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Quantum field theory is a theoretical framework for the description of nature in terms
of fundamental particles, fields and their interactions. In the quantum regime, elementary
scattering processes are observables in many experiments and studied in theoretical physics.
The theoretical understanding of scattering amplitudes is often based on a perturbative analysis
in powers of the coupling strength of the fundamental forces. Whereas the computation of
scattering amplitudes has been dominated by Feynman diagram constructions for a long
time, new methods have lead to a multitude of novel results in the last 20-30 years.
Thereafter discoveries of new representations, dualities and construction methods have
enormously increased our understanding of the mathematical structure of scattering amplitudes.

In this thesis we focus on a particular structure of gauge theory amplitudes known as
the color-kinematics duality. Closely tied to this duality is the double copy construction of
gravitational amplitudes, and a set of identities among basic building blocks of the gauge
theory, the BCJ identities. Using methods developed for the study of this duality, we obtain
new results for scattering amplitudes in non-maximal supersymmetric Yang-Mills coupled to
massless fundamental matter at one and two loops. We immediately construct amplitudes in
supergravity theories via the double copy. Furthermore, we include methods and results for the
integration of gauge theory amplitudes and the ultraviolet structure of supergravity amplitudes.

In a second part we present ideas related to the identification of basic building blocks that
underlie the construction of  scattering amplitudes. A decomposition of gauge theory amplitudes
into color- and kinematic-dependent contributions exposes a set of primitive objects. Relations
among these objects allow us to identify a minimal set of independent kinematic building blocks.
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1. Introduction

The theoretical framework describing the most fundamental objects in
nature and their interactions is known as quantum field theory (QFT).
A central realization of a QFT is the standard model (SM) of particle
physics, unifying three out of the four fundamental forces. It has been
extremely successful in predicting the outcome of experiments and ex-
plaining natural phenomena in the quantum regime. A commonly stud-
ied type of observables are scattering amplitudes (or the S-matrix). They
describe the outcome of scattering events involving two or more funda-
mental particles.

The last missing piece for the SM, the Higgs boson, has been experi-
mentally confirmed in 2012 by a joint effort of experiments at the Large
Hadron Collider (LHC) at CERN [1,2]. In contrast, it is next to impossi-
ble to observe any effects due to a quantization of the fourth force: gravity.
Quantum effects occur at small scales, which requires particle collisions at
high energy to capture them. Due to the relatively weak strength of the
gravitational interaction the required energy for experiments to uncover
gravitational quantum effects is out of our reach.

From a theoretical point of view, the determination of many quantities
in a QFT is plagued by infinities at high energies, called ultraviolet (UV)
divergences. For the theory described by the SM, a gauge theory, these
unphysical divergences can be systematically removed by counterterms.
This allows the SM to do accurate predictions for observables. An equiva-
lent mechanism for quantum gravity is not known as the procedure would
require infinitely many counterterms leading to a formalism without any
predictive power. A complete understanding of the underlying structure
of UV divergences of extended models of gravity is lacking until today.

The perturbative study of scattering amplitudes in general gauge and
gravity theories has seen an increased interest since the end of the last cen-
tury. New computational techniques, methods and representations [3–15]
have led to a better understanding of the mathematical structures encod-
ing amplitudes. This led to many novel results for seemingly untractable
problems. One of these structures was discovered in 2008 as a duality
between color and kinematics [16]. It induces a novel representation of
gravity amplitudes as a double copy of two gauge theory amplitudes [17].
A similar relation between open and closed string amplitudes was dis-
covered by Kawai, Lewellen and Tye (KLT) [18] already in 1986. KLT
relations are known at leading order of the perturbative expansion in the
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coupling, and at one-loop level in the field theory description [19,20]. The
aforementioned color-kinematics duality and double copy by Bern, Car-
rasco, and Johansson (BCJ) has a conjectured realization for any order.
The duality organizes the amplitude in terms of trivalent graphs, similar
to Feynman diagrams, and splits the contribution for each graph into a
color and a kinematic part. These two parts are related by the duality in
the sense that they obey the same algebraic identities. The perturbative
expansion is then realized order by order in the number of loops in the
involved diagrams — or equivalently in powers of the coupling constant.

An extremely powerful consequence of the duality is the construction
of gravity amplitudes via simpler gauge theory building blocks. The sim-
plest case of a gravity theory in four spacetime dimensions is the maxi-
mally supersymmetric extension of Einstein gravity, N = 8 supergravity
(SG) [21–25]. Therein the double copy construction has resulted in an im-
pressive computation of the UV behavior at five loops [26] in general space-
time dimension. Symmetry arguments exclude a divergence by the ab-
sence of a valid counterterm up to a critical dimension Dc < 24/5 [27,28]
at five loops. The divergence has been confirmed — and the explicit
expression in the critical dimension has been presented. Even though a
particular UV divergence has been predicted to vanish in four dimensions
by symmetry arguments [27–33], the explicit computation has revealed
new patterns relating the divergence structure of different loop orders.

There are cases with a vanishing UV divergence, where a valid countert-
erm exists and cannot be ruled out by any known (symmetry) argument.
This effect has been named enhanced cancellation [34–40]. The cancel-
lations leading to a vanishing divergence are highly non-trivial from the
point of view of currently known amplitude representations, i.e. it requires
a conspiracy between contributions coming from different diagrammatic
structures.

This thesis is centered around the BCJ construction and discusses vari-
ous aspects thereof for lower degree or even in absence of supersymmetry.
Supersymmetric theories form a clean testing ground for new methods
and ideas and allow us to do explicit computations at perturbative orders
that are not yet accessible for the SM or Einstein gravity. The basic build-
ing blocks are purely kinematic numerator factors associated to trivalent
graphs of a gauge theory. These numerators — counterparts of the color
objects through the duality — are far from being unique. They are fixed
by the duality up to a residual generalized gauge transformation, which
leaves room for many different representations of the same amplitude.
The search for an underlying kinematic Lie algebra [41, 42] that would
allow for a direct construction of such numerators has as of yet not been
successful.

The main idea followed here is based upon an Ansatz construction for
the building blocks of the gauge theory. Apart from the duality property
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of these numerators, a larger set of constraints manifesting symmetries
or various other properties have been identified in publications enclosed
in this thesis. The resulting representations of numerators are often con-
veniently expressed as a single trace over contractions of momenta with
Dirac matrices. This form of the integrand is especially useful when it
comes to integration or assembling of gravitational amplitudes via the
double copy.

If the goal is to only compute amplitudes in a gauge theory, seeking a
color-kinematics dual representation might seem unnecessary. However,
it is clear from publication III that such a representation may be easy
to obtain in some cases, and exposes novel properties. For example, the
amplitudes obtained in publication I and III are manifestly local, and
exhibit an infrared (IR) behavior that manifests collinear and soft limits.
Most of the simplicity is coming from a reduced number of independent
kinematic quantities and novel properties that fix the residual generalized
gauge freedom.

Amplitude computations at higher loop orders become intractable to
a brute-force approach even with modern computers. The complexity
of amplitude computations tend to grow severely with each additional
external parton or order in the loop expansion. For example the number
of graphs in a Feynman computation grows factorially and integration
may be intractable for even a simple scalar theory at higher orders. Some
of the new ideas in article I and III arose from the need to cope with this
growth of complexity.

A Feynman diagram, or a numerator in a BCJ construction, is not a
measurable quantity and generically is gauge dependent. Color-ordered
amplitudes are another type of building blocks, built out of a special set of
diagrams using modified Feynman rules. They are gauge-independent ob-
jects that naturally appear after a so called color decomposition. The
amplitude is split into purely color-dependent factors and kinematics-
dependent objects — exactly these color-ordered amplitudes. For cer-
tain (planar) theories, color-ordered amplitudes may be recursively con-
structed, removing the dependence on a diagrammatic description en-
tirely. Their number is still growing factorially but at a slower rate. For
planar Yang-Mills theory, the so called Kleiss-Kuijf (KK) relations [43] —
and corresponding loop-level generalizations — together with the color-
kinematics duality (BCJ relations) reduce the number of independent
color-ordered amplitudes.

Removing redundancies among the color-ordered amplitudes and the
color factors leads to a minimal color decomposition. Different types of
(minimal) color decompositions, for example for pure Yang-Mills by Del
Duca, Dixon, and Maltoni (DDM) [44,45] or for quantum chromodynam-
ics (QCD) by Johansson and Ochirov [46], are well understood at tree
level. At loop level much less is known and even the definition of primi-
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tive amplitudes for non-planar contributions is far from being understood.
Publication II discusses a color decomposition at one-loop level for a gen-
eral QCD amplitude for an arbitrary multiplicity of external partons.

The thesis is organized into four main parts. In part I, we start by
discussing general background material and review the core subjects. It
contains an introduction to computational tools like the spinor helicity
formalism and generalized unitarity. We discuss the (supersymmetric)
quantum field theories of interest and the color-kinematics duality to-
gether with the double copy and BCJ relations on a formal level.

The second part builds up the main discussion of the thesis. It con-
tains a review of the general methods and explicit computations for am-
plitudes in (supersymmetric) gauge and gravity theories. The focus will
lie on the construction of additional matter states on both sides of the
double copy. Introducing fundamental matter allows us to reach a larger
set of (super)gravity theories via an extension of the usual double copy
prescription. A major part will focus on N = 2 supersymmetric QCD
(SQCD), a supersymmetric extension of QCD. This theory is interesting
as it has features resembling the well-studied N = 4 super Yang-Mills
(SYM) theory as well as ordinary QCD. It is a first stepping stone intro-
ducing the complications of QCD into the simpler structures of maximally
supersymmetric YM. We summarize the study of the integrated form of
the two-loop N = 2 SQCD amplitude and its transcendentality proper-
ties presented in article IV. Via the double copy of (S)QCD a plethora of
different (super)gravity theories — with or without the inclusion of mat-
ter — can be reached. Most interestingly, we discuss general methods
for the extraction of UV divergences, followed by an explicit computation
thereof for half-maximal supergravity at two loops.

Part III focuses on color decompositions for QCD or supersymmetric
extensions thereof. We review a decomposition at tree level and the re-
sults from article II, attached to this thesis, for the one-loop case.

The final part collects several technical methods and ideas that have
been used for the various amplitude computations discussed in this thesis.
A first chapter includes algorithms for the reduction of tensor integrals
to basic scalar integrals. In a second chapter we present the use of finite
field methods that can significantly speed up many computations arising
in the broader field of scattering amplitudes.

We conclude with a short summary of the thesis and an outlook into
future developments.
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Part I:
Background Material and Review

Or: How to Stand on The
Shoulder of Giants

The perturbative computation of scattering amplitudes in quantum
field theories has seen an immense progress due to a plethora of new meth-
ods developed during the last three decades. Not only has the traditional
diagrammatic technique prescribed by Feynman been mostly superseded,
but also our understanding of the structure of scattering amplitudes and
their building blocks has greatly changed.

This first part of the thesis summarizes some basic tools like the spinor
helicity formalism (sec. 2) and unitarity cuts (sec. 5). We furthermore
review necessary background material mostly centered around the color-
kinematics duality and the double copy (sec. 3). A more extensive dis-
cussion of many of these tools can for example be found in [47–49]. In
section 4 we introduce an on-shell superfield formalism to conveniently
describe supersymmetric gauge and gravity theories and their scattering
amplitudes. As many of these tools are fairly standard we keep the dis-
cussions short and only introduce concepts insofar needed for the rest of
the thesis.





2. Spinor Helicity Formalism

Kinematic building blocks appearing in the integrand of scattering am-
plitudes are Lorentz-invariant objects built out of external data. For us,
the information consists of momenta and polarization vectors that are
contracted with invariant objects — for example the metric ηµν and the
totally antisymmetric Levi-Civita symbol εµνρσ. The external data for
a physical process encoded inside an amplitude is constrained, for exam-
ple, by on-shell criteria and momentum convervation. Such constraints
in general lead to non-linear relations between certain building blocks.
Hence, there exist many representations of the same integrand which dif-
fer significantly in structure and size. Now, the challenge is to identify
building blocks and find algorithms that bring a given amplitudes into a
“useful” form, where the definition of usefulness is intentionally left open.
Some common criteria are the size of the algebraic expression, locality
of the assembled amplitude, removal of redundancies (comparability) or
manifestation of a certain (symmetry) property. The spinor helicity for-
malism discussed in this section is useful in the sense that it trivializes
the on-shellness of massless particles.

All processes considered in this thesis include exclusively massless states.
If pi denotes the momentum of an external parton with label i the mass-
less condition reads

p2
i = pi,µp

µ
i = 0. (2.1)

Furthermore, the overall momentum is conserved:∑
i

pi = 0, (2.2)

where we assume that all particles have outgoing momenta. In general, a
solution to these constraints contains square rootse and leads to blown-
up expressions once resubstituted into an amplitude. The spinor helicity
formalism instead introduces a set of variables that trivializes the mass-
lessness condition for the system. A short enlightning introduction to
the four dimensional spinor helicity formalism can for example be found
in [9].

2.1 Four Dimensions
Following the notation in [48], we first note that in four spacetime di-
mensions the Lorentz group is isomorphic to SL(2)L × SL(2)R. The
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finite-dimensional representations of SL(2) are classified by half-integers.
Objects transforming in the two-dimensional representation (1/2, 0) and
(0, 1/2) are called left- and right-handed chiral spinors respectively. We
denote left-handed chiral spinors by |p]a, a = 1, 2, and right-handed chiral
spinors by |p〉ȧ, ȧ = 1, 2. We will later on identify p as an on-shell mo-
mentum. Lorentz invariant objects are formed using the antisymmetric
tensor εab, ε12 = +1, which is used to raise or lower indices. A useful
shorthand is

[12] ≡ [p1|a|p2]a = εab|p1]b|p2]a , 〈12〉 ≡ 〈p1|ȧ|p2〉ȧ = εȧḃ|p1〉ḃ|p2〉ȧ .
(2.3)

Consider a four-momentum vector pµ transforming under the vector
(1/2, 1/2) representation of the Lorentz group. By the above isomorphism,
it is possible to map this vector to an object with both types of chiral
indices paȧ. The explicit form of the map uses the Pauli matrices

paȧ = σµaȧpµ . (2.4)

Coming back to the on-shellness redundancy from before we observe
that for massless momenta p

pµp
µ = det(paȧ) = 0 . (2.5)

This implies that paȧ is a 2 × 2 matrix with non-maximal rank and can
be written as

paȧ = −|p]a〈p|ȧ , (2.6)
where |p]a and 〈p|ȧ are chiral spinors as introduced above. These two
spinors are not uniquely determined since there is a rescaling freedom

|p]→ t|p], |p〉 → 1
t
|p〉 , (2.7)

with a non-zero complex number t. This corresponds to a little group
scaling, i.e. a transformation in the subgroup of the Lorentz group that
leaves the momentum invariant. Some useful properties and identities for
spinor products are collected in the appendix of [48].

By a slight abuse of notation we can insert a Dirac γ-matrix between
two spinors

〈p|P |q] = 〈p|γµ|q]Pµ ≡
(
0, 〈p|ȧ

) ( 0 (σµ)aȧ
(σ̄mu)aȧ 0

)(
|q]a
0

)
Pµ , (2.8)

where P is an arbitrary (not necessarily light-like) vector. Polarization
vectors for massless spin-1 vectors can then be expressed in spinor helicity
notation using an arbitrary reference spinor q

εµ−(p; q) = −〈p|γ
µ|q]√

2[qp]
, εµ+(p; q) = −〈q|γ

µ|p]√
2〈qp〉

. (2.9)
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It can easily be checked that these polarization vectors fulfill the neces-
sary properties, i.e. they are null and orthogonal to the corresponding
momentum p

ε±(p; q)2 = 0 , εµ±(p; q)pµ = 0 . (2.10)

The non-localities introduced by polarization vectors will lead to seem-
ingly unphysical poles in amplitudes discussed in later sections. The
unitary cut formalism developed in publication III extracts these poles
and absorbs them into special state-configuration objects.

Even though we discuss amplitudes in arbitrary dimensions — mainly
for the purpose of dimensional regularization — we use four-dimensional
notation and the spinor helicity formalism for the external objects. One
can see this as an embedding in a four-dimensional subspace. To ob-
tain information for the extra-dimensional part of dimensionality D − 4,
a six-dimensional spinor-helicity formalism introduced by Cheung and
O’Connell [13] can be used. We will not discuss the six-dimensional com-
putation in this thesis. Publications I and III contain an extended discus-
sion for the use of six-dimensional spinor-helicity for unitarity cuts.
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3. Color-Kinematics Duality and the Double
Copy

The amplitude computations in article I and III use a construction in-
troduced by Bern, Carrasco and Johansson (BCJ). The two main ideas
— the color-kinematics duality for gauge theories and the double copy
construction for gravity amplitudes [16, 17] — are summarized as:
• There exists a duality between the color algebra and kinematic ob-
jects, the numerator factors, of gauge theory amplitudes. A repre-
sentation of a gauge theory amplitude that manifestly implements
this duality is called color-kinematics dual.
• Certain gravity amplitudes can be obtained by a procedure which
acts on a color-kinematics dual form of a gauge theory amplitude.
The prescription is to replace color objects by their kinematic coun-
terparts.

This construction has been used to obtain gravitational amplitudes from
the simpler gauge theory expressions. Gravitational amplitudes are ex-
tremely difficult, if not impossible, to compute with a classical Feynman
graph approach even with today’s computing power. Once a color-dual
form of the gauge theory amplitude has been found, its double copy neces-
sarily is invariant under linearized diffeomorphism. Thus it is a valid can-
didate for a gravitational amplitude (of some gravity theory) [50]. There
is no complete criterion for the existence of a color-dual form at general
loop level. The existence has been proven for specific cases at tree level
and even for some cases at higher orders [51–55]. The only way to check
the duality is thus by finding an explicit color-kinematics dual represen-
tation.

Another open question concerns the set of (super)gravity theories that
are constructible via a double copy. We call a gravity theory factorizable
if its spectrum can be written as a tensor product of the full spectrum of
two (not necessarily equal) gauge theories, schematically

(gravity theory) = (gauge theory)⊗ (gauge theory)′ . (3.1)

Factorizable theories are not the only ones that are BCJ-constructible.
In [46], Johansson and Ochirov developed an extension of the usual double
copy construction by adding matter multiplets to the gauge theory. This
allows for the construction of a larger set of gravity theories. Publication I
uses this construction at two-loop level and verifies the existence of the

18



duality for this specific case. In publication III we constructed gauge
theory amplitudes with matter on external legs. This allows for matter-
matter or matter-graviton scattering on the double copy side.

In this section we review the basics of the color-kinematics duality and
the double copy as far needed for part II. The last subsection will also
briefly introduce BCJ-relations, which motivate the story told in part III
of this thesis. For an extensive review see for example [49].

