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a b s t r a c t 

We propose a DVC technique that is based on higher-order finite-element discretization of the displace- 

ment field and a global optimization procedure. We use curvature penalization to suppress non-physical 

fluctuations of the displacement field and resulting erroneous strain concentrations. The performance of 

the proposed method is compared to the commercial code Avizo using trabecular bone images and found 

to perform slightly better in most cases. 

In addition, we stress that the performance of a DVC method needs to be evaluated using double 

scans (zero strain), virtual deformation (imposed deformation) and real deformation. Double scans give 

insight into the presence of noise and artifacts whereas virtual deformation benchmarks allows evaluation 

of the performance without noise and artifacts. Investigation of the performance for actual deformed 

heterogeneous materials is needed for evaluation with noise, artifacts and non-zero strains. 

We show that both decreasing the resolution of the displacement field (increasing subvolume size) 

as well as (increasing) curvature penalization (regularization) have a similar effect on the performance 

of evaluated DVC methods: Decreasing the detrimental effect of noise, artifacts and interpolation errors, 

but also decreasing the sensitivity of a DVC method to displacement peaks, discontinuities and strain 

concentrations. The needed amount of regularization is a trade-off between accuracy and precision of 

the estimated strain fields and their resolution. 

The obtainable accuracy and precision of the estimated displacement fields are influenced by interpo- 

lation errors in the DVC procedure and the relative amount of detail, noise and artifacts in the images. 

Errors in the displacement field are typically magnified during the strain calculation. Based on the tests 

and subvolume sizes (16–50 voxels) in this study, the expected order of magnitude of the accuracy and 

precision is 0.1 micro-voxels and 1 milli-voxels for the displacements and 0.1 and 1 milli-strains of the 

strain fields. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

High-resolution Computed Tomography (CT) imaging has made

t possible to obtain three-dimensional images of materials at the

icroscale. Sequential images taken at different times during de-

ormation allow for estimation of local deformation fields using

igital Volume Correlation (DVC) ( Bay et al., 1999 ), a logical exten-

ion of Digital Image Correlation techniques (see for instance the

eview paper by Pan et al. (2009) ) to three-dimensional data. Fast

cquisition using synchrotron radiation allows obtaining CT images

t time intervals of only a few seconds and tracking the deforma-

ion mechanisms closely over time. Although significant steps for-
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ard have been made, several aspects of the DVC techniques still

eed to be investigated and improved. These aspects are described

elow followed by the motivation of this study. 

DVC can be applied to any strongly heterogeneous material that

rovides sufficient detail in the CT images at the microscale, e.g.

etal ( Leclerc et al., 2012; Morgeneyer et al., 2013 ), wood(-based

aterials) ( Forsberg et al., 2010; Tran et al., 2013 ), sand ( Higo et al.,

013; Hu et al., 2014 ), bone ( Gillard et al., 2014; Roberts et al.,

014 ) and other heterogeneous materials ( Franck et al., 2007; Gates

t al., 2015; Chateau et al., 2018 ). Materials with a relatively low

evel of detail are challenging for DVC techniques. Here we fo-

us on such a material: trabecular (or cancellous) bone. Trabecular

one is low-density (spongy) bone and difficult for high-resolution

VC techniques due to its large surface-to-volume ratio and rela-

ively large voids ( Gillard et al., 2014 ). 
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(a) Overlapping subvolumes. (b) Local DVC: Ambiguous
displacements.

(c) Global DVC: Continu-
ous displacements.

Fig. 1. Illustration of the difference between local and global DVC methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Illustration of dubious direct interpolation of displacement gradients (defor- 

mation) for local DVC techniques. 
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DVC and DIC techniques compare sets of images, a reference

image and a deformed image, to find matching features and

estimate the corresponding displacement field. The deformation

field, i.e. strain, is then typically obtained in a post-processing

step by calculating the gradient of the displacement field. To es-

timate the displacement field, an image is typically divided into

many (potentially overlapping) subvolumes. For each subvolume,

a matching subset in the next image (and its corresponding dis-

placement) is sought that maximizes their correlation or mini-

mizes their differences in gray scale values. There are several dif-

ferent ways to perform this task. The accuracy (mean error) and

precision (standard deviation) of the resulting strain fields depend

greatly on the choice of algorithm and algorithmic parameters such

as subvolume size ( Liu and Morgan, 2007; Dall’Ara et al., 2014 ). 

Images can be compared directly using Fast-Fourier Transform

(FFT), which results, in its basic form, in an integer translation for

each subvolume and does not account for local rotation or de-

formation (also called rigid registration) ( Forsberg et al., 2010 ). It

is, however, possible to obtain sub-voxel accuracy and treat large

deformation problems in an iterative FFT-based algorithm based

on incremental deformation of the images and filtering techniques

( Bar-Kochba et al., 2015 ). 

For sub-voxel accuracy and displacement fields including de-

formation (also called elastic registration), it is more common to

formulate the comparison of images as a nonlinear minimiza-

tion problem that needs to be solved iteratively as first done by

Bay et al. (1999) using only translational degrees of freedom. For

improved accuracy and precision, additional degrees of freedom

need to be added to the subvolume displacement field. A six de-

gree of freedom model was developed by Smith et al. (2002) ,

adding three rotations to the description. A further six degrees of

freedom, thus twelve in total, are necessary for a full trilinear in-

terpolation of the displacement field, see e.g. Gates et al. (2011) .

An initial guess for the displacement field can be obtained using

an integer-displacement FFT-based technique. 

The previously described methods for comparing images are

typically used on the subvolume level and can be characterized

as local ( Roberts et al., 2014 ). A local approach uses independent

parameters for the displacement interpolation of each subvolume.

These parameters are then obtained in an iterative procedure for

each subvolume separately, see e.g. ( Forsberg et al., 2010 ). As a

consequence, it is possible that the identified displacements at the

boundaries of subvolumes (and also in their interior) are com-

pletely different, leading to inaccurate and ambiguous results, see

Fig. 1 . Alternatively, a global approach uses a globally shared set of

parameters for the displacement interpolation and a solution pro-

cedure that uses information from all subvolumes simultaneously

( Madi et al., 2013; Roberts et al., 2014 ). Due to the continuity of

the global displacement interpolation, the accuracy of the results
f global DVC methods is generally higher than that of local ones

 Dall’Ara et al., 2014 ). 

We would like to emphasize the connection between the dis-

lacement and the strain fields. The obtained displacement field

rom a DVC technique needs to be differentiated spatially in or-

er to obtain the strain field. For local DVC approaches, a global

isplacement field needs to be constructed based on the informa-

ion on the subvolume level. Often, the displacements are inter-

olated and smoothed before translation into strain fields, see e.g.

orsberg et al. (2010) . Note that, if displacement gradient informa-

ion is available on the subvolume level, it is dubious to directly

nterpolate the displacement gradient due to potential discontinu-

ties in the displacement of neighboring subvolume, see Fig. 2 . For

lobal approaches, the displacement field can be differentiated di-

ectly to obtain the strain. Note that a nonlinear strain definition

uch as the Green-Lagrange strain may be necessary for finite de-

ormation and rotation. 

Similar to DIC techniques, the quality of the results of DVC

ethods generally depend on the amount of detail in the source

mages. In regions with little detail, there is not enough informa-

ion to reliably determine a displacement field. If unchecked, this

an lead to large errors in the calculated results. To improve the re-

ults, different kinds of regularization can be applied ( Leclerc et al.,

012; Barber and Hose, 2005 ). A common way to improve the per-

ormance is to remove the results of subvolumes with low correla-

ion ( Gillard et al., 2014 ) or outliers ( Bar-Kochba et al., 2015 ). 

