Minimizing Replay under Way-Prediction*

Ricardo Alves
Uppsala University
ricardo.alves @it.uu.se

Abstract— Way-predictors are effective at reducing dynamic
cache energy by reducing the number of ways accessed,
but introduce additional latency for incorrect way-predictions.
While previous work has studied the impact of the increased
latency for incorrect way-predictions, we show that the latency
variability has a far greater effect as it forces replay of in-
flight instructions on an incorrect way-prediction. To address
the problem, we propose a solution that learns the confidence of
the way-prediction and dynamically disables it when it is likely
to mispredict. We further improve this approach by biasing
the confidence to reduce latency variability further at the cost
of reduced way-predictions. Our results show that instruction
replay in a way-predictor reduces IPC by 6.9% due to 10%
of the instructions being replayed. Our confidence-based way-
predictor degrades IPC by only 2.9% by replaying just 3.4% of
the instructions, reducing way-predictor cache energy overhead
(compared to serial access cache) from 8.5% to 1.9%.

1. INTRODUCTION

Processors require low-latency first-level caches, which
often results in L1 cache designs wherein all ways are
probed in parallel to avoid the latency of serializing tag and
data accesses. However, this approach wastes a significant
amount of energy, as all but one of the probed ways is
wasted. A common solution to this problem is the use of
a way-predictor [2], [3], [4], [5], which attempts to predict
which way contains the data, and thereby avoid probing
unnecessary ways. On a way-misprediction, however, the
access latency increases, as the cache must be accessed a
second time for the correct way.

While way-predictors improve energy and latency, their
impact on instruction scheduling has been largely ignored.
This impact arises from the need to speculatively sched-
ule instructions in deep pipelines based on estimates of
when their source operands will be available [6], [7], [8].
Since way-predictors are typically quite accurate, instruc-
tion scheduling is based on the latency of a correct way-
prediction. However, when the way-predictor mispredicts,
all dependent in-flight instructions must be re-scheduled, or
replayed, such that they execute when the results of the

*Extension of Conference Paper This work is an extended version
of the paper presented at the 36th International Conference on Computer
Design[1]. We expand on the evaluation by including CPU pipelines
with varying issue-to-execute latencies, showing that instruction replay due
to way-mispredictions is worse on deeper pipelines, but it can still be
significant on shallower ones. This extension also shows that the original
proposed solution is beneficial on both shallow and deep pipelines. More-
over, we make the observation that instruction replay is more detrimental
to performance than higher load-to-use latency and propose an improved
solution that bias the predictor to avoid instruction replay. This new solution,
while increasing the prediction error, counter intuitively improves both IPC
and L1 dynamic energy compared to the original solution.

Stefanos Kaxiras
Uppsala University
stefanos.kaxiras @it.uu.se

David Black-Schaffer
Uppsala University
david.black-schaffer @it.uu.se

Ignoring Replays W Static Scheduling (Optimistic)
Static Scheduling (Pessimistic) ™ Dynamic Scheduling (This Work)

O|l |I Il B n II 1.

bzip2 h264ref
Worst Cases (Pessimistic)

— — n N W W
o (o] o (6] o o

IPC Degradation over Parallel Cache(%)
(&)}

__gemsfdtd hmmer sphinx3, , Geomean

Worst Cases (Optimistic)

Fig. 1: IPC impact (lower is better) of way-prediction ignoring
instruction replays, optimistically scheduling for correct
way-prediction, pessimistically scheduling to minimize replays,
and our dynamic approach. The chosen benchmarks show that
neither static option works well across all benchmarks.

mispredicted load are available. (See Figure 2.) The number
of instructions that must be replayed increases with both the
issue-to-execute delay (depth of the pipeline) and the pipeline
width (number of execution units). Instruction replay costs
energy (re-scheduling and re-issuing instructions) and hurts
performance (lost execution slots).

Load delay: 2 cycles
.

@’ Issue | Delay | Delay
2 |lIssue | Delay | Delay ‘
Source register(s) ready
Load delay: 4 cycles (misprediction)
@’ Issue | Delay
2

@ Load instruction
2 Load dependent instruction

Source register(s) not ready

Fig. 2: Speculatively scheduling of a load-dependent instruction
on a correct way-prediction (top) and on a way-misprediction,
which increase load latency (bottom).

When instruction replay is included, the impact of way-
mispredictions is much larger than previously reported. Fig-
ure 1 shows the performance degradation (IPC reduction)
normalized to a parallel access cache for way-prediction
when ignoring replays (blue bar) and when including replays
(red bar). Across SPEC2006 (Geomean), ignoring instruction
replays reports an average IPC loss of only 0.5% for way-

predictors, but if we include replays, the performance penalty
increases to 6.9%. Figure 1 further shows the effect of
scheduling assuming way-mispredictions (orange bar, Pes-
simistic) vs. scheduling assuming correct way-predictions
(red bar, Optimistic). Neither statically scheduling for correct
nor incorrect way-predictions works well across all bench-
marks, as we need to trade-off the increased latency of
scheduling for mispredictions with reduced replays.

We propose a mechanism to measure the confidence of the
way-prediction and use it to dynamically disable prediction
and schedule dependent instructions accordingly (purple bar,
Figure 1). This avoids the latency cost of scheduling for
mispredictions when the way-predictor is likely to be ac-
curate and avoids the cost of instruction replays when it is
not. As a result, we can reduce instruction replay without
hurting latency, while also reducing additional cache data
array probes, and thereby saving energy.

For a CPU with an issue-to-execute delay of 4 cycles,
our results show that a standard way-predictor causes an
average of 10% of issued instructions to be replayed (up
to 42.3%), resulting in a 9.6% loss of performance (up
to 23.2%), which is far greater than the 0.5% loss when
ignoring replays. Our solution only replays 3.4% of the
instructions (up to 13.2%) which degrades performance by
only 2.9% on average (up to 11.3%). Moreover, despite
decreasing prediction accuracy, our solution avoids enough
double-probes on mispredictions that it reduces the number
of extra cache data array probes, which further improves
cache energy efficiency. On the worst benchmark, a standard
way-predictor uses 33.8% more energy than a serial cache,
while our design uses only 4.8% more, as it disables the
way-prediction when it will be ineffective.

