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Abstract

Holonomic quantum gates are know to be resilient against classical errors in a set of parameters that
define its dynamics, though this might not translate to errors due to a quantum environment. For that reason
it is interesting to study how these gates behave under a quantum bath.

In particular, a recent paper has shown that under a dephasing noise it is possible to obtain assistance
from the environment, meaning the presence of a quantum environment can improve the implementation of
the gate [1].

In this work a one qubit holonomic quantum gate will be studied coupled to a bosonic environment. In
particular it will be shown that a damping noise can also result in an environment assisted implementation
of the gate.

Advisor: Erik Sjöqvist, Uppsala University
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1 Introduction

The idea of using properties of quantum mechanics to process information was proposed by Feynman
in his seminal paper [2]. About a decade later Shor’s algorithm was developed [3], which showed quantum
computers had an exponential gain for factorization, a very relevant problem in computation with daily applica-
tions especially in cryptography. This indicated that quantum computation could have significant applications.
Quantum information has already produced interesting protocols such as quantum cryptography (the idea
of using quantum mechanics to distribute an encryption key safely), but still, after so many years we have
not reached quantum supremacy, when quantum computers perform calculation which would be impossible
(practically speaking) on a classical computer.

In the same spirit as classical computation a discrete, or digital, language is currently used. The idea
is to implement a set of N two level systems, and with a finite number of gates Uγi(k) be able to arbitrarily
approximate a unitary with

∥∥∥U −
∏N

k=1 Uγi(k)
∥∥∥ ≤ ε. It turns out that three types of gates are enough to achieve

this task, which is know as universality [4].
Implementing a quantum computer ended up being a very daunting task, especially due to decoherence

and noise. Studying noise is a central theme in quantum information, especially because quantum systems
are in general a lot harder to screen from the environment compared to classical systems. For that reason
a series of protocols were created to tackle this problem, in particular error correction, which involves using
more qubits than ideally needed to fix errors.

In this project a type of quantum computation that has some in-built noise protection against classical
errors in a set of parameters that define its dynamics, known as holonomic quantum computation, will be
studied and described with interactions to a bosonic environment. This is motivated by the expectation that
the environment could assist in the implementation of the gate.

2 Holonomic quantum gates

2.1 Berry’s phase and Wilczek-Zee phase

Suppose a system evolves with a time dependent Hamiltonian. The Schrödinger equation for an eigen-
state will be given by

H(t)|n; t〉 = En(t)|n; t〉. (1)

For a general state the solution can be decomposed in eigenstates

|α; t〉 =
∑

n

cn(t)eiθn(t)|n; t〉 (2)

with ~ = 1 from now on and

θn(t) ≡ −
∫ t

0
En

(
t′
)

dt′, (3)

where the phase given by θn is called the dynamical phase, and will be useful later. Inputing this state in
Schrödinger’s equation results in ∑

n

eiθn(t) [ċn(t)|n; t〉 + cn(t)
d
dt
|n; t〉] = 0. (4)

Assuming that there is no degeneracy, looking at one particular amplitude in the eigenbasis gives

ċm(t) = −cm(t)〈m; t|
[

d
dt
|m; t〉

]
−

∑
n

cn(t)ei(θn−θm) 〈m; t|Ḣ|n; t〉
En − Em

. (5)

If the Hamiltonian evolves very slowly in time compared with the differences between energy levels, then the
second term can be neglected, which results in the solution

cn(t) = eiγn(t)cn(0),
γn(t) ≡ i

∫ t
0 〈n; t′|

[
d

dt′ |n; t′〉
]

dt′.
(6)

This extra phase is known as Berry’s phase [5]. This phase took many years to be considered relevant, in
particular because it was not clear if it could be measured. It was later discovered that it plays a major role in
cyclic time evolutions.
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If the Hamiltonian’s time dependence can be described by a vector of parameters R(t) which belong to a
smooth manifold, then the integrand in eq. 5, using the chain rule, can be rewritten as

i〈n; R|
[

d
dt
|n; R〉

]
= i〈n; R| ∇R|n; R〉 ·

dR
dt
≡ An(R) ·

dR
dt
. (7)

This allows the integral to be evaluated along a curve in parameter space by changing variables in the integral
in eq. 6:

γn(T ) = i
∫ T

0
An(R) ·

dR
dt

dt =

∫
C

An(R) · dR. (8)

If the time evolution is cyclic, with a period T (meaning R(0) = R(T )), then using Stokes’ theorem results in

γn(T ) =

∮
C

An(R) · dR =

∫
[∇R × An(R)] · da, (9)

where da is a vector of measures for each parameter.
The fact that the phase only depends on the total flux ∇R×An(R) indicates that this phase is robust against

random errors in R (for an illustration of this, see fig. 1 with an example where the parameter manifold is a
unit sphere).