Anomalies in the source images also have a major effect on the

erformance of DVC techniques. These anomalies include intrinsic

oise and potential artifacts such as beam hardening ( Barrett and

eat, 2004 ). They represent the other extreme; too much (non-

hysical) detail. If no measures are taken, then a DVC procedure

ay overfit the data and generate a non-physical displacement

eld. Regularization can also help alleviate problems in this case. 

Another error source is the interpolation of gray-scale values

hat is inevitable for sub-voxel translations, rotations and deforma-

ion ( Madi et al., 2013 ). For integer-translations, one can compare

he gray-scale values in a CT image set directly. In all other cases,

nterpolated values are needed. Again, regularization can be used

o try and alleviate the effect on the performance of DVC tech-

iques. This effect will be investigated in the present paper. 

Regularization is usually aimed at smoothing the displacement

eld to remove non-physical strain concentrations. Barber and
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Fig. 3. Illustration of the positive and negative effects of regularization (smoothing 

of the strain field). 

H  

i  

b  

a  

i  

n  

f

 

t  

v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

f

 

b  

o  

t  

m  

a  

i  

t  

a  

o  

t  

i  

b  

d

 

c  

p  

i  

Fig. 4. Cross sections of the CT images used in this work. 

o  

c  

s  

t  

c  

i  

o  

d  

p  

g  

t  

a  

(

 

r  

b  

f  

n  

a  

i  

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nation with the following benchmarks. 
ose (2005) apply smoothing based on the Laplacian operator that,

n fact, reduces the curvature of the displacement field. One should

e aware that, in particular for large amounts of regularization, this

lso affects the displacement field in regions where there is phys-

cal deformation. This will reduce the performance of DVC tech-

iques in regions with strain (and stress) concentrations. These ef-

ects are illustrated in Fig. 3 . 

For validation of DVC techniques the accuracy and precision of

wo types of benchmark tests have been used. Both have their ad-

antages and disadvantages. 

• Double scans: The same object is scanned twice, with

or without repositioning, see for instance the work by

Dall’Ara et al. (2014) . This test includes the effect of noise

and artifacts but does not include actual deformation. In the

presence of regularization that directly minimizes variations in

the strain field ( i.e. curvature penalization of the displacement

field), this type of benchmark needs to be supplemented with

non-zero deformation benchmarks for a more realistic evalua-

tion of the performance. 

• Virtual deformation: A known translation, rotation, deformation

or a combination of these is imposed on a CT image, see for in-

stance the work by Bar-Kochba et al. (2015) . It is particularly

useful to be able to examine the performance of a DVC tech-

nique for varying strains. Unless manually added to the data,

this test does not include noise or artifacts allowing for very

good accuracy and precision. It is also possible to use a double

scan for the construction of the deformed image, introducing

more realistic noise and artifacts. Note that the interpolation

necessary for creating the deformed image constitutes one of

the error sources. 

A thorough evaluation should include both types of benchmarks

o investigate the performance in the presence of noise and arti-

acts and non-zero strains. 

It is not yet clear what choices of implementation lead to the

est performance for DVC. In particular, the accuracy and precision

f the calculated displacement and deformation fields depend on

he chosen techniques and some algorithmic parameters. Further-

ore, the evaluation of the performance of a DVC method does not

lways include both double scans and virtual displacement fields

n the literature, which renders any comparison inconclusive in

he opinion of the authors. In addition to presenting a novel DVC

pproach, this study therefore aims to advance the understanding

f the techniques used by investigating the effect of, in particular,

he gray-scale interpolation and the amount of regularization. We

nvestigate the order of magnitude of the performance measures

ased on the different error sources and realistic resolutions of the

isplacement-field estimation. 

Additionally, we propose a DVC technique that features an in-

reased number of degrees of freedom of the displacement field

er subvolume and a global optimization with curvature penal-

zation. The global displacement field is interpolated using higher-
rder (triquadratic) finite elements, also called 27-node bricks. This

hoice is also convenient for the implementation of overlapping

ubvolumes for more robust solutions in a global DVC method. Af-

er obtaining an initial guess for the displacement field using a lo-

al FFT-based approach, the elastic registration problem is solved

n a global optimization procedure where the nodal displacements

f the finite-element discretization are the design parameters. Ad-

itionally, curvature penalization can be used for regularization

urposes. Finally, the global displacement field is processed into a

lobal strain field. First, a globally smooth spline interpolation for

he displacement field is constructed using all degrees of freedom

fter which the corresponding finite strain field can be calculated

valid for finite deformation and rotations). 

Reliably estimating displacement fields with a high resolution

emains challenging for trabecular bone since the struts of the tra-

ecular bone are large compared to the desired resolution. There-

ore, the performance of the presented DVC method is tested on a

umber of different benchmark problems using two sets of CT im-

ges of trabecular bone including an actual compression test. For

llustration, a slice of the reference volume of these data sets is

hown in Fig. 4 . 

• Tozzi-2017: This is a relatively low resolution set of im-

ages (Specimen-1-VOI4) of the ones used in the work of

Tozzi et al. (2017) . The complete size of this set of images is

152 × 152 × 432 of which only a part, see Fig. 4 a, was used in all

analyses except the double scan. Due to its relatively low reso-

lution, the features in this set of CT images are small compared

to the size of the voxels, which is good for relative accuracy

and precision of the estimated displacement field (when mea-

sured in voxels) and strains. Our results have not been com-

pared to those of Tozzi et al. (2017) since we do not have ac-

cess to their implementation or specimen-specific results. This

data set is used for the following benchmark problems. 

- Virtual Gaussian displacement field: non-zero strain 

- Virtual sub-voxel translation: zero strain 

- Double scan (no repositioning): zero strain 

• UU-2018: This is a new set of high-resolution CT images of a

trabecular bone sample obtained at the TOMCAT beamline at

Paul Scherrer Institut (PSI), Villigen, Switzerland. The complete

sample size is 7 mm in diameter and 11 mm in height, but only

part of this has been used, see Fig. 4 b. Due to its high resolu-

tion, the features of this set of CT images are relatively large

compared to the size of the voxels. For this reason, relatively

large subvolumes will be necessary for good accuracy and pre-

cision. Additionally, the data also contains significant artifacts

which will affect the performance. This data is used in combi-
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Fig. 5. Flow chart of GDVC-UU. 

Fig. 6. Illustration of the current and reference position vectors, x and X , and their 

difference, the displacement, u . 
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- Double scan (no repositioning): zero strain 

- Real deformation: non-zero strain 

First we introduce the methodology of the proposed DVC approach

in Section 2 followed by the results of the proposed method in

Section 3 . This includes a comparison with a state-of-the-art DVC

technique and a discussion of the effect of the subvolume size and

the amount of regularization. This work ends with the conclusions

and recommendations in Section 4 . 