The contributions of this paper are:

o We present the first evaluation of the performance
impact of way-prediction considering instruction replay
on a multi-cycle issue pipeline.

« We identify scheduling variability of way-predictors as
a significant performance and efficiency problem that
has not been addressed by previous work.

« We demonstrate that even in short issue-to-execute delay
pipelines, instruction replay due to way-mispredictions
is more detrimental to performance than the load latency
increase.

« We propose a method to learn the accuracy of the way-
predictor and use it to dynamically disable prediction
and adjust instruction scheduling accordingly.

« We improve energy and performance compared to a
standard way-predictor by reducing both cache probes
and replayed instructions.

2. BACKGROUND

A. Way-Predictors

The most power-efficient cache design is to read the tags
and data serially, which allows the cache to probe only
the needed data way. This minimizes the total number of
bits read, thereby reducing energy, but comes at the cost of

increased latency compared to parallel access of the tags and
data [9].

Way-predictors [3], [4] address this problem by using a
prediction table in parallel with the tags to predict the correct
way and speculatively probe only that way. A simple and
effective strategy is to predict that the most-recently-used
(MRU) way of a set will be the next one used [10]. A way-
predictor misprediction increases latency and energy, as a
second access to the data array is required. However, after
the first access, the correct way (if any) is known from the
tag array lookup. With sufficiently high correct prediction
rates, way-predictors can achieve the latency of a parallel
cache and the energy efficiency of a serial cache.

B. Speculative Scheduling

Most processors today have significant issue-to-execute
delays due to pipelining. As a result, instruction scheduling
happens many cycles before execution. For instructions with
fixed latencies, the scheduler issues dependent instructions
the correct number of cycles after their producers [11],
[12]. However, in the case of load instructions, execution
latency is not deterministic, and deciding when to issue
dependent instructions is a challenge: issuing too late hurts
performance, while issuing too early may force instruction
replays if the data is not ready at the expected time. The
two main sources of this load-latency variability studied
in literature are cache misses [13], [14], [15] and bank
conflicts [15], [16].

Caches Misses. Load latency depends on where the data
is found in the memory hierarchy. Most schedulers assume
an L1 hit and schedule dependent instructions accordingly.
However, for workloads with low hit-ratios, this results in
many dependent instructions being replayed.

Hit predictors [13], [14], [15] can delay scheduling of
instructions when an L1 miss is predicted. However, these
solutions are not directly suitable for way-predictors as way-
predictor success rates may not be correlated with cache hits.
For example, libquantum is the SPEC2006 benchmark with
both the best way-predictor success ratio and the worst L1 hit
ratio. This problem is somewhat simpler for way-predictors
as the latency difference between a correct way-prediction
and a way-misprediction is static, unlike cache misses, which
may return data from anywhere in the memory hierarchy.
This means that the scheduler could deterministically account
for the way-misprediction latency by scheduling for the worst
case. Such a pessimistic approach would avoid replays, but
increase latency.

Bank Conflicts. Cache data arrays are divided in banks to
reduce latency and energy. This allows the cache to satisfy
simultaneous data requests to different banks. The frequency
of bank conflicts depends on the number of banks, the
data mapping, and the access pattern. Bank conflicts can be
addressed by conflict predictors [15], [16] and scheduling to
avoid simultaneous execution of non-critical loads [16].

Neither of these solutions are applicable to way-
misprediction since delaying the issuing of a way-
mispredicting load will still cause it to mispredict, just later
on in time, and therefore hurt performance further.

Frequency 2.5GHz
IssueWidth/LoadUnits/LQ/SQ/IQ/ROB 4/2/64/40/48/128
Caches L1I/L1D/L2/L3
Size 32kB/32kB/256kB/4MB
Latency lc/2¢/12¢/20c
Associativity 8w/8w/8w/16w
DRAM DDR3/1600MHz/64bits

TABLE 1: Simulation processor configuration. The
way-predictor is applied to the L1 data cache.

C. Instruction Replay

Speculative scheduling of instructions is necessary when
an instruction depends on an earlier instruction with a
variable latency. If the source is not available at the scheduled
time, the pipeline needs to cancel and replay the dependent
instructions. This can be done by either replaying the depen-
dent in-flight instructions (selective replay), or all in-flight
instructions (dependent and independent instructions alike)'.

Efficiently implementing selective replay is a challenge [6]
since the scheduler needs to keep track of all the in-flight
speculative instruction chains. Several strategies have been
proposed to address this, including foken-based selective
replay [6], wherein only a small number of in-flight instruc-
tions, those marked as likely to be misscheduled, are tracked
and replayed if needed. All other misscheduled instructions
need to be squashed and re-fetched. A second solution is
to place speculatively scheduled instructions in a recovery
buffer [17] such that the speculatively scheduled instructions
are easily found in the buffer on a misschedule. This design
can also be extended to replay only a particular misscheduled
instruction chain, reducing replays even further.

When it comes to industrial replay mechanisms, only the
Alpha 21264 [18] and the Pentium 4 [19] have any public
documentation. The Alpha 21264 replays all in-flight instruc-
tions when a misspeculation is detected, while Intel provides
no details. Perais et al. [16] identified replay queues [20] and
replay loops (similar to the Cyclone scheduler [11]) as two
possible implementations based on Intel patents.

3. SIMULATION ENVIRONMENT

We use the gemS5 [21] simulator in full-system mode with
10 uniformly-distributed checkpoints for each SPEC2006
benchmark. Checkpoints are warmed for 100M instructions,
followed by 10M instructions of detailed simulation.

CPU Model. We simulate a “medium” complexity out-
of-order CPU (128 ROB, 4 issue wide, see Table 1). This
represents a balance between a large out-of-order CPU (more
latency tolerant with a larger issue width, reducing the
performance benefit of a way-predictor but increasing replay
cost) and a small out-of-order CPU (where way-prediction
would have a larger impact on performance, but there would
be a lower cost of replay).