Figure 1: Illustrative example of how random noise in the parameter space will not change the phase signifi-
cantly, since it only depends on the flux through the curve.

This vector field A is analogous to a vector potential when considering the transformation

|n; t〉 −→ eiδ(R)|n; t〉

An(R) −→ An(R) − ∇Rδ(R) (10)

which in turn implies the curl of A is analogous to a magnetic field.
Assuming the initial state belongs to a degenerate subspace, using the previous results one can conclude

that the system will stay in this as seen in eq. 6. Then the time evolution of the coefficient will have an extra
sum

ċm(t) = −
∑

n

cn(t)〈m; t|
[

d
dt
|n; t〉

]
≡ iMmn(t)cn(t). (11)

The solution for the vector of coefficients cm will now be a matrix exponential

cm(t) = T exp

i

t∫
0

dtMmn(t)

cn(0). (12)
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where T is the time ordering operator. It is also possible, using the chain rule again, to define a matrix vectors
potential analogous to eq. 7

Amn(R) = 〈m; R| ∇R|n; R〉 . (13)

This implies that a unitary is implemented in the subspace, given by

U(T ) = P exp
{

i
∫

C
Amn(R).dR

}
, (14)

where P is the path ordering. This unitary is also robust to noise if the curve described by R is closed for
the same reason as in the Berry’s phase case. The "phase" in the degenerate case is know as Wilzcek-Zee
phase [6].

In analogy to the gauge transformation in eq. 10, instead of a time dependent phase one can apply a time
dependent unitary to the degenerate subspace, which in turn implies the matrix A transforms as∣∣∣n′; t

〉
=Ω(t) |n; t〉

A′(t) =Ω̇Ω−1 + ΩAΩ−1 (15)

which is how gauge fields tranform. In particular, the holonomies are analogous to Wilson loops, which are
gauge invariant.

2.1.1 Adiabatic holonomic quantum gates

The protocol of generating a geometric phase in a cyclic evolution is know as a holonomy, in particular in
the degenerate case a non-Abelian holonomy, after all the resulting unitary matrices might not commute. In
this section a one-qubit quantum gate using only holonomies will be described.

In order to obtain a universal quantum computer a set of two one-qubit gates and one two-qubit gate is
necessary. In this project only one-qubit gates will be described, though it is also possible to obtain a two-qubit
gate using only non-Abelian holonomies as well.

Starting with a tripod system (see fig. 2) described by the Hamiltonian [7]

H = [|e〉 (Ω0 〈0 |+Ω1 〈1 |+Ωa〈a|) + h.c.] . (16)

This Hamiltonian has a doubly degenerate dark state (meaning they do not contain the exited state, |e〉)
subspace where the non-Abelian holonomy will be implemented.

Assuming the degenerate subspace is spanned by the vectors |D1〉 and |D2〉, A as in eq. 13 will be given
by

Ai j = 〈Di| ∇R|D j〉 (17)

and the resulting non-Abelian holonomy for a closed path

U(C) = P exp
{

i
∮

C
A(R) · dR

}
, (18)

where P is the path ordering operator.
As an example, if we parametrize Ω0 = Ω sin θ cos φ, Ω1 = Ω sin θ sin φ and Ωa = Ω cos θ, the degenerate

subspace will be spanned by |D1〉 = cos θ (cos φ|0〉+ sin φ |1〉)−sin θ |a〉 and |D2〉 = cos φ |1〉−sin φ |0〉, and each
component of the vector A will be given by

Aθ =

(
0 0
0 0

)
and Aφ = σy cos θ (19)

resulting in the holonomy

U(C) = exp
{

iσy

∮
C

cos θdφ
}
, (20)

where the path ordering is no longer needed, and the integral is simply the solid angle generated by the path
of θ and φ. Suppose the solid angle is π/4, then the implemented unitary will be

U(C) = exp
{
iπσy/4

}
=

1
√

2

(
1 1
−1 1

)
= H.X (21)

where H is the Hadamard gate and X is a bit flip.
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Figure 2: Energy level and couplings setup required for non-adiabatic and adiabatic (respectively a lambda
system and a tripod system) implementations of a one-qubit holonomic quantum gate [7].

