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Abstract

In this thesis, a numerical study of simulating and computing the magnetocaloric properties of magnetic materials
is presented. The main objective was to deduce the optimal procedure to obtain the isothermal change in entropy of
magnetic systems, by evaluating two di�erent formulas of entropy extraction, one relying on the magnetization of the
material and the other on the magnet's heat capacity. The magnetic systems were simulated using two di�erent Monte
Carlo algorithms, the Metropolis and Wang-Landau procedures.

The two entropy methods proved to be comparably similar to one another. Both approaches produced reliable
and consistent results, though �nite size e�ects could occur if the simulated system became too small. Erroneous
�uctuations that invalidated the results did not seem stem from discrepancies between the entropy methods but mainly
from the computation of the heat capacity itself. Accurate determination of the heat capacity via an internal energy
derivative generated excellent results, while a heat capacity obtained from a variance formula of the internal energy
rendered the extracted entropy unusable. The results acquired from the Metropolis algorithm were consistent, accurate
and dependable, while all of those produced via the Wang-Landau method exhibited intrinsic �uctuations of varying
severity. The Wang-Landau method also proved to be computationally ine�ective compared to the Metropolis algorithm,
rendering the method not suitable for magnetic simulations of this type.
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Populärvetenskaplig sammanfattning

Magnetiska material har fascinerat människan sen urminnes tider, och genom aktiv forskning har magnetismens
mångsidiga egenskaper kunnat tas tillvara på och tillgodogöras för teknologiskt bruk. För att förstå sig på hur mag-
netism kan uppstå måste man djupdyka in i atomernas värld och studera deras egenskaper och hur de interagerar med
varandra. Det visar sig att elektronerna, de negativt laddade partiklarna i material, uppvisar ett magnetiskt beteende
som påminner om stavmagneter; varje elektron har en magnetisk nord- och sydände. När elektronernas magnetiska
riktning i ett material pekar åt samma håll adderas e�ekten som leder till en storskalig stark magnet, exempelvis en
kylskåpsmagnet. Denna typ av magnetism kallas ferromagnetism. Pekar varje elektrons magnetiska riktning åt parvis
motsatta håll så neutraliseras den storskaliga magnetismen, och på grund av det drastiskt motsatta beteendet kallas
denna typ av material antiferromagnetisk. Om det är så att alla elektroners magnetiska riktning är slumpmässigt
orienterade så bildas det inte heller någon storskalig magnetism, men lägger man på ett externt magnetfält så rätar
elektronerna upp sig jäms med magnetfältet så att materialet faktiskt blir magnetiskt, och denna typ av magnetism
kallas paramagnetism.

Vid låga temperaturer så är magneters magnetism stabil, vare sig det rör sig om ferro- eller antiferromagneter,
men ökar man temperaturen så börjar varje elektrons magnetiska riktning att sakta men säkert �uktuera. Vid en
viss materialspeci�k temperatur, kallad den kritiska temperaturen, så är �uktuationerna så pass kraftiga att materialet
plötsligt totalt tappar sin magnetism och övergår till att vara en paramagnet. Detta fenomen där materialets egenskaper
drastiskt ändras från ett beteende till ett annat kallas för fasövergång, och en vardaglig analogi kan jämföras med när
is smälter eller vatten kokas. Det intressanta med magnetiska fasövergångar är att de kan exploateras på ett �nurligt
sätt. Eftersom ett externt magnetfält kan räta tillbaka elektronernas magnetiska orientering och därmed göra mate-
rialet, till viss del, ferromagnetisk igen, så kan ett varierande externt magnetfält tvinga materialet att pendla mellan
ett ferromagnetiskt och paramagnetiskt tillstånd. Detta innebär att materialet manas att genomgå �era magnetiska
fasövergångar, styrt enbart av det växlande magnetfältet. Utförs denna process på rätt sätt, det vill säga att den
över�ödiga värmeenergin kan e�ektivt skingras och ledas bort från materialet, så uppstår en e�ektiv kylningse�ekt som
sänker temperaturen av ämnet. Denna företeelse kallas för magnetokalorie�ekten, och en av framtidsförhoppningarna
är att e�ekten en dag ska kunna användas i exempelvis konventionella kylskåp. Men innan dess bör lämpliga materi-
alkandidater utses, och ett av de lämpligaste måtten som används för att avgöra magnetens prestanda är entropin, en
abstrakt kvantitet som, på ett sätt, förmedlar materialets inneboende ordning och energistruktur.