Cache Energy Model. We use a modified version of
Cacti [22] that does not assume a full cache-line readout

'A third alternative would be to squash and re-fetch misspeculated
instructions but that strategy is costly in energy and latency.

on each access to avoid overestimating the impact of way-
prediction [23]. Our modeled cache is banked with cache-
lines striped across multiple sub-arrays in groups of 64
bits to minimize dynamic energy on a parallel access. The
modeled parallel access 8-way L1 uses 3.7x more energy
than a serial access®. Additional structures such as the way-
prediction table and the confident measuring unit (discussed
in Section 5) are also modeled, but do not significantly
impact energy.

Replay Mechanism. We added instruction replay to the
gem5 simulator following the work of Perais et al. [16],
which is based on the Alpha 21264, i.e. all in-flight in-
structions are replayed. It is not clear if replayed instruc-
tions in the Alpha 21264 retain their IQ position or if a
recovery buffer is used. As we did not see any performance
degradation due to increased IQ pressure, we simply allow
speculative scheduled instructions to retain their 1Q entry for
re-scheduling on a replay.

Other Sources of Replay. To isolate and study the impact
of replays caused by way-mispredictions, we assume perfect
L1-hit prediction and perfect L1 bank conflict resolution.
This means we do not experience replays due to either L1
misses or bank conflicts. These assumptions are reasonable
given that both of these issues have been studied and solved
in prior work: Our experiments with a history-based hit-
predictor [15] shows an average accuracy of 94%, and
address-based solutions [13], [14] have even higher accuracy;
Bank conflict replays can be completely avoided by shifting
the issuing of loads with no performance degradation [16].
We do model replays and instruction squashes due to TLB
misses and branch mispredictions, but they have little impact
due to their rarity.

Way-Predictor. We model an MRU way-predictor using
a prediction table with one entry (3 bits) per cache set (full
coverage). This approach is based on previous work that
has shown that such small prediction tables can be paired
with fast address generation units (AGU) to allow access
either outside the critical path or without increasing it [24]. A
successful way-prediction therefore achieves the same load-
to-use latency as a parallel cache, while a way-misprediction
requires a second data array probe, which doubles the access
time.

4. IMPACT OF WAY-MISPREDICTIONS ON INSTRUCTION
REPLAY

Way-prediction has been considered an effective way to
reduce the dynamic energy of first-level caches since its high
prediction accuracy directly reduces dynamic energy (fewer
ways probed) while incorrect predictions have minimal im-
pact on performance. Figure 3 compares the success ratio of
an L1 data cache way-predictor with its performance impact
(normalized to a parallel access cache) ignoring replays.

2The difference between parallel and serial accesses to the 8-way cache
is not the expected 8x due to the more optimal cache-line striping [23] and
the larger relative overhead of the tags when only reading the minimum
amount of data bits instead of a full cache-line. Note that the difference
is also different than the one in [23] due to the striping of cache-lines in
groups of 64 bits instead of 32.

The average IPC degradation is 0.5%, peaking at 2.6% for
h264ref. H264ref is a load latency-sensitive benchmark, but
the way-predictor accuracy is high enough (90.6%) so as to
keep the IPC impact low. On the other hand, for latency-
insensitive benchmarks with low way-prediction accuracy,
such as gemsfdtd (51.7%), the IPC degradation is only 0.5%.

Way-Prediction Success

IPC Degradation (Ignoring Replays)

100 35
<) a0
80 S
570 25'c
5 60 20%
850 8
S 40 15§>
@30 100
20 5 a
10
0 0
5 QN XENQUX NG HFETcH LT AT 20X © ac
e g 82 ECEQEREESRCEPEREEEES
ZN Q3 5583 ©2EEF >0Q9c T
c88FOTE BEEOCE HE 2 " owmoEl X8¢
290w o) @ Cc
3 28 g tEogdce of g o og [olre]
S g o z 5 @ N ©
8 "’ 2 ©

Fig. 3: Way-prediction success ratio (higher is better) and its
effects on performance ignoring replays (IPC degradation, lower
is better) compared to a baseline parallel cache.

These results make way-predictors look promising, as
latency-sensitive benchmarks tend to have a high enough
way-prediction success ratio to not suffer from mispredic-
tions, while applications with many mispredictions are not
particularly latency-sensitive. However, these results ignore
the impact of instruction replay (e.g., they essentially assume
a pipeline with a O-cycle issue-to-execute delay), which is not
realistic for out-of-order processors.

When the penalty of instruction replay is included, way-
mispredictions not only increase the latency of loads, but
also affect the issue stage of the pipeline by forcing new
instructions to be delayed due to replayed instructions being
re-scheduled. This effect is shown in Figure 4, where we
see how the previous results (Ignoring-Replays) compare to
a realistic implementation with a 4 cycle issue-to-execute
delay, that optimistically schedules assuming a correct way-
prediction (Replay-Optimistic).

Ignoring-Replays ™ Replay-Optimistic " Replay-Pessimistic

35
.30
X
c 25
o
=
©
320
@
o
D15
=]
010
o
oAl il lr. I
FANEX=ENQQOTXNGF HED oo aT 2oxXxmotcac
I} = [S} E Q02
*‘°>),9'03‘“%0658LEQ@35E598559XEEEES
NFING oL D258 =02 D > 9090 C [cR]
mg.owt—“ug EoEgE P 5 cc 8_'58'-5*9 X3S E
3 %o S @mgg-c Q35 € 2 S
® > g © (0]
o =

Fig. 4: Perforamnce impact of including replay costs in
way-prediction performance analysis. Performance degradation
(over a baseline parallel access cache) for way-prediction with No
Replay and for an issue-to-execute-delay of 4 under Optimistic
and Pessimistic scheduling (lower is better).

The difference when taking into account replays is sub-

stantial. We see that the average IPC degradation for the
way-predictor is now 6.9%, which is significantly worse than
the 0.5% when ignoring replays. The difference is particular
evident in benchmarks with low way-prediction accuracy,
such as gemsfdtd, sphinx3 and hmmer (51.7%, 69.7% and
73.1%, respectively) where IPC degrades by 23.2%, 14.1%
and 23.1%, respectively. When we ignore replays, these
benchmarks are not affected by mispredictions, as they are
not sensitive to load latency. But when the cost of replay
is included, their high misprediction rates lead to significant
performance losses from instruction replay.