To make sure the gate is implemented in the computational basis the parameters at the beginning of the
path can be chosen in such a way that the dark states are initially |0〉 and |1〉. One can show, with a different
choice of parameters, that another gate that, joined with this one, generate a universal one-qubit gate.

This approach can also be generalized by using a N + 2 level system, which in turn has a N dimensional
degenerate subspace where a non-Abelian holonomy can be implemented [8]. This could, for instance, be
used for a two-qubit gate.

2.2 Non-adiabatic holonomic quantum gates

Although holonomic quantum gates are robust against some errors, being adiabatic is a disadvantage if
one is interested in implementing a quantum gate since adiabaticity restricts how fast it can be implemented
and also exposes the system to the environment for, in some sense, a long time. For this reason the gate
described above is not easy to implement experimentally, though it has been done [9]. More recently a
non-adiabatic version, using only three energy levels was proposed, only requiring one dark state.

2.2.1 Non-adiabatic holonomies

The geometric and dynamical contribution to the dynamics can be separated by writing the time evolution
operator as

U(t) = T exp
{∫ t

0
i(A − K)dt

}
(22)

where the matrices A and K are given by

Aab = i 〈ψa|
d
dt
|ψb〉 and Kab = 〈ψa|H |ψb〉 , (23)

and |ψa(t)〉 is an orthonormal basis.
The interpretation of A as a geometrical comes from the fact that it does not depend on the Hamiltonian,

but only in geometrical properties of the Hilbert space [10]. With this in mind a non-adiabatic holonomic
quantum gate can be implemented by finding a process and a Hamiltonian with Kab = 0 for all t, then, with a
cyclic evolution, a similar robustness to error as in the adiabatic case should be expected.

It is interesting to note that this matrix also has the same gauge structure as the adiabatic case, with a
unitary Ω taking one basis to the other, the geometric and dynamical contributions transform as

A→ iΩ†Ω̂ + Ω†AΩ and K → Ω†KΩ. (24)
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2.2.2 Zero detuning implementation

One possible way to implement a non-adiabatic quantum gate is to start with the Hamiltonian [11]

H(t) = Ω(t) (ω0|e〉 〈0 |+ω1| e〉 〈1| + h.c.) (25)

with |ω0|
2 + |ω1|

2 = 1, which has a dark state |d〉 = −ω1|0〉 + ω0|1〉 and a bright one |b〉 = ω∗0|0〉 + ω∗1|1〉. The
Hamiltonian can then be rewritten as

H(t) = Ω(t)(|e〉〈b| + h.c.)→ Ω(t)τx (26)

which is simply a Rabi oscillation of a qubit spanned by {|e〉 , |b〉}, with τx being the Pauli operator in the e-b
subspace. In this basis the time evolution operator is given by

U(t) = exp

−iτx

t∫
0

dtΩ(t)

. (27)

By choosing
∫ t

0 dtΩ(t) = π the resulting gates simply does the operation |b〉 → − |b〉 , |e〉 → − |e〉 and |d〉 →
|d〉. In order to figure out what unitary will be implemented in the computational basis one can interpret this
operation as a σz applied to the basis |d〉 and |b〉. Using the parametrization ω0 = sin(θ/2)eiφ,ω1 = − cos(θ/2),
which in turn defines a unit vector n = {sin θ sin φ, sin θ cos φ, cos θ} one can then define a change of basis
matrix

exp
{
in.~σ

π

2

} (
|1〉
|0〉

)
=

(
|b〉
|d〉

)
, (28)

which implies

σz → exp
{
−in.~σ

π

2

}
.σz. exp

{
in.~σ

π

2

}
= n.~σ (29)

in the computational basis. This can be seen as a purely geometric evolution since the dynamical phase ,
given by 〈ψk(t) |H(t)|ψl(t)〉 = 〈k |H(t)| l〉 (because [U(t),H] = 0, for all t) is zero throughout the evolution. The
unitary holonomy in eq. 29 are traceless, but it is possible to implement a general unitary by using two gates,
with U(C) = U (Cm) U (Cn) = n ·m − iσ · (n ×m).