3.1 A Duality between Color and Kinematics
To expose the duality, we start from a diagrammatic representation of a
gauge theory amplitude. The color factor of a four-point vertex can be
expressed as a sum of products of two three-point color-factors. Therefore,
every L-loop amplitude admits a representation in terms of a sum over
trivalent diagrams Γ(L)

n with n external legs

A(L)
n = iL−1gn+2L−2 ∑

i∈Γ(L)
n

∫ dLD`
(2π)LD

1
Si

nici
Di

. (3.2)

Each summand, corresponding to a graph, consists of four building blocks,
• the symmetry factor Si of the graph,
• the denominator Di built as a product of inverse Feynman propaga-
tors,
• the color factors ci according to usual Yang-Mills Feynman rules,
• and numerators ni capturing the leftover kinematical dependence of
the amplitude. Note that these numerators are not necessarily local
as they might contain spurious poles.

For the gauge theories considered in the thesis — massless QCD with
gauge group SU(Nc) or supersymmetric extensions thereof — color fac-
tors of trivalent graphs are built out of two basic building blocks: the
structure constants f̃abc = tr([T a, T b]T c) and generators T ai̄ of the gauge
group, normalized as tr(T aT b) = δab. We use the convention that T a are
hermitian and fabc are imaginary. Graphically, we represent them as

f̃abc = c

(
a

b

c

)
, T ai̄ = c

(
a

i

̄

)
. (3.3)

By defining T aı̄j ≡ −T ajı̄, we observe that both building blocks are antisym-
metric under a flip of legs since also f̃abc = −f̃acb = −f̃ bac. Furthermore,
properties of the gauge algebra include similar identities for these build-
ing blocks: Color factors of a triplet of four-point subgraphs fulfill the
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commutation relation and the Jacobi identity respectively:

f̃abcT ci̄ = T bik̄T
a
k̄ − T aik̄T

b
k̄ = [T a, T b]i̄

⇔ c

(
a

b i

j

c

)
= c

(
a

b i

j
k

)
− c

(
a

b i

j
k

)
,

f̃abef̃ cde = f̃daef̃ bce − f̃dbef̃ace

⇔ c

(
a

b c

d

e
)

= c

(
a

b c

d
e

)
− c

(
a

b c

d
e

)
.

(3.4)

Combined with the antisymmetry property, this leads to a system of
relations among the color factors in eq. (3.2) of the schematic form

ci = cj − ck , ci = −cj . (3.5)

Whereas the symmetry factors, denominators, and color factors are unique-
ly determined by the graph, the numerator factors are not unique and
admit a generalized gauge freedom.

Now, the duality between color and kinematics is exposed by a set of
numerators ni, which fulfill the same identities as the corresponding color
factors

ci = cj − ck ⇔ ni = nj − nk ,
ci = −cj ⇔ ni = −nj .

(3.6)

These constraints do still not uniquely determine ni for most cases. This
leaves us some residual generalized gauge freedom.

Apart from the double copy prescription described in the next sub-
section, this representation has the advantage of manifestly reducing the
number of independent building blocks compared to a standard color de-
composition. The identities between the kinematical building blocks ni
expose new relations between color-ordered amplitudes. These identities
will be discussed in the last section of this chapter.

3.2 Gravity Amplitudes as Squares
An important application of the color-kinematics duality is the double-
copy construction for gravitational amplitudes. Assume we have found a
color-kinematics dual representation (3.2) of two gauge theory amplitudes
at L loops with numerators ni and n′i respectively. From these gauge
theory building blocks we compute the following object

M(L)
n = iL−1

(
κ

2

)n+2L−2 ∑
i∈Γ(L)

n

∫ dLD`
(2π)LD

1
Si

nin
′
i

Di
, (3.7)
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where we replaced the YM coupling constant g by the gravitational cou-
pling κ and the color factors ci by the second set of numerators n′i. This
object is invariant under linearized diffeomorphisms and has the correct
dimensions to be a valid candidate for a gravitational scattering ampli-
tude. An extended discussion, why this object is a gravitational scattering
amplitudes can, for example, be found in [56] for N = 8 at tree level or
in [49] more generally.

Two comments are in order: Firstly, the second copy of numerator
factors do not need to come from the same gauge theory. Secondly, only
one of the two sets of numerators needs to be in color-kinematics dual
form. The other set can be in any (trivalent) representation. We elaborate
more on these properties in the rest of this section, following the discussion
in [49,50].

A gauge invariant action implies amplitudes that are invariant under
linearized gauge transformations. Explicitly, the amplitude is invariant
under the shift of the polarization vector εµ of an external gluon by the
corresponding momentum εµ → εµ+pµ. The polarization vector εµ fulfills
ε · ε = 0. In terms of the integrand we write this as ni → ni + δi, where
δi = ni|ε→p. Gauge invariance then implies∑

i

ciδi
Di

= 0 . (3.8)

Similarly, from a diffeomorphism invariant action follows the invariance
of amplitudes under linearized diffeomorphisms

εµν → εµν + p(µqν) , (3.9)

for εµν the polarization tensor of an external graviton and an auxiliary
vector q that obeys p · q = 0. This transformation preserves transversal-
ity εµνpν = 0 and tracelessness εµνηµν = 0 of the polarization tensor.

In the double copy, the graviton polarization vector is expressed in
terms of two gluon polarization vectors from both factors of the double
copy as the symmetric traceless product

εµν = ε((µε̃ν)) = ε(µε̃ν) − ηµνεµε̃ν . (3.10)

Linearized diffeomorphisms (3.9) are then realized by a linearized gauge
transformation εµ → εµ + pµ and replacing ε̃µ → qµ or vice versa. The
integrand of the gravity amplitude (3.7) finally changes by a factor pro-
portional to ∑

i

δiñi|ε̃→q
Di

+
∑
i

ni|ε→q δ̃i
Di

. (3.11)

Both these terms vanish by eq. (3.8) as the numerator factors fulfill the
same algebraic identities as the color factors and we conclude that the
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amplitude obtained via a double copy is invariant under linearized diffeo-
morphisms. However, we have assumed that both numerator factors are
color-kinematics dual.

The generalized gauge freedommentioned in the previous section allows
a deformation of numerator factors ni → ni + ∆i such that the complete
amplitude (integrand) is unchanged, i.e.

∑
i

∆ici
Di

= 0 . (3.12)

The main point is the observation that this constraint holds due to the
algebraic properties of the color factors and not their explicit values. As
color-kinematics dual numerators ni fulfill the same algebraic properties
we immediately conclude that∑

i

∆ini
Di

= 0 . (3.13)

This shows that if the second set of numerators is shifted by n′i → n′i+∆i
the graviton amplitude (3.7) is unchanged — as long as the first set of
numerators remains in a color-kinematics dual form. This proves that
only one set of numerators needs to be color-kinematics dual.

3.3 Relations for Color-Ordered Amplitudes
In a color-kinematics dual construction the separation of color and kine-
matics dependent objects is governed on a diagrammatic level. The tra-
ditional way of separating color and kinematics is done on a higher level
by identifying a set of independent color objects {ci}. A gauge theory
amplitude can in general be written as

A =
∑
i

ciAi , (3.14)

where ci solely depend on structure constants f̃abc and generators T ai̄. The
factors Ai collect all other (kinematic) dependence, including propagators.

Such a decomposition is useful as long as the kinematical objects Ai
are simpler to compute than the whole amplitude. Consider for example
a trace-based decomposition of a Yang-Mills tree level amplitude [57–61]

A(0)
n = gn−2 ∑

σ∈Sn−1

tr (T a1T aσ(2) · · ·T aσ(n))A(0)
n (1, σ) , (3.15)

where the sum is over a permutation σ of the gluon labels 2, . . . , n. The
kinematical factors An are called color-ordered or partial amplitudes and
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can be computed diagrammatically using color-ordered Feynman rules [47]
and obtained recursively for higher points (e.g. BCFW [11,12]).

The color-ordered amplitudes fulfill a number of identities.
• From the cyclicity of the trace, cyclicity of An follows

An(1, 2, . . . , n) = An(2, . . . , n, 1) . (3.16)

• A reversal of its arguments is compensated by a sign flip for odd n

An(1, 2, . . . , n) = (−1)nAn(n, . . . , 2, 1) . (3.17)

• The Kleiss-Kuijf (KK) relations [43] reduce the number of indepen-
dent color-ordered amplitudes to (n− 2)!

An(1, α, n, β) = (−1)|β|
∑

σ∈α β

An(1, σ, n) . (3.18)

The symbol denotes the shuffle product which is defined as the
set of permutations of the set α∪β that leaves the relative ordering
of α and β intact.

The KK relations motivate a color-decomposition that removes this redun-
dancy and reduces the sum to (n − 2)! terms. This is explicitly realized
through a construction by Del Duca, Dixon, and Maltoni (DDM) [44,45]

A(0)
n = gn−2 ∑

σ∈Sn−2

f̃a2aσ(3)b1 f̃ b1aσ(4)b2 · · · f̃ bn−3aσ(n)a1A(0)
n (1, 2, σ)

= gn−2 ∑
σ∈Sn−2

c

(
a2

aσ (3) aσ (n)

a1

)
A(0)
n (1, 2, σ) ,

(3.19)

where the first argument of each summand is a color factor of a half-ladder
graph. We will further discuss this problem for amplitudes including
matter in a non-adjoint representation in part III.

Generically, there exist no further linear relations between color-ordered
tree amplitudes over the field of rational numbers. Allowing for kinematics-
dependent coefficients, though, leads to the so-called BCJ relations. These
are — as the name suggests — closely related to the color-kinematics du-
ality. It is instructive to obtain these identities through a simple example.

The BCJ representation of a four-point YM amplitude consists of three
terms corresponding to the diagrams

1

2 3

4
= csns

s
,

1

2 3

4
= ctnt

t
,

1

2 3

4
= cunu

u
. (3.20)

We labeled the terms according to their pole structure expressed in the
three Mandelstam invariants s = (p1 + p2)2, t = (p2 + p3)2 and u =
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(p3 + p1)2. For massless particles they fulfill the identity s + t + u = 0.
The color factors are given by

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a4a1bf̃ ba2a3 , cu = f̃a4a2bf̃ ba1a3 . (3.21)

The DDM color decomposition for this amplitudes is expressed as

A(0)
4 = ctA

(0)
4 (1, 2, 3, 4) + cuA

(0)
4 (1, 2, 4, 3)

= ct

(
ns
s

+ nt
t

)
+ cu

(
−ns
s

+ nu
u

)
.

(3.22)

The color-kinematics duality is based on a single relation (ignoring sign
flip identities)

cs = ct − cu ⇔ ns = nt − nu . (3.23)
Choosing ns and nu as a basis of independent building blocks for the
kinematic numerators we can express the two color-ordered amplitudes
in the DDM decomposition as(

A
(0)
4 (1, 2, 3, 4)

A
(0)
4 (1, 2, 3, 4)

)
= Θ

(
ns
nu

)
Θ =

(1
s + 1

t
1
t

−1
s

1
s+t

)
. (3.24)

Since the matrix Θ has rank 1, it induces a relation between the two
amplitudes

t A
(0)
4 (1, 2, 3, 4) + uA

(0)
4 (1, 2, 4, 3) = 0 . (3.25)

For general multiplicity n, the matrix has rank (n− 3)! and the simplest
type of relations has the form [16]

n∑
i=3

 i∑
j=3

s2j

A(0)
n (1, 3, 4, . . . , i, 2, i+ 1, . . . , n) = 0 . (3.26)

The variables sij = (pi + pj)2 are the Mandelstam invariants for higher
points. We conclude that there are maximally (n−3)! independent color-
ordered amplitudes at tree level. An extension to QCD, adding color
factors for fundamental matter, is discussed in [46].

At loop level much less is known about relations among partial ampli-
tudes, as the kinematic structure is clouded by loop momentum labeling
ambiguities. The discussion of some features of higher loop color de-
compositions and relations among color-ordered objects is continued in
part III.

24



4. Supersymmetric Gauge and Gravity
Theories

This thesis discusses scattering amplitudes in supersymmetrics gauge and
gravity theories in four and six dimensions. In this chapter we introduce
the theories of interest with their particle content in terms of on-shell
multiplets. The main focus will lie on supersymmetric Yang-Mills theo-
ries (SYM) coupled to massless fundamental matter. The basic building
blocks that enter the computations in the following chapters are the tree-
level amplitudes of these theories.

4.1 Supersymmetric Yang Mills Coupled to Matter
On-shell tree-level amplitudes in maximally supersymmetric Yang-Mills
can be derived from symmetry arguments and recursion relations with-
out the need of specifying a Lagrangian [62]. Tree-level superamplitudes
for theories with less supersymmetry can subsequently be projected out
from the maximally symmetric amplitudes. Everything needed is thus
the supermultiplet for the maximally supersymmetric theory and an un-
derstanding of the projection mechanism for a lower amount of super-
symmetry. We start by discussing the particle content of maximally
supersymmetric Yang-Mills, followed by a reduction procedure for their
non-maximally supersymmetric counterparts in four dimensions. Via an
uplift to six dimensions, we can obtain amplitudes in a dimensionally
regulated theory. Hence, we continue the discussion with the correspond-
ing six dimensional theories and their relation to their four dimensional
counterpart.

4.1.1 Four-Dimensional SYM
The on-shell particle content for a supersymmetric theory is conveniently
described by a superspace formalism. Using Grassmann variables ηA,
A = 1, · · · ,N , introduced by Ferber [63], the on-shell particle content of
the N = 4 vector supermultiplet is organized as

VN=4 = A++ηAψ+
A+ 1

2η
AηBφAB+ 1

3!η
AηBηCψ−ABC+η1η2η3η4A− , (4.1)

25



where A± denote gluons, ψ+
A and ψ−ABC ≡ −εABCDψD−are the two helicity

states of the four gluinos, and φAB ≡ εABCDφ
CD describe three complex

scalars.
The tree-level color-ordered amplitude in the maximally helicity violat-

ing (MHV) sector, containing the gluonic amplitude with configuration
(− − + · · ·+), is especially simple. It is given by the supersymmetric
generalization of the Parke-Taylor formula [64,65]

A(0)[N=4]
n = δ8(Q)

〈12〉〈23〉 · · · 〈n1〉 , (4.2)

where δ8(Q) represents the supermomentum conserving delta function.
Using the on-shell superspace formalism it is given by

δ2N (Q) =
N∏
A=1

n∑
i<j

ηAi 〈ij〉ηAj . (4.3)

We note that there is an asymmetry in our description as we could
have equivalently written

VN=4 = η̄1η̄2η̄3η̄4A
+ + 1

3! η̄Aη̄B η̄Cψ
ABC
+ + 1

2 η̄Aη̄Bφ
AB+ η̄AψA−+A− , (4.4)

using a conjugated set of Grassmann variables η̄A. It is the natural set
of variables to describe an amplitude in the MHV sector, for example for
the gluon configuration (++− · · ·−). We refer to the former as the chiral
and the latter as the antichiral on-shell superspace.

For certain applications discussed further on, it will be useful to have
the ability to switch between the two formulations or even mix them.
The explicit transformation between the two superfields is given by a
Grassmann Fourier transform [66]

VN=4(η) =
∫

dη̄1 dη̄2 dη̄3 dη̄4e
η̄1η1+η̄2η2+η̄3η3+η̄4η4VN=4(η̄) . (4.5)

Expressions for on-shell vector and matter multiplets of non-maximally
supersymmetric Yang-Mills theories are obtained by projecting onto the
wanted states inside VN=4. We will write down the multiplets using the
chiral superspace. As for N = 4, there exists an equivalent description
using antichiral Grassmann variables. For N = 2, we have the vector and
a pair of conjugate (half-)hyper multiplets

VN=2 = A+ + ηAψ+
A + η1η2φ12 + η3η4φ34 + ηAη3η4ψ−A34 + η1η2η3η4A− ,

ΦN=2 = η3ψ+
3 + ηAη3φA3 + η1η2η3ψ−123 ,

ΦN=2 = η4ψ+
4 + ηAη4φA4 + η1η2η4ψ−124 ,

(4.6)
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where A = 1, 2.
The three supermultiplets VN=2, ΦN=2, and ΦN=2 form a complete

supersymmetric decomposition of VN=4:

VN=4 = VN=2 + ΦN=2 + ΦN=2 . (4.7)

This decomposition has useful consequences for the computation of am-
plitudes at loop-level. One can demand a similar decomposition on the
level of numerators for the integrand.

A further decomposition of VN=2 provides the on-shell multiplets of
N = 1 SYM theory with additional chiral matter:

VN=1 = A+ + η1ψ+
1 + η2η3η4ψ−234 + η1η2η3η4A− ,

ΦN=1 = η2ψ+
2 + η1η2φ12 ,

ΦN=1 = η3η4φ34 + η1η3η4ψ−134 .

(4.8)

The hypermultiplet of N = 2 can also be decomposed to describe another
two sets of chiral-antichiral pairs of matter multiplets

Φ′N=1 = η3ψ+
3 + η1η3φ13 ,

Φ′N=1 = η2η3φ23 + η1η2η3ψ−123 ,

Φ′′N=1 = η4ψ+
4 + η1η4φ14 ,

Φ′′N=1 = η2η4φ24 + η1η2η4ψ−124 .

(4.9)

The three sets of chiral matter Φ, Φ′ and Φ′′ and their antichiral partners
may transform in a subgroup of the underlying N = 4 R-symmetry group.

These supermultiplets can finally be split into their non-supersymmetric
constituents, parts of which form the on-shell states of massless quantum
chromodynamics (QCD).

The N = 1 or N = 2 theory with
• a vector multiplet V , transforming under the adjoint representation
of the gauge group SU(Nc), coupled to
• hyper/chiral multiplets Φ and Φ, transforming under the fundamen-
tal representation of the gauge group,

is called supersymmetric QCD (SQCD). The name stems from its simi-
larity to (massless) QCD. V can be seen as a supersymmetric version of
a gluon and Φ and Φ as supersymmetric generalizations of quarks.

4.1.2 Six-Dimensional SYM
A six dimensional on-shell superspace has been introduced by Dennen,
Huang and Siegel (DHS) in [67]. We mostly follow the notation of [66] to
define the superfields and a map to the corresponding four dimensional
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theory. Supermultiplets in maximal (N , Ñ ) = (1, 1) SYM in six dimen-
sions can be defined using two sets of Grassmann variables ηaI and η̃ȧİ .
The indices a and ȧ belong to the little group SU(2)×SU(2); I and İ are
R-symmetry indices, which is USp(2)× USp(2) in this case [67,68].

Formally, ηaI and η̃ȧİ form the fermionic part of supertwistors trans-
forming under the supergroup OSp∗(8|4). Due to the self-conjugate prop-
erty

{ηaI , ηbJ} = εabΩIJ , (4.10)
where ΩIJ is the metric of the fermionic part of the supergroup USp(4),
one needs to remove half of the degrees of freedom in order to arrive at a
consistent superfield formalism. The choices are to either break manifest
R-symmetry or little group covariance. The former has been successfully
applied in amplitude computations [69, 70], whereas the latter is more
natural from an ambitwistor string point of view [71,72].