One can eliminate the need for replays by pessimisti-
cally scheduling dependent instructions assuming way-
mispredictions (Figure 4, Replay-Pessimistic). This will
eliminate the overhead for benchmarks with high way-
mispredictions ratios that are not latency-insensitive. How-
ever, this hurts benchmarks that are sensitive to load la-
tency (bzip2 and h264ref). For these benchmarks, the way-
predictor has a high success ratio (96% and 90.6%), and
the benchmarks benefit from the earlier scheduling of load-
dependent instructions. Overall, a pessimist scheduling strat-
egy produces even worse results and defeats the purpose of
way-prediction. From this point on we assume an optimistic
scheduling strategy for way-predictor designs.

We have shown that instruction replay due to way-
mispredictions has a far greater impact than the previously
reported by studies that only considered the latency increase
of re-probing the data arrays on way-mispredictions. This
effect is more pronounced for applications with low way-
prediction accuracy, as they suffer from more replays, but
even applications with high-prediction accuracy see signifi-
cantly more performance loss due to replays than re-probing.
While replays can be eliminated by statically scheduling
instructions for way-mispredictions, this approach hurts per-
formance significantly.

5. SELECTIVE WAY-PREDICTION

To avoid excessive replays without increasing latency, we
propose Selective Way-Prediction, which learns when the
way-predictor is likely to mispredict and schedules accord-
ingly. By doing so we can minimize replays without hurting
latency.

e fucee

-+ > >
+

@ 2| F P - -~ === === -
) % % 2x L1 data array access
/4 /4

(@) Delay/not delay dependent instructions
2 Enable/disable way-prediction in the cache
Only required if way-prediction is trusted
""" Only required if way-prediction is not trusted or way-misprediction

Fig. 5: An early way-predictor confidence measurement from the
confidence measuring unit (CMU) is used to control scheduling of
dependent instructions and to enable or disable way-prediction.

To predict when the way-predictor is likely to mispredict,
we add a confidence measuring unit (CMU in Figure 5)
that follows the same simple strategy proposed for branch

predictors [25]: The CMU is a table of saturating counters,
indexed by the least significant bits of the load PC, that
are incremented/decremented on a correct/incorrect way-
prediction. If the count is equal or greater than a threshold,
we deem the way-predictor accurate for that load, and thus
enable way-prediction and optimistically schedule dependent
instructions. Otherwise, the way-prediction is disabled and
load-dependent instructions are scheduled accordingly.

A. Scheduler and Cache Modifications

Depending on the confidence for a particular load, the
scheduler makes different scheduling decisions for the load’s
dependent instructions. This information allows the scheduler
to take advantage of the low load-to-use latency of high-
confidence (correct) way-predictions, while avoiding paying
the replay cost of overly-eager scheduling for unreliable way-
predictions. In addition, if the scheduler knows to avoid
immediately scheduling dependent instructions, it is likely to
find other instructions to schedule instead, thereby limiting
the performance impact further.

The confidence is also used to dynamically enable/disable
way-prediction. For low-confidence predictions we disable
the first (speculative) data access and wait for the tag results.
This avoids the extra data array probe on a misprediction,
which provides the energy-efficiency of a serial cache for
low-confidence loads. Alternatively, a performance-oriented
optimization could execute a parallel load on low-confidence
predictions to ensure low access latency at the cost of
increased energy. Simulations of this approach showed little
IPC benefit despite a 24% energy increase, even with a
perfect confidence prediction.

B. Confidence History Table

Our Confidence History Table is indexed by the instruction
PC, is not tagged, and has 256 entries, each holding 2-bit
counters. The confidence threshold is set 2, such that 2 or
more correct predictions in a row are deemed trustworthy. We
explored the impact of other history table sizes and counter
depths, and found little benefit to more than 256 entries (as
the L1 has 256 sets) or more than 2 bits of counter depth
(higher resolutions did not increase accuracy).

Since a modern CPU is capable of fetching, decoding
and issuing several instructions per cycle, the history table
needs to allow multiple accesses per cycle. The most obvious
solution would be to multi-port the table. Since the table has
256 entries with 2 bits per entry, the total size of the structure
is of 512 bits which is a reasonable size for multi-porting.
However, since the structure is directly mapped and load
instructions issued in the same cycle are likely to have small
PC differences, it should be possible to bank the table and
use an index function that will largely avoid bank conflicts
(e.g., banking on the least significant PC bits). A banked
structure will reduce the dynamic energy compared to a
multi-ported design. For this work, we assumed the use of
a multi-ported structure to store the history, which enables
arbitrary concurrent accesses.

Since the PC is available early in the pipeline, and the table
is indexed by the PC, we place the confidence history table

in the decode/rename stage. This means that the table can
be accessed in parallel with the decoding of the instruction,
allowing the instruction to be sent to the issue stage along
with its way-predictor confidence. As a result, the scheduler
and the cache both have early access to this information.
Placing the history table in the decode stage does have the
undesirable side-effect that all instructions (loads and other-
wise) access the table as they have not yet been decoded.
Since only the opcode is needed to determine if the history
table needs to be accessed, is reasonable to assume that we
can include a partial decode and disable history table access
for non-loads. Even if this is not the case, the extra accesses
to the table will affect the prediction, and will have a small
energy impact due to the very small size of the table.

6. EVALUATION

We evaluate the accuracy of Selective Way-Prediction and
its impact on instruction replay, performance, and cache
probes (energy). The results are presented for four config-
urations:

o« WayPred: a standard way-predictor where the sched-
uler optimistically assumes a correct way-prediction for
dependent instructions.

o Selective WayPred: a confidence history table is
used to disable way-prediction and delay schedul-
ing of dependent instructions for low-confidence way-
predictions.

« Biased Selective WayPred: the confidence history table
is biased to minimize errors due to incorrectly enabling
way-prediction (Sections 6-C and 6-D).

« Baseline (for performance results): a standard parallel
access cache. This provides the highest performance as
all hits are returned in the shortest time.

« Baseline (for energy results): a standard serial access
cache. This provides the lowest energy as there are never
any unnecessary data array probes. (This is used for
results presented in Section 6-F.)