2.2.3 Single-shot realization

Performing two gates can be a problem since the system will be exposed to the environment for twice
the time. For that reason a single-shot implementation would be interesting. It turns out to be possible to
implement a geometric gate as long as one has a controllable detuning, and it has even been experimentally
implemented in Xmon qutrits [12]. The single shot implementation is done with the Hamiltonian

H(t) = Ω(t) sinα|e〉〈e| +
1
2

Ω(t) cosα(|e〉〈b| + |b〉〈e|) (30)

with ∫ τ

0

Ω(t)
2

dt = π, (31)

which generate a time evolution operator U(τ) = |d〉〈d|+e−iπ(1+sinα)|b〉〈b
∣∣∣+e−iπ(1+sinα)|e

〉
〈e|, that can be projected

in the qubit subspace resulting on the universal single qubit gate UL(τ) = e−iγn·σ/2, with γ = 1 + sinα.

3 Physical model for non-adiabatic quantum gate

This section is dedicated to deriving a physically reasonable master equation where the quantum gate
can be implemented, using Redfield’s equation. To justify the use of this equation the Nakajima-Zwanzig
projection operator method will be derived. Some authors choose to justify Redfield’s equation with a series of
approximations that are not obvious, but using Nakajima-Zwanzig, though cumbersome, makes the equation
obtainable with few and reasonable approximations. It is also a powerful tool to derive master equations, in
particular non-Markovian ones, with a variety of approximations.
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3.1 Introduction to density matrix theory

Density matrices are a powerful tool to describe loss of information to the environment. By definition, they
allow description of quantum states with a classical ignorance, by adding a classical probability to a quantum
state. They are defined as positive matrices with unit trace, and can be written as

ρ =
∑

i

pi |ψi〉〈ψi| , (32)

where pi are probabilities. It is easy to see that averages of operators can be calculated with 〈A〉 = tr
[
Aρ

]
,

and that a unitary time evolution is given by ρ̇ = −i[ρ,H], known as the von-Neumann equation.
Density matrices also appear naturally when considering subsystems. For example, take two entangled

qubits in the state (|00〉 + |11〉)/
√

2. If one only measures one of the qubits in any basis the two possible
outcomes will have equal probabilities, meaning this cannot be a pure state. Instead it can be described by
the density matrix

ρ = I/2, (33)

which is basis independent, and also correctly describes the 50-50 probabilities in all basis.
One key concept in density matrix theory is an entropic quantity called purity, defined as P[ρ] = tr

[
ρ2

]
,

and is 1 if the state is pure and minimal if the state is maximally mixed. Incidentally this is a measure of how
entangled the subsystem is to the other part (assuming the composite state is pure), as in the example above,
a maximally entangled state resulted in a maximally mixed subsystem, with purity 1/2.

Just like a subsystem cannot necessarily be described by a pure state, its evolution cannot necessarily be
described by a unitary operator. Instead it is a general evolution that takes positive matrices with unit trace to
positive matrices with unit trace, know as Completely-Positive-Trace-Preserving(CPTP) maps.

A positive map takes positive matrices to positive matrices, but this is not enough for a map to be physically
acceptable. Complete positivity implies not only that a map M is positive, but M ⊗ I is also positive, where I is
the identity in any dimension. This is necessary since the map M ⊗ I is simply applying M and doing nothing
in an arbitrary system, which should still be positive.

3.2 General method for deriving a master equation

Suppose [13] a system interacts with another via HI , with a parameter α. The von-Neumann equation in
the interaction picture will be

∂

∂t
ρ(t) = −iα

[
HI(t), ρ(t)

]
≡ αL(t)ρ(t). (34)

A central concept in open quantum systems is of a system interacting with a “large” bath, that is only
slightly perturbed when they interact. With this in mind it is possible to define a set of projection super-
operators

ρ 7→ Pρ = trB{ρ} ⊗ ρB ≡ ρS ⊗ ρB,

Qρ = ρ − Pρ, (35)

that are projections because of the properties

P + Q = I,

P2 = P,

Q2 = Q,

PQ = QP = 0.