2. Theory 

The proposed DVC approach, which we will refer to as GDVC-

UU, uses a global interpolation of the displacement field using a

finite-element mesh of overlapping 27-node brick elements. In a

preprocessing step, an integer-valued initial displacement field is

obtained using a local DVC algorithm based on phase correlation

and a Fast-Fourier Transform (FFT), similar to for instance the work

of Forsberg et al. (2010) . The nodal degrees of freedom of the dis-

placement interpolation are then sequentially updated in a nonlin-

ear optimization by maximizing the normalized cross-correlation

between the gray scale values of the reference (before the defor-

mation increment) and current (after the deformation increment)

volumes. Instead of comparing the entire reference and current

volumes at once, the procedure is divided into multiple compar-

isons of overlapping subvolumes to increase the sensitivity to lo-

cal differences. The resolution of the global displacement field is

increased stepwise by refining the finite element mesh and using

the interpolated results of the previous coarser mesh as the initial

displacement field. To suppress non-physical deformation due to

noise, artifacts and/or too little detail in the images, a curvature

penalty can be used as regularization. After the nodal displace-

ments have been obtained, a unique displacement field is con-

structed using a global spline interpolation and the correspond-

ing strain fields can be calculated. This procedure is illustrated in

Fig. 5 . 

2.1. Gray-scale and displacement interpolation 

The estimation of local deformation using CT images typically

consists of a sequential comparison of three-dimensional images

taken at certain time intervals. In every step two images are com-

pared: A reference (before deformation increment) and a current

(deformed) volume. The corresponding input consists of three-

dimensional arrays of gray-scale values, one for the reference vol-

ume, S IJK , and one for the current volume, s ijk , where ( I, J, K ) and

( i, j, k ) are the corresponding indices or voxel coordinates. In the

proposed approach, corresponding features and the related incre-

mental displacement field are simultaneously identified by max-

imizing the normalized cross-correlation differences between the

gray scale values of current volume and the transported gray scale

values of the reference volume. 

For such a comparison, we interpret the point-wise voxel in-

formation as regular samplings of continuous gray scale functions

S ( X ) and s ( x ), where X and x are the reference and current coor-

dinates, respectively. We can interpolate these functions based on

the gray-scale values of the input data as, 

S( X IJK ) = S IJK and s ( x i jk ) = s i jk (1)

where X IJK and x ijk are the coordinates of the centers of the vox-

els. In the current paper, third-order spline interpolation (locally

quadratic) has been used to interpolate the gray scale values. 

Following common notation in continuum mechanics, the refer-

ence and current coordinates are related by the displacement field

u as, 

x ( X ) = X + u ( X ) (2)
here the Lagrangian description has been used (in terms of the

eference coordinates X ), see Fig. 6 . 

This displacement field needs to be described by a set of pa-

ameters which will serve as the design variables in an optimiza-

ion. In this paper, we employ a global finite-element interpola-

ion using standard isoparametric finite elements. Consequently,

he displacement at an arbitrary position in the reference volume

 can be expressed as, 

 ( X ) = 

n ∑ 

i =1 

N i ( X ) q i (3)

here n is the number of nodes of the finite-element mesh and

 ki and q i are the corresponding finite-element basis functions

nd nodal displacement vectors ( i.e. the design variables), respec-

ively. Note that finite-element basis functions typically are sparse,

.e. only nonzero in the direct neighborhood of the corresponding

odes. This allows us to write the same relation for the displace-

ent of a point in the reference volume in terms of only the nodal

isplacement vectors in the containing finite element/subvolume

s, 

 ( X ) = N ( X ) q e (4)
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Fig. 7. Illustration of the comparison of gray scale values. 
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here q e is a vector with 3 n e components, N is a 3 × 3 n e displace-

ent interpolation matrix and n e is the number of nodes of a finite

lement/subvolume. In the actual implementation, this relation is

valuated for many position vectors at the same time for efficiency.

For a given displacement field u ( X ), that means a given set of

odal displacements q , the interpolated gray scale functions can

e used to compare the reference and deformed volumes voxel by

oxel. The most straight-forward way to do this is by calculating

he current coordinates of all voxels of the reference domain from

he relation, 

 IJK ( q ) = X IJK + u IJK ( q ) (5) 

here u IJK ( q ) = u ( X IJK ) which depends on the nodal displace-

ents q . Then the corresponding gray-scale values of the current

olume are obtained as, 

 IJK ( q ) = s ( X IJK + u IJK ( q )) (6) 

hese values can then be directly compared to the gray scale val-

es of the reference volume. This procedure is illustrated in Fig. 7 . 

.2. Global optimization 

The most direct approach to estimate the displacement field is a

lobal minimization of the differences between the gray-scale val-

es of the reference volume and the interpolated gray-scale values

f the deformed volume as a function of the displacement field,

ee for instance the work of Pan et al. (2012) . It is convenient to

eplace the three indices, I, J and K of the three-dimensional data

y a single index, α, so that, 

 α = S IJK and s α( q ) = s IJK ( q ) (7) 

 direct minimization can then be formulated as a least-squares

roblem in terms of the vectors S and s ( q ) as, 

in 

q 
‖ S − s ( q ) ‖ 2 

2 
(8) 

here ‖ · ‖ 2 indicates the Euclidean norm. This minimization prob-

em can be solved directly, see e.g. the works of Pan et al.

2012) and Madi et al. (2013) . 

However, instead of directly minimizing the differences in

q. (8) , it is more common in DVC and DIC approaches to use

ormalized cross-correlation for comparison ( Roberts et al., 2014 ).

ntroducing the following short-hand notation of the normalized

ray scale values of the reference and current volumes, 

ˆ 
 = 

S 

‖ S ‖ 

and 

ˆ s ( q ) = 

s ( q ) 

‖ s ( q ) ‖ 

(9) 

he normalized cross-correlation, C , is defined as, 

 = 

ˆ S · ˆ s ( q ) (10) 

he normalized cross-correlation is a direct measure of how much

he vectors S and s have the same direction. If C = 1 then S and s

ave exactly the same direction. If C = 0 (or C < 0) then they are

erpendicular to each other (or even in opposite directions). The

ormalized cross-correlation is, however, insensitive to the lengths

f the vectors S and s . 
Using normalized cross-correlation, the displacement identifica-

ion can be formulated as a global minimization problem in the

ollowing fashion, 

in 

q 
{ −C( q ) } (11) 

n our experience, using the normalized cross-correlation as an ob-

ective in an optimization leads to faster convergence than a direct

inimization of the differences between gray-scale values. 

Instead of using Eq. (11) , the global minimization is reformu-

ated as minus the average normalized cross-correlation of all sub-

olumes to take advantage of the finite-element discretization and

ncrease the sensitivity of the optimization to local differences, 

in 

q 

1 

N 

N ∑ 

e =1 

{ −C e ( q e ) } (12) 

here C e ( q e ) is the normalized cross-correlation for a subvolume

 calculated analogously as in Eq. (10) , q e is the corresponding el-

ment displacement vector and N is the total number of subvol-

mes. Note that the average correlation of all subvolumes does not

xactly equal the correlation of the entire volume, see also the

ight graph in Fig. 10 which would otherwise be a straight line.

he optimization problem is solved using standard unconstrained

ptimization software. 

.3. Regularization 

To suppress the effect of intrinsic noise and artifacts, as well

s alleviate potential conditioning problems due to too little detail

n certain areas of the source images, regularization can be added

o the optimization process. Here, we have included the following

urvature penalty for the displacement field in the objective func-

ion per subvolume, i.e. , 

 e ( q e ) = 

1 ∫ 
�e 

d�

∫ 
�e 

3 ∑ 

k,l,m =1 

(
∂ 2 u k ( X ) 

∂ X l ∂ X m 

)2 

d� (13) 

here �e is the domain of a subvolume. The main integral in this

quation is evaluated using standard 3 × 3 × 3 Gauss integration.

he magnitude of the penalty depends on the element displace-

ent vector q e through the displacement field, 

∂ 2 u k ( X ) 

∂ X l ∂ X m 

= 

n ∑ 

i =1 

∂ 2 N ki ( X ) 

∂ X l ∂ X m 

q i (14) 

or non-overlapping subvolumes, this formulation results in a

onstant amount of regularization for refinement of the finite-

lement-based displacement interpolation. 