We choose to break the R symmetry covariance using the two indepen-
dent Grassmann variables ηa and η̃ȧ. For maximally supersymmetric YM,
the vector multiplet is then written as

VN=(1,1) =ηaη̃ȧgaȧ + ηaχa + η̃ȧχ̃
ȧ + 1

2 η̃
ȧη̃ȧη

aχ̄a + 1
2η

aηaη̃ȧ ¯̃χȧ

+ φ+ 1
2η

aηaφ
′ + 1

2 η̃ȧη̃
ȧφ′′ + 1

4η
aηaη̃ȧη̃

ȧφ′′′ ,
(4.11)

where the four vector states are encoded in gaȧ; χa and χ̃ȧ together with
their conjugates are Weyl fermions; and φ, φ′, φ′′, and φ′′′ are the four
scalar states of the theory.

Projecting out half of the states leads to the supermultiplets for N =
(1, 0) SQCD:

VN=(1,0) = ηaη̃ȧga
ȧ + η̃ȧχ̃

ȧ + 1
2η

aηaη̃ȧ ¯̃χȧ ,

ΦN=(1,0) = φ+ ηaχa + 1
2η

aηaφ
′ ,

ΦN=(1,0) = 1
2 η̃ȧη̃

ȧφ′′ + 1
2 η̃ȧη̃

ȧηaχ̄a + 1
4η

aηaη̃ȧη̃
ȧφ′′′ ,

(4.12)

and similarly for N = (0, 1):

VN=(0,1) = ηaη̃ȧga
ȧ + ηaχa + 1

2 η̃
ȧη̃ȧη

aχ̄a ,

ΦN=(0,1) = φ+ η̃ȧχ̃
ȧ + 1

2 η̃ȧη̃
ȧφ′′ ,

ΦN=(0,1) = 1
2η

aηaφ
′ + 1

2η
aηaη̃ȧ ¯̃χȧ + 1

4η
aηaη̃ȧη̃

ȧφ′′′ .

(4.13)

Since N = 4 SYM in four and N = (1, 1) in six dimensions have the
same on-shell degrees of freedom one can identify states through a one-
to-one map. A Grassmann Fourier transform brings the four dimensional
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vector multiplet into a form resembling its six dimensional counterpart∫
dη2 dη3eη

2η̄2+η3η̄3VN=4 =

− η̄2η̄3A
+ + η1η4A− + η4η̄3φ12 + η4η̄2φ34

+ η1ψ−123 − η̄2ψ
+
3 + η̄3ψ

+
2 + η4ψ−234

− η1η4η̄3ψ
−
124 − η4η̄2η̄3ψ

+
4 − η1η̄2η̄3ψ

+
1 + η1η4η̄2ψ

−
134

+ φ23 − η1η̄2φ13 − η4η̄3φ24 − η1η4η̄2η̄3φ14 .

(4.14)

Identifying (4)η1 ↔ (6)η1, (4)η̄2 ↔ (6)η2, (4)η̄3 ↔ (6)η̃1̇ and (4)η4 ↔ (6)η̃2̇
leads to the following map between the states

A+ ↔ −g2
1̇ , A− ↔ g1

2̇ , φ12 ↔ g1
1̇ , φ34 ↔ −g2

2̇ ,

ψ−123 ↔ χ1 , ψ+
3 ↔ −χ2 , ψ+

2 ↔ χ̃1̇ , ψ−234 ↔ χ̃2̇ ,

ψ−124 ↔ χ̄1 , ψ+
4 ↔ −χ̄2 , ψ+

1 ↔ − ¯̃χ1̇ , ψ−134 ↔ − ¯̃χ2̇ ,

φ23 ↔ φ , φ13 ↔ −φ′ , φ24 ↔ φ′′ , φ14 ↔ −φ′′′ .

(4.15)

This map is also valid for finding a one-to-one relationship between the
states of four dimensional N = 2 and six dimensional N = (1, 0) or
N = (0, 1) SQCD

4.2 Supergravity
Instead of repeating the analysis as in the previous section, we directly
construct the spectrum of various supergravity theories as a double copy
of the spectrum of two supersymmetric gauge theories. This construc-
tion, targeted to amplitude computations with the inclusion of matter
multiplets, has first been presented in [46] for four dimensions and in
paper I for six dimensions. Here we focus on supergravity theories with
N = 8 and N = 4 in four dimensions and the corresponding theories
N = (2, 2), N = (1, 1) and N = (2, 0) in six dimensions. The spectrum
for N = 6, 5, 3, 2, 1, 0 and their six dimensional cousins, for the cases they
exist, can be obtained through a similar treatment. We summarize the
various double-copied multiplets for N = 0, 1, 2, 4, 6, 8 in four dimensions
and N = (0, 0), (1, 0), (2, 0), (1, 1), (2, 1), (2, 2) in six dimensions respec-
tively in appendix B.

N = 8 in D = 4
We start with maximal supersymmetric gravity in four spacetime dimen-
sions. By supercharge counting, we can only reach it as a double copy
of (N = 4 SYM)× (N = 4 SYM). Hence, there exists a unique graviton
supermultiplet

VN=4 ⊗ VN=4 = HN=8 , (4.16)
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as a double copy of two vector multiplets of N = 4 super Yang-Mills.
Upon appropriate renaming of the Grassmann variables ηA in each of
the vector multiplets, one obtains an explicit expression for the on-shell
superfield of the form

HN=8 = h++ + ηAχ+
A + · · ·+ ηAηBηCηDηEηF ηGχ−ABCDEFG

+ η1η2η3η4η5η6η7η8h−− ,
(4.17)

in the chiral superspace formalism. Here h++ and h−− denote the two
graviton states and χ± are the two states of the 16 gravitini. It is implied
that states with spin one and smaller are suppressed.

N = 4 in D = 4
For half-maximal supergravity, there exist two different useful construc-
tions. Inspecting the double copy construction of the vector multiplets of
(N = 4 SYM)× YM, one finds that pure N = 4 supergravity is factoriz-
able

VN=4 ⊗ VN=0 = HN=4 , (4.18)
where the on-shell vector multiplet of pure Yang-Mills consists simply of
the two gluon states

VN=0 = A+ + η1η2η3η4A− . (4.19)

A construction via (N = 2 SYM)× (N = 2 SYM) leads to additional
states on the supergravity side:

VN=2 ⊗ VN=2 = HN=4 ⊕ 2VN=4 . (4.20)

A double copy construction of this form leads thus to amplitudes in a
supergravity theory coupled to two vector multiplets.

Adding matter to the gauge theory, one can for example consider a
double copy of (N = 2 SQCD) × (N = 2 SQCD). A tensor product of
the hypermultiplets leads to a vector supermultiplet on the gravity side

ΦN=2 ⊗ ΦN=2 = VN=4 ,

ΦN=2 ⊗ ΦN=2 = VN=4 .
(4.21)

Of course, the same can be achieved by adding scalars to the pure YM
side in the former double copy

VN=4 ⊗ φ = VN=4 . (4.22)

More exotic massive matter content on the gravity side can be obtained
by double copies of “cross-terms” like V ⊗ Φ, see e.g. [73]. They are of
less interest for the purpose of this thesis and we will not discuss them.
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An interesting observation is that the double copy of two hypermultiplets
exactly gives the additional states that render the graviton multiplet non-
factorizable into two copies of N = 2. We will use this to generalize the
double copy construction discussed in the previous section to also allow
for a construction of pure supergravity via (N = 2)× (N = 2).

N = (2, 2) in D = 6
The particle content of maximal supergravity in six dimensions is equiva-
lent to N = 4 in four dimensions, stemming from the equivalence of the
corresponding SYM vector multiplets. We directly obtain the graviton
on-shell multiplet via

VN=(1,1) ⊗ VN=(1,1) = HN=(2,2) . (4.23)

A one-to-one map between four and six dimensions is found by a double
copy of the gauge theory spectra, for which the correspondence was given
in eq. (4.15).

N = (1, 1) and N = (2, 0) in D = 6
The lift of N = 4 supergravity to six dimensions is related to N = (1, 1)
and N = (2, 0) supergravity. Both of these theories can be double-copied
from gauge theory building blocks. The N = (1, 1) graviton multiplet is
factorizable in two ways

VN=(1,0) ⊗ VN=(0,1) = HN=(1,1) ,

VN=(1,1) ⊗ VN=(0,0) = HN=(1,1) .
(4.24)

In contrast, the graviton multiplet in the chiral N = (2, 0) theory is
non-factorizable

VN=(1,0) ⊗ VN=(1,0) = HN=(2,0) ⊕ TN=(2,0) , (4.25)

where T denotes a tensor multiplet [74].
The double copy of the hypermultiplets leads to vector and tensor

supermultiplets respectively

ΦN=(1,0) ⊗ ΦN=(0,1) = VN=(1,1) ,

ΦN=(1,0) ⊗ ΦN=(0,1) = VN=(1,1) ,

ΦN=(1,0) ⊗ ΦN=(1,0) = TN=(2,0) .

(4.26)

We observe once more that the double copy of matter multiplets leads to
gravitational matter appearing in the double copy of vector supermulti-
plets.
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5. Generalized Unitarity

There exist a wide variety of analytic and numerical recursion relations
for tree level amplitudes. The computations at loop level have been dom-
inated by the unitarity method. To demonstrate the usefulness of this
method consider the following non-exhaustive list of references related
to new technologies and results obtained through unitarity [6, 7, 75–111].
The generalized unitarity method [6, 7] constructs loop level integrands
from information solely contained in tree level amplitudes. Tree level
amplitudes contain all information necessary to compute any loop level
amplitude — they are the only building blocks needed for all the compu-
tations discussed in this thesis. Here, we present only the basics in order
to give the necessary background for the cut construction methods con-
tained in later chapters. For a more complete discussion and extensions
of the method see e.g. [112–115].

Consider an L-loop amplitude in arbitrary D dimensions. It can be
expressed as a single integral over a sum of Feynman diagrams

I =
∫

dLD`
∑
i

Ji(`) . (5.1)

The integrand at a subregion of the integration domain given by con-
straints of the form

`21 = 0 , (`1 + k1 + k2)2 = 0 , `22 = 0 , . . . , (5.2)

is singular since some of the propagator denominators of some Feynman
diagram expressions Ji vanish — or equivalently some momenta of in-
ternal legs of Feynman diagrams become on-shell. These denominator
factors are reduced to iε coming from the Feynman prescription. The
residue at each singularity must then, in general, be given by a product
of lower-loop on-shell amplitudes (at possibly higher points). The cut
propagator legs appear as external states thereof. This procedure for all
different on-shell subregions gives us information about the integrand to
often completely reconstruct it.

In traditional treatment, the unitarity of the S-matrix, S†S = 1, leads
to an identity for its interacting part:

−i(T − T †) = T †T , (5.3)
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where T is defined by S = 1 + iT . Order by order in a perturbative
expansion, this leads to equalities between the imaginary part of an L-
loop amplitude and a sum over products of on-shell lower-loop amplitudes.
Only physical states can cross the cut. Compared to a brute-force Feyn-
man graph computation, a clear advantage is that all involved objects are
on-shell and there is no need for Fadeev-Popov ghosts.

Graphically, these constraints can be interpreted as cuts into the dia-
grams building up the amplitude. Let us do a simple one-loop example
by cutting through a color-ordered four-point amplitude. We use shaded
blobs in a Feynman-like notation to represent amplitudes

A
(1)
4 (1, 2, 3, 4; `) =

1

2 3

4

→̀

=
1

2 3

4

→̀
+

1

2 3

4

`
+ · · · (5.4)

Cutting through the loop

1

2 3

4

→̀

=
1

2 3

4

→̀

=
∑
states

A
(0)
4 (1, 2, `,−`− p12)× A(0)

4 (3, 4, `+ p12,−`)

(5.5)

leads to a factorization of the residue into tree-level on-shell amplitudes.
The sum includes all physical states that are allowed to cross the cut.

In practice, one often starts with an Ansatz for the amplitude, either
in terms of a set of master integrals or as a sum over trivalent diagrams
if one seeks a color-dual representation. The residue of the Ansatz on a
given cut kinematics is simple to compute and can then be compared to
the cut expression to constrain the free parameters.

The method of generalized unitarity [6, 7] systematizes this approach
by identifying the necessary cuts. We call a minimal set of cuts required
for a complete reconstruction spanning cuts. For massless theories, the
complete integrand is reconstructible via cuts.
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Part II:
Amplitudes in SQCD and Non-Maximal
Supergravity

“All our wisdom is stored in
the trees.”

Santosh Kalwar

This main part of the thesis is based around amplitude computations
in gauge and gravity theories via the color-kinematics duality and the
double copy. Even though most methods discussed here are applicable to
a general gauge theory, they are developed in the simpler context of half-
maximal SYM and supergravity. The following five sections discuss the
complete process for the computation of color-kinematics dual gauge the-
ory integrands, their double copy, and the extraction of UV divergences.
Furthermore, we present an integrated form of a N = 2 two-loop SQCD
amplitude. The example we will use throughout the thesis is the four-
point two-loop amplitude for half-maximal SCQD and pure supergravity
in the MHV sector.

We start in chapter 6 with the discussion of closed formulae for a
certain type of cuts: iterated two-particle cuts. These cut expressions
have properties that make them well-suited for the computation of local
integrands. The general procedure summarizing all required steps for
the calculation on the gauge theory side is then given in chapter 7. In
chapter 8, we specify to N = 1 and N = 2 SQCD at one and two
loops and discuss the specific details of these theories. The amplitude



representations resulting from this procedure have an especially nice and
compact form revealing new structures and symmetries.

We present the integrated four-point amplitude of N = 2 SQCD at
two-loops and inspect its transcendentality structure in chapter 9. The
theory has a conformal point if the number of hypermultiplets Nf equals
2Nc in the case of SU(Nc) gauge group. At this point, the amplitude has
an unexpectedly clean form, parts of which will be presented here.

Finally, we conclude this part with a double copy construction of a
supergravity amplitude and its UV structure in chapter 10.
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6. Supersums and Cut Combinatorics

One difficulty for the computation of unitarity cuts in supersymmetric
theories lies in performing the sum over all on-shell states propagating on
cut lines. This sum is referred to as the supersum. With the on-shell su-
perspace formalism discussed in chapter 4, this sum becomes an integral
over the Grassmann variables ηA in four dimensions or their six dimen-
sional counterparts respectively. Inspired by ideas in [91,116,117] and the
so-called rung rule [118,119], we found manifestly local expressions for it-
erated two-particle cuts for N = 2 SQCD, published in paper III. Local
formulae for unitarity cuts are not only efficient for organizing the cuts
but can, for some cases, be lifted off-shell — directly giving us expressions
for integrands.

Combined with the color-kinematics duality, one can simply try to read
off expressions for a small set of master numerators from the cuts. If the
resulting amplitude is consistent on all cuts and if the Jacobi identities are
fulfilled, one has obtained a color-kinematics dual representation. This
thesis goes a step further and presents the general form of iterated two-
particle MHV cuts (at four points) for any amount of supersymmetry in
four dimensions.

For the following discussion, it will be essential to present tree-level
building blocks in a favorable form for supersums. An important de-
velopment in paper III was the observation that unitarity cuts in four-
dimensional N = 0, 1, 2, 4 SYM can be performed in a locality sensitive
way. We keep track of the physical poles and consistently remove spurious
poles from cut expressions.

Thus, we will first discuss the pole structure of the tree-level amplitudes
and the importance of the given representations in sec. 6.1. In sec. 6.2 and
6.3 the general result is presented. Finally we discuss some simplifications
for N = 2 and examples thereof in sec. 6.4.

6.1 Notation and Tree-Level Amplitudes
Consider the following two-particle cut

1

2 3

4

5→

6
→

∝
∫

dN η5 dN η6AL(1, 2, 5, 6)AR(3, 4,−6,−5) , (6.1)
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where AL/R are color-ordered four-point MHV tree-level superamplitudes.
The explicit form of this amplitude for N = 4 is given by a supersym-
metric generalization of the Parke-Taylor formula (4.2). For less super-
symmetry, we use the projection from N = 4 supermultiplets onto the
wanted states discussed in section 4.1.1.

We introduce a combinatorial notation for tree-level amplitudes to treat
all possible configurations of supermultiplets on external and internal legs.
The object that keeps track of the Grassmann variables, i.e. that repre-
sents the state configuration is

κ(i1j1)···(iÑ jÑ ) ≡
[12][34]
〈12〉〈34〉δ

2N (Q)ηN+1
i1 〈i1j1〉ηN+1

j1 · · · η4
iÑ
〈iÑ jÑ 〉η

4
jÑ
,

(6.2)
where Ñ = 4 − N . The rational prefactor of spinor helicity products
captures the correct overall helicity weight — at four points there is only
one independent quantity that has the correct weight. The δ2N (Q) is the
supermomentum conserving delta function introduced in eq. (4.3). The
remaining objects are combinations of Grassmann η and spinor angle
brackets accounting for different state configurations and their helicity
weight. For future convenience, we introduce a set of collected indices i ≡
(i1, . . . , iÑ ), such that the above object is written as κ(i j).

The correspondence between κ and a configuration of external legs is
found by comparison with the supermultiplets in sec. 4.1.1. For example,
the color-ordered SYM amplitudes are

AN=4(V1V2V3V4) = − i

st
κ ,

AN=2(V −1 V +
2 V

−
3 V

+
4 ) = − i

st
κ(13)(13) ,

AN=2(V −1 V2Φ3Φ4) = − i

st
κ(13)(14) ,

AN=1(Φ1Φ2Φ3Φ4) = − i

st
κ(13)(24)(24) ,

AN=0(A−1 A+
2 Ψ+

3 Ψ−4 ) = − i

st
κ(13)(14)(14)(14) ,

(6.3)

where V ± stands for the negative- and positive-helicity part of the vector
multiplet

V = V + + V − , (6.4)
e.g.

V +
N=2 = A+ + ηAψ+

A + η1η2φ12 , (6.5)
for N = 2 SYM.

For higher point MHV and MHV tree level amplitudes, there is a gener-
alization of these objects — using chiral superspace variables η for MHV
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and antichiral η̄ for MHV— ignoring the helicity factor. At multiplicity
four, MHV and MHV are equivalent. As such there is an equivalent repre-
sentation of the four-point amplitude using the antichiral superspace. To
relate these equivalent formulations, we introduce a complement operation
acting on two legs of a four-point amplitude or diagram. Let {1, 2, 3, 4}
be the set of legs and {i, j} a choice of two different elements thereof. We
define {i, j} ≡ {1, 2, 3, 4}\{i, j}, where the overline always goes over two
elements. The object carrying the state configuration in the antichiral
superspace is

κ̄(i j) =
∫

d4×·4ηeη·η̄κ(i j) = κ(i j)

∣∣∣∣
[ij]↔〈ij〉,η↔η̄,Q↔Q̄

. (6.6)

We define some shorthand notations using collective indices to express
the final result in a compact form:

[ij] ≡ [i1j1] · · · [iÑ jÑ ] ,
〈ij〉 ≡ 〈i1j1〉 · · · 〈iÑ jÑ 〉 ,
si j ≡ si1j1 · · · siÑ jÑ .