(36)

These projectors capture the idea that the bath is almost in the thermal state, so in order to derive an equation
for the reduced system assuming the bath is in the thermal state is a good starting point. Of course the full
state is not really ρS ⊗ ρB, after all if that were the case the system would not be entangled with the bath,
implying it would always be pure, which would not properly thermalize.

Each projection will follow the equations of motion

∂

∂t
Pρ(t) = P

∂

∂t
ρ(t) = αPL(t)ρ(t) = αPL(t)Pρ(t) + αPL(t)Qρ(t),

∂

∂t
Qρ(t) = Q

∂

∂t
ρ(t) = αQL(t)ρ(t) = αQL(t)Pρ(t) + αQL(t)Qρ(t),

(37)
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where in the last step the identity I = P+Q was inserted. Since the objective is to describe the evolution of ρS ,
the projection from Q does not really need a detailed solution, instead one can formally solve it by introducing
a Green’s function

Qρ(t) = G (t, t0)Qρ (t0) + α

∫ t

t0
dsG(t, s)QL(s)Pρ(s), (38)

where

G(t, s) ≡ T exp
[
α

∫ t

s
ds′QL

(
s′
)]

(39)

and T is a time ordering operator. The Green’s function satisfies the equation

∂

∂t
G(t, s) = αQL(t)G(t, s). (40)

Inserting this formal solution in the P part results in what is known as Nakajima-Zwanzing equation.

∂

∂t
Pρ(t) =αPL(t)G (t, t0)Qρ (t0) + αPL(t)Pρ(t)

+ α2
∫ t

t0
dsPL(t)G(t, s)QL(s)Pρ(s).

(41)

Assuming the initial condition is factorized, meaning ρ(0) = ρS (0) ⊗ ρB(0), the first term in eq. 41 is zero,
becauseQρS (0)⊗ρB(0) = 0. This equation is not particularly easy to solve, especially because it has a memory
kernel K(t, s) ≡ α2PL(t)G(t, s)QL(s)P. Under weak coupling it can be simplified by expanding the Green’s
function and truncating the expression at order α2, which can be done by substituting G(t, s) = 1 + O(α),
resulting in the equation

∂

∂t
Pρ(t) = αPL(t)Pρ(t) + α2

∫ t

t0
dsPL(t)QL(s)Pρ(s). (42)

Finally, using the explicit definition of the projection operator one arrives at the equation

∂

∂t
ρS (t) = −iα trB[HI(t), ρS (t) ⊗ ρB] − α2

∫ t

t0
ds trB

[
HI(t),

[
HI(s), ρS (s) ⊗ ρB

]]
. (43)

One term was omitted in order to simplify the results. Though it is not easy to justify removing the term this
equation is commonly used(see ref. [14]). This equation is also not easy to solve because it is an integro-
differential equation. It is possible to show that under weak coupling approximation substituting ρS (s)→ ρS (t)
in the integral generates errors of the same order in the interaction, but to do so is not trivial. Instead this
substitution is sometimes called the Markov approximation, even though it does not lead to a Markovian
equation either, nor really is an approximation. It does result in a local in time equation, which is viable to
solve, known as the Redfield equation

∂

∂t
ρS (t) = −iα trB[HI(t), ρS (t) ⊗ ρB] − α2

∫ t

t0
ds trB

[
HI(t),

[
HI(s), ρS (t) ⊗ ρB

]]
. (44)

These weak coupling equations have the downside that if the approximations are not true the resulting map
can be negative, meaning the resulting density matrix could have negative eigenvalues.

3.3 Lambda system in an optical cavity

The setup chosen to derive a physically reasonable equation to describe the non-adiabatic quantum gate
will be of an atom in a cavity. Cavity environments are a way experimentalists control how the electromagnetic
field behaves when coupling to a system. In particular it has a frequency ωc and only allows dynamics with
frequencies near resonance, allowing the atom to be approximated to have only a few levels. The interaction
of an atom to the electromagnetic field is usually described by [15]

H = HA + HE − er · E (45)

where HA (HE) is the atom’s (field’s) Hamiltonian. The field Hamiltonian is given by a collection of harmonic
oscilators

HE =
∑

k

vk

(
a†kak +

1
2

)
(46)
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and the field interacts with the atom through its displacement operator