The objective function including regularization then becomes, 

in 

q 

1 

N 

N ∑ 

e =1 

{ −C e ( q e ) } + p 

N ∑ 

e =1 

P e ( q e ) (15) 

here p is a penalty factor for adjusting the amount of regular-

zation. One can attempt to relate the magnitude of this penalty

actor to the wave length of spurious oscillations in the resulting

isplacement field, see the work of Leclerc et al. (2011) , or mini-

ize the condition number of the Hessian matrix of the optimiza-

ion, similar to the work of Barber and Hose (2005) . 

.4. Implementational aspects 

In the proposed DVC approach we have selected a finite-

lement mesh with standard 27-node brick elements. For this type

f finite element, the displacement field is interpolated using tri-

uadratic polynomials ( i.e. the terms with highest order are x 2 y 2 z 2 )

llowing for more freedom in the displacement field. A conven-

ional finite-element discretization does not include overlap and
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Fig. 8 . Illustration of overlapping subvolumes (finite elements) using 27-node brick elements. 
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has a unique definition of the displacement everywhere in the vol-

ume. However, the usage of 27 nodes allows an easy implementa-

tion of overlapping subvolumes which, in the authors’ experience,

increases the robustness of the approach. 

Maximum overlap, i.e. , overlaying meshes that are displaced

half a subvolume size in all combinations of the three spatial di-

rections, would result in approximately eight times as many sub-

volumes and corresponding computational effort. Instead, we use a

limited overlap with approximately twice as many subvolumes by

only adding a second mesh that is displaced half a subvolume size

in all three spatial directions, as illustrated in Fig. 8 a. Using overlap

implies that the displacement is uniquely defined at the nodes, but

not in between nodes of overlapping subvolumes, see Fig. 8 b. This

can help prevent overfitting to noise and artifacts in the source im-

ages. In a postprocessing step, a single unique global displacement

field is constructed from the calculated nodal displacements using

a third-order spline interpolation. 

To increase the sensitivity of the normalized correlation, it is

very important to center the data sets around zero. If one would

omit a centering procedure, the correlation between images with

all-positive gray-scale values will always be positive, even for vi-

sually ‘uncorrelated’ images, see Fig. 9 . For the current application,

it makes most sense to use the same average gray scale value for

centering for the two data sets, since the gray scale values of con-

secutive scans were obtained using the same parameters in the re-

construction process. Therefore, we use the following procedure, 

S ← S − S̄ and s ← s − S̄ (16)

where S̄ indicates the average of S . For other applications, it may

be more suitable to use the individual averages of the two data

sets separately. 

It can also be advantageous to center the subvolume data sets

to increase the sensitivity to differences between the images even

more. Note however, that this may lead to errors for small sub-
(a) False positive correla-

tion.

(b) Zero correlation.

Fig. 9. One-dimensional illustration of the importance of centering image data 

around zero to avoid positive correlation of uncorrelated sets. 
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olumes in the presence of significant noise. This is illustrated in

ig. 10 . For decreasing subvolume size, noise in the data sets causes

he average correlation to quickly go down when using centering

f subvolumes. This in turn could lead to undesired behavior in the

ptimization process. 

Termination criteria are needed for the optimization process,

hich can be based on the decrease in objective value, first-order

ptimality (magnitude of the gradient vector) or change in pa-

ameters. In this work we formulated the termination criterion in

erms of a change in parameters as, 

1 √ 

N 

‖ �q ‖ 2 ≤ 10 

−4 (17)

here N is the total number of degrees of freedom. 

For good results, a good initial displacement field is essential. It

s well known that for larger subvolume sizes, the solutions found

y DVC techniques become more reliable. Therefore, it makes sense

o increase the resolution of the displacement field (decrease the

ubvolume size) successively, see Fig. 5 . In this case, a refined

nite-element mesh is constructed after completion of the global

ptimization of a lower resolution displacement field. The results

an then be transferred from the old mesh by straight forward in-

erpolation. 

It can also be advantageous to exclude a narrow band around

he edges of the reference image to avoid issues with missing data

n the current volume. This option has also been implemented in

DVC-UU. 

.5. Global displacement field and strain post-processing 

The procedure to estimate local deformations from CT images

ypically consists of a sequential comparison of three-dimensional

mages taken at n time intervals, see Fig. 11 . For a time interval

 , two consecutive images are compared, the reference volume at

ime t i −1 , and the current volume at time t i . 

For each time interval, the global optimization produces an es-

imated displacement field that is characterized by the nodal dis-

lacements q i , see Eq. (2) . To obtain a unique global displace-

ent field in the case of overlapping subvolumes, a global third-

rder spline interpolation is constructed for the current coordi-

ates x i ( X i ) and the corresponding displacement field u i ( X i ) based

n the computed nodal displacements q i , see also Fig. 8 b. 

Assuming that the images are taken at the same coordinates,

.e. coinciding references coordinates X i , the current coordinates

t the last time interval x t n of arbitrary reference coordinates

t the beginning of the first time interval X 

t 0 can be computed
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Fig. 10. One-dimensional illustration of the effect of subdividing the volumes into several subvolumes (the same total number of subvolumes can be obtained for several 

subvolume sizes). 

Fig. 11. Illustration of the recursive relation of the current coordinates throughout 

all time steps. 
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Fig. 12. Illustration of the definition of the performance measures accuracy and 

precision. 
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ecursively as, 

 

t n = x n ( x n −1 ( x n −2 ( · · · x 2 ( x 1 ( X 

t 0 )) · · · ))) (18) 

nd the total displacement field becomes, 

 tot = x t n − X 

t 0 (19) 

his allows the computation of the total displacements of every

oxel in the reference configuration u tot, α . 

Finally, the strain fields can be calculated in a post-processing

tep by taking the spatial derivatives of the displacement field. The

ost common strain measure used in finite strain theory is the

tandard Green–Lagrange strain E defined as, 

 = 

1 
2 

(
F T F − I 

)
= 

1 
2 

(∇ u 

T + ∇ u + ∇ u 

T ∇ u 

)
(20) 

here 

 = 

∂ x 

∂ X 

and ∇ u = 

∂ u tot 

∂ X 

(21) 

In practice, the necessary spatial derivatives can be calculated

y finite differences of the displacements of all voxels in the refer-

nce volume. 

. Results and discussion 

In this section, we present the results of the benchmark prob-

ems for the proposed method GDVC-UU. We compare its results

o that of the commercial high-performance 3D visualization and

nalysis software Amira–Avizo, in particular the included global

VC method based on the work of Madi et al. (2013) . We will refer

o this method as Avizo. 

First we demonstrate that GDVC-UU has excellent performance

or virtual displacements. In this case, the data can be considered

erfect and the only error source is the interpolation of gray-scale

alues giving an idea of a DVC technique’s best case performance.

hen we apply both DVC procedures on double scans illustrating

he effect of the other error sources, such as the background (void),

ntrinsic noise and artifacts. In that context, the need for regular-

zation is emphasized. Finally, the results are presented for a CT
mage including real deformation. For all benchmark tests we use

ne of the two data sets introduced in Section 1 . Here we start

ith providing some details regarding the evaluation of the results

f the different DVC techniques and their comparison. 