I detta projekt studeras två olika sätt att ta reda på entropiförändringen hos magnetiska material som uppvisar
kraftiga magnetokalorie�ekter. Den ena metoden beräknar entropin via en formel som utgår från materialets storskaliga
genomsnittliga magnetisering, medan den andra metoden tar reda på entropin via materialets värmekapacitet, som är
ett mått på hur väl ämnet kan absorbera värmeenergi. För att testa dessa två metoder så användes ett numera
vanligt förekommande arbetssätt att studera fysik, vilket då motsvarar datasimulationer. Genom att modelera och
kvantisera de mångtaliga magnetiska interaktionerna som sker i en magnet så kan det simulerade materialet efterlikna
en verklighetsbaserad magnet, vilket gör det möjligt att utföra so�stikerade experiment utan laboratorieutrustning. De
magnetiska material som simulerades i detta projekt var först ett sorts kubiskt referensmaterial vars atomära magnetiska
interaktioner bara avgränsades till sina närmaste grannar, det vill säga att varje atom bara utbytte interaktioner
med sina närmaste kringliggande atomgrannar, medan atomer utanför denna krets bortsågs. Ett annat material som
studerades var klassiskt järn, som vid låga temperaturer uppvisar ett ferromagnetiskt beteende men runt 1044 grader
kelvin övergår till att vara paramagnetiskt. Detta material är extensivt studerat, och behandlas i många vetenskapliga
kretsar som en referenspunkt för att testa noggrannheten och sanningsvärdet hos nya teorier och metoder. Sista
materialet som undersöktes var ett material vid namn CoMnSi, en sammansättning av kobolt, mangan och kisel,
som via experiment runt rumstemperatur har uppvisat den eftertraktade magnetokalorie�ekten. Dessa tre material
simulerades via två olika dataalgoritmer, en standardmetod som kallas Metropolisalgoritmen samt en nyare procedur
som heter Wang-Landaumetoden.

Det visade sig att båda entropimetoderna producerade utmärkta och likartade resultat, trots att de är utsprungna
från två olika teoretiska bakgrunder. De enda gångerna som dessa två metoder inte höll sin vanliga högklassiska
standard var i situationer då det simulerade materialet var för litet eller att antalet interaktioner var för få. Vid dessa
tillfällen så når man dataalgoritmernas upplösningsgräns, som då vanligtvis resulterar i systematiska fel som uppvisar
sig som småskaliga eller, i värsta fall, kraftiga �uktuationer i slutresultatet. Dock visade det sig att i de två mer
materialrealistiska materialen så reducerades dessa fel och entropin kunde säkert fastställas.

Det var en speci�k metod som uppvisade kraftigt avvikande beteenden, som inte berodde på teoretiska felaktigheter
beträ�ande de två entropimetoderna, utan snarare hur värmekapaciteten i sig var beräknad. Utifrån ett teoretiskt
underlag så brukar värmekapaciteten beräknas på två sätt, den ena bygger på att fastställa förändringarna i materialets
inre energi under små temperaturvariationer via en så kallad derivata, medan den andra metoden utvinner värmeka-
paciteten utifrån ett mått på hur mycket inre energin varierar och �uktuerar vid en speci�k temperatur; ett mått
som ofta ses som variansen av energin. Den metod som utnyttjade derivatan producerade de diskuterade godartade
resultaten medan det tillvägagångssätt som extraherade värmekapaciteten via variansmetoden frambringade kraftiga
�uktuationer som gjorde resultaten totalt obrukbara. Sistnämnt så visade det sig att Metropolisalgoritmen simulerade
materialen mer e�ektivt och precist än Wang-Landaumetoden, som oturligt nog tillförde i vissa fall kraftiga �uktua-
tioner i slutresultatet. Dessutom krävde metoden vissa gånger 25 gånger längre tid att slutföra en fullständig simulation
jämfört med den motsvarande Metropolisalgoritmen.

Denna studie har därmed undersökt inom ramarna av de valda metoderna det mest optimala tillvägagångssätt att
utföra noggranna simulationsstudier av magnetiska material som uppvisar kraftiga magnetokalorie�ekter, och kan i
framtiden tjäna som ett vetenskapligt underlag i jakten på denna typ av materialkandidat.

2



Contents

1 Introduction 4

2 Theory 4

2.1 Fundamentals of thermodynamics and statistical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Thermodynamics and magnetic phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Statistical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The magnetocaloric e�ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 E�ective Heisenberg spin Hamiltonian and the LKAG method . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Metropolis algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Wang-Landau method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Method 16

3.1 Computer simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Numerical post-processing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Results 17

4.1 Simple cubic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Bcc Fe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 CoMnSi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Discussion 25

5.1 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3



1 Introduction
The study of magnetic phase transitions has been an active �eld of research for several decades and still prove to be elusively
challenging to describe. Analytical models have been developed to explain the e�ect, such as the Landau theory of phase
transitions1, but they have unfortunately not been able to completely capture the complex nature of the phenomena. With
the ever-improving computer processing power, other sophisticated numerical methods have started to make themselves
appreciably fast and accurate in simulating magnetic systems. The numerical take on the problem has gained substantial
interest in the hope of achieving precise ab initio calculations of the magnetic phenomena which consequently could grant
predictive power in developing novel magnetic materials for technological purposes.