E =
∑

k

ε̂kEk
(
ak + a†k

)
, (47)

where ε̂kEk are the interaction for different polarizations. The dipole operator can be decomposed in the
atom’s eigenbasis with the identity

∑
i |i〉〈i| = I

er =
∑
i, j

e|i〉〈i|r| j〉〈 j| ≡
∑
i, j

γi jσi j (48)

where γi j = 〈i| r | j〉 and σi j = |i〉〈 j|, resulting in the Hamiltonian

H =
∑

k

vka†kak +
∑

i

Elσii +
∑

iJ

∑
k

gi j
kσi j

(
ak + a†k

)
(49)

with the coupling gi j
k = −γi jε̂kEk.

1

2

3

4

5

6

7

8

9

Figure 3: The system starts with a bare lambda hamiltonian coupled to a bosonic environment and after
tracing out ends up with interactions between energy levels and dissipative photon emissions.

The quantum gate will be implemented in a Lambda system coupled to a bosonic bath through a dipolar
interaction, assuming the atom only has three relevant levels. The Hamiltonians of the system and interaction
will be given by

H = HΛ + HI + HE (50)

HΛ =

δ 0 0
0 0 0
0 0 0

 (51)

HI =
∑
k,i

(|e〉〈i| + |i〉〈e|) ⊗ (γka†k,i + γ∗kak,i) (52)

where i is the index for different polarizations of the bath and also for the qubit subspace of the Hamiltonian.
If the problem was a two level atom there would be an exact solution to the dynamics, but instead the

master equation will be derived under weak coupling, using eq. 44. Ignoring the first term for now leads to

ρ̇(t) = − trE


t∫

0

dt′[HI(t), [HI(t′), ρ(t) ⊗ ρth]]

 , (53)

where the environment is assumed to be in a thermal state. In that case the ignored term would be exactly
zero, though later the bath’s state will have a coherent state added. Changing variables in eq 53 from t′ to
t − t′ results in

ρ̇(t) = − trE


t∫

0

dt′[HI(t), [HI(t − t′), ρ(t) ⊗ ρth]]

 (54)

and expanding the commutators,
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ρ̇(t) = − trE


t∫

0

dt′
(
HI(t)HI(t − t′)ρ(t) ⊗ ρth − HI(t − t′)ρ(t) ⊗ ρthHI(t)

)
+ h.c.

 . (55)

This equation is in the interaction picture, so it is convenient to decompose the interaction in eigenoperators
defined in the Schrödinger picture by the commutation relation

[H0, S (ω)] = ωS (ω) =⇒ S I(ω, t) = exp{iωt}S (ω), (56)

which implies S (ω) = S (−ω)†. In particular, for the proposed physical system the interaction is already
decomposed in eigenoperators with ω = δ (−δ) being the eigenvalue for the eigenoperator |e〉〈i| (|i〉〈e|).

For finite systems the eigenoperators are very easy to find. First note that the eigenoperators and their
eigenvalues will be given by

∣∣∣λi

〉〈
λ j

∣∣∣, with ωi j = λi − λk. To obtain an operator decomposition just insert two
identities as

A =
∑
i,k

|λi〉〈λi| A |λk〉〈λk | =
∑
i,k

(〈λi| A |λk〉) |λi〉〈λk | (57)

The next step is to decompose the interaction in eigenoperators. Due to the propriety S (ω) = S (−ω)†

and the fact that the sum runs over all omega the decomposition is made such that one of the interactions is
conjugate transposed and the other is not. This has two advantages: it makes the secular approximation a
lot more convenient; it makes obtaining a Lindblad equation easier. In particular the polarization of light will
be ignored, as the two channels simply do not couple, this derivation will be of only one of them. Defining
E(t) =

∑
k(γ∗kak + γka†k)

ρ̇(t) = − trE

{∑
ω,ω′

t∫
0

dt′
(
S †(ω′(t))S (ω(t − t′))ρ ⊗ E†(t)E(t − t′)ρth+

−S (ω(t − t′))ρS †(ω′(t)) ⊗ E(t − t′)ρthE†(t)
)

+ h.c.
}
, (58)

using the time dependence of the eigenoperators and joining the terms which belong to each Hilbert space
from the system and bath,

ρ̇(t) =
∑
ω,ω′

t∫
0

dt′ exp
{
i(ω′ − ω)t

}
exp

{
iω(t′)