A common measure for comparing results is the accuracy acc ,

efined as the mean error, and the precision prec , defined as the

ample standard deviation of the error, 

acc = 

1 

n 

n ∑ 

1 

(a α − a α, exact ) and 

rec = 

√ 

1 

n − 1 

n ∑ 

1 

(a α − acc ) 2 (22) 

here a α is the voxel-wise quantity of interest (for instance dis-

lacement in x -direction) and n is the number of voxels. As a mea-

ure of the total accuracy and precision of the displacement (vec-

or) or strain (second-order tensor) the following definitions are

sed here. Fig. 12 

cc tot = 

√ 

n ∑ 

1 

acc 2 
i 

and prec tot = 

1 

n 

( 

n ∑ 

1 

prec i 

) 

(23) 

he measure for the total accuracy is chosen such that a single

arge error has a relatively large impact. 

Global DVC methods provide a continuous description of the

lobal displacement field. Therefore, the consistent strains can be

btained directly by differentiating the displacement field and ap-

lying Eq. (20) . This is the approach that we use in GDVC-UU.

hen comparing the strains provided by Avizo with those ob-

ained by Eq. (20) , we found significant differences, probably due

o additional inter- and/or extrapolation of nodal and/or elemental
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Table 1 

Settings for the applied virtual Gaussian displacement field on the Tozzi-2017 data set. 

The coordinates used are the voxel coordinates, i.e. { x, y, z} ∈ [ 1 
2 
, 144 1 

2 
] . 

Peak Position [voxels] Height [voxels] Width [voxels] 

x c y c z c a x a y a z c x c y c z 

1 48 48 70 5.048 5.048 5.048 20.38 20.38 20.38 

2 22 110 70 1.695 1.695 1.695 6.795 6.795 6.795 

3 110 110 70 3.370 3.370 3.370 13.59 13.59 13.59 

4 118 48 70 1.695 1.695 1.695 6.795 6.795 6.795 

Table 2 

The accuracy and precision of the calculated displacement and strain fields obtained by 

Avizo and GDVC-UU for a virtual Gaussian displacement field applied to the Tozzi-2017 

data set. The values in italics are best compared, since they have the same node spacing. 

Avizo GDVC-UU GDVC-UU GDVC-UU 

p = 10 . 0 p = 1 . 00 p = 0 

Displacement fields in [milli-voxels] 

sv.size acc tot prec tot acc tot prec tot acc tot prec tot acc tot prec tot 

48 331 517 13 168 13 174 13 175 

32 149 314 11 63 13 63 14 66 

16 72 124 6 36 8 26 10 37 

Strain fields in [%] 

sv.size acc tot prec tot acc tot prec tot acc tot prec tot acc tot prec tot 

48 4.247 28.647 4.604 14.687 4.872 15.090 4.909 15.170 

32 1.038 18.542 1.412 7.592 1.809 8.178 1.907 8.530 

16 0.539 12.826 0.417 4.923 0.728 4.851 1.029 7.955 
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strains. Although this may be a good idea for practical applications,

it complicates the comparison of the results. Instead, we compute

the strain field for Avizo using Eq. (20) after obtaining the displace-

ment gradients directly from the displacement field with standard

finite differences. 

A margin near the edges of the reference volume, in which no

displacements are calculated, is used for both Avizo and GDVC-UU

unless otherwise specified. All presented performance measures

are calculated in exactly the same part of the volume such that

displacement and strain results are available for both methods. 

3.1. Virtual displacement fields 

A set of CT images without noise or artifacts is ideal to test

the performance of a DVC technique. Such a set can be created

by imposing a predefined displacement field on any reference vol-

ume of choice. We use the Tozzi-2017 data set for a benchmark

with a Gaussian displacement field and the UU-2018 set for a sub-

voxel translation displacement field. It is important to realize that

imposing an arbitrary displacement field on a reference volume

involves interpolation of the gray-scale values due to sub-voxel

translation, rotation and stretching. This is different from the pro-

cedure presented in the work of Bar-Kochba et al. (2015) where

particles are only displaced with a Gaussian displacement field. 

The approach used here consists of two steps, illustrated in

Fig. 13 . In the first step, the current coordinates of the centers of

all ’reference’ voxels are calculated based on the predefined dis-

placement field u ( X ). In the second step, the gray-scale values are

calculated of the regularly spaced centers of all ’current’ voxels by

linear interpolation. This linear interpolation is based on an un-
Fig. 13. Illustration of the procedure to impose a displacement field on a CT image. 
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tructured set of data points and, therefore, we use standard De-

aunay triangulation. Note that the construction of the current vol-

me introduces an error source, since the gray-scale values need

o be interpolated. Exceptions are integer-voxel translations. 

.1.1. Gaussian displacement field 

The Gaussian displacement field is a sum of four multi-

imensional Gaussian displacement field as, 

 ( X ) = 

4 ∑ 

i =1 

a i exp 

(
( X − X c ,i ) 

2 

2 c i 

)
(24)

here all operations are component-wise and the constants used

re listed in Table 1 . This particular choice was obtained by tun-

ng the height and width of the individual Gaussians to obtain

 contribution to the strain of around 15%. Note that these are

ery large deformations, much larger than one would expect in

eality in the absence of strong material nonlinearities such as

racture. 

The displacement field for this constructed data set was esti-

ated for subvolume sizes of 48, 32 and 16 voxels using Avizo and

DVC-UU with different amounts of regularization p = 10 . 0 , 1.00

nd 0.00. In Table 2 and Fig. 14 the accuracy and precision of the

esulting displacement fields are listed and presented in a bar plot.

he heights of the columns indicate the accuracy (mean error) and

he error bars the precision (standard deviation). 

For a fair comparison, the differences between Avizo and GDVC-

U in the spacing of the nodes (or degrees of freedom) needs to

e taken into account. For GDVC-UU, the node spacing is in fact

alf the subvolume size, see Fig. 8 a. For this reason, we compare

vizo with subvolume size 16 to GDVC-UU with subvolume size 32

nd observe that GDVC-UU outperforms Avizo for this benchmark

roblem. This is also visible in Fig. 15 where a contour plot of a

ross-section of the middle of the data is shown and in Figs. 17 a

nd b where the estimated displacement fields are compared with

he exact solution along two lines A and B (see Fig. 15 ). The tri-

uadratic basis functions of GDVC-UU appear to capture the Gaus-

ian shape of the displacement field better than the linear basis

unctions used in Avizo ( Madi et al., 2013 ). 
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Fig. 14. The accuracy and precision of the calculated displacement fields in [voxels] obtained by Avizo and GDVC-UU for a virtual Gaussian displacement field applied to the 

Tozzi-2017 data set. 

Fig. 15. Contour plot of the x -component of the displacement fields u ( x, y ) in [voxels] at z = 70 voxels obtained by Avizo and GDVC-UU for the virtual Gaussian displacement 

field and the Tozzi-2017 data set. The GDVC-UU with a subvolume size of 32 and penalty factor p = 10 . 0 and Avizo with subvolume size 16 are compared since they have 

the same node spacing (lines A and B are for later use, see Fig. 17 ). 

Fig. 16. Illustration of a good approximation of a displacement field for which the 

strain is very accurate (correct average) but not precise (large standard deviation). 
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We can observe some interesting trends in the results. For noise

nd artifact-free CT images, the accuracy and precision of the re-

ults increase with decreasing subvolume size for all methods. This

s caused by the inability of a coarse interpolation of the displace-

ent field to describe the locally high curvature of the Gaussian

isplacement field. This is clearly illustrated in Figs. 17 c and d. In

his case, the accuracy and precision of the results can be improved

y increasing the resolution of the displacement interpolation. This

s the opposite of what is generally observed for double scans. 