(6.7)

This completes the set of kinematic objects appearing in the final formula
for the two-particle cut.

6.2 General Two-Particle Four-Point Supersum
For the supersum (6.1), the full η dependence is contained in κ(ij) and
κ(kl). Thus, we only consider a supersum over these objects. All other
factors are contributing to the cut via simple multiplication. The general
result for this supersum is

I(ij)(kl) ≡
∫

dN η5 dN η6κ(ij)(1, 2, 5, 6)κ(kl)(3, 4,−6,−5)

= (−1)sign(i,j,k,l) [56]Ñ 〈ij〉〈kl〉[qr]
s2−N

56
κ̂(qr) ,

(6.8)

where the collective indices q and r are determined by {qm, rm, 5, 6} =
{im, jm, km, lm} for m = 1, . . . , Ñ , i.e. they encode the external state
configuration of the overall cut. The sign of an ordered four-tuple is de-
termined by the signature of its permutation (im, jm, km, lm) with respect
to (qm, rm, 5, 6). The overall sign is then given by the sum sign(i, j, k, l) =∑
m sign(im, jm, km, lm). And finally we absorb some poles by defining

κ̂ij ≡
κij

sÑij
. (6.9)
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With this notation, a local integrand representation is simply built out of
κ̂, local polynomials in the numerator, and physical poles in the denomi-
nator.

One can equivalently write the formula using the antichiral superspace

Ī(ij)(kl) =
∫

d4×4ηeη·η̄I(ij)(kl) = (−1)sign(i,j,kl) 〈56〉Ñ [ij][kl]〈qr〉
s2−N

56
ˆ̄κqr .

(6.10)
This form has the advantage that it can be iterated. We can glue another
four-point blob into our cut and reuse (6.8) or (6.10) to perform the su-
persum over the two newly glued legs. Furthermore, since the helicity
prefactor and the supermomentum-conserving delta function are permu-
tation invariant, the same formula also holds for a non-planar cut, e.g.

1 2
3

4

5→

6
→

. (6.11)

This non-planar cut then only differs from its planar cousin by the poles
and other prefactors of κ that we dropped in this computation.

The formulae (6.8) and (6.10) have further useful properties apart from
their recursive structure. The spinor-helicity factors in the numerator can
naturally be combined into helicity Dirac traces. Ultimately, the resulting
expressions are manifestly built out of Lorentz-invariant objects. Our
conventions for the definition of these traces are given in appendix A.

The cut formula introduces two types of (unphysical) poles. For N < 2
there is a factor of s2−N

56 in the denominator. This factor can always be
removed by spinor-helicity identities on the cut kinematics as we will mo-
mentarily show. The second factor is the denominator that we absorbed
into κ̂. These factors are canceled in an iterated application of the super-
sum formula as we will discuss in the next sections. Evidently, only an
overall factor of 1/sÑqr, where (qr) denotes the overall external state config-
uration, will be present in any iterated two-particle cut. This factor is an
artifact of our use of the spinor helicity formalism. More concretely, these
poles are coming from denominators introduced by polarization vectors
expressed in the spinor helicity formalism as defined in eq. (2.9). Hence,
we obtain a formula for the cuts that is free of unwanted unphysical poles.
As the Grassmann Fourier transform that relates I and Ī only acts on κ
and κ̄ respectively — these two objects are exactly related by a Fourier
transform — we conclude that the coefficients of these two objects in
equations (6.8) and (6.10) are the same. Using that 〈56〉[65] = s56, the
cut is equivalently expressed in a more symmetric form as

I(ij)(kl) =
(
sN56〈ij〉[ij]〈kl〉[kl][qr]〈qr〉

) 1
2
κ̂(qr) , (6.12)
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trading the unwanted pole for a square root.
For N = 4 and N = 2, the square root can be easily removed as will be

discussed in the following sections. For less supersymmetry, the square
root does not pose a problem, but some more work is required to get rid
of it. It requires the use of kinematic spinor-helicity identities to write
its argument as a square. We also note that there is an ambiguity of the
overall sign for the cut. In practice this sign can be inferred through other
consistency criteria.

The supersum formula (6.8) for N = 4 has already been obtained
in [76]; for N = 2, proof was given in paper III. It is shown by a direct
computation of the supersum and applications of spinor helicity identities
on the cut kinematics. The general proof is a minor generalization thereof
and gives no further insight into the structure of the answer and we skip
it here.

6.3 Iteration and Graphical Rules
Formula (6.12) is well suited for iteration, i.e. we can iteratively glue four-
point blobs into the cut and construct higher loop cuts in the Mondrian
(box-like) family [120]. Consider a two-loop cut constructed by gluing
another four-point tree into the above cut. The two newly glued legs are
numbered 7 and 8. The supersum takes the form

I(ij)(kl)(mn) ≡
∫

dN η5 dN η6 dN η7 dN η8κ(ij)κ(kl)κ(mn)

=
∫

dN η7 dN η8
(
sN56〈ij〉[ij]〈kl〉[kl][qr]〈qr〉

) 1
2
κ̂(qr)κ(mn) ,

(6.13)
where we plugged in the above result for the integration over η5 and η6
to arrive at the second line. Using formula (6.8) a second time for the
integration over η7 and η8 leads to

I(ij)(kl)(mn)

=

(
sN56s

N
78〈ij〉[ij]〈kl〉[kl][qr]〈qr〉〈mn〉[mn]〈qr〉[qr][st]〈st〉

) 1
2

s(qr)
κ̂(st)

=
(
sN56s

N
78〈ij〉[ij]〈kl〉[kl]〈mn〉[mn][st]〈st〉

) 1
2
κ̂(st) ,

(6.14)

where we have used that 〈qr〉[rq] = 〈qr〉[rq] = s(qr). The overall state
configuration is given by (st). As promised, the intermediate unphysical
pole 1/s(qr) is canceled out. Apart from the pole sitting inside κ̂ — an
artifact from the spinor-helicity formalism as noted before — there are
no further unphysical poles present.
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Furthermore, we observe a factorization into several building blocks
coming from different parts of the cut. It is possible to assemble a cut
of this form directly from graphical rules. In the following, we provide
graphical rules to obtain the full analytic expression for any two-particle
iterated cut with any combination of vector- and mattermultiplet on ex-
ternal and internal lines. Consider, for example, a cut of the form

2

1

3

4

, (6.15)

where each line can represent any (half-)supermultiplet in a gauge theory
described in section 4.1.1. The basic building blocks are the tree-level
amplitudes described above. We distinguish between the positive- and
negative-helicity part of the vector multiplet V + and V − and between Φ
and Φ for matter multiplets. This graph can, with the rules described in
this section, directly be translated into a closed mathematical expression
for the cut.

From the form of the tree level four-point amplitude, one can imme-
diately obtain a rule for the overall pole factors. Each tree-level blob
contributes with a factor

a

b c

d

→ − i

sabsbc
, (6.16)

independently from the state configuration — a, b, c and d denote particle
labels.

From eq. (6.12), a blob with a tree level contribution proportional to
κ(ij̄) comes with a factor of (〈ij〉[ij]) 1

2 , graphically

(ij) → (〈ij〉[ij])
1
2 . (6.17)

The ordering of the legs is irrelevant for this rule as it only depends on
the state configuration.

The factors sNij under the square root can be seen as a rule for the
simultaneous gluing of two legs

l1→

l2
→
→
(
sNl1l2

) 1
2
. (6.18)

Finally, there is a rule associated to the external configuration (st) of
the overall cut

(st)
→ ([st]〈st〉)

1
2 κ̂(st) . (6.19)
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Also this rule is agnostic of the ordering of the legs and solely depends on
the state configuration. The four rules (6.16)-(6.19) completely determine
a cut. For N = 4 and N = 2, we discuss a prescription to rewrite these
rules free of square root terms.

6.4 Cuts for N = 4 SYM and N = 2 SQCD
The details for the maximal and half-maximal case have been worked out
in detail in paper III. We review the results here.

For N = 4 SYM the rule (6.17) is obsolete as 〈ij〉 = [ij] = 1. The
remaining three rules furthermore simplify to

a

b c

d

→ − i

sabsbc
,

l1→

l2
→
→ s2

l1l2 ,

→ κ ,

(6.20)

where we dropped any state configuration indices as there is only a single
vector multiplet. This reproduced the rung rule prescription [118,119].

For N = 2, we specify the blob rule (6.17) and the external rule (6.19)
for the three different non-zero combinations of vector and hyper multi-
plets on external legs. Graphically, we represent the vector multiplet (for
both chiralities) as a coiled line and the hypermultiplet Φ and Φ as arrows
going in different directions. Consider as an example the cut from above
with an explicit choice of multiplets assigned to each propagator line

2−

1+

3

4

, (6.21)

with two helicity vector states V +
1 and V −2 and two matter constituents Φ3

and Φ4. This cut construction also requires us to specify the helicities
for internal vector lines. It is then necessary to sum over all possible
configurations of helicity assignments for internal vector lines to assemble
the full cut.

The rule for the pole factors (6.16) is independent of the state configu-
ration and remains unchanged for N = 2. The internal rule for tree-level
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numerator factors can be simplified for three non-vanishing cases to

c+

d+a−

b−

→ 〈ab〉[cd] , (6.22a)

c

da−

b+

→ 〈a|c|b] , (6.22b)

c

da

b
→ sac = sbd . (6.22c)

Note that these rules are still agnostic to the ordering of the external legs.
The gluing rule (6.18) is only simplified insofar the square root and the

square cancel (ignoring any overall sign issues)

l1→

l2
→
→ sl1l2 . (6.23)

Last but not least, the external rule (6.19) is specified for the three non-
trivial cases in a similar manner as the above rule for internal blobs

s+

t+q−

r−

→ [qr]〈st〉κ̂(qr)(qr) , (6.24a)

s

tq−

r+

→ [q|s|r〉κ̂(qs)(qt) , (6.24b)

s

tq

r

→ srtκ̂(qs)(rt) = sqsκ̂(qs)(rt) , (6.24c)

where we have explicitly written out the full subscript of κ̂. As before
these formulae are independent of the ordering of the legs.
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7. Construction of Color-Kinematics Dual
Amplitudes

The construction of a color-kinematics dual representation, see chapter 3,
is often done via an Ansatz construction. A first step is to identify a min-
imal set of numerators independent under Jacobi identities/commutation
relations. We call this set master numerators or simply masters. After
having identified the basic Lorentz-invariant kinematic objects, we can
write down an Ansatz for each master. The requirements from the color-
kinematics duality and physical requirements constrain the parameters
in the Ansatz. For us, the latter information is coming from unitar-
ity cuts. In general, any object fulfilling these requirements is a valid
color-kinematics dual representation and can be used for a double copy
construction. Since the resulting expressions may still have additional
freedom, one can choose to implement further constraints. For example,
we can manifest certain useful properties to improve the presentation for
further processing (e.g. integration or double copy).

The main content of the first two parts of this section is a presentation
of various useful constraints that have been identified in [46] and publica-
tions I and III attached to this thesis. The third part concerns the idea
of rendering the Ansatz approach obsolete by trying to lift expressions
for unitarity cuts off-shell and directly construct numerators for trivalent
graphs. This discussion is based on the ideas of paper III.

7.1 Master Numerators and the Ansatz
The system of equations built out of the Jacobi identities and commuta-
tion relations for color-kinematics dual numerators

ni + nj + nk = 0 (7.1)

is in general hard to solve (i.e. finding a set of master numerators). It
grows significantly for each additional external leg or additional loop, see
for example [121]. However, one possible algorithm is the following:

1. pick a numerator that has not yet been solved for and add it to the
set of masters;

2. identify the set of numerators that can be expressed in terms of the
masters and those that cannot;
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3. if all numerators are expressible in terms of the masters, the algo-
rithm terminates, otherwise continue from step 1.

Depending on the choice in step 1, the set of master numerators may no-
tably change. Possible purely heuristic criteria are given in the following
list. One can choose master numerators such that
• its associated graph has a large amount of symmetries (to simplify
the symmetry constraints of the system),
• its associated graph corresponds to a maximal cut; i.e. it is the only
numerator contributing to the cut,
• the associated graph is planar,
• the number of master numerators is minimal,
• the average number of masters appearing in expressions for derived
numerators is minimized.

Depending on the situation, some of the criteria can be more useful than
others. It can, for example, be useful to increase the number of master
numerators if in turn other constraint equations simplify.

The idea of master numerators can be extended to not only include
constraints from the color-kinematics duality but also any other kind
of functional relations among numerators. This in general reduces the
number of masters and as such the size of the Ansatz (number of free
parameters). It comes with the risk that several constraints are mutually
incompatible and no representation can be found. This problem might
either be overcome by dropping the constraints or by increasing the size of
the Ansatz. We will discuss some functional constraints in the following
section. This system of equations is not necessarily trivially solved in
terms of the master numerators as there might be different “paths” how
a derived numerator is reached from the masters. The equations that are
not trivially solved need to be implemented as consistency constraints on
the Ansatz.

Once the master numerators are identified, we make a uniform Ansatz
for each of them. From the discussion of unitarity cuts in sec. 6 and ex-
plicit computations in [46] and papers I and III, we see that the state con-
figuration object κ̂ captures the correct helicity weights and non-localities.
Thus, we expect the numerators to be of the form (poly)× κ̂, where (poly)
is a Lorentz-invariant polynomial in the kinematics. Most importantly,
it is local.

For a dimensionally regulated theory living in D = 4− 2ε dimensions,
we build the polynomial from a collection of objects:
• Lorentz products between internal and external momenta such as

pi · pj , pi · `j , `i · `j (7.2)

where pi denotes four-dimensional external momenta and `i are D-
dimensional internal loop momenta. Since the pi can be embedded
in a four-dimensional subspace of the full D-dimensional space, the
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product between an external and a loop momentum is equvalently
written as pi · `j = pi · ¯̀j , where ¯̀

i denotes the four-dimensional part
of the loop momentum.
• The contraction of the Levi-Civita tensor with external momenta
and the four-dimensional part of loop momenta

ε(k1, k2, k3, k4) ≡ det(kiµ), where µ = 1, . . . , 4 . (7.3)

• We can decompose `i = ¯̀
i + µi. Objects denoted by µij = −µi · µj

need to be included in the Ansatz as well. The minus sign is coming
from our use of the mostly-minus metric.
• We use the six-dimensional spinor-helicity formalism to obtain in-
formation about the amplitude in D dimensions. To encode this
information, we need additional extra-dimensional antisymmetric
objects, e.g. for two loops there is a single object:

ε(µ1, µ2) ≡ ε(6)(p1, p2, p3, p4, `1, `2)
ε(p1, p2, p3, p4) = det(µ1, µ2) . (7.4)

The Lorentz products, µij , and ε(µ1, µ2) have dimension (mass)2, the four-
dimensional antisymmetric objects have twice this dimension (mass)4. We
define M (N) as the set of (linearly independent) monomials built out of
the above objects with dimension (mass)2N . Note that independence of
these objects is not a strict requirement; redundancy may even help to
simplify the algebraic representation of the final numerators.

For a numerator of a four-point L-loop amplitude for N supersymme-
tries, a possible Ansatz reads

n
(
1, 2, 3, 4, {`i}Li=1

)
=
∑
(ij)

κ̂(ij)
∑
k

a(ij);kM
(3−N−L)
k , (7.5)

where a(ij);k are constant rational coefficients to be determined. Depend-
ing on possible external state configurations of the corresponding graph,
one includes a certain set of (ij) in this sum.

This Ansatz has been successfully used for the calculation of a color-
kinematics dual form of all one-loop amplitudes with four external gluons
in N = 0, 1, 2 (S)QCD [46] and of all one- and two-loop amplitudes in
N = 2 SDCQ with four arbitrary external states in publications I and
III.

7.2 A Plethora of Constraints
The necessary constraints for a color-kinematics dual representation come
from Jacobi identities and commutation relations for the numerator fac-
tors and the physical unitarity cuts. Generically, the Ansatz (7.5) still
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has a large number of free parameters after fixing these constraints. In
principle it is possible to solve the constraints for an arbitrary subset of
parameters {a(ij);k} and set the remaining free parameters to zero (or
to any other arbitrary value). Expressions obtained this way are in gen-
eral algebraically large and badly suited for integration or a double copy.
Furthermore, for a better understanding of the mathematical structure
of integrands, it can be advantageous to manifest symmetries or other
properties.

We present here a collection of such constraints that have been useful
for the computations in the referenced papers.

Crossing symmetry
A powerful set of constraints comes from the symmetry of diagrams. The
idea is to enforce a relabeling symmetry of a diagram on the corresponding
numerator expression. An instructive example is:

1−

2− 3+

4+

`1 ↑ ↑`2 ↔
3+

4+ 1−

2−

`2 ↓ ↓`1

⇔ n(1−, 2−, 3+, 4+; `1, `2) = n
(
3+, 4+, 1−, 2−;−`2,−`1

)
.

(7.6)

This identity relates different state configurations and can directly be
used to decrease the number of master numerators. In general, these
constraints have to be implemented on the Ansatz by constraining the
coefficients. Computationally, this can be implemented rather efficiently
for symmetries of master numerators but unfortunately, it becomes sig-
nificantly harder the further away a numerator is from the masters.

CPT conjugation
CPT invariance of the theory can be manifested in the numerator expres-
sions. In terms of the basic building blocks, CPT conjugation acts by
exchanging |i〉 ↔ |i] and ηAi ↔ η̄i,A. For each diagram, this is achieved by
swapping the helicity of external vector states and reversing the arrow for
hypermultiplets. In terms of the kinematical objects in the Ansatz, this
transformation corresponds to replacing the state configuration (ij) with
its complement (ij) and flipping the sign of parity-odd terms. Schemati-
cally,

n(1, 2, 3, 4, {`i}) = n̄(1, 2, 3, 4, {`i})|κ̂(ij)→κ̂(ij),|i〉↔|i] , (7.7)

where n̄ denotes the numerator corresponding to the graph with reversed
matter lines. From experience, the CPT constraints are not very strong
and often automatically fulfilled through unitarity cuts.
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Power counting
Heuristically, numerators with mi propagators carrying the loop momen-
tum `i in the corresponding diagram permit a representation with maxi-
mally mi − N powers of `i. This constraint is straightforward to imple-
ment, since terms with too high power-counting are simply excluded from
the Ansatz. Power counting constraints can be extremely powerful but
have a tendency to clash with other constraints discussed below.