}(
S †(ω′)ρS (ω) tr

{
E(t − t′)ρthE†(t)

}
+

−S †(ω′)S (ω)ρ tr
{
E†(t)E(t − t′)ρth

} )
+ h.c., (59)

results in
ρ̇(t) =

∑
ω,ω′

Γ(t) exp
{
i(ω′ − ω)t

}(
S (ω′)ρS †(ω) − S †(ω)S (ω′)ρ

)
+ h.c., (60)

where

Γ(t) =

t∫
0

dt′ exp
{
iωt′

}
tr

{
E†(t)E(t − t′)ρth

}
. (61)

At this point it is necessary to state what the bath looks like in order to calculate the trace in the last
expression. If the bath is a at zero temperature the trace becomes

tr
{
E†(t)E(t − t′)ρth

}
=

∑
k,k′

exp{−iωkt} exp
{
iω′k(t − t′)

}
γkγ

∗
k′
〈
aka†k′

〉
=

∫ ∞

0
dνJ(ν) exp

{
−iνt′

}
. (62)

To get a simpler equation one can perform the secular approximation, which assumes that cross terms be-
tween ω’s oscillate fast and can be smoothed out, to get the equation:

ρ̇(t) =
∑
ω

Γ(t)
(
S (ω)ρS †(ω) − S †(ω)S (ω)ρ

)
+ h.c. (63)

One can further simplify this equation by separating Γ in real γ and imaginary λ terms, resulting in the equation

d
dt
ρ(t) = −i

[
HLS , ρ(t)

]
+D (ρ(t), S (ω)) , (64)

10



where
HLS =

∑
ω

λ(t)S †(ω)S (ω) (65)

and

D(ρ, S (ω)) =
∑
ω

γ(t)
(
S (ω)ρS †(ω) −

1
2

{
S †(ω)S (ω), ρ

})
. (66)

Since the physical system is supposed to be a cavity, its spectral density J will be given by a sharp
Lorentzian, which allows Γ to be evaluated analytically. It also allows one extra approximation, that only near-
resonant terms contribute to the dynamics, which leaves only two terms, one for each channel. A Lorentzian
has two parameters

J(ν) =
α2

π

Γ/2
(ν − ωc)2 + (Γ/2)2 (67)

a resonant frequency ωc and its sharpness Γ (α is just the bath’s coupling constant). If Γ << ωc then the
integral in eq. 62 can be taken from −∞ to ∞, which is unphysical because it considers negative frequency
modes, but mathematically sound since the spectral density is small in the region where the frequency is
negative. This in turn results in

Γ(t) =

t∫
0

dt′
∞∫
−∞

dνJ(ν) exp
{
−i(ν − ω)t′

}
=

t∫
0

dt′
∞∫
−∞

dν
α2

π

Γ/2
(ν − (ωc − ω))2 + (Γ/2)2 exp

{
−iνt′

}
(68)

The integral in ν is just a Fourier transform of a Lorentzian, and is given by

Fν

[
1
π

Γ/2
(ν − ω0)2 + (Γ/2)

]
(s) = exp {−2πisω0 − Γπ|s|} (69)

and the time integral can also be evaluated analytically. Instead of including the results a brief description will
be given. Both real and imaginary parts of Γ(t) are a combination of an oscillating sine term(with phases) with
frequency ω−ωc multiplied by a decreasing exponential. They both also have a constant term. This indicates
that for long periods of time both terms become constants, which is know as the Markovian limit. In figure 4
we can observe the behavior of γ and λ with somewhat arbitrary parameters.
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Figure 4: Real and imaginary part of Γ(t), with arbitrary parameters, showing both their convergence and the
negativity of the real part, which implies non-Markovianity.

λ is always positive, and there is not anything interesting in its behavior. γ is sometimes negative. This
negativity has major implication in the physics involved. It can be shown that equations in the form of eq.
64 generate Markovian (divisible) maps if γ is always positive. When it is negative the system can recover
coherence lost to the bath, and the evolution is non-Markovian.
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Finally, by setting a resonant mode (with the same frequency as the channel) to a coherent state a laser
Hamiltonian is obtained from the term that was ignored in eq. 53

HL = (αLS (ω) + α∗LS †(ω)) (70)

where the constant αL depends on the displacement of the coherent state and constants related to the cou-
pling to the mode.