The regularization penalizes the curvature of the displacement

eld, i.e. reduces variations of strain. This effect is best illustrated

y the results for GDVC-UU with subvolume size 16, see Fig 17 e

nd f. Without regularization, the estimated displacement field

aptures the small Gaussian quite well. For increasing amounts of
egularization, the curvature of the displacement field is pushed

own leading to underestimation of the displacement peak and

he corresponding strain. The effect of the regularization (up to

p = 10 . 0 ) on the accuracy and precision in Fig. 14 appears quite

imited. However, the performance of the proposed method will

efinitely be affected for much larger amounts of curvature penal-

zation as illustrated in the later examples. 

An important observation concerns the accuracy and precision

f the strain fields. Even thought the displacement field is cap-

ured quite accurately for a small subvolume size, the precision

f the associated strain fields is still relatively low with a stan-

ard deviation of up to 1% strain. Since the strain is directly re-

ated to the spatial derivative of the displacement field, errors in

he estimated displacement field are typically magnified during the

train calculations. Due to the continuity of the displacement field,

he accuracy can still be high (small mean error), but this is defi-

itely not the case for the precision (standard deviation of the er-

or), see Fig. 16 . In other words, any fluctuations in the displace-

ent field will lead to large errors in strain. Therefore, regular-

zation is essential to suppress fluctuations as much as possible.

referably, one would like to obtain at least a standard deviation

f the errors of the strain field as low as 1%. Based on the re-

ults presented here, one should consider using a larger amount of

egularization. 
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Fig. 17. A cross section of the resulting displacement fields u ( x, y ) in [voxels] along two lines A and B (see Fig. 15 ) obtained by Avizo and GDVC-UU for a virtual Gaussian 

displacement field applied to the Tozzi-2017 data set. Figures (a) and (b) compare the different methods, (c) and (d) different subvolume sizes and (e) and (f) different 

amounts of regularization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Illustration of the interpolation error source. 
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3.1.2. Sub-voxel translation 

In the absence of noise and artifacts, the only error source

present is the interpolation of the gray-scale values. The theoreti-

cal performance of the proposed method seems very good judging

by the Gaussian displacement field benchmark. However, interpo-

lation errors need to be investigated further using a benchmark

that is closer to a worst-case scenario. Such a scenario is a sub-

voxel translation which introduces large interpolation errors near

extremes of the gray-scale values, see Fig. 18 . Therefore, the next

benchmark considers a constant translation of 2.5 voxels in all di-

rections which is imposed on the reference volume of the Tozzi-

2017 data set. Note that interpolation errors are introduced both

when constructing the current volume by imposing a virtual dis-

placement field on the reference volume, as well as in the actual

displacement estimation of the DVC. 

The proposed method is tested without regularization, i.e. p =
0 , giving an accuracy in the order of 100 micro-voxels and a pre-

cision in the order of 10 milli-voxels for the displacement field,
ee Table 3 . The accuracy and precision of the estimated strains

re in the order of 100 micro-strains and 10 milli-strains, respec-

ively. For this particular data set, these values can be interpreted
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Table 3 

The accuracy and precision of the calculated displacement and strain fields obtained by 

GDVC-UU for a virtual sub-voxel translation applied to the Tozzi-2017 data set. The re- 

sults of normal analyses and an analyses where the exact solution was supplied as initial 

displacement fields are virtually identical. 

GDVC-UU GDVC-UU GDVC-UU GDVC-UU 

exact exact 

p = 10 . 0 p = 10 . 0 p = 0 p = 0 

Displacement fields [milli-voxels] 

sv.size acc tot prec tot acc tot prec tot acc tot prec tot acc tot prec tot 

32 0.164 9.158 0.164 9.158 0.256 14.178 0.256 14.178 

16 0.336 17.721 0.336 17.721 0.154 74.775 0.154 74.775 

Strain fields in [%] 

sv.size acc tot prec tot acc tot prec tot acc tot prec tot acc tot prec tot 

32 0.062 0.912 0.062 0.912 0.071 1.619 0.071 1.619 

16 0.083 2.863 0.083 2.863 0.891 14.540 0.891 14.540 

Table 4 

Orders of magnitude for the worst-case accuracy and precision of the 

calculated displacement and strain fields due to interpolation errors ob- 

tained by GDVC-UU for subvolume sizes in the range 16–50 voxels. 

Tozzi-2017 UU-2018 

Displacement fields 

[milli-voxels] sv.size acc tot prec tot acc tot prec tot 

Gaussian 16–50 0.1 10 1 10 

Sub-voxel translation 16–50 0.1 10 1 10 

Strain fields 

[%] sv.size acc tot prec tot acc tot prec tot 

Gaussian 16–50 0.1 10 0.1 10 

Double scans 16–50 0.1 10 0.1 10 

Sub-voxel translation 16–50 0.1 10 0.1 10 
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s the worst-case accuracy and precision of the estimated displace-

ent and strain fields only due to interpolation errors (for perfect,

rtifact-free input data). This worst-case performance depends on

he data set and subvolume size used. In a similar test case for the

U-2018 data set, slightly larger interpolation errors for the dis-

lacement field and similar values for the strain field were found.

hese orders of magnitude are listed in Table 4 . 

One might think that these errors are the result of a bad solu-

ion (clearly suboptimal local minimum) in the optimization pro-

ess. To check this, we included the results of the same analysis

here the exact solution is given as the starting point of the opti-

ization process leading to the same solution with the same accu-

acy and precision, see Table 3 . In other words, the average cross-

orrelation of the final result of the optimization is higher than

hat of the exact solution. This clearly illustrates the influence of

nterpolation errors. 
ig. 19. The mean and standard deviation of the calculated displacement fields in [voxels]
Regularization discourages oscillations in the displacement field

nd, therefore, suppresses interpolation errors. In Table 3 the re-

ults are included with the maximum regularization used before,

.e. p = 10 . 0 . In particular, the precision (standard deviation) is im-

roved for increasing amounts of regularization. The results sug-

est that even larger values of the penalty factor would be nec-

ssary for an imposed translation of 2.5 voxels in all directions.

ndeed, this benchmark case really is a worst-case scenario and

uch better performance is achieved for the Gaussian displace-

ent field. 

The accuracy and precision also improve for increasing sub-

olume size, since the effect of interpolation errors on the cross-

orrelation becomes lower. 

.2. Double scans 

Besides interpolation errors in the DVC procedure itself, dou-

le scans also contain intrinsic noise and potential artifacts such as

eam hardening. The Tozzi-2017 data set contains few clearly vis-

ble artifacts (as compared with the size of the features), whereas

he UU-2018 data set contains clear ring artifacts, see Fig. 4 . Both

ata sets contain background noise, which is most apparent in void

reas. Therefore, the background noise will be more problematic

or the UU-2018 data set which has larger voids. In this subsection,

e will compare the performance of Avizo and GDVC-UU for both

ata sets, several subvolume sizes and amounts of regularization. 

The results of all methods agree on the average translation

f both double scans. For instance, for the Tozzi-2017 the dis-

lacements found by all methods are within two hundredth of a

oxel, see Fig. 19 . Also the standard deviation of the displacements
 obtained by Avizo and GDVC-UU for the double scan Tozzi-2017 (152 × 152 × 432). 
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Table 5 

The accuracy and precision of the calculated strain fields obtained by Avizo and GDVC- 

UU for the Tozzi-2017 double scan (complete image size used 152 × 152 × 432) and the 

UU-2018 double scan. The values in italics are best compared, since they have the same 

node spacing. 

