

1≤i<j≤4+n x
2
ij

.

(4.47)

We are then able to extract the contribution to the structure constant
of the Konishi operator K at 5-loops

(C2
K)(5) = −64(7364+1812ζ3 − 414ζ2

3 + 2688ζ5

+864ζ3ζ5 + 3717ζ7 + 5292ζ9) . (4.48)

4.4.2 Fixing the integrand
Up to now we have fixed the correlator of four protected operators up

to a set of numerical factors c
(k)
{bij} multiplying the conformal integrals
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appearing at a loop order `. A first simplification of the integrand is to
consider it in the planar limit as only a subset of the conformal integrals
will contribute. Secondly we can constrain the form of the integrand by
studying the light cone OPE limit [124], x2

12 → 0. In this limit we can
relate the light-cone singularities of correlators with different weight

and thus reduce the number of coefficients c
(k)
{bij}. Using this constraints

the authors of [124] were able to obtain integrand for different protected
operators in the planar limit up to 3-loops. The authors also argued that
there should exist a saturation bound κ for the coefficients bij . At higher
loops the light-cone OPE is not enough to fix all the coefficients. In order
to fix the remaining unknowns in Paper VI we used data coming from
integrability. In order to obtain structure constants from the integrand,
see sec. 4.4.1, we have to perform an asymptotic expansion. In general
this require the knowledge of the `-loop p-Integrals appearing so we can
effectively constrain the four-point function integrand up to 5-loops.

After the asymptotic expansion the starting conformal integrals are
expressed as

F `{bij} =
∑
k

c
(k)
{bij} I

(`)
k (1, 2, 3, 4) ∼

∑̀
k=0

αkLog(u)k , (4.49)

where αk depend on the unknown coefficients c
(k)
{bij}. By looking at

(4.46), as the anomalous dimension depends on the coupling λ, the
higher Log powers depend only on lower loop OPE data. As we have
seen in sec 4.3.1 in the integrability picture we have the notion of mirror
excitations. We know that single mirror excitations are suppressed up to
lij + 1-loops, for opposite bridge, and lij + 2-loops, for adjacent bridge,
where lij is the length of the adjacent/opposite bridge. With this in
mind let us then consider a generic correlator 〈OL1OL2

OL3
OL4
〉(l), and

take the OPE limit in some channel where we have picked the leading
twist contributions, τ = L. The same contribution in the integrability
picture has an opposite bridge length of

lopp =
L1 + L2 − L

2
. (4.50)

If we now pick the correlator 〈OL1+nOL2+nOL3
OL4〉(l) and proceed

to extract the same OPE contributions we obtain that in this case the
opposite bridge is of length lopp + n. The two contributions must then
have the same Log(u)k coefficients14 for k ≥ l − lopp given that the op-
posite bridge start contributing only at lopp + 1-loops.

14One has to be careful that only non extremal operators appear as extremal configu-
rations can not be computed with the hexagon approach.
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In (4.34) we have seen that the opposite bridge contribution factor-
izes. We can use this property to enforce further constraints on the
coefficients of the four-point integrand. Let us start with a correlator
〈OL1OL2OL3OL4〉(l) such that L2 − L1 > L4 − L3. In this particular
case we have that bridges appearing in the two structure constants C12O

and C34O are distinct. Given the factorization property of the opposite
contribution we can define a new correlator 〈OL′1OL′2OL′3OL′4〉

(l) with
lengths

L′1 = l01 + l34 , L′2 = l02 + l34 ,

L′3 = l03 + l12 , L′4 = l04 + l12 , (4.51)

where lij is the same as (4.21) and the index 0 represent the operator
appearing in the OPE. This type of equality gives constraints on all the
Log(u)k powers.

This type of constraints is not enough to fix the complete form of the
integrand. To fix the remaining coefficients we have to plug in data from
integrability computation and directly compare it with the asymptotic
expansion. We fix the last coefficient by matching our results with the
four-point function computed in [110] using integrability.

Triple wrapping

As we have mentioned it would be useful to understand how the renor-
malization procedure introduce introduced in [125] for computing the
adjacent wrapping contribution, A(1,0,1), affects the next wrapping ef-
fect A(1,1,1). The structure constant where the triple wrapping should
first appear is for the twist 2 operators with two shortest BPS operators
at 6-loops.