Magnetic materials are generally speci�ed by the collective behaviour of their constituent magnetic spins. Collinear
alignment of the spins results in a ferromagnetic or anti-ferromagnetic macrostate while non-collinear or canted spin
alignment produce more complex magnetic structures. The magnetic phase transition associated with the state change of
this magnetic order, e.g from a ferromagnetic to a paramagnetic state, occurs at a certain critical temperature Tc. Varying
some intrinsic variable of the system, such as the magnetic �eld around Tc, one may drive the material to undergo several
transitions, �icker between one phase to another. This can give rise to a magnetically driven caloric e�ect of net cooling
or heating, the so-called magnetocaloric e�ect, since certain thermodynamic quantities are discontinuous and enhanced
across these types of phase transitions. In brief, taking a ferromagnet as an example, when an external magnetic �eld is
turned on and the temperature is held constant the magnetic spins align themselves along the �eld causing an increase in
order and thus a decrease in entropy. When the magnetic �eld is removed the system may relax adiabatically to a state
of net decrease in temperature. The reverse is often observed in antiferromagnets which instead give rise to a net heating
of the system under the same thermodynamic cycle. In other words, the caloric nature of the material is dependent on its
innate magnetic structure. This phenomena has been observed in several rare-earth and transition metal elements and as
well in intermetallic alloys2 though substantial e�ects have unfortunately only been driven by rather large magnetic �elds
(up to 3− 5T ). This drawback with the material's narrow operating temperature (around its transition temperature) as
well as cost of production has so far not made the magnetocaloric e�ect applicable in commercial devices, thought the
prospect of room temperature operating solid state refrigeration is intriguing and may very well be realized in the future3.

The numerical methods used to simulate the physics of magnetic systems are in many cases based on stochastic processes
that mimics the random nature of individual particles but whose collective mean or average re�ect the macroscopic
properties of the system. This class of numerical methods that utilizes sequences of random numbers to solve problems
in e.g statistical physics, fall under the collective name of Monte Carlo methods4. One of the many desired quantities
that can be computed with the aid of these Monte Carlo simulations is the entropy of the magnetic system. Accurate
calculations of the entropy are an important part in identifying the phase stability of the material but also the e�ective
magnitude of the magnetocaloric e�ect. Discerning the most appropriate method of entropy extraction would take us one
step further in realizing an ab initio approach in determining e�ective and consistent novel magnetocaloric materials.

In this paper, a numerical study of the magnetocaloric e�ect is presented whose main goal is to distinguish and compare
two di�erent methods of entropy extraction from magnetic Monte Carlo simulations. In brief, one of the methods derives
the change in entropy under a variation of external magnetic �eld from the order parameter, i.e the magnetization itself.
The second method retrieves the entropy change from the �eld dependent heat capacity of the material. These methods
are studied utilizing a minimal spin Hamiltonian consisting of an isotropic Heisenberg model and a Zeeman term. The
magnetic systems are simulated with the aid of two di�erent Monte Carlo algorithms, the Metropolis algorithm and the
Wang-Landau method, whose e�ectiveness, accuracy and in�uence on the thermodynamic properties are discussed in
connection with the magnetocaloric results. There are three types of materials that are studied. The �rst one is a simple
cubic toy-model system of only nearest neighbour exchange coupling; whose purpose is to benchmark the entropy extraction
methods and to determine the resolution of the two Monte Carlo algorithms. The other two materials are de�ned via
�rst-principle calculations, thus making them realistic systems in a numerical sense. These consists of a CoMnSi compound
and a body centred cubic iron (bcc Fe) magnet, whose purposes are to examine the precision and behaviour of the entropy
methods in material realistic systems and to compare the magnetocaloric results with experimental �ndings.

2 Theory
In this chapter, the theoretical background concerning the thermodynamics of the magnetocaloric e�ect and the prereq-
uisites of magnetic simulations will be discussed. First, there is an introduction to the physics of thermodynamics and
statistical mechanics concerning simple magnetic systems. Necessary theories and quantities are introduced in this section
that are expanded upon in the next segment which deals with the magnetocaloric e�ect itself, including a review of the
current state of research in the �eld. Later on, the intricacies of magnetic interactions are discussed, and the minimal spin
Hamiltonian considered in this study, is introduced. Also, the theoretical framework to compute the exchange interactions
of the Heisenberg model via a multiple scattering approach is addressed and explained. The last portion of the chapter
deals with the topic of Monte Carlo simulations in which the two mentioned algorithms are reviewed and explained in
detail.
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2.1 Fundamentals of thermodynamics and statistical mechanics