Tadpoles and external bubbles
In principle, a color-kinematics dual representation is allowed to include
diagrams with massless tadpole subdiagrams or bubbles on external legs,
diagrammatically

, i . (7.8)
Since these diagrams never appear in physical unitarity cuts the corre-
sponding numerators can be chosen to vanish as long as it is consistent
with the color-kinematics duality (or other constraints). It is of course
also possible to remove any other type of diagram as long as it is consis-
tent with all the other constraints. Since these numerators tend to be far
away from the masters, i.e. they are expressed in terms of a large num-
ber of master numerators, these constraints tend to be computationally
expensive to implement on an Ansatz. Implemented as functional con-
straint, they can reduce the number of master numerators and simplify
the system in general. An example for this simplification has been seen
in paper I, where a two-loop pentagon-triangle diagrams has been chosen
to vanish as its maximal cut was zero.

Two-term identities
In the spirit of the color-kinematics three-term identities (3.4), one might
want to consider an extension of the numerator constraints from the Ja-
cobi identities and commutation relations of the dual color factors (3.4).
Even though

c

(
i

j k

l

)
?= c

(
i

j k

l

)
(7.9)

is not true for a generic gauge group, the corresponding identity for nu-
merators,

n

(
i

j k

l

)
= n

(
i

j k

l

)
, (7.10)

turns out to be useful as it allows diagrams with several closed matter
loops to be expressed in terms of diagrams with a single closed matter loop.
Thus, these identities are powerful when implemented in a functional way.
They significantly reduce the number of masters, but also give further
constraints when imposed on an Ansatz.
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For N = 2 SQCD, the two-term identity can be justified by the cut
rule (6.22c) from the supersum discussion. The factor from this internal
rule can be decomposed as sac = −sab − sbc. These terms can be used
to cancel the s and t-pole respectively of the corresponding tree level
amplitude. So, it seems possible to assign these two contributions to the
two graphs that are exactly related by a two-term identity. This idea
is closely tied to an off-shell lift construction discussed in the following
section.

Supersymmetric decomposition
From the discussion in sec. 4 it is clear that the on-shell state content of
N = 4 SYM andN = 2 SQCD with a single hypermultiplet are equivalent

VN=4 = VN=2 + ΦN=2 + ΦN=2 . (7.11)
From an amplitudes point of view, these two theories only differ by the
gauge group representation of the hypermultiplet. Since the numera-
tors are color-independent, one can imagine that there exists a (color-
kinematics dual) representation of the amplitude fulfilling relations of
the sort

N = 4

=
N = 2

+
N = 2

+
N = 2

+
N = 2

(7.12)
where a bold line stands for both parts of the hypermultiplet added up:

= + . (7.13)

We also dropped the n(. . . ) notation to denote numerators — from this
point on a diagram represents the corresponding numerator factor.

As amplitudes with higher degree of supersymmetry are simpler to com-
pute, we can recycle them as known expressions into our system. Already
the color-kinematics dual representation of the amplitude in the simpler
theory might not be unique. Its choice influences the representation of
the amplitude in the decomposed theory.

Equations of this form are most conveniently solved for the diagram
with purely vectorial content in the decomposed theory as this diagram
only appears once in the equation (while other diagrams might appear
with different labelings which are related by crossing symmetry).

Minimal denominator solution
A brute force way of simplifying numerator expressions is by implementing
an extremization criterion on the numerical expressions of the coefficients.
One criterion that can be efficiently implemented is via a so-called mini-
mal denominator solution [122]. The idea is simply to find a solution to
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the collected set of constraint equations — a linear system — that has a
minimal denominator for the coefficients {a(ij);k} in the Ansatz (7.5) and
minimizes the norm of the coefficient vector∑

(ij),k
(a(ij);k)2

 1
2

. (7.14)

The explicit form of the norm can also be changed and might lead to
different results.

An implementation is for example included in the integer matrix li-
brary [122].

Matter reversal symmetry
Restricting to N = 2, it has been observed in [46] that both halves of
the on-shell hypermultiplet Φ and Φ contain the same states, interacting
in the same way with the vector multiplet. A possible constraint arising
from this is the following identity:

= = 1
2 , (7.15)

which in general is the statement that diagrams with matter can be related
to the diagram with (individually) reversed matter arrows. For matter on
external legs, one also needs to take the state configuration into account,
e.g.

1

2 3

4

= −
1

2 3

4

∣∣∣∣∣∣
η4

2→η3
2 ,η

3
3→η4

3

. (7.16)

N = 2 SYM permits the hypers to transform in a pseudoreal represen-
tation of the gauge group. Since in such a representation the arrow has
no meaning, the above identity is justified. This symmetry can be imple-
mented functionally as well as imposed on the Ansatz.

7.3 Candidate Numerators from Cuts
The iterated two-particle cuts for N = 2 SQCD discussed in chapter 6 are
manifestly local and handle the propagator poles in a transparent manner.
An idea from paper III is to massage the cut expressions into a form such
that each term cancels either the s or t pole of all contributing tree level
amplitudes and as such can be interpreted as the contribution of the graph
with the corresponding remaining propagator poles. These expressions
obey the cut kinematics and might not necessary correspond to a valid
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representation of the amplitude with off-shell kinematics. Nevertheless,
this procedure has been successfully applied to various one- and two-loop
amplitudes for N = 2 SQCD.

As a simple example, consider the one-loop cut

1−

2+ 3−

4+

5→

6
→

l1 ↑ ↓ l2 ∝ −
〈1|l1|2]
sl21

× s56 ×
〈3|l2|4]
sl22

× [13]〈24〉

= s56 tr−(1l124l23)
s2l21l

2
2

,

(7.17)

where we have dropped an overall factor of κ̂(13)(13). The goal of the
following transformations is to use the Clifford algebra anti-commutation
relation (see appendix A for conventions) to split this expression into
several summands. We demand that each of them has either the s or l21
pole from the left tree and either the s or l21 poles from the right tree
removed. We start by moving the l1 and l2 towards the middle

1−

2+ 3−

4+

5→

6
→

l1 ↑ ↓ l2 ∝
s56
(
l21 tr−(14l23)− l22 tr−(12l13) + tr−(12l1l243)

)
s2l21l

2
2

.

(7.18)
Using momentum conservation (and more anti-commutations), we rewrite
the first two traces as

tr−(14l23) = − tr−(1463) = −l22u+ tr−(1653) ,
tr−(12l13) = tr−(1253) = − tr−(1653) ,

(7.19)

and the six-trace as

tr−(12l1l243) = − tr+(2l1l2421) = −s tr+(2l1l24) = −s tr−(1l1l23) .
(7.20)

Canceling propagator poles leads then to

1−

2+ 3−

4+

5→

6
→

l1 ↑ ↓ l2 ∝ −
us56
s2 + tr−(1653)

sl22
+ tr−(1653)

sl21
− tr−(1l1l23)

l21l
2
2

. (7.21)

Now, these four summands carry exactly the poles of the four contributing
graphs, whereof two are related by a crossing symmetry. Furthermore, the
color-kinematics duality for the numerator factors are fulfilled if these
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expressions are interpreted off-shell in the following way

1−

2+ 3−

4+

`2→

`1
←

= tr−(1`1`23)κ̂(13)(13) ,

1−

2+ 3−

4+

`2
↘

`1
↙

= tr−(1`1`23)κ̂(13)(13) ,

1−

2+ 3−

4+

`2→

`1
←

= −2u `1 · `2κ̂(13)(13) .

(7.22)

By a similar treatment for the other external configurations and with
the help of color-kinematics duality, all other numerators are obtained.
Note that these are results in four dimensions. For dimensionally re-
duced expressions, one can supplement the construction with cuts in six
dimensions to obtain the missing information for the 4− 2ε dimensional
part. For the complete solution see paper III.

The box numerator in eq. (7.22), together with further external config-
urations thereof, can be chosen as the only master for this one-loop am-
plitudes — assuming that a supersymmetric decomposition as discussed
in section 7.2 holds. Hence, the full solution can be encoded via a single
numerator (including several external configurations). This provides an
efficient way of obtaining color-kinematic dual representations. Many ex-
amples for one and two loops have been worked out in paper III and we
will discuss their structure in the next section.

It appears that it is a coincidence that the expression for the derived
numerators via Jacobi identities/commutation relations and their expres-
sion through the off-shell lift of the cut agree. Even without seeking a
color-kinematics dual representation, it is not clear how one should mas-
sage each cut expression to get a consistent off-shell lift from all cuts. For
some cases with external matter states at two-loop level, only a subset
of the master numerators has been constructed in this way. For these
examples, it seems that a simple off-shell lift is incompatible with the
color-kinematics duality. Hence, one would need to work much harder in
order to bring the cut expressions into a form that upon an off-shell lift
respects all diagram symmetries and the color-kinematics duality.
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8. All One- and Two-Loop Four-Point
Amplitudes in N = 2 SQCD

In paper I and III, the methods from the previous sections have been
applied to compute all four-point amplitudes for the MHV sector at one
and two loops for N = 2 SQCD in a color-kinematics dual representation.
Also some examples of indegrands in the all-chiral sector have been com-
puted, that we will not discuss here. This includes three distinct cases for
each loop level: Four external vector states, two vector and two matter
multiplets, and finally four matter states on external legs. We will not
present explicit expressions here, but rather discuss the exact method and
the properties of the color-kinematics dual numerators.

8.1 The Method
All of the amplitudes in question can be obtained by the following “brute-
force” approach:

1. Identify all trivalent graphs for the given external configuration and
as such all numerators required for a color-kinematics dual represen-
tation. See section 3.1.

2. Combine the constraints from color-kinematics duality, i.e. the
Jacobi-identities and commutation relations, with the following set
of additional constraints from section 7.2: crossing symmetry, CPT
conjugation, two-term identity, supersymmetric decomposition (with
exception of the two-loop four-matter amplitude) and matter rever-
sal symmetry. Identify a set of master numerators for this functional
system of equations according to section 7.1.

3. Make an Ansatz for each of the master numerators. Collect the
constraints from above that have not yet been trivially solved by the
choice of master numerators as a linear system in the coefficients.

4. Extend the system by constraints from unitarity cuts, see section 5.
A good strategy is to separate the purely four-dimensional part from
the extra-dimensional contributions. We can use the simple cuts
worked out in sec. 6 for the four-dimensional part. The missing con-
tributions are obtained after a subtraction of the four-dimensional
result from six-dimensional cuts. In the attached publications we
have used the six-dimensional spinor-helicity formalism to compute
these cuts.
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Two-term Manifest CPT Matter reversal N = 4
1-loop vectors X X X X
1-loop mixed X X X X
1-loop matter X X X X

2-loop vectors X X X X
2-loop mixed X X X X
2-loop matter X X ×∗ ×

Table 8.1. Properties of the various solutions summarized: two-term identities,
manifest CPT invariance, matter-reversal symmetry, and the supersymmetric
decomposition, i.e. adding up to N = 4. ∗Matter-reversal symmetry works for
all numerators except for certain matter tadpoles. The symmetry can still be
used to reduce the set of masters for all other topologies. (This table is partially
extracted from paper III.)

5. Solve the linear system, using for example finite field methods as will
be discussed in chapter 14. Any solution is a valid color-kinematics
dual representation of the amplitude. Optionally, clean up the solu-
tion and fix the residual freedom by constructing a minimal denom-
inator solution, see sec. 7.2.

The workload is significantly reduced by off-shell lifts of cut expressions
as discussed in section 7.3. All one-loop amplitudes and the two-loop am-
plitude with four external vector multiplets, have been demonstrated to
be completely constructible from an off-shell lift. For the two-loop ampli-
tude with four external hypermultiplets the situation is more complicated.
One out of two master numerators suggests two different natural off-shell
lifts and an Ansatz solely consisting of these two terms has been pro-
posed — effectively reducing the number of free parameters from several
hundreds to two. The second master appears in more complicated cuts
and no simplified Ansatz was constructed. The brute force algorithm
above has then been applied to resolve the residual freedom.

Finally, for the mixed case of two external vectors and two external
matter multiplets two of the eight master numerators have been obtained
directly from the cuts, whereas an Ansatz construction for the rest was
necessary.

8.2 Properties
The representations of the amplitude obtained this way have a variety
of properties manifested. Table 8.1 summarizes the properties of each
solution as discussed in sec. 7.2.

55



More interestingly, some of the representations transparently expose
the infrared (IR) behavior of single diagrams. The trace structure that
naturally appears through our cut construction regulates regions of small
or collinear loop momenta. Let us discuss these features with an explicit
example, the two-loop all-vector amplitude.

This solution contains a subset of numerators that are all equal:

1

2 3

4

`1 ↑ ↑`2 =
1

2 3

4

`1 ↑ ↑`2 =
1

2

43`1 ↑
↗`2

= −1
2

1

2 3

4

`1 ↑ ↑`2

= tr−(1`124`23)κ̂13 + tr+(1`124`23)κ̂24

+ tr−(1`123`24)κ̂14 + tr+(1`123`24)κ̂23 (8.1)
− sµ12(s(κ̂12 + κ̂34) + t(κ̂23 + κ̂14) + u(κ̂13 + κ̂24))
+ i ε(µ1, µ2)s2(κ̂12 − κ̂34) ,

where we used the shorthand κ̂ij ≡ κ̂(ij)(ij).
These numerators have a supressed soft behavior for hyper legs: They

manifestly vanish whenever the momentum of an internal matter leg goes
to zero. This can be directly seen from the trace representation. Since
tr(· · · pp · · · ) = 0 for an on-shell momentum p, we can move the loop
momentum label across an external leg, e.g. for the kinematics of the
first double box we have:

tr(1`124`23) = tr(1(`1 + p1)24`23) = tr(1(`1 − p2)24`23)
= tr(1`124(`2 − p3)3) = tr(1`124(`2 + p4)3) .

(8.2)

This trace hence vanishes whenever one of the six matter legs carries a
zero momentum. Similar equalities hold for the other diagrams.

In fact, this trace numerator equipped with propagators from the double-
box diagram has already been studied in [123] in the context of IR-finite
integral bases. A paper studying the IR properties of these amplitudes in
more detail is in preparation [124].
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9. Complete SQCD Amplitude at Two-Loops

The analytic form and the transcendentality proporties of amplitudes in
N = 4 SYM have been studied to high loop orders and multiplicity [118,
120, 125–146]. The integrated expressions for massless amplitudes are
commonly expressed in terms of multiple polylogarithms (MPL) [147,148].
These functions can be classified by the number of integrations in its
definition, called the transcendental weight. The transcendentality of four-
dimensional L-loop amplitudes has been observed to be bounded from
above by 2L. Heuristically, N = 4 SYM amplitudes are solely built
out of MPLs of maximal transcendental weight 2L. A uniform weight
property allows for bootstrapping methods that determine the amplitude
solely from its kinematical limits [129–139,149]

For non-supersymmetric QCD terms of different transcendental weight
appear. Hence, the function space for bootstrapping techniques is much
bigger. An understanding of the transcendental structure of integrated
amplitudes might improve such methods significantly. Publication IV dis-
cusses the fully integrated four-gluon amplitude for N = 2 SQCD — a
testing ground between N = 4 SYM and QCD — at two loops and its
transcendental properties. We consider only the case for a SU(Nc) gauge
group here. An interesting part of the discussion is about the amplitude
at the superconformal phase of the theory, where the number of hyper-
multiplets Nf equals twice the number of colors Nc, i.e. Nf = 2Nc. This
theory is called N = 2 superconformal quantum chromodynamics (SC-
QCD). Its integrated amplitudes has a simpler transcendental structure
and its expression fits into only a few lines.

We start by briefly discussing the computational methods used to ob-
tain the integrated answer before discussing the transcendentality struc-
ture. The color-kinematics dual representation of this amplitude, found in
papers I and III, is well suited for integration due to its simplicity coming
from the low number of independent building blocks. Modern integra-
tion techniques such as tensor reduction (see chapter 13), integration by
parts identities (IBP) [3,4] or the differential equations method [5,8,150]
are easily available in various computer implementations. For the spe-
cific amplitude discussed here the master integrals are known [151–154].
For conventions regarding the UV renormalization see publication IV at-
tached to the thesis.

Due to our use of a supersymmetric decomposition (7.11), it is conve-
nient to present the result as the difference to the two-loop N = 4 SYM
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amplitude A(2)[N=4]
4 . Furthermore, we split the remaining amplitude into

parts that either do or do not contribute at the superconformal point

A(
42) = A(2)[N=4]

4 +R(2)
4 + (2Nc −Nf )S(2)

4 . (9.1)

The remainder function R(2)
4 captures the full dependence (together with

the N = 4 part) in the conformal case. The completion to the full
amplitude is collected in S(2)

4 .
The properties and relations among the numerators in the integrand

representation allow us to reduce the number of independent objects that
actually need to be integrated. For the conformal contribution in R(2)

4 it
even turns out that the leading color part is encoded in a single double-
box integral of one numerator (and permutations thereof) combined with
the known N = 4 SYM result.

Through the formalism by Catani [155] — which relies on the known
IR pole structure — we can further split the remainder function into a
part that is reproduced by the application of the one-loop Catani operator
I(1)(ε) on the corresponding one-loop remainder

R(2)
4 = I(1)(ε)R(1)

4 +R(2)fin
4 , (9.2)

where R(2)
4 fin is IR finite. We will discuss this finite remainder for the

superconformal theory (Nf = 2Nc) in the rest of this section.
There are two independent helicity configurations for the leading-color

contributions, i.e. terms proportional to N2
c tr(T a1T a2T a3T a4). We de-

note the color-independent coefficient of this object by R(2)[2]
(1234). The two

contributions, expressed in classical Lin(z) and Nielsen generalized poly-
logarithms Sn,ρ(z), are

R
(2)[2]
−−++ =12ζ3 + τ

6
[
48 Li4(τ)− 24(T + U) Li3(τ)− 24T Li3(v)

− 24S2,2(τ) + 24 Li2(τ)(ζ2 + TU) + 24TU Li2(v) + T 4 − 4T 3U

+ 18T 2U2 − 12ζ2T
2 + 24ζ2TU + 24ζ3U − 168ζ4

− 4iπ
(
6 Li3(τ) + 6 Li3(v)− 6U Li2(τ)− 6U Li2(v)− T 3

+ 3T 2U − 6TU2 − 6ζ2T + 6ζ2U
)]

+O(ε) ,

R
(2)[2]
−+−+ =12ζ3 + τ

6v2T
2(T + 2iπ)2 +O(ε) ,

(9.3)
where we have used the shorthand notations τ = −t/s, v = −u/s,
T = log(τ), and U = log(v) such that all appearing logarithms are real.
Furthermore, we dropped an overall factor of the tree level color-ordered
amplitude of the corresponding helicity configuration A

(0)
4 = −i/(st)κij .

Also, we did not specify the finite superscript as these contributions are
IR finite and represent the full color-independent remainder function.
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The only term that breaks uniform transcendentality is proportional
to ζ3, confirming previous results [156, 157]. This deviation might be a
hint for a simple underlying structure in the non-uniform transcendental
terms. The subleading color contributation of the remainder are of equal
complexity. One of the two independent parts for different helicity combi-
nations is even uniform transcendental, requiring non-trivial cancellations
to happen among the different contributions.