Tozzi-2017 (152 × 152 × 432) 

Strain Avizo GDVC-UU GDVC-UU GDVC-UU 

[%] p = 10 . 0 p = 1 . 00 p = 0 

sv.size acc tot prec tot acc tot prec tot acc tot prec tot acc tot prec tot 

48 0.413 0.706 0.353 2.036 0.338 2.470 0.334 2.558 

32 0.295 0.950 0.479 4.414 0.533 7.452 0.572 8.842 

16 0.346 5.216 0.590 5.829 0.767 14.494 5.653 46.671 

UU-2018 (600 × 600 × 300) 

Strain Avizo GDVC-UU GDVC-UU GDVC-UU 

[%] p = 10 4 p = 100 p = 0 

sv.size acc tot prec tot acc tot prec tot acc tot prec tot acc tot prec tot 

100 0.280 0.855 0.323 0.824 0.570 3.039 0.421 4.209 

50 0.514 2.349 0.319 1.028 0.615 4.677 0.642 11.867 
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are largely in agreement. The standard deviation of the estimated

displacement fields is not directly related to the accuracy and

precision of the displacement field, since there may be rotation

involved. Therefore, it is more interesting to evaluate the post-

processed strain fields instead. 

The accuracy and precision of the estimated strain fields for the

Tozzi-2017 and UU-2018 double scans are listed in Table 5 and pre-

sented graphically in Fig. 20 . Comparing the results in red with
Fig. 20. The accuracy and precision of the calculated strain fields in [%] obtained by Aviz

double scan. 
he same node spacing in Table 5 , we observe that the perfor-

ances for both methods are comparable. This is further illustrated

n Figs. 21 a and b which shows the strains along two lines in the

U-2018 data set to visualize the differences in strain-field inter-

olation. 

As mentioned before, an important issue is the relative size of

oids in the images. Inhomogeneities such as voids are necessary

n order to correlate features between images and establish an
o and GDVC-UU for the Tozzi-2017 double scan (152 × 152 × 432) and the UU-2018 
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Fig. 21. A cross section of the resulting strain fields εxx ( x ) and εyy ( y ) in [%] along two lines A and B (see Fig. 15 ) obtained by Avizo and GDVC-UU for the UU-2018 double 

scan. Figures (a) and (b) compare the different methods, (c) and (d) different subvolume sizes and (e) and (f) different amounts of regularization. 
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t  

l  

2  

e  
stimated displacement field. However, voids only contain back-

round intensities and artifacts. During deformation, only the

aterial domain is transported and deformed whereas the back-

round intensities and artifacts are not. This can cause a dis-

repancy between the estimated displacement of neighboring

aterial and void regions and lead to erroneous strains near the

orresponding interface. This problem is most severe for large

oids relative to the subvolume size. Due to these additional dif-

culties, larger steps in the amount of regularization have been

hosen for the UU-2018 double scan. The order of magnitude of

he accuracy and precision of the strains is similar to that of the

irtual translation benchmark. 
From Fig. 20 , it is clear that the accuracy and precision deterio-

ate for decreasing subvolume size (as opposed to the benchmark

ith the Gaussian displacement field). The same effect can be ob-

erved in Fig. 21 c and d: Decreasing the subvolume size increases

he freedom of the displacement field which causes the DVC pro-

edure to overfit to noise, artifacts and interpolation errors. Al-

hough not apparent from the benchmark problems, it is known

hat higher-order polynomial basis functions are more susceptible

o overshoot than linear ones. From Table 5 , we observe that a

arge amount of regularization, more than p = 10 . 0 for the Tozzi-

017 double scan and p = 10 4 for the UU-2018 double scan, is nec-

ssary to push the erroneous strains down to values in the order
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of 1%. This is also illustrated in Figs. 21 e and f for the UU-2018

double scan. The problem is that increasing the regularization will

also push down (variations in) the actual physical strains. For large

amounts of regularization, the estimated strain fields are less likely

to show large spatial differences in strain. For low amounts of reg-

ularization, the estimated strain fields will be dominated by large

erroneous strains. Therefore, the amount of regularization that is

needed is a difficult trade-off between accuracy and precision of

the estimated strain fields and their resolution. 

In most cases, the subvolume size and the amount of regular-

ization have a very similar effect on the estimated displacement

and strain fields. Increasing the amount of regularization and the

subvolume size tend to decrease the amplitude of the displace-

ment fluctuations and corresponding strains. 

To illustrate the regularizing effect of introducing overlap in

the displacement interpolation, a comparison of different amounts

of overlap is included in Fig. 22 . For increasing amounts of over-

lap there is a decreasing trend in the accuracy and precision of

GDVC-UU for the UU-2018 double scan. This effect is not very large

though and introducing overlap significantly increases the amount

of computational effort required to perform the displacement iden-

tification. For this reason, we only used limited overlap, i.e. , two

overlapping finite element meshes, for the other results included

in this paper, see also Section 2.4 . 
Fig. 22. The accuracy and precision of the calculated strain fields in [%] obtained 

Fig. 23. Results in terms of Von Mises strain as obtained by Avizo for real deformation e

margin around the volume excluded from calculations is larger for a subvolume size of 10
.3. Real deformation 

The performance of DVC approaches for actual deformation is

ifficult to analyze in the absence of an exact solution. However,

ne can compare the results for different numbers of degrees of

reedom and different amounts of regularization. The results are

hown in Von Mises strain (a type of effective strain similar in

efinition to the Von Mises stress) and plotted for only material

oxels (relative gray scale value higher than 0.30). Based on the

xperimental setup, an average vertical strain of around 1.5% is ex-

ected. 

As mentioned before, relatively large regions of void lead to

iscrepancies in the estimated displacement field and erroneous

trains near the void-material interfaces. For this reason, it can

e advantageous to exclude the cross-correlation maximization for

ubvolumes that hardly contain any material. The results of GDVC-

U presented in this subsection have been obtained excluding sub-

olumes where more than 99% of the gray scale values are below

5 0 0 0 on a scale between 0 and 65 535. 

In Fig. 23 , the resulting Von Mises strain fields of Avizo (cal-

ulated from the displacement field output) are shown for subvol-

me sizes (node spacings) 100 and 50. The tetrahedron displace-

ent interpolation is clearly visible from the piecewise constant

train field. The results using subvolume size 100 and 50 are very
by GDVC-UU for the UU-2018 double scan and varying amounts of overlap. 

stimated from the UU-2018 CT images (cropped to 600 × 600 × 300). Note that the 

0. 
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Fig. 24. Results in terms of Von Mises strain as obtained by GDVC-UU for real deformation estimated from the UU-2018 CT images (cropped to 600 × 600 × 300). 
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ifferent. It is not immediately clear if any variations in real strain

re suppressed in Fig. 23 a or if the strain concentrations in Fig. 23 b

re non-physical and caused by error sources. There also appear to

e edge effects causing non-physical strain concentrations of over

% at the image boundaries. 

In Figs. 24 a and b, the corresponding results of GDVC-UU are

hown for subvolume sizes 100 and 50 (node spacings of 50 and

5) and p = 100 . We observe similar behavior. In Fig. 24 a physi-

al information may have been suppressed, but, more likely, strain

oncentrations of over 4% (present for both subvolume sizes) are

on-physical. When increasing the amount of regularization to p =
0 4 , variations in strain are discouraged, see Figs. 24 c and d. The

on Mises strain fields for both subvolume sizes are now similar

nd much more realistic. This is supported by a rough estimate

f the applied experimental displacement, which would result in

n average strain in the z -direction around 1–2%. However, some

hysical strain concentrations may have been suppressed for this

ncreased level of regularization. 