A. Confidence Measure

If the confidence measure was perfect, selective way-
prediction would only disable way-prediction for incorrect
way-predictions, and not affect way-prediction accuracy.
However that is not the case and Figure 6 shows that selective
way-prediction reduces the average correct way-prediction
ratio from 86.6% to 83.7% across all benchmarks, with
the worst impact being a decrease of 7.8 percentage points
for sphinx3. To understand the impact on performance and
energy we must first look at the type of errors introduced.

The selective way-predictor strategy has two types of
errors:

e Incorrectly enabling way-prediction when it will mis-
predict the way. This causes instruction replays and
costs energy for a second data array probe.

o Incorrectly disabling way-prediction when it would
have correctly predict the way. This has the performance
cost of scheduling dependent instructions later, but does
not cost additional energy on data array probes nor does
it cause instruction replays.

100
90
80
70
60

£50
40
30
20
10

u WayPred

astar

DWAVES m——

bzip2

CaCIUSAAM _ —

dealii
gcc
gemsfdtd

calculix
gamess

NMMEY —

gobmk
gromacs
h264ref

DM —

leslie3d
libquantum

mcf

milc
namd
omnetpp

perl
povray

Selective WayPred M Biased Selective WayPred

xalan
zeusmp

Geomean

Fig. 6: Prediction success ratio of a standard Way-Predictor and
the proposed Selective Way-Predictor and Biased Selective
Way-Predictor. (higher is better).

B Selec Incorrectly Enable ® Selec Incorrectly Disable
M Bias Incorrectly Enable M Bias Incorrectly Disable

30
25
20
®15
10
0 Il I I _=I
2K XZ=Z 0D QOUX Q% & o O > x -
Eng:&moEE09®88E0=8Q5®9999§mEm
>S50 30085 ® o@P S €E a8 2388
L TN GO Oes5 TS Q= 3T 500c§ S 5
m;-ﬁwabg goEgE 5 cc gwgcee =
o 4(.43)0 > m@%_cc oS £ % &)8
g © 8 ° 5]

Fig. 7: Way-prediction errors caused by Selective Way-Prediction
(Selec) and Biased Selective Way-Prediction (Bias).

The breakdown of these errors is shown in Figure 7. The
light blue bars shows the number of incorrectly disabled
way-predictions, i.e., the accuracy difference shown in Fig-
ure 6. These errors affect performance for latency-sensitive
applications. The dark blue bars show the incorrectly enabled
way-predictions, which result in both extra energy, from an
additional data array probe, and instruction replay. In the
majority of the benchmarks the CMU accurately detects
where way-prediction will fail or succeed, which allows us
to correctly enable/disable way-prediction for 91.8% of the
loads.

B. Instruction Replay and Performance

Although selective way-prediction hurts way-prediction
accuracy, it substantially improves instruction scheduling
accuracy by detecting most mispredictions and minimiz-
ing instruction replays. Selective way-prediction can only
cause misscheduling on incorrectly enabling errors, while
a standard way-predictor can cause misscheduling on all
mispredictions. Figure 8 shows the percentage of replayed
instructions for a standard way-predictor compared to our
selective way-predictor. We see that many of the benchmarks
with the lowest way-prediction accuracies (gemsfdtd, hmmer,
sphinx3) generate very large numbers of instruction replays
(42.3%, 38.4%, 23.6%). Note that the lowest way-prediction
accuracy alone does not guarantee the most replays, since
the number of replayed instructions is a function of both

the number of in-flight instructions and the number of way-
mispredictions. Since selective way-prediction only causes
replays when it incorrectly enables way-prediction, the per-
centage of replayed instructions is reduced from 10% for
a standard way-predictor to 5.6%, on average, and the
benchmark with the largest replay ratio goes from gemsfdfd
with a 42.3% ratio, to cactusadm with a 16.3% ratio.

45 W WayPred Selective WayPred ™ Biased Selective WayPred
_40
IS
£35
B
ESO
825
o
@20
ke]
515
=4
%10
£
o} (A1 TR I|
o I Il a1 ikl
e = Q Q X DE 5 hsle) = x e}
E%%EéawogEOQGJESEO:E%QJ@?QQEEE%%
D N30 200 §STELPSEESFOSORES 5O
° 2 k)
©288g°E Z95RE g5 £2 8985° X3ZE&
3 go > @U’a.c-‘: Q35 IS Q 7 N
8 © g ° ©

Fig. 8: Ratio of instructions replayed to instructions issued with
an issue-to-execute delay of 4 (lower is better).

The performance impact of reducing the number of re-
played instructions is shown in Figure 9. For an issue-to-
execute delay of 4 (purple line), selective way-prediction
improves performance across the benchmark suit, but has
a more pronounced effect on benchmarks with a steep
reduction in instruction replays, such as gemsfdtd, hmmer,
and sphinx3. For these applications, IPC improves by 22.1%,
16.8% and 10.7%, respectively, compared to a standard
way-predictor. For applications where the confidence mea-
surement unit is unable to significantly reduce the number
of replays, such as cactusadm and [bm, the performance
improvement is minimal (1.2% and 0.4%). It is important
to note that benchmarks such as libquantum and milc have
little room for improvement as their way-prediction success
rates are very high (99.7% and 97.5%, Figure 3). Across all
benchmarks, selective way-prediction degrades performance
by 4.4% compared to a parallel cache, versus the 6.9%
degradation of a standard way-predictor.

C. Analyzing Performance: Latency vs Replay

Selective way-prediction causes a decrease in way-
prediction accuracy (potentially hurting performance), but
also reduces the number of misscheduled instructions and
replays (potentially improving performance and energy). To
understand the contribution of these two aspects to the overall
IPC, we conducted simulations with and without a replay
penalty (blue and purple lines in Figure 9, respectively).

In the configurations without replay (blue line), there is
no penalty for way-mispredictions aside from the increased
load latency. As expected, the standard way-predictor cache
performs best as it has the highest way-prediction accuracy
due to always predicting the way and we ignore replay
effects. That is, it does not suffer from incorrectly disable
errors, Figure 7.