These expressions are unexpectedly short and include only a restricted
set of MPLs compared to the non-conformal amplitude S(2)

4 . For gauge
groups different from SU(Nc) there exist two cases where uniform tran-
scendentality is completely restored: There is only a single diagram con-
tributing to the abelian U(1) theory which contains the above ζ3 term.
Summing over permutations exactly kills this term and the full amplitude
has transcendentality 4. Even more interestingly, for SO(3) the N = 2
SQCD is exactly the same as for N = 4 with the same gauge group, and
as such it is also uniform transcendental.
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10. The UV Structure of Half-Maximal
Supergravity Amplitudes

After having obtained a color-kinematics dual form of a gauge theory
amplitude, it is a simple task to obtain the gravitational amplitude of
the double-copied theory. Some gravitational theories are obtained from
the double copy in a more intricate way, this includes the non-factorizable
ones. We discussed the factorizabilty of a gravity multiplet for some cases
in section 4.2 and a more extensive summary table is given in appendix B.
Consider, for example, the double copy of two pure Yang-Mills states. The
product of two on-shell vector states

Aµ ⊗ Aµ = hµν + a+ ϕ , (10.1)

not only produces two graviton states but also an axion a and dilaton
state ϕ. If one is interested in amplitudes of pure Einstein gravity this
direct construction does not work.

In [46], it has been observed that the double copy construction can be
supplemented by fundamental matter states that allow the addition or
subtraction (ghost statistics) of the corresponding states.

We will first discuss this general construction. Afterwards, we will
specify to a double copy of (N = 2 SQCD)⊗(N = 2 SQCD) at two loops
and show how the construction can be used to obtained pure supergravity
amplitudes for N = 4. Finally, we discuss how the UV divergence of this
amplitude can be extracted and present explicit expressions obtained in
paper I.

10.1 Double Copy with Ghosts
The double copy of two vector multiplets with supersymmetry N ,M≤ 2
leads to the decomposition

VN ⊗ V ′M = HN+M ⊕XN+M ⊕XN+M , (10.2)

which contains additional matter multiplets. In order to remove the mat-
ter states, one needs to consider the double copy of fundamental matter
multiplets

ΦN ⊗ Φ′M = XN+M , ΦN+M ⊗ Φ′M = XN+M . (10.3)
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Assigning ghosts statistics to the latter double-copied matter states will
formally cancel out the matter states in the former double copy. Effec-
tively the ghost statistics is assigned to one side of the double copy, say
ΦN but not Φ′M.

We could have ignored this problem for external states as the unwanted
axion and dilaton states can simply be projected out. But we want to
suppress matter states from propagating in the loop. This is achieved by
modifying the double copy prescription formula (3.7). In the case where
we want to cancel them out, we can introduce a ghost factor by replacing

ci → (−1)|i|n̄′i , (10.4)

where |i| counts the number of closed matter loops in the diagram corre-
sponding to the color factor ci. More generally, if we want to add matter,
one can introduce an integer quantity Nf counting the number of matter
multiplets in one of the gauge theory factors. The replacement rule then
takes the form

ci → (Nf )|i|n̄′i . (10.5)

This amounts to a total number NX = 1 + Nf of matter multiplets on
the gravity side. For consistency, we set 00 = 1 for the case we choose to
not add any additional matter states, i.e. Nf = 0.

The double copy formula (3.7) takes then the form

M(L)
n = iL−1

(
κ

2

)n+2L−2 ∑
i∈Γ(L)

n

∫ dLD`
(2π)LD

(Nf )|i|
Si

nin̄
′
i

Di
, (10.6)

where n̄′i denotes the numerator of the graph with reversed matter arrows
with respect to ni. This construction can be done for any number of
supersymmetries and in any spacetime dimension. Note, however, that it
is essential that the double copy of matter exactly produces the unwanted
states. It is currently known how to get pure theories in D = 4, and in
some cases in D=6 as we discuss below. A complete picture of pure
theories in any dimension is not known.

10.2 Pure N = 4 Supergravity Amplitudes
The amplitude construction via (N = 2 SQCD)⊗ (M = 2 SQCD) at one
and two loops has been discussed in [46] and paper I respectively. We
will focus on the two-loop computation. The double copy of two vector
multiplets leads to unwanted vector states on the supergravity side:

VN=2 ⊗ VN=2 = HN=4 ⊕ 2VN=4 , (10.7)
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which can be remove by the double copy of hypermultiplets on both sides

ΦN=2 ⊗ ΦN=2 = ΦN=2 ⊗ ΦN=2 = 2VN=4 . (10.8)
In order to obtain dimensionally regulated amplitudes we have used

the six-dimensional uplift

VN=(1,0) ⊗ VN=(0,1) = HN=(1,1) (10.9)

to compute the extra-dimensional part of the answer. The map between
four- and six-dimensional states is one-to-one, see eq. (4.15). For simplic-
ity we stick to four-dimensional notation in the rest of this section.

Instead of directly applying the double copy formula (10.6), we group
contributions into supergravity numerators if they share the same denom-
inator Di:

Ni =
∑

Dj=Di
(Nf )|i|njn̄j . (10.10)

Diagrammatically, this leads, for example, to the double box supergravity
numerator

N

  =

∣∣∣∣∣∣n
 ∣∣∣∣∣∣

2

+ 2Nf

∣∣∣∣∣∣n
 ∣∣∣∣∣∣

2

+

∣∣∣∣∣∣n
 ∣∣∣∣∣∣

2

+

∣∣∣∣∣∣n
 ∣∣∣∣∣∣

2 ,

(10.11)
where we have used the fact that the SQCD numerators obey a matter
reversal symmetry which allowed us to add twice only one direction of the
hyper loop. The modulus square represents the product of a numerator
with its barred version njn̄j . We have also dropped the external and loop
momentum labels. For a correct statement these will need to be inserted
at the same position for each of the diagrams.

The same procedure applies to each topology. For topologies allowing
for two matter loops there are also terms proportional to N2

f , e.g.

N

  =

∣∣∣∣∣∣n
 ∣∣∣∣∣∣

2

+ 4N2
f

∣∣∣∣∣∣n
 ∣∣∣∣∣∣

2

+ 2Nf

∣∣∣∣∣∣n
 ∣∣∣∣∣∣

2

+

∣∣∣∣∣∣n
 ∣∣∣∣∣∣

2 .
(10.12)

The flavor counting parameter Nf can be eliminated using the relation
NV = 2(1+Nf ), where NV counts the number of vector multiplets in the
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four-dimensional gravity theory. The results can be interpreted in D =
4, 5, 6 due to the six-dimensional construction (with external momenta
always living in a four-dimensional subspace).

There is one further interesting detail for the six-dimensional construc-
tion. Four-dimensional N = 2 SQCD can either be mapped to N = (1, 0)
or N = (0, 1) in six dimensions. Hence, we can do two inequivalent dou-
ble copies, reaching either N = (2, 0) or N = (1, 1) supergravity. The
pure N = (1, 1) supergraviton multiplet is factorizable. The double copy
for N = (2, 0) produces an additional tensor multiplet, which can be re-
moved. More details on these constructions can be found in appendix B
and paper I.

10.3 UV Divergences in Supergravity
An interesting aspect of a supergravity amplitude is its ultraviolet (UV)
structure. We review a method to extract the UV divergence from a
supergravity integrand, starting from a double copy construction as dis-
cussed in the previous section. This method has been successfully applied
to the supergravity amplitude of N = 4 supergravity at two loops. The
results have also been published in paper I, which we will discuss at the
end of this section.

There is no UV divergence for any supersymmetric theory at two loops
in four dimensions. The corresponding counterterms are schematically of
the form R3, where R represents the Riemann tensor. Supersymmetry
rules out these counterterms and any amplitude is manifestly UV finite.
Hence, we will mostly consider amplitudes in five dimensions, where a
supersymmetric counterterm exists.

A complete integration of the supergravity integrand followed by an
expansion in small ε is complicated and leads to a mix up of UV and IR
divergences. A better approach, which is standard since long [91], is to
isolate integrand contributions that diverge in the UV. The basic idea is
to first expand the numerator for small external momenta, leading to an
expression of vacuum tensor integrals. At two loops, there are two types
of vacuum integrals, that are diagrammatically represented as

`1 `3`2 , `1 `2 , (10.13)

where we allow for propagator denominator factors of arbitrary power.
Formally, the second vacuum diagram is then a special case of the first
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one. Mathematically, we define

ID[n(p, `), {ν1, ν2, ν3}] =∫ dD`1 dD`2
(iπD/2)2

n(p, `)
(−`21 +m2)ν1(−`22 +m2)ν2(−`23 +m2)ν3

,
(10.14)

where n(p, `) is a numerator factor depending on external and loop mo-
menta. We have also introduced a uniform mass regulator to handle
possible infrared (IR) divergences [34]. In the presence of subdivergences,
e.g. at two loops in even spacetime dimensions, it is necessary to intro-
duce the uniform mass regulator before the expansion in small external
momenta. For a vanishing or negative value of νi the integral can be
reduced to a product of two one-loop integrals (see for example [158]).

However, we choose another route by first performing a tensor reduc-
tion of `-dependent factors in the numerator. A tensor reduction for
vacuum integrals can be implemented efficiently using methods that will
be discussed in sec. 13.2. The reduction to a basis of scalar integrals
is most conveniently done via integration by parts (IBP) identities for
which there exist completely automated implementations (for example
LiteRed [159, 160] and FIRE6 [161]). If the basis of scalar integrals is
UV finite, the whole UV divergence is captured in the coefficients of the
integrals. This has the advantage that we do not need an explicit form
of the integrals to check for cancellations among different contributions.

Let us turn to an example: the UV divergence of N = 4 supergravity
via the double copy of (N = 2 SQCD)⊗(N = 2 SQCD) in five dimensions.
A two-loop UV divergence has been shown to be absent via a double copy
of (N = 4 SYM) ⊗ (YM) [36]. This effect is an example of an enhanced
cancellation [35, 37] as there is no known argument that would forbid a
corresponding counterterm. The cancellation is highly non-trivial since it
only occurs for the assembled amplitude as a sum over all the individual
diagrams and their permutations of external legs.

A choice of a basis of scalar integrals in five dimensions consists of the
two UV finite integrals

I(5−2ε)[1, {1, 2, 3}] , I(5−2ε)[1, {2, 2, 2}] . (10.15)

In four dimensions, a basis of finite integrals is

I(4−2ε)[1, {1, 2, 2}] , I(4−2ε)[1, {2, 2, 2}] . (10.16)

Explicit expressions for these integrals in terms of generalized hypergeo-
metric functions are known [158].

For the example of N = 4 supergravity in D = 5 − 2ε, there are in
total five diagrams that do not vanish upon integration. For example, the
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UV divergence of the double box is

(4π)5
∫ dLD`

(2π)LDDdb
N


1

2 3

4`2
→

`1
←


∣∣∣∣∣∣∣
div

=

− (2 +NV )π
70ε (κ2

12 + κ2
34)− (29NV − 26)π

210ε (κ2
13 + κ2

14 + κ2
23 + κ2

24) ,
(10.17)

where Ddb is the propagator denominator factor of the double box topol-
ogy. Similar expressions for the other four topologies have been given in
publication I. The sum over all permutations of the five topologies, in-
cluding symmetry factors, reproduces the enhanced cancellation for the
MHV sector in D = 5 N = 4 supergravity.
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Part III:
Color Decomposition for QCD

“It’s-a me, Mario!”

Mario

We will now return to a more basic problem, the decomposition of an
amplitude in terms of independent color factors. The concept of color
decomposition was already introduced in section 3.3. The color decompo-
sition of YM amplitudes by DDM [44,45] was extended by Johansson and
Ochirov in [162] to all QCD tree amplitudes. In publication II a closed
form of a one-loop color decomposition was presented.

The main motivation is to find basic gauge invariant kinematic build-
ing blocks that allow for a minimal color decomposition. Minimality in
this context means that the number of color-dependent objects form an
independent basis of the set of all color structures for a given amplitude.

In this minimality lies the difficulty of the problem. The system of
relations among color factors is generated by the Jacobi identity and
the commutation relation, see eq. (3.4). A brute-force reduction to an
independent set of color factors leads to a complicated representation
and corresponding kinematic building blocks that are hard to compute.
The usefulness of a color decomposition is measured by the properties
of the associated kinematic building blocks. For example, color-ordered
tree-level amplitudes have natural symmetry properties, they can be com-
puted via color-ordered Feynman rules, and have a recursive structure via
BCFW [11,12] or CSW [10].

The hope is to find a closed formula for a color decomposition for a
generic gauge theory with states in the adjoint or fundamental represen-



tation at higher loops. The kinematic building blocks obtained in such
a way may be good candidates for non-planar primitive amplitudes and
lead to a gauge-invariant definition of the full non-planar integrand. Fur-
thermore, a basis for all kinematic objects, the primitive amplitudes, form
a set of basic kinematic building blocks. This basis might be further re-
duced using BCJ relations. An example at tree level has been discussed
in section 3.3.

We review the formulae at tree level in chapter 11. The extension to
any multiplicity at one-loop level is presented afterwards in chapter 12.
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11. Tree Level Review

A tree-level DDM-like color-decomposition for QCD [162] is completely
understood for any multiplicity and has been proven in [163]. Here we will
mostly rely on diagrammatic explanations and intuitive notations, and
refer to the original papers for more mathematically rigorous statements.

As discussed in section 3.3, the DDM construction realizes a decompo-
sition of pure Yang-Mill amplitudes into a minimal basis of color factors.
With the inclusion of quarks, the tree level color decomposition for any
number and type of external legs has been worked out in [162]. Let us
introduce some notation before we present the final formula.

We consider the case for mutually different quark flavors for each quark-
antiquark pair and internal closed quark loop. The equal-flavor case
is obtained by summing over all pairings of quarks and antiquarks of
the same flavor [164]. A valid configuration of external legs for a non-
vanishing primitive tree-level amplitude in QCD is represented by a Dyck
word [165,166].

Consider a disk where the external legs of a diagram are cyclically
fixed on the boundary. The color-ordered amplitude associated with this
setup is computed by all graphs that can be drawn on this disk without
any crossing of legs — using color-ordered Feynman rules [47] to obtain
a mathematical expression. Since the quark lines connect a quark with
the corresponding antiquark of same flavor, it cannot intersect another
quark line. Mathematically, this means that the external leg configuration
has the same structure as a “valid” combination of opening and closing
parentheses, i.e. a Dyck word. For example, ’()()(())’ is such a valid
configuration. Each pair of opening and closing bracket is identified with
a quark-antiquark pair. Gluons do not have any such restriction and can
be inserted at any point.

Using the notation that quarks are labeled by underlined numbers i
and the corresponding antiquark with the same number overlined i, we
can assign explicit particle labels to a Dyck word. Diagrammatically,

()()(())→ A(0)(1, 1, 2, 3, 2, 4, 5, 6, 5, 4) =

1

14

45

56

2

2

3

, (11.1)
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where we have randomly chosen the direction of each quark line and
inserted gluons with label 3 and 6 at certain positions. We collect all
possible particle assignments of all Dyck words of length k for a total
number of n particles in the set Dyckn,k. We additionally demand that a
quark comes before the corresponding antiquark with the same flavor, i.e.
opening parentheses are quarks and closing parentheses are antiquarks.
Accordingly, k denotes the number of quark-antiquark pairs and n −
2k gluons have to be additionally inserted to obtain the correct state
counting.

With this setup, we can write down the color decomposition for general
n and k

A(0)
n,k = gn−2∑

σ∈Dyckn−2,k−1

C(0)(1, σ, 1)A(0)(1, σ, 1) . (11.2)

The color factors C(0) are most conveniently defined diagrammatically,
using the definition of colorful objects in eq. (3.3). A color factor is ob-
tained by fixing the quark line of legs 1 and 1 at the base of a diagram. All
other legs are cyclically added and the following ‘Mario world’ structure
is built:

C(0)(1, 2, 3, 4, 3, 2, 5, 6, 5, 1) =

1 1

2 2 5 5

3 3 6

4

.

(11.3)
The operator that connects gluonic and fermionic lines is defined via

l
= + + + · · ·+ . (11.4)

A mathematically rigorous definition can be found in [162]. That the prim-
itive amplitudes appearing in this decomposition form a basis of kinematic
objects has already been observed earlier [167,168]

B(0)
n,k =

{
A(0)(1, σ, 1) | σ ∈ Dyckn−2,k−1

}
. (11.5)

The construction is based on a generalization of the KK relations (3.18) for
fundamental matter, i.e. relations between primitive amplitudes including
quarks. The basis is formally defined as a maximal set of amplitudes
independent under these relations. The size of the basis is (n− 2)!/k!.
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12. A Decomposition at One-Loop Level

Paper II presents a conjecture for a one-loop color decomposition for
QCD for any multiplicity and any combination of external particles. The
validity of the presented formulae has been explicitly checked for up to
ten partons in some cases.

Extending the notation from tree level, we want to consider primitive
amplitudes on an annulus, i.e. two boundaries where external legs can live.
The bounderies are separated by either a closed quark or a mixed/purely
gluonic loop. Consider as an example the following primitive amplitude:

Aq(1, 1, 2, 3, 2, 4, 5, 6|7, 8, 9, 7, 10, 11)→

1

1

2

2

3

4
5

6

77
89

10 11
. (12.1)

We have to distinguish different routings of quark lines on this annulus.
The quark line connecting 2→ 2 could also go around counter-clockwise
instead, or we could reverse the direction of the loop. In principle, one
needs to specify the routing a quark line takes with respect to all other
quark lines. However, often less information is sufficient. It might be clear
which routing a quark line has, since a different configuration would lead
to a vanishing amplitude (i.e. it is not possible to draw a single graph
with the specified routing). A notation for routings has been introduced
in paper II, but for simplicity we will rely on purely graphical statements
here.

For a gluonic loop it is also possible that a quark line stretches between
two boundaries. Effectively, it is possible to find a basis of primitive
amplitudes that have no external parton on the inner boundary. If there
is no parton present on the inner boundary, we drop the vertical bar in
the argument of the primitive amplitude. The primitive amplitudes are
computed using color-ordered Feynman rules as before.

To extend the color decomposition from tree-level for the case of a
closed quark loop, one can imagine to close the lowest quark line 1 → 1
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to form a loop. A good guess would then be to consider the same set
of Dyck words that we have already seen at tree level and remove all
cyclically equivalent configurations. Denote this set by Dyck	n,k. The
proposed basis of primitive amplitudes is then given by

Bqn,k =
{
Aq(σ) | σ ∈ Dyck	n,k

}
, (12.2)

where we additionally assume a routing where the quark loop goes counter-
clockwise around the hole of the annulus and lies to the left of each
external quark line. Any other convention would work equally well. Note
that there is no leg on the inner boundary of the annulus.

The color decomposition is then simply given as a sum over the basis
of kinematic objects combined with the corresponding color factors,

Aqn,k = gn
∑

σ∈Dyck	
n,k

Cq(σ)Aq(σ) . (12.3)

The color factors Cq(σ) are defined by fixing the quark loop at the base
of a ‘Mario world’ structure and building up the top of it the same way
as in the tree-level case, e.g.