4 Environment assisted implementation

One of the main problems related to the non-adiabatic holonomic quantum gate described in this project
is that the qubit couples to an excited state. This means that when noise or parametric errors are added there
is a chance that the non-qubit level is occupied in the end of the implementation. Since the zero temperature
environment proposed above causes decay from the exited state to the qubit subspace it seems reasonable
to believe that it could be used to fix errors.

In this section the traceless version of the holonomic quantum gate will be implemented using square
pulses with a gaussian noise in the pulse time. This imposes a smaller than 1 fidelity even when uncoupled
to the environment.

4.1 Initial states and pulse error

The gate fidelity will be averaged out on random initial states uniformly distributed on the Bloch sphere.
The random unit vector that describes the state can be obtained by generating three normally distributed
numbers defining a vector and then normalizing it [16]. A square pulse will be implemented with a runtime
of π plus a gaussian noise with some arbitrary variance, which will result in a lower than 1 fidelity even when
uncoupled to the environment.

4.2 Master equation

The X gate was arbitrarily chosen for illustration purposes.The master equation in the interaction picture
to implement an X gate is

ρ̇ = −i[HL, ρ] − iλ(t)[HLS , ρ] + γ(t)(D(ρ, |0〉〈e|) +D(ρ, |1〉〈e|)) (71)

with

HL =


0 1

√
2
− 1
√

2
1
√

2
0 0

− 1
√

2
0 0

 (72)

The Lamb-shift term will be ignored since it can be effectively removed in a rotating frame and tuning the
laser properly.

4.3 Markovian limit noise

In the markovian limit it is assumed that the system’s dynamics is so much slower than the bath’s that
the time integral in eq. 68 can be approximated as having a limit in infinite time. This can be shown to
generate a time evolution that forms a semi-group, which is the definition of a Markovian evolution in quantum
mechanics [13]. Markovianity plays a central role in open quantum systems, in particular because there are
theorems that guarantee CPTP in very general and well understood situations.

The resulting master equation will be

ρ̇ = −i[HL, ρ] + γ(∞)(D(ρ, |0〉〈e|) +D(ρ, |1〉〈e|)) (73)

In fig. 5 the average fidelity F is plotted as a function to the coupling to the environment γ(∞) ≡ γ. In this
case the environment will always harm the fidelity.
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Figure 5: Average fidelities for an X gate coupled to a markovian environment

4.4 Including a relaxation time

A possible way of using the environment to increase the fidelity is to leave the system in the environment
for it to be projected in the qubit subspace for a relaxation time ("R") after the implementation of the gate. In a
practical implementation this would have drawbacks since there usually are more sources of noises such as
dephasing. For that reason it is interesting to look at different finite relaxation times, such as in fig 6.
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Figure 6: Average fidelities for an X gate coupled to a Markovian environment with diferent relaxation times
R.

This result is interesting because the gate becomes more accurate with the environment than without it,
which is known as environmental assistance. There is a competition between the environment reducing the
fidelity during the implementation but also helping it by projecting in the qubit subspace during the relaxation,
which generates an optimal coupling strength. If the interaction is very weak then the implementation is
optimal, but the necessary relaxation time to allow assistance becomes large. On the other hand if the
interaction is too strong then no relaxation time is able to provide assistance since the fidelity during the
implementation becomes too low.
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5 Conclusion and future perspectives

An overview on holonomic quantum computation and open quantum systems was made. It was shown
that a Markovian environment could assist in the implementation of a non-adiabatic holonomic quantum gate
by addressing a relevant cause of errors due to the population of the exited state.

We believe that this protocol could be further improved if more properties such as non-Markovianity (neg-
ativity of the damping coefficient) are considered (see fig. 7), though there are technical problems involving
non-Markovianity and weak coupling derivations, such as the lack of strong non-Markovianity, which is the
case where there is a back-flow of information from the bath to the system.

Other possible approaches could involve simpler interactions to the environment, such as a |e〉〈b| coupling
with the intent to obtain exact solutions, or more abstract models for the bath, such as collisional models.
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Figure 7: Illustration of the protocol, where the X gate in implemented when the evolution is non-Markovian
and then left to decay into the qubit subspace in the Markovian regime.
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