Issue-to-Execute Delay = 0
1.6
1.4

1.2 {'—-

,,HFF""",_,_.%,_,_,/*

Issue-to-Execute Delay = 2 =% Issue-to-Execute Delay = 4 —#&—Issue-to-Execute Delay = 6

fl-l

(@)
£0.38 /" Rt

06 o = ey

0.4

0.2

0.0 g‘oD.D_ GC)'OD_D_ g‘oD_D_ CIC)UD_D. 8'00_0_ g‘oD.D_ GC)UD_D_ g'oD_D_ g‘oD.D_ GC)'DD_D_ g‘oD_D_ CICJUD_D. 8'00_0_ g‘oD.D_ GC)UD_D_
Rt Pt Pt Lt L L L Tt Lt Tt E Lt Lt Lt Lt Tt
2280 2280258082802580828025808280828025802280258082802280828 0
Cﬂg %Eﬂ; %m; %Eﬂg %CD; E%’CQ; %m; %m; E%Smg %m; [%Sm; %Eﬂg %CD; E%’CD; %m; %

P’ S e .] & NS (il 5 s o
5 & 9 o § N & o & N & @ 3 >
& > Q @ » > S $ & » & & @
& & S 5 O & N S P Q © A >
% & & & & & cg’é\ § § I S N

16

1.4

1.0 = = =

T F = - rrer

0.6

= =]]

0.4
Egii%D&_’iiﬁgiiﬁgiiﬁ&’ii%gii%D‘l_’iiﬁggiiﬁgii%&’i;%%ii%g;i%gii%gii%&’ii
SR R e e R e S e S e R S

& o

> L S\ 4+) Q >

Q O o ') &
\},bo &c‘} Y S e Q 04«‘?’) (,59 N (~\\<\+ & § N &,@ IS
& N Q 2 & K < v @

7

Fig. 9: Performance of the explored way-prediction strategies with varying issue-to-execute delay. (higher is better).

When replay is introduced (purple line, for an issue-to-
execute delay of 4), the trend is reversed, with the configu-
ration with more instruction replays (standard way-predictor)
showing the larger performance loss. (The effect of varying
the issue-to-execute delay is discussed in Section 6-E.) These
findings show that the misscheduling and replays introduced
by the standard way-predictor are more detrimental to per-
formance than the increase in average load latency (due to
incorrectly disabling errors) introduced by the selective way-
predictor.

These results suggest that it would be beneficial to bias
selective way-prediction to be more aggressive in avoiding
incorrectly enabling errors. Such a bias would further reduce
replays at the cost of an increase in latency due to additional
missed opportunities to hit in the predicted way (additional
incorrectly disabling errors). To explore this, we must change
the confidence measure to be less eager to trust the prediction
(a higher threshold or smaller increases in the confidence
counter on correct predictions) and/or increase the penalty for
mispredictions (a larger decrease in the confidence counter
on incorrect predictions).

Many combinations of these modifications can be used
to bias the confidence. We explored a range of options for
counter increments, decrements, and thresholds, and found
the best trade-off between decreasing incorrectly enabling
and increasing incorrectly disabling errors is to decrease the
confidence counter by two on a misprediction, increase by

one on a correct prediction, and only trust the prediction
when the two-bit counter is saturated. We use this configu-
ration for our biased selective way-predictor.

D. Biased Solution: Instruction Replay and Performance

Figure 7 shows the error for the biased selective way-
predictor (purple bars). The biased strategy is successful in
reducing instances of incorrectly enabling the way-predictor
across the benchmarks, with an average reduction from
5.6% to 2.9%. This reduction allows the biased selective
way-prediction to further reduce the percentage of replayed
instructions to 3.4% (Figure 8), an improvement over the
5.6% achieved by the non-biased approach. Benchmarks that
had the highest ratio of instruction replay previously, gamess,
omnetpp and zeusmp (15%, 12.2% and 11%) are further
reduced to 8.6%, 7.3% and 6.2%, respectively. Cactusadm
stands out as the benchmark with the worst ratio in both
configurations, but its replays are now reduced from 16.3%
to 13.2% with the bias (both significantly better than 18%
of a standard way-predictor).

However, the bias significantly increases the incorrectly
disabling errors from 2.6% to 12.6%, increasing the over-
all error. Despite this increase, the biased selective way-
predictor is able to improve performance on all benchmarks
(purple line, Figure 9) with the exception of /bm, where IPC
decreases by 1.2% compared to a standard way-predictor.
Benchmarks such as gemsfdtd, hmmer and sphinx3 see

IPC improvements of 26.8%, 20.1% and 12.8% over a
standard way-predictor (further improving on selective way-
prediction) since they are not latency sensitive and thus
benefit more from the reduction in incorrectly disable errors
than incorrectly enable errors. On the other hand, latency
sensitive benchmarks such as bzip2 and h264ref see only
modest improvements of 1.7% and 0.6% for the opposite
reason.

Overall, the biased selective way-predictor degrades IPC
by 2.9% compared to the baseline, improving on both the
standard way-predictor and selective way-predictor, which
degrade IPC by 6.9% and 4.4%, respectively.

E. Varying Issue-to-execute Delay

To provide a broader understanding of the interaction
between way-predictor scheduling variability and replay, we
vary the pipeline issue-to-execute delay from O to 6 cycles
(Figure 9). This models an increased pipeline depth (latency
between the issue and execute stages), which increases the
number of potential in-flight instructions that need to be
replayed. As a result the penalty from way-misprediction
replays increases as well. This is most pronounced for bench-
marks with high way-misprediction rates, the wost being
gemsfdtd, hmmer and sphinx3. The effect is smaller, but still
significant, even at relatively short issue-to-execute delays
of 2 cycles (green line). For such short pipelines, we still
see the standard way-predictor hurting the IPC of gemsfdtd
and hmmer by 15.2% and 16.8% respectively. Overall, the
standard way-predictor decreases IPC by 4.4%, 6.9% and
9.3% for pipelines with an issue-to-execute delay of 2, 4
and 6, respectively.

Due to the increase in in-flight instructions, selective way-
prediction is most beneficial for deeper pipelines (red line,
Figure 9). With shallower pipelines (green line), selective
way-prediction still manages to reduce the negative impact
of benchmarks with high misprediction ratios such gemsfdtd,
hmmer and sphinx3 from 15.2%, 16.8% and 9.3% to 3.7%,
7.3% and 3.4%, respectively. Biased selective way-prediction
improves the results even further by reducing the negative
IPC impact to 1.7%, 5.7% and 2.4% on those same bench-
marks. Overall, for a short issue-to-execute delay of 2 cycles,
selective way-predictor reduces IPC by 2.9% slightly worse
than a biased selective way-predictor (2.1%). These results
show that selective and biased selective way-predictors are
beneficial even on short pipelines.