Cq(12321454) =
1 1 4 4

2 2 5

3

. (12.4)

The size of the basis is |Dyck	n,k| = (n− 1)!/k!.
In the case of a gluonic or mixed loop, we need to introduce some more

notation regarding Dyck words. So far, we have always assigned quarks
before antiquarks, i.e. we identify opening parentheses with quarks and
closing parentheses with antiquarks. We define a modified set of Dyck
words with a second type of brackets ’[]’, where the antiquark is assigned
to the opening and the quark to the closing bracket. For example ’()[()][[]]’
is a valid modified Dyck word. The set mDyck	n,k is then given by the
set of all modified Dyck words via the same cyclic equivalence as before
and demanding that the first bracket in the word is not square. The color
decomposition is written down as

Agn,k>0 = gn
∑

σ∈mDyck	
n,k

Cg(σ)Ag(σ) . (12.5)

Accordingly, the corresponding basis of primitive amplitudes is given by

Bgn,k>0 =
{
Ag(σ) | σ ∈ mDyck	n,k

}
, (12.6)
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where we demand that the loop lies to the left of a quark line assigned to
round brackets and to the right of a quark line assigned to square brackets.
This fixes all other relative routings of quark lines. The color factors take
a slightly more complicated form. As an example, consider

Cg(11234325) =
1 1 2 2

3 3

4
5

. (12.7)

The proper mathematical definition can be found in paper II. The size
of the basis is given by |mDyck	n,k| = 22k−1(n − 1)!k!/(2k)!. The special
case of a purely gluonic amplitude has already been discussed in [45]. It
requires to additionally remove primitive amplitudes that are equivalent
under a reflection of the arguments. This reflection redundancy is broken
for the general case by requiring the first bracket in the modified Dyck
word to be round.
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Part IV:
Computational Tools

“Work smarter, not harder!”

The Internet

The results summarized in this thesis heavily rely on efficient algo-
rithms and implementations. This final part of the thesis presents some
of the tools we have found most useful and are of general interest to
perturbative amplitude computations.

For the integration of the two-loop N = 2 SQCD amplitudes in pa-
per IV and the computation of UV divergences in various supergravity
theories we have studied various tensor reduction schemes. We present
the two most promising ones is chapter 13.

Using finite fields for the reduction of huge linear systems gave us a
significant speed up in our computations. A technical discussion and an
explicit implementation is presented in chapter 14.





13. Tensor Reduction

Following ideas in [169, 170], we present an efficient algorithm for an all-
loop all-multiplicity tensor reduction in arbitrary dimension D.

In the second subsection we describe a strategy for an efficient tensor
reduction in the case of vacuum diagrams that commonly appear in the
computation of UV divergences.

In dimensional regularization it is often advantageous to express nu-
merators of Feynman integrals using the extra dimensional objects µij
defined in sec. 7.1. Writing these objects as µij = η̃µν`

µ
i `
ν
j with the extra-

dimensional part of the metric

η̃µν = diag(0, . . . , 0,−,−, . . . ) , (13.1)

allows the application of the tensor reduction formulae also for these
terms.

13.1 General Reduction via Schwinger Parametrization
The basic idea is to perform a Schwinger parametrization and absorb
terms appearing from tensor structures into the Schwinger parametrized
form of the integrand. Ultimately, we obtain a reduction to scalar inte-
grals with shifted numerator powers and dimension.

13.1.1 Gaussian Form of a Schwinger Parametrization
Let us start with some preparations by inspecting the Schwinger param-
etrized form of a general Feynman denominator

1
Dν1

1 · · ·Dνm
m

=
m∏
i=1

(−1)νi
Γ(νi)

∫ ∞
0

dxixνi−1
i exp

 m∑
j=1

xjDj


≡
∫
Dx exp

 m∑
j=1

xjDj

 .

(13.2)

Each denominator factor is of the general form Di = (
∑
j #j`j+pi)2−m2

i ,
where `j denote loop momenta, pi are an arbitrary vectors, and mi are
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scalar mass terms. The hash stands for an arbitrary numerical factor.
The exponent in (13.2) accordingly has the structure

m∑
j=1

xjDj =
L∑

i,j=1
bij`i · `j +

L∑
i=1

2ci · `i + d , (13.3)

where bij , ci and d are scalar/vector functions depending on xi, masses,
and momenta. The number L counts the total number of loop momenta.
We also set bij = bji. Performing a change of variables

`µi =
L∑
j=1

xijk
µ
j + yµi s.t.

m∑
j=1

xjDj =
L∑
i=1

Aik
2
i +D , (13.4)

will bring the integration over the loop momenta into a Gaussian form.
We observe that the unknowns xij and yi have a simple form if we

assume that xij = 0 ∀i > j and xii = 1. To show this we start by defining
some useful objects. Let B(β) be the (β−1)× (β−1)-matrix with entries
bij . Furthermore we define the vector quantities

b(β) ≡

 b1β
...

bβ−1,β

 , x(β) ≡

 x1β
...

xβ−1,β

 , y =

y1
...
yL

 , c =

c1
...
cL

 .

(13.5)

By a direct computation it can be checked that

x(β) ≡ −B−1
(β) · b(β) y ≡ −B−1

(L+1) · c (13.6)

fulfills (13.4). This leads to an explicit expression for the exponent in
Gaussian form in terms of the parameters bij , ci and d

Ai =
detB(i+1)
detB(i)

,

D = d− cᵀ ·B−1
(L+1) · c =

d detB(L+1) − cᵀ · adjB(L+1) · c
detB(L+1)

,

(13.7)

where we have explicitly exposed the denominator by expressing the in-
verse matrix through its adjugate matrix B−1

(L+1) = adjB(L+1)/ detB(L+1).
In summary, the argument of the exponent is given by

m∑
j=1

xjDj =
L∑
i=1

Pi+1
Pi

k2
i + QL+1

PL+1
, (13.8)

where we used the shortcuts
Pi ≡ detB(i) ,

QL+1 ≡ dPL+1 − cᵀ · adjB(L+1) · c .
(13.9)
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Note that for the boundary case, P1 = detB(1) = 1.
The expression for xij can be rewritten such that one finds the substi-

tution in a form

lµi = kµi +
L∑

j=i+1

(−1)i+jP ij
j+1

Pj
kµj −

a
[i]
(L+1) · c

µ

PL+1
, (13.10)

where a(L+1) ≡ adj(B(L+1)) and the superscript [i] denotes the i’th row.
Furthermore, Aij denotes the matrix A with row i and column j removed.
We are now prepared to perform the tensor reduction.

13.1.2 The Reduction Formula
Our goal is to express the general L-loop tensor Feynman integral

ID
[
{`µi,si }, {νi}

]
≡
∫ L∏

i=1

dD`i
iπD/2︸ ︷︷ ︸
≡D`

ri∏
s=1

`
µi,s
i

1
Dν1

1 · · ·Dνm
m

, (13.11)

as a sum over tensor structures built out of ηµν and scalar integrals. Using
eq. (13.2) to Schwinger parametrize the denominator factors, the above
integral takes the form

ID
[
{`µi,si }, {νi}

]
=
∫
DxD`

ri∏
s=1

`
µi,s
i exp

(
m∑
i=1

xiDi

)
. (13.12)

We replace factors of `µi,si in eq. (13.12) with a derivative with respect to
c
µi,s
i sitting inside the exponent (13.3)

ID
[
{`µi,si }, {νi}

]
=
∫
DxD`

ri∏
s=1

1
2

∂

∂c
µi,s
i

exp
(

m∑
i=1

xiDi

)
. (13.13)

Pulling the derivatives out of the inner integral and performing the sub-
stitution (13.10) leads to

ID
[
{`µi,si }, {νi}

]
=
∫
Dx

L∏
i=1

ri∏
s=1

1
2

∂

∂c
µi,s
i

∫
Dk exp

(
L∑
i=1

Pi+1
Pi

k2
i + QL+1

PL+1

)
.

(13.14)
The integral over the loop momenta k is in a Gaussian form. It is conve-
niently rewritten as

ID
[
{`µi,si }, {νi}

]
=
∫
Dx

L∏
i=1

ri∏
s=1

1
2

∂

∂c
µi,s
i

L∏
i=1

(
Pi
Pi+1

)D/2
exp

(
QL+1
PL+1

)

=
∫
Dx 1

P
D/2
L+1

L∏
i=1

ri∏
s=1

1
2

∂

∂c
µi,s
i

exp
(
QL+1
PL+1

)
.

(13.15)
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The derivatives acting on the exponential will increase the powers of PL+1
which can be absorbed into the denominator factor by increasing the
dimension. Since PL+1 = detB(L+1) is independent of ci and

∂

∂c
µi,s
i

QL+1 = −2(adjBL+1 · cµi,s)i, (13.16)

∂2

∂c
µi,s
i ∂c

µj,t
j

QL+1 = −2(adjBL+1)ijηµi,sµj,t , (13.17)

we see that the numerator of the integrand will be a polynomial in xi.
These can be absorbed into Dx by shifting the power of the corresponding
propagator. This relates the given tensor integral to a sum of scalar
integrals with a tensor structure that is given by the derivatives acting
on QL+1.

Formula (13.15) is well suited for an automatized computer implemen-
tation since the calculation of determinants is already efficiently imple-
mented in many libraries and derivatives can be performed fast.

13.2 A Reduction for Vacuum Integrals
The tensor reductions for vacuum integrals can be done in a more efficient
way, since any object of the form `i · `j can be absorbed into a (inverse)
propagator. Consider an L-loop vacuum integral of the form∫ L∏

i=1

dD`i
iπD/2︸ ︷︷ ︸
≡D`

`µ1
i1 · · · `

µn
in

D
, (13.18)

where the denominator is a product of inverse vacuum Feynman prop-
agators (

∑
j #j`j)2 − m2. The hash stands for an arbitrary numerical

factor.
To identify all possible tensor structures, we define Pn as the set of all

inequivalent ways of combining objects of a permutation into pairs

Pn = {(σ1σ2) · · · (σn−1σn)|σ ∈ Sn}/equivalent configurations , (13.19)

where two configurations are equivalent upon swapping the two members
of a pair and a permutation of its set of pairs. For σ ∈ Pn we set

ησ ≡ ηµσ1µσ2 · · · ηµσn−1µσn ,

`σ ≡ `iσ1
· `iσ2

· · · `iσn−1
· `iσn ,

(13.20)

for a given set of spacetime indices {µj}j∈J and loop momentum la-
bels {ik}k∈K . The tensor structure of the general vacuum integral (13.18)
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is expressible in terms of tensor structures in Pn multiplied by Lorentz
products of loop momenta `i · `j . We make the Ansatz∫

D`
`µ1
i1 · · · `

µn
in

D
=

∑
σ,ρ∈Pn

cσ
ρ
∫
D``ρη

σ

D
, (13.21)

where cσρ are coefficients that we will determine in what follows. In order
to solve this equation for cσρ, we drop the integral and assume — by a
slight abuse of notation — an implicit summation over the indices σ, ρ ∈
Pn. Contracting both sides with an arbitrary ηπ, π ∈ Pn leads to

`π = (ηπησ)cσρ`ρ . (13.22)

Implicit spacetime indices in (ηπησ) can be contracted and lead, using
ηµ

µ = D, to an interpretation of (ηπησ) as a matrix with scalar entries.
The rows and columns of this matrix are labeled by π and σ. Interpreting
this statement as a matrix equation and choosing π = ρ, we can solve for

cσ
ρ = (ησηρ)−1. (13.23)

To conclude, a tensor reduction for vacuum integrals can be done by
replacing the tensor structure via

`µ1
i1 · · · `

µn
in
→ ησcσ

ρ`ρ (implicit summation), (13.24)

and absorbing factors containing loop momenta, i.e. `ρ, into the propa-
gators.

For massive propagators one needs to introduce appropriate factors
of the masses in the numerator to perform this absorption. In general,
this procedure leads to negative power propagators. Integrals containing
propagators with vanishing or negative power can be factorize into lower
loop vacuum integrals. This factorization procedure for the two-loop
sunset diagram with different masses is for example described in [158].

13.2.1 Implementation strategies
Contracting the free spacetime indices after a tensor reduction back into a
full amplitude expression is computationally costly. Using formula (13.24),
the contraction can be done locally with each element of ησ separately.
The resulting vector is then simply dotted into the vector cσρ`ρ, which
can be hard-coded.

It turns out that this procedure, in general, does not give us the shortest
possible expressions, and the object cσρ is a large matrix that takes a
lot of time to compute and uses a lot of space in memory. A useful
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representation of the matrix is found by an eigenvalue decomposition.
Since the matrix is symmetric, there exists a decomposition

c = PDP ᵀ, (13.25)

where D is a diagonal matrix containing the eigenvalues and P is a
matrix of (orthogonalized) eigenvectors. By inspecting the cases for
n = 2, 4, 6, 8, 10, it turns out that the eigenvalues tend to have a high
multiplicity and the eigenvectors are numerical, i.e. they do not depend
on the spacetime dimension D. Let Ei be the i’th eigenvalue and {pi;j}j
a basis of corresponding orthonormal eigenvectors. We can then write

c =
∑
i

Ei
∑
j

pi;jp
ᵀ
i;j . (13.26)

Using slightly schematic notation, this leads to a partially factorized form
of the answer

`µ1
i1 · · · `

µn
in
→
∑
i

Ei
∑
j

(η · pi;j)(` · pi;j), (13.27)

where η can be thought of as already having been contracted with exter-
nal vectors. Not only are the resulting expressions relatively short, but
also the matrix c represented as a list of eigenvalues and eigenvectors
takes significantly less space compared to a brute force implementation
of formula (13.24).

82



14. Finite Fields

One of the bottlenecks of the computations discussed in part II is the
solving of the constraint equations for the coefficients in the Ansatz. First
of all, the full system tends to be quite large with a lot of redundant
equations. For example, the Ansatz for N = 1 SQCD at two loops
contains around 10000 free parameters for solely the four-dimensional
part. The various constraints discussed in sec. 7.2 lead to a linear system
with over 200000 equations.

A further complication comes from the property of this system that
tends to produce intermediate expressions with enormous rational num-
bers — making the memory requirements and CPU time explode. In
contrast, the final expressions tend to contain only very simple numerical
coefficients. Both of these purely computational complications can be
overcome by the use of finite fields.

The basic idea is to solve, or more precisely row reduce, the numeri-
cal linear system over different finite fields (most conveniently chosen as
integers modulo some prime number) and reconstruct the rational result
afterwards. This prevents intermediate expressions to blow up. Since the
final expressions often have a tame behavior, not many runs over different
finite fields are required.

Finite fields have been successfully applied to many other problems in
mathematics, physics and computational science, for example polynomial
factorization, the computation of the greatest common divisor (GCD), or
integration by parts (IBP) techniques [171].

We follow Peraro [172] to review the most important formulae and
algorithms. All the algorithms referred to here can be found there.

Most conveniently, we will use finite fields of integers modulo a prime p
denoted by Zp. The operation of taking inverses is defined via

(aa−1) mod p = 1 . (14.1)

This uniquely defines the element a−1 ∈ Zp for all non-zero a ∈ Zp. The
inverse can be efficiently computed via the extended Euclidean algorithm.
Together with the definition of addition, subtraction and multiplication
modulo p, this defines all required rational operations. We can map any
rational number q = a/b into the finite field via

q mod p = (ab−1) mod p . (14.2)
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Once the system is translated into the finite field, one can use special
purpose libraries for the row reduction. An implementation in C++ is for
example the SpaSM (Sparse Solver Module p) library [173].

After having reduced the system, we can apply rational reconstruction
methods to obtain the row reduced system over the full set of rational
numbers. A variation of the extended Euclidean algorithm allows one to
make a guess for a number a mapped back into the rational numbers q ∈
Q. The guess is, in general, correct if the numerator and denominator of
q are much smaller than the prime p. Since integer numbers on computers
are restricted in size for efficient implementations, this simple procedure
will fail for systems with representationally large rational coefficients.

The Chinese remainder theorem saves the day. It allows a unique recon-
struction of a number a ∈ Zn from its images in Zpi , where n = p1 · · · pk
and all the pi are pairwise co-prime. Thus, we can solve the system several
times over different finite fields Zpi to increase the probability of correctly
reconstructing the rational number. In practice, one can add more and
more primes pi and check if the result is correct by resubstituting it back
into the original system. Heuristically, a faster method is to check if for
a reconstructed q = a/b the numerator and denominator are below the
threshold

√
n, i.e. a <

√
n and b <

√
n.
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15. Epilogue

The ideas and methods summarized in this thesis are small steps towards
a deeper understanding of the mathematical structure of scattering ampli-
tudes and their fundamental building blocks. As the complexity for each
additional external parton or loop grows factorially, we are challenged
to improve our technology for every new calculation. We summarize the
main findings and ideas and have a first look into interesting future direc-
tions and challenges awaiting us.

A supersymmetric reduction leads to a natural organization of on-shell
states in terms of the on-shell superfield formulation for the maximally
supersymmetric theory — which extends even to the non-supersymmetric
theories. This organization allowed us to find general formulae for cuts
involving vector, hyper, chiral, fermionic or scalar partons on the same
footing. Combined with the color-kinematics duality and new types of
constraints, the number of independent building blocks can be signifi-
cantly reduced. This in turn simplifies the computation of the complete
amplitude and shrinks the algebraic size of its representation. The ampli-
tudes for N = 2 SQCD were shown to have an especially simple structure
at one and two loops, manifesting, among others, IR properties in terms
of collinear and soft limits.

A further step towards pure (massless) QCD is its supersymmetric
extension with N = 1. This theory contains purely chiral matter multi-
plets. The chirality is expected to introduce new structures implement-
ing the chiral nature in the scattering amplitudes. Compared to N = 1
SQCD, the non-supersymmetric theory has no fundamentally new prop-
erties. The same methods will be applicable for a BCJ construction, just
the size of the Ansatz will be increased.

Seeking a color-kinematics dual representation might seem unneces-
sary for a computation solely in a gauge theory. For some examples at
one and two loops we have demonstrated that the duality can also help
simplifying this computation. The reason is, once more, the significant
reduction in the number of independent building blocks. The properties
of our integrand representation that relate all terms to a small set of mas-
ter numerators also lead to a reduction of independent integrals. This
immensely simplifies the integration process for the full amplitude. The
integrated representation of the four-point two-loop SQCD amplitude was
performed to analyze its transcendental properties and general structure.
We have identified the source of the non-maximal transcendental terms
for the theory at the conformal point.
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Equipped with amplitudes for N = 0 QCD through N = 4 SYM, the
double copy immediately opens the construction of amplitudes in Einstein
gravity (with arbitrary matter) up to maximal supergravity. We have dis-
cussed how matter states on the gravity side can be added or removed via
a double copy of the matter states in the corresponding gauge theories.
This BCJ construction is currently the only method that will allow us
to cover new terrain at higher multiplicity or loop order in the study of
(supersymmetric) gravity amplitudes and their UV properties. Explicit
results obtained in publications attached to this thesis have reproduced
an enhanced UV cancellation of half-maximal supergravity in five dimen-
sions. Further cases of such enhanced cancellations are expected for lower
degrees of supersymmetry and at higher multiplicity. Their realization in
an amplitude representation might lead to novel insights into the UV
structure of gravity theories.