. Conclusions 

The performance of a DVC method needs to be evaluated us-

ng double scans, virtual deformation (using a single scan or dou-

le scans) and real deformation. Double scans give insight into the
resence of noise and artifacts whereas virtual deformation bench-

arks using a single scan evaluate the performance for a known

eformation and without noise and artifacts. Finally, using real de-

ormation is important for investigating the performance for actual

eformed heterogeneous materials. 

In this paper, a DVC technique has been proposed that is based

n higher-order finite-element discretization of the displacement

eld and a global optimization procedure. Curvature penalization

as been used to suppress non-physical fluctuations of the dis-

lacement field and resulting erroneous strain concentrations. The

roposed method is compared to the commercial code Avizo and

erforms slightly better in most cases, most likely due to the reg-

larization. 

For the Gaussian virtual deformation benchmark using a sin-

le image (noise and artifact-free images), regularization in fact

educes the performance of the DVC methods by suppressing

ariations in the strain fields. Decreasing the amount of regulariza-

ion improves the performance until the interpolation errors start

o dominate. Similarly, the performance is improved for decreas-

ng subvolume size. The increased number of degrees of freedom

llows a better approximation of the displacement field. 

For the double scans (with noise and artifacts), the per-

ormance of the DVC methods improves for increasing but

oderate amounts of regularization. The regularization suppresses
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erroneous fluctuations in the displacements and corresponding

strain field caused by overfitting to noise and artifacts in the

images. The accuracy and precision are influenced by interpola-

tion errors in the DVC procedure and the relative amount of detail,

noise and artifacts in the images. 

The estimated strain fields are directly related to the spatial

derivatives of the displacement field. Therefore, errors in the dis-

placement field are typically magnified during the strain calcula-

tion. Based on the tests and subvolume sizes in this study, the

expected order of magnitude of the accuracy and precision is 0.1

micro-voxels and 1 milli-voxels for the displacements and 0.1 and

1 milli-strains of the strain fields. 

High-resolution images allow a detailed investigation of micro-

and nano-structures, but analyses with both included DVC methods

become more challenging as local features become more sparse

(relatively large void regions) and CT images are more likely to

contain noise and artifacts. For GDVC-UU much regularization is

necessary to eliminate large fluctuations in the estimated displace-

ment fields and corresponding large strains. The amount of regu-

larization necessary is a trade-off between accuracy and precision

of the estimated strain fields and their resolution. 

Additional benchmark tests involving virtual deformation using

a double scan are recommended to investigate the performance

under non-zero deformation and in the presence of noise and arti-

facts. 
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Appendix A. Gradient and Hessian calculation 

The first and second-order derivatives of the normalized cross-

correlation are necessary in the optimization procedure for our

choice of optimization algorithm. It is most convenient to use Ein-

stein notation implying summation over repeated indices. In the

derivations below, the nodal displacements q i are assumed to be

the components of the element degrees of freedom q e . 

Using the chain rule on Eq. (10) , we directly derive the first-

order derivative with respect to the nodal displacements, the gra-

dient of the optimization with a minus sign, as, 

d C 

d q i 
= 

∂C 

∂s α

∂s α

∂u k 

∂u k 

∂q i 
(A.1)

for which the necessary partial derivatives can be derived from the

corresponding relations presented in Section 2 . The partial deriva-

tive of the correlation with respect to the gray scale values of the

current volume is obtained as, 

∂C 

∂s α
= 

ˆ S γ
∂ ̂  s γ

∂s α
= 

1 

‖ s ‖ 

( ̂  S α − ˆ S γ ˆ s γ ˆ s α) = 

1 

‖ s ‖ 

( ̂  S α − C ˆ s α) (A.2)

where Eq. (10) has been used to simplify the expression. The par-

tial derivative of the gray scale values of the current volume with

respect to the displacement is obtained by differentiating Eq. (6) ,

∂s α

∂u k 

= 

∂s α

∂x j 

∂x j 

∂u k 

= 

∂s α

∂x k 
(A.3)

where ∂ s α/∂ x k is directly related to the spline interpolation of the

gray scale function. Finally, the derivative of the displacement with
espect to the nodal displacements is obtained from Eq. (4) , 

∂u k 

∂q i 
= N ki ( X α) (A.4)

The second-order derivative of the normalized cross-correlation

ith respect to the nodal displacements, the Hessian of the opti-

ization with a minus sign, is more complex. It consists of two

arts, 

d 

2 C 

d q i d q j 
= 

∂u k 

∂q i 

∂s α

∂u k 

∂ 2 C 

∂ s α∂ s β

∂s β

∂u l 

∂u l 

∂q j 
+ 

∂u k 

∂q i 

(
∂C 

∂s α

∂ 2 s α
∂ u k ∂ u l 

)
∂u l 

∂q j 

(A.5)

ll the first-order partial derivatives in the Hessian have already

een treated. After some manipulations, the second-order deriva-

ive of the normalized cross-correlation with respect to the gray

cale values of the current volume can be expressed as, 

∂ 2 C 

∂ s α∂ s β
= 

1 

‖ s ‖ 

2 

[
3 C ˆ s α ˆ s β −

(
ˆ S α ˆ s β + 

ˆ s α ˆ S β
)

− C δαβ

]
(A.6)

here δαβ is the Kronecker delta, equivalent to the an identity ma-

rix. 

In implementation it is not a good idea to build the large inter-

ediate full matrix in Eq. (A.6) because of the excessive memory

equirements. Instead one can obtain the first term of the signifi-

antly smaller Hessian in Eq. (A.5) directly by combining appropri-

te terms of the following form, 

 i = 

ˆ s αQ αi and T i = 

ˆ S αQ αi (A.7)

here Q αi is defined as, 

 αi = 

∂s α

∂u k 

∂u k 

∂q i 
(A.8)

hen the first term in Eq. (A.5) can be computed as, 

∂u k 

∂q i 

∂s α

∂u k 

∂ 2 C 

∂ s α∂ s β

∂s β

∂u l 

∂u l 

∂q j 
= 

1 

‖ s ‖ 

2 [
3 C t i t j −

(
T i t j + t i T j 

)
− C Q γ i Q γ j 

]
(A.9)

The second-order derivative of the gray scale interpolation with

espect to the displacement is obtained by directly differentiating

q. (A.3) one more time, 

∂ 2 s α
∂ u k ∂ u l 

= 

∂ 2 s α
∂ x k ∂ x l 

(A.10)

he second term in Eq. (A.5) can then be calculated in a straight

orward manner. 

The contribution of the regularization to the gradient and Hes-

ian are obtained by differentiating Eq. (13) . The contribution to

he gradient is, 

d P e 

d q i 
= 

2 p ∫ 
�e 

d�

∫ 
�e 

3 ∑ 

j,k,l=1 

∂ 2 u k ( X ) 

∂ X l ∂ X m 

∂ 2 N ki ( X ) 

∂ X l ∂ X m 

d� (A.11)

nd the contribution to the Hessian becomes, 

d 

2 P e 

d q i d q j 
= 

2 p ∫ 
�e 

d�

∫ 
�e 

3 ∑ 

j,k,l=1 

∂ 2 N ki ( X ) 

∂ X l ∂ X m 

∂ 2 N k j ( X ) 

∂ X l ∂ X m 

d� (A.12)

gain, the main integrals in these equations are evaluated by Gauss

ntegration. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ijsolstr.2019.03.024 

https://doi.org/10.13039/501100004543
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