F. Dynamic Energy Reduction

With selective way-prediction the data array is only probed
twice when the confidence measure incorrectly enables the
way-prediction instead of on all mispredictions. Figure 10
compares the total dynamic cache energy (including energy
from cache misses) of the way prediction strategies to the
baseline serial cache. The baseline serial cache will always
be the most energy efficient design as no extra probes are
ever required.

The benefit of selective way-prediction is most noticeable
on benchmarks with the highest way-misprediction ratios,
where selective way-prediction is able to detect and avoid

most of the way-mispredictions. The benchmarks gemsfdtd,
hmmer and sphinx3 have dynamic L1 energies for a selective
way prediction cache that are 4%, 3.9% and 3.1% higher than
a serial L1, which is a significant reduction from the 33.8%,
25% and 14.2% increases of the standard way-predictor.
On average, selective way-prediction reduces the energy
overhead from 8.5% to 3.7% and the worst benchmark
switches from being gemsfdtd at 33.8%, to gamess at 9.5%.

m WayPred Selective WayPred M Biased Selective WayPred

1.35
1.30
1.25
1.20
1.15
1.10

. | I | |||I I
100 | II.|||.|||..|.._||I||I--I.
= NeN] X = 0 O X) % s 5 O = > x C
E®QE=monEoQ‘DEggo=gg5mg®@<9§%g‘m
>S5 023 00D ETdFELYSE SaS g cCE>E
D ENQ3L 202 58I EL 0 2EEFFC5080E5 w52
C2oGECE 2EEQE GF g2 gwgss R3¢
2728 50dc 8§ £ > 83
5] (= @ o) > 5 [N ©
8 ® g ©

Fig. 10: Increases in dynamic energy compared to a serial access
cache (lower is better). This shows the ability of both the selective
and biased selective way-predictors to reduce cache dynamic
energy. These results include the energy of the way-prediction
table and confidence measuring unit. The results include the
energy of the way-prediction table and confidence measuring unit.

Adding a bias to the selective way-prediction allows us to
reduce the incorrectly enable errors from 5.6% to 3%, further
reducing the additional dynamic energy of way-prediction
from 3.7% to only 1.9%. The reduction in additional data
array probes not only further reduces the energy overhead of
gemsfdtd, hmmer and sphinx3 benchmarks (to 1.6%, 1.9%
and 1.4%), but also improves the overhead of gamess, the
non-biased worst benchmark (from 9.5% to 4.1%). This is
due to a reduction of incorrectly enable errors from 11.1%
to 4.9%. The worst benchmark is now sjeng with an energy
overhead of 4.8% over a serial cache, or 7x lower than the
benchmark with the worst overhead in the standard way-
predictor.

7. RELATED WORK

In addition to the standard way-prediction approaches
discussed earlier [2], [3], [4], [5], way-estimation tries to
determine where the data is through fast partial tag com-
parisons [26], [27] or bloom filters [28] to avoid probing
those ways. Such techniques try to identify the minimum
number of ways that require probing to guarantee a hit,
which is not necessarily one. This guarantee comes at the
cost of additional energy from probing multiple ways. Cache
decay[29] can also be considered a way-estimation technique
since it disables the probing of ways dynamically, but may
lead to an increase in cache misses.

We have also discussed two classes of strategies to handle
variability in instruction replay for cache bank conflicts [15],
[16] and L1 misses [13], [14], [15]. Bank conflict strategies
focus on delaying problematic loads to avoid causing the

conflict, and L1 miss strategies focus on delaying issu-
ing dependent instructions until the missing load is re-
solved. Unfortunately, neither are directly applicable to way-
misprediction. Delaying the issuing of way-mispredicting
loads, unlike bank conflicting loads, will still cause the load
to mispredict, increasing the way-misprediction penalty even
further. On the other hand, delaying the issuing of load-
dependent instructions when a way-misprediction is expected
is similar to the strategy for avoiding replays under cache
misses. However, way-mispredictions have two properties
that make them distinct from cache-misses: (1) the mispre-
diction latency penalty is small enough that the dependent
instruction still should be issued speculatively to minimise
the negative impact in IPC, instead of waiting until the load is
resolved as on cache-misses, and, (2) the way-misprediction
penalty is deterministic, unlike cache-misses, which makes
speculative scheduling of load-dependent instructions viable
and trivial on both correct and way-mispredictions.

8. CONCLUSIONS

We have shown that the previously unstudied effects of
instruction replay are the dominate performance concern
for way-predictors in out-of-order processors, far surpassing
the previously studied impact of increased latency from
mispredictions. We have shown that this effect is largest for
deep pipelines with longer issue-to-execute delays, but that
it is still quite significant for shorter pipelines.

To address this, we proposed the use of confidence mea-
suring to disable way-prediction and appropriately schedule
dependent instructions when a load is likely to mispredict.
This minimizes instruction replays and additional data array
probes caused by standard way-predictors, improving per-
formance and energy efficiency. We have shown that even
a simple confidence measure technique is accurate enough
to address the majority of the way-mispredictions without
unduly disabling the way-predictor when it is accurate.
We found that the increase in access latency due to way-
mispredictions has a smaller effect on overall performance
than replays, which allowed us to further improved the results
by biasing the confidence measure to avoid the predictions
that lead to replays, decreasing prediction accuracy, but
further improving performance and energy.

Overall Biased Selective Way-Prediction reduces the per-
formance penalty of a standard way-predictor from 6.9% to
2.9% by reducing the percentage of instruction replays from
10% to 2.9%. As a result, the additional dynamic energy of
a way-predictor over a serial cache is reduced from 8.5% to
1.9%.

REFERENCES

[1] R. Alves, S. Kaxiras, and D. Black-Schaffer, “Dynamically disabling
way-prediction to reduce instruction replay,” in 2018 IEEE 36th
International Conference on Computer Design (ICCD), pp. 140-143,
IEEE, 2018.