Having obtained the integrand for the four-point function we can look
at the OPE contributions coming from correlators of the form

〈O2O2OnOn〉 , (4.52)

for various n. For operators 3 and 4 of length n the opposed bridge in
their OPE has length n − 1, so the opposed wrapping contributes at
n-loops. Using n = 6 we are able, by using consistency conditions on
the sum rules extracted from the correlator, to extract the contribution
of adjacent wrappings A(1,0,0) +A(0,0,1) +A(1,0,1) up to five loops. By
using sum rules which probe the different opposite bridge lengths we are
able to notice a mismatch when all the bridges have length 1 obtaining
a prediction for the new triple wrapping effect

A{1,1,1} = λ5
(
11016ζ3 − 16200ζ5 − 5184ζ2

3 + 32130ζ7

−14256ζ3ζ5 − 9072ζ9) . (4.53)
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Svensk Sammanfattning

De senaste åren har bjudit p̊a en rik och omfattande utveckling av re-
sultat inom kvantfältteorier b̊ade med och utan störningsteori. I de fall
d̊a störningsteori används, till exempel i beräkningar för partikelacce-
leratorn LHC som kräver mycket hög precision, bygger den senaste ut-
vecklingen p̊a verktyg fr̊an många olika omr̊aden inom matematik och
datavetenskap för att lösa de beräknings-relaterade problemen som upp-
st̊ar vid komplicerade interaktioner mellan partiklar. Generellt sett är
det flera sv̊arigheter som m̊aste övervinnas när man beräknar kvantite-
ter relaterade till en spridningsprocess. För det första m̊aste man lyckas
generera en integral för själva spridningsprocessen. För det andra m̊aste
man reducera antalet integraler man har genom att använda identite-
ter inom partialintegration, vilket är vad vissa delar av arbetet i denna
avhandling har fokuserat p̊a. Resultatet av att använda dessa metoder
med partialintegration är att de ursprungliga integralerna kan uttryckas
som en linjärkombination av en ändlig mängd “master” integraler.

I Artikel I utvecklar vi en effektiv algoritm för att hitta en s̊adan
bas av “master” integraler genom att använda algebraisk geometri och
symmetrier av Feynmandiagram. Förutom att veta denna bas är det
ocks̊a nödvändigt att beräkna de koefficienter som förekommer i iden-
titeterna inom partialintegration. I Artikel III och V utvecklar vi en
effektiv metod för att beräkna dessa koefficienter som är baserad p̊a
olika moderna metoder s̊asom den rationella rekonstruktionen av ett
ändligt fält Zp. Tanken bakom detta är att vi kan beräkna koefficienter-
na som kommer fr̊an partialintegrationen numeriskt, och att vi sedan
kan rekonstruera koefficienternas analytiska form genom att upprepa
beräkningen med andra numeriska värden. Vi utvecklade även ett ef-
fektivt sätt att beräkna vad som kallas “module intersection”, vilket
behövs för att generera startpunkten för identiteterna inom partialin-
tegration. Sista steget i att beräkna en amplitud är att räkna ut dessa
“master” integraler. Detta uppn̊as vanligtvis med hjälp av metoder med
differentialekvationer eller om möjligt genom direkt integration. I Arti-
kel IV utvecklar vi en metod för att beräkna värdet av en särskild klass
integraler som bara har tv̊a externa momenta eller punkter genom en
metod som kallas “bootstrap”, och vi använder detta för att beräkna
integralerna vid fem loopar.

Den andra delen av denna avhandling fokuserar p̊a en specifik teo-
ri: N = 4 SYM i fyra dimensioner. Denna teori är känd för att vara
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integrerbar i ett visst gränsvärde. Inom detta ramverk finns åtskilliga
förslag p̊a hur man kan beräkna kvantiteter vid ändlig kopplingskon-
stant. I Artikel II använder vi störningsteori för att beräkna s̊a kallade
”strukturkonstanter” relaterade till en specifik operator. Detta resultat
kan användas som ett intressant test i beräkningen av strukturkonstan-
ter genom att använda vad som kallas “Hexagons”. Det förmodas även
att en ny effekt börjar verka vid detta antal loopar. I Artikel VI härleder
vi hur integranden bör se ut i fallet med fyra externa punkter och fy-
ra särskilda (“protected”) operatorer av olika längd med fyra och fem
loopar. För att lyckas med detta använder vi en ansatz för integralen
som utg̊angspunkt, för att därefter använda oss av information fr̊an
strukturkonstanter och integrabilitet för att fastställa de resterande ko-
efficienterna. Intressant nog kunde vi därefter isolera och beräkna hur
detta bidrar till “Hexagons”.
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