A different approach of presenting an amplitude was discussed in the
third part. Color decompositions factorize an amplitude into kinematic
and color parts. Both, color and kinematic parts, are in the optimal
case built out of an independent set of basic building blocks. At tree
and one-loop level, minimal decompositions for (S)QCD are known at
any multiplicity. The goal of this line of research is to identify a basis
of kinematic building blocks for higher loops and, most challenging, for
non-planar contributions. A first interesting project would involve the
study of identities among primitive amplitudes, i.e. a generalization of
Kleiss-Kuijf relations to higher loop amplitudes including fundamental
matter.

In the final part of the thesis we have presented purely computational
methods that efficiently solve a specific problem. We discussed two meth-
ods for the tensor reduction of Feynman integrals and the use of finite
fields for general amplitude computations.

It is expected that the methods presented here will be instrumental
for further unraveling the properties of gauge and gravity theories with
reduced supersymmetry. At two loops four points, any SQCD and su-
pergravity amplitude should be within computational reach. Further re-
finements of the methods should open up the possibility of performing
detailed three-loop studies of SQCD and related supergravity theories.
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Svensk Sammanfattning

Kvantfältteori är ett generellt teoretisk ramverk för beskrivningen av na-
turens grundläggande partiklar och krafter. En synnerligen viktig kvant-
fältteori utgörs av standardmodellen inom partikelfysiken (SM). Den be-
skriver framgångsrikt tre av de fyra elementära krafterna på kvantnivån:
elektromagnetism, den svaga samt starka växelverkan. Experimentella ut-
fall av partikelkollisioner, som bland annat beskrivs av spridningsampli-
tuder, kan förutsägas med hjälp av störningsteori i dessa teorier med en
extremt hög precision. Den fjärde fundamentala kraften, gravitation, kan
inte förenas med SM i ett gemensamt kvantmekaniskt ramverk med vår
nuvarande kunskap. Einsteins teori av gravitationen har problem med
oändligheter som dyker upp vid beräkningar som involverar höga energi-
er, så kallade ultravioletta (UV) divergenser.

Oberoende av teori så är beräkningar av spridningsamplituder med
hjälp av Feynmandiagram mycket komplicerade. Efter första ordningen i
störningsserien så växer antalet diagram faktoriellt, och varje diagram är
ett komplicerat algebraiskt uttryck som ska integreras över ett flerdimen-
sionellt rum. Nydanande metoder och nya representationer av amplituder,
som har utvecklats under de senaste tre årtionden, har märkbart förbätt-
rat effektiviteten av dessa beräkningar och lett oss till en ökad förståelse
av deras matematiska struktur.

År 2008 fann Bern, Carrasco och Johansson (BCJ) en ny dualitet inom
kvantfältteorier som allmänt kallas för gaugeteorier, där standardmodel-
lens krafter ingår. Dualiteten är mellan kvantiteter som beskriver färg-
laddning — den starka kraftens laddning — och kinematiska byggstenar
som beskriver växelverkningar likt Feynmandiagrammen. Det här leder
till en ny representation av spridningsamplituder där färgladdning och ki-
nematik har liknande egenskaper. Dessutom leder denna dualitet till nya
relationer mellan olika partiella amplituder (så kallade BCJ relationer).

En enastående konsekvens av dualiteten är den så kallade dubbelko-
pian. Med avstamp av en representation av en amplitud, som uppfyller
dualiteten mellan färgladdning och kinematik, kan man konstruera gravi-
tationkraftens spridningsamplituder genom att byta ut färgladdning mot
en ytterligare kopia av kinematiska byggstenar. Schematiskt är dubbelko-
pian

gravitation = (gaugeteori)× (gaugeteori′) . (15.1)
För att testa och studera dualiteten och dubbelkopian kan vi använda oli-
ka varianter av gaugeteorier där spridningsamplituderna är av en enklare
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typ. Supersymmetri innebär ytterligare relationer mellan kraftbärare och
materia. Denna symmetry förenklar markant beräkningarna av spridning-
samplituder och deras algebraiska uttryck.

I denna avhandling studeras spridningsamplituder i supersymmetrisk
kvantkromodynamik (SQCD), som är en supersymmetrisk variant av te-
orin som beskriver den starka växelverkan. Förutom att beakta färg-
kinematik dualitet som den ursprungligen formulerades, så studerar vi
en utvidgning utav dualiteten genom att lägga till materia utan vilo-
massa. Vi diskuterar flera nya metoder och idéer som hjälper till göra
beräkningar mer effektiva samt exponerar egenskaper som är av stor nyt-
ta. En generalisering av dubbelkopian ger oss en metod för att beräkna
spridningsamplituder i supergravitation utan extra materia, samt ger oss
tillfälle att studera dess UV struktur.

Representationer som presenteras för N = 2 SQCD i första och andra
ordningen av störningsserien har en speciell och enkel form. Varje kinema-
tisk byggsten uttrycks via ett spår över gamma-matriser sammandraget
med rörelsemängder. Detta förenklar märkbart integreringen av både gau-
geamplituderna och dubbelkopiorna. Det förenklar även identifiering av
källor av icke-likformigt transcendenta termer i uttrycken för gaugeampli-
tuderna — samt UV divergenser i dubbelkopian för N = 4 supergravita-
tionen.

Avhandlingen diskuterar även hur man bäst presenterar en gaugeampli-
tud genom uppdelning av färgkomponenter. Idéen är att man separerar
faktorer som endast beror på färgladdning och faktorer som endast beror
på kinematik. Målet är att hitta en linjärt oberoende bas av färgkompo-
nenter så att representationen av amplituden är både unik och så enkel
som möjligt.

Slutligen presenteras specifika tekniska detaljer för de matematiska
metoder som användes för beräkningarna av spridningsamplituderna i
denna avhandling.
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A. Dirac Traces

A classical amplitude computation via Feynman diagrams naturally leads
to expressions with traces of Dirac matrices contracted to internal or
external momenta. The cut construction discussed in chapter 6 also leads
to similar trace structures via combinations of four-dimensional spinor-
helicity objects.

We adopt the Weyl basis of gamma matrices for the Clifford algebra

{γµ, γν} = 2ηµν , γµ =
(

0 σµ

σ̄µ 0

)
, γ5 = iγ0γ1γ2γ3 =

(
−1 0
0 1

)
,

(A.1)
where σµ are the Pauli matrices. The Dirac traces fulfill the following
identities:

tr(γµ) = 0 , tr(γµγν) = 4ηµν , tr(γµγνγ5) = 0 . (A.2)
Using the relation

γµγνγρ = ηµνγρ − ηµργν + ηνργµ − iεσµνργσγ5 , (A.3)
we can recursively reduce traces of gamma matrices with a larger number
of arguments. To get from traces of γ matrices to traces of Pauli matrices
we use

tr(γµ1γµ2 · · · γµ2n) = tr(σ̄µ1σµ2 · · ·σµ2n) + tr(σµ1 σ̄µ2 · · · σ̄µ2n) ,
tr(γ5γ

µ1γµ2 · · · γµ2n) = tr(σ̄µ1σµ2 · · ·σµ2n)− tr(σµ1 σ̄µ2 · · · σ̄µ2n) ,
(A.4)

which is justified by direct computation using the Weyl basis. This implies

tr(σ̄µ1σµ2 · · ·σµ2n) = 1
2 (tr(γµ1γµ2 · · · γµ2n) + tr(γ5γ

µ1γµ2 · · · γµ2n)) ,

tr(σµ1 σ̄µ2 · · · σ̄µ2n) = 1
2 (tr(γµ1γµ2 · · · γµ2n)− tr(γ5γ

µ1γµ2 · · · γµ2n)) ,
(A.5)

and the expressions on the right-hand side coincide with the usual defini-
tion of tr+ and tr− respectively. This directly leads to

[i1i2]〈i2i3〉 · · · [ik−1ik]〈iki1〉 = (pi1)µ1(pi2)µ2 · · · (pik)µk tr(σ̄µ1σµ2 · · · σ̄µk)
≡ tr+(i1i2 · · · ik) ,

〈i1i2〉[i2i3] · · · 〈ik−1ik〉[iki1] = (pi1)µ1(pi2)µ2 · · · (pik)µk tr(σµ1 σ̄µ2 · · ·σµk)
≡ tr−(i1i2 · · · ik) ,

(A.6)
which we use throughout this thesis to assemble four-dimensional traces.
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B. Summary of On-Shell Supermultiplets and
their Double Copy

We review the particle content of four and six dimensional on-shell super-
multiplets in terms of its representation theory of the little/helicity and
R-symmetry group. Furthermore, we summarize how the tensor product
represents the particle content of double copied theories.

The little (helicity) group of massless particles in four dimensions is
given by U(1). We denote a representation thereof by its helicity ± to-
gether with the spin. Representations in the R-symmetry group U(N )
are given by its integer dimension. Table B.1 summarizes all multiplets
in N = 8, 6, 4, 2, 1 up to spin 2, see e.g. [174] for the construction of this
table.

For six (and higher) dimensional theories, the supermultiplets for grav-
ity and gauge theories have been nicely reviewed in [175]. We summarize
these results here. Six-dimensional states are categorized by their lit-
tle group SU(2) × SU(2) and R-symmetry group USp(2N ) × USp(2Ñ )
representations. There exist six different types of states categorized by
the little group. Graviton states transform under the (3, 3) representa-
tion, gravitini either under (2, 3) or (3, 2). For spin one states there are
the usual vectors transforming under (2, 2), but we also include tensor
states transforming under (1, 3) or (3, 1). Corresponding representations
for gauginos are (1, 2) and (2, 1). Scalars finally trivially transform under
a (1, 1) representation of the little group. The graviton H, vector V , ten-
sor T and matter Φ on-shell supermultiplets are summarized in table B.2.

The double copy can be used to construct supergravity on-shell multi-
plets (or sums thereof) as explained in section 4.2. We summarize con-
struction of gravity supermultiplets as tensor products of vector and mat-
ter multiplets for N = 0, 1, 2, 4, 6, 8 supergravity in table B.3.

The same construction for various six dimensional supergravity theories
is given in table B.4, see also paper I. It can be derived by computing
the tensor product of the SU(2)× SU(2) little group representations and
fitting them into multiplets in table B.2.
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N representation/counting

8 H

(±2, 1) ⊕ (±3
2 , 8) ⊕ (±1, 28) ⊕ (±1

2 , 56) ⊕
2 + 16 + 56 + 128 +

(0, 70)
70 = 256

6 H

(±2, 1) ⊕ (±3
2 , 6) ⊕ (±1, 15 + 1) ⊕ (±1

2 , 20 + 6) ⊕
2 + 12 + 32 + 52 +

(0, 15 + 15)
30 = 128

4
H

(±2, 1) ⊕ (±3
2 , 4) ⊕ (±1, 6) ⊕ (±1

2 , 4) ⊕
2 + 8 + 12 + 8 +

(0, 1 + 1)
2 = 32

V (±1, 1) ⊕ (±1
2 , 4) ⊕ (0, 6)

2 + 8 + 6 = 16

2

H (±2, 1) ⊕ (±3
2 , 2) ⊕ (±1, 1)

2 + 4 + 2 = 8

V (±1, 1) ⊕ (±1
2 , 2) ⊕ (0, 2)

2 + 4 + 2 = 8

Φ

(±1
2 , 1) ⊕ (0, 2)
2 + 2 = 4

(±1
2 , 1) ⊕ (0, 2)
2 + 2 = 4

1

H (±2, 1) ⊕ (±3
2 , 1)

2 + 2 = 4

V (±1, 1) ⊕ (±1
2 , 1)

2 + 2 = 4

Φ

(+1
2 , 1) ⊕ (0, 1)
1 + 1 = 2

(0, 1) ⊕ (−1
2 , 1)

1 + 1 = 2

Table B.1. This table summarizes the particle content of various four dimen-
sional on-shell supermultiplet. The first row gives the helicity with the spin and
the dimensionality of the R-symmetry representation. The second row counts
the number of states.
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(N , Ñ ) representation/counting

(2, 2) H

(3, 3; 1, 1) ⊕ (3, 2; 4, 1) ⊕ (2, 3; 1, 4) ⊕ (2, 2; 4, 4) ⊕
9 + 6 · 4 + 6 · 4 + 4 · 16 +

(3, 1; 1, 5) ⊕ (1, 3; 5, 1) ⊕ (2, 1; 4, 5) ⊕ (1, 2; 5, 4) ⊕
3 · 5 + 3 · 5 + 2 · 20 + 2 · 20 +

(1, 1; 5, 5)
25 = 256

(2, 1) H

(3, 3; 1, 1) ⊕ (3, 2; 1, 2) ⊕ (2, 3; 4, 1) ⊕ (2, 2; 4, 2) ⊕
9 + 6 · 2 + 6 · 4 + 4 · 8 +

(1, 3; 5, 1) ⊕ (3, 1; 1, 1) ⊕ (1, 2; 5, 2) ⊕ (2, 1; 4, 1) ⊕
3 · 5 + 3 + 2 · 10 + 2 · 4 +

(1, 1; 5, 1)
5 = 128

(1, 1)
H

(3, 3; 1, 1) ⊕ (3, 2; 1, 2) ⊕ (2, 3; 2, 1) ⊕ (2, 2; 2, 2) ⊕
9 + 6 · 2 + 6 · 2 + 4 · 4 +

(1, 3; 1, 1) ⊕ (3, 1; 1, 1) ⊕ (1, 2; 1, 2) ⊕ (2, 1; 2, 1) ⊕
3 + 3 + 2 · 2 + 2 · 2 +

(1, 1; 1, 1)
1 = 64

V (2, 2; 1, 1) ⊕ (2, 1; 1, 2) ⊕ (1, 2; 2, 1) ⊕ (1, 1; 2, 2)
4 + 2 · 2 + 2 · 2 + 1 · 4 = 16

(2, 0)
H (3, 3; 1, 1) ⊕ (2, 3; 4, 1) ⊕ (1, 3; 5, 1)

9 + 6 · 4 + 3 · 5 = 48

T (3, 1; 1, 1) ⊕ (2, 1; 4, 1) ⊕ (1, 1; 5, 1)
3 + 2 · 4 + 5 = 16

(1, 0)

H (3, 3; 1, 1) ⊕ (2, 3; 2, 1) ⊕ (1, 3; 1, 1)
9 + 6 · 2 + 3 = 24

V (2, 2; 1, 1) ⊕ (1, 2; 2, 1)
4 + 2 · 2 = 8

T (3, 1; 1, 1) ⊕ (1, 2; 2, 1) ⊕ (1, 1; 1, 1)
3 + 2 · 2 + 1 = 8

Φ

(2, 1; 1, 1) ⊕ (1, 1; 2, 1)
2 + 1 · 2 = 2

(1, 2; 1, 1) ⊕ (1, 1; 2, 1)
2 + 1 · 2 = 2

Table B.2. This table summarizes the particle content of various six dimen-
sional supermultiplet. The first row gives the dimensionalities (m,n; m̃, ñ) of
representations of the little and R-symmetry group SU(2)× SU(2)×USp(2N )×
USp(2Ñ ). The second row counts the number of states.
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N = 0 + 0
Aµ ⊗ Aµ = hµν ⊕ φ⊕ φ
ψ+ ⊗ ψ− = φ
ψ− ⊗ ψ+ = φ

N = 1 + 0
VN=1 ⊗ Aµ = HN=1 ⊕ ΦN=1 ⊕ ΦN=1
ΦN=1 ⊗ ψ− = ΦN=1
ΦN=1 ⊗ ψ+ = ΦN=1

N = 2 + 0
VN=2 ⊗ Aµ = HN=2 ⊕ VN=2
ΦN=2 ⊗ ψ− = V N=2
ΦN=2 ⊗ ψ+ = VN=2

N = 1 + 1
VN=1 ⊗ VN=1 = HN=2 ⊕ ΦN=2 ⊕ ΦN=2
ΦN=1 ⊗ ΦN=1 = ΦN=2
ΦN=1 ⊗ ΦN=1 = ΦN=2

N = 4 + 0 VN=4 ⊗ Aµ = HN=4

N = 2 + 2
VN=2 ⊗ VN=2 = HN=4 ⊕ VN=4 ⊕ VN=4
ΦN=2 ⊗ ΦN=2 = VN=4
ΦN=2 ⊗ ΦN=2 = VN=4

N = 4 + 2 VN=4 ⊗ VN=2 = HN=6

N = 4 + 4 VN=4 ⊗ VN=4 = HN=8

Table B.3. This table summarizes the double copy construction for various
on-shell supermultiplets in N = 0, 1, 2, 4, 6, 8 supergravity in four dimensions.
For the notation of the various multiplets see chapter 4.
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N = (0, 0)⊗ (0, 0)

Aaȧ ⊗ Abḃ = habȧḃ ⊕Bab ⊕Bȧḃ ⊕ φ
χa ⊗ χ̃ȧ = Aaȧ
χ̃ȧ ⊗ χa = Aaȧ
χa ⊗ χb = Bab ⊕ φ
χ̃ȧ ⊗ χ̃ḃ = Bȧḃ ⊕ φ

N = (1, 0)⊗ (0, 0)

VN=(1,0) ⊗ Aaȧ = HN=(1,0) ⊕ TN=(1,0)
ΦN=(1,0) ⊗ χa = TN=(1,0)
ΦN=(1,0) ⊗ χ̃ȧ = VN=(1,0)
ΦN=(1,0) ⊗ χa = VN=(1,0)

N = (1, 0)⊗ (1, 0) VN=(1,0) ⊗ VN=(1,0) = HN=(2,0) ⊕ TN=(2,0)
ΦN=(1,0) ⊗ ΦN=(1,0) = TN=(2,0)

N = (1, 1)⊗ (0, 0) VN=(1,1) ⊗ Aaȧ = HN=(1,1)

N = (1, 0)⊗ (0, 1)
VN=(1,0) ⊗ VN=(0,1) = HN=(1,1)
ΦN=(1,0) ⊗ ΦN=(0,1) = VN=(1,1)
ΦN=(1,0) ⊗ ΦN=(0,1) = VN=(1,1)

N = (1, 1)⊗ (1, 0) VN=(1,1) ⊗ VN=(1,0) = HN=(2,1)

N = (1, 1)⊗ (1, 1) VN=(1,1) ⊗ VN=(1,1) = HN=(2,2)

Table B.4. This table summarizes the double copy construction for various on-
shell supermultiplets in N = (0, 0), (1, 0), (2, 0), (1, 1), (2, 1), (2, 2) supergravity
in six dimensions. For the notation of the various multiplets see chapter 4.
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