[2] B. Calder, D. Grunwald, and J. Emer, ‘“Predictive sequential associative
cache,” in High-Performance Computer Architecture, 1996. Proceed-
ings., Second International Symposium on, pp. 244-253, IEEE, 1996.

[3] R. E. Kessler, R. Jooss, A. Lebeck, and M. D. Hill, Inexpensive
implementations of set-associativity, vol. 17. ACM, 1989.

[4]

[5]

[7

—

[8

[t}

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-
associative cache for high performance and low energy consumption,”
in Proceedings of the 1999 international symposium on Low power
electronics and design, pp. 273-275, ACM, 1999.

M. D. Powell, A. Agarwal, T. Vijaykumar, B. Falsafi, and K. Roy, “Re-
ducing set-associative cache energy via way-prediction and selective
direct-mapping,” in Proceedings of the 34th annual ACM/IEEE inter-
national symposium on Microarchitecture, pp. 54—65, IEEE Computer
Society, 2001.

I. Kim and M. H. Lipasti, “Understanding scheduling replay schemes,”
in Software, IEE Proceedings-, pp. 198-209, IEEE, 2004.

S. Palacharla, N. P. Jouppi, and J. E. Smith, Complexity-effective
superscalar processors, vol. 25. ACM, 1997.

J. Stark, M. D. Brown, and Y. N. Patt, “On pipelining dynamic
instruction scheduling logic,” in Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture, pp. 57-66,
ACM, 2000.

J. H. Edmondson, P. I. Rubinfeld, P. J. Bannon, B. J. Benschneider,
D. Bernstein, R. W. Castelino, E. M. Cooper, D. E. Dever, D. R.
Donchin, T. C. Fischer, et al., “Internal organization of the alpha
21164, a 300-mhz 64-bit quad-issue cmos risc microprocessor,” Digital
Technical Journal, vol. 7, no. 1, p. 0, 1995.

K. So and R. N. Rechtschaffen, “Cache operations by mru change.,”
IEEE Trans. Computers, vol. 37, no. 6, pp. 700-709, 1988.

D. Ernst, A. Hamel, and T. Austin, “Cyclone: A broadcast-free
dynamic instruction scheduler with selective replay,” ACM SIGARCH
Computer Architecture News, vol. 31, no. 2, pp. 253-263, 2003.

P. Michaud and A. Seznec, “Data-flow prescheduling for large in-
struction windows in out-of-order processors,” in High-Performance
Computer Architecture, 2001. HPCA. The Seventh International Sym-
posium on, pp. 27-36, IEEE, 2001.

Y. Liu, A. Shayesteh, G. Memik, and G. Reinman, “Scaling the issue
window with look-ahead latency prediction,” in Proceedings of the
18th annual international conference on Supercomputing, pp. 217—
226, ACM, 2004.

G. Memik, G. Reinman, and W. H. Mangione-Smith, “Precise in-
struction scheduling,” Journal of Instruction-Level Parallelism, vol. 7,
pp. 1-29, 2005.

A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation techniques
for improving load related instruction scheduling,” in ACM SIGARCH
Computer Architecture News, vol. 27, pp. 42-53, IEEE Computer
Society, 1999.

A. Perais, A. Seznec, P. Michaud, A. Sembrant, and E. Hagersten,
“Cost-effective speculative scheduling in high performance proces-
sors,” in Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual
International Symposium on, pp. 247-259, 1EEE, 2015.

E. Morancho, J. M. Llaberia, and A. Olivé, “Recovery mechanism
for latency misprediction,” in Parallel Architectures and Compilation
Techniques, 2001. Proceedings. 2001 International Conference on,
pp- 118-128, IEEE, 2001.

R. E. Kessler, E. J. McLellan, and D. A. Webb, “The alpha 21264
microprocessor architecture,” in Computer Design: VLSI in Computers
and Processors, 1998. ICCD’98. Proceedings. International Confer-
ence on, pp. 90-95, IEEE, 1998.

G. Hinton, D. Sager, M. Upton, D. Boggs, et al., “The microarchi-
tecture of the pentium@®) 4 processor,” in Intel Technology Journal,
Citeseer, 2001.

A. A. Merchant, D. D. Boggs, and D. J. Sager, “Processor with a
replay system that includes a replay queue for improved throughput,”
Apr. 3 2007. US Patent 7,200,737.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al.,
“The gem5 simulator,” ACM SIGARCH Computer Architecture News,
vol. 39, no. 2, pp. 1-7, 2011.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP laboratories, pp. 22-31, 2009.

R. Alves, N. Nikoleris, S. Kaxiras, and D. Black-Schaffer, “Addressing
energy challenges in filter caches,” in Computer Architecture and
High Performance Computing (SBAC-PAD), 2017 29th International
Symposium on, pp. 49-56, IEEE, 2017.

D. Nicolaescu, B. Salamat, A. Veidenbaum, and M. Valero, “Fast
speculative address generation and way caching for reducing 11 data
cache energy,” in Computer Design, 2006. ICCD 2006. International
Conference on, pp. 101-107, IEEE, 2007.

J. E. Smith, “A study of branch prediction strategies,” in Proceedings

[26]

[27]

of the 8th annual symposium on Computer Architecture, pp. 135-148,
IEEE Computer Society Press, 1981.

C. Zhang, F. Vahid, J. Yang, and W. Najjar, “A way-halting cache
for low-energy high-performance systems,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 2, no. 1, pp. 34—
54, 2005.

D. Moreau, A. Bardizbanyan, M. Sjidlander, D. Whalley, and
P. Larsson-Edefors, “Practical way halting by speculatively accessing
halt tags,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2016, pp. 1375-1380, IEEE, 2016.

[28]

[29]

M. Ghosh, E. Ozer, S. Ford, S. Biles, and H.-H. S. Lee, “Way guard: a
segmented counting bloom filter approach to reducing energy for set-
associative caches,” in Proceedings of the 2009 ACM/IEEE interna-
tional symposium on Low power electronics and design, pp. 165-170,
ACM, 2009.

G. Keramidas, P. Xekalakis, and S. Kaxiras, “Applying decay to reduce
dynamic power in set-associative caches,” in International Conference
on High-Performance Embedded Architectures and Compilers, pp. 38—
53, Springer, 2007.