2.1.1 Thermodynamics and magnetic phase transitions

Thermodynamics is a wide branch of physics that deals with the thermal aspects of a system, and its fundamental
formulation makes it applicable in several �elds of physics and engineering. In short, it considers the possible quantities
of a physical process and in a systematic way works out how they are interlinked to each other and how the system's
properties are restricted by their action. These quantities are generally divided into two groups, extensive variables that
scale with the system such as entropy S, volume V and magnetization M , and intensive variables, independent of the
size of the system, which are, for instance, pressure p, temperature T and external magnetic �eld H. The fundamental
principles of thermodynamics can be compiled into four postulates which set the framework of allowed operations. The
�rst postulate assumes that there exists an equilibrium state that is completely characterized by its internal energy U and
its intensive and extensive variables. The second one proclaims that in a closed and set equilibrium state, i.e no exchange
of e.g particles or energy, there exists a quantity called entropy which is set to be maximized within the constraints of
the given variables. The third postulate declares that the entropy is additive of its constituent subsystems, continuous,
di�erentiable and monotonically increasing with respect to energy. Lastly, the fourth postulate dictates that the entropy
must vanish at zero temperature5.

These postulates propose the existence of an abstract quantity, the entropy, which in a broad context is the leading
factor that constrains what is permissible or not in a physical process. Determining the entropy is then of signi�cant
importance as it reveals a great deal of the state of the system and what kind of operations are admissible. The following
discussion will focus on the thermodynamics of a simple magnetic system held at constant volume and pressure with no
particle �ux.

One of the �rst steps in quantifying the thermodynamic properties of a magnetic system is to consider the behaviour
of the internal energy U , and more precisely, the change in internal energy due to the magnetic work W = HM exerted
on the system. The in�nitesimal change in U is exactly described by

dU = dQ− dW (1)

where dQ is the in�nitesimal heat absorbed by the system, directly related to its change of entropy via dQ = TdS, and
dW = −HdM corresponds to the in�nitesimal work. It is convenient to introduce other thermodynamic potentials, related
to the internal energy via Legendre transformations, such as Helmholtz free energy F , enthalpy E and Gibbs free energy
G de�ned in this case as

E = U −MH

F = U − TS
G = U − TS −MH

(2)

Di�erentiating these terms by using the form of Eq.(1) one obtains6

dU = TdS +HdM

dE = TdS −MdH

dF = −SdT +HdM

dG = −SdT −MdH

(3)

These thermodynamic potentials on di�erential form are exact di�erentials meaning that, e.g, T can be computed by taking
the derivative of U with respect to S while keeping M �xed. Following through all possible derivatives, one acquires the
following relations

T =

(
∂U

∂S

)
M

T =

(
∂E

∂S

)
H

−S =

(
∂F

∂T

)
M

−S =

(
∂G

∂T

)
H

H =

(
∂U

∂M

)
S

−M =

(
∂E

∂H

)
S

H =

(
∂F

∂M

)
T

−M =

(
∂G

∂H

)
T

(4)

Another useful property of exact di�erentials is that the second derivative is invariant of the order of taking the partial
derivatives. This means that in the case of internal energy, the second derivative of U with respect to both S and M can
be taken in any order. Applying this feature on the terms in Eq.(4) one obtains four Maxwells relations on the form7

(
∂T

∂M

)
S

=

(
∂H

∂S

)
M

(5),

(
∂T

∂H

)
S

= −
(
∂M

∂S

)
H

(6),

(
∂S

∂H

)
T

=

(
∂M

∂T

)
H

(7),

(
∂S

∂M

)
T

= −
(
∂H

∂T

)
M

(8)
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These Maxwells relations show how these variables are connected to one another, in maybe seemingly unrelated ways.
They also put constraints on the properties that can be acquired from the system, e.g keeping the magnetic �eld constant
at all times forces the temperature and entropy in certain circumstances to be �xed with respect to magnetization.
Another interesting upshot of the Maxwells relations is that indirect measurements of the entropy becomes possible via
measurements of the magnetization held at constant magnetic �eld. This feature will be a central topic in this study and
will be further touched upon in section 2.2 where the magnetocaloric e�ect is described in detail.

It is highly practical to introduce a response function called the heat capacity which is a quantity that re�ects the
system's capability to absorb heat with respect to changes in temperature. It is de�ned as

Cx =

(
∂Q

∂T

)
x

= T

(
∂S

∂T

)
x

(9)

in which x indicate what variable is held constant. In this magnetic system, two heat capacities can be identi�ed, CM in
which the magnetization is kept �xed and CH where the �eld is constant. Using Eq.(9) and Eq.(3) one obtains CM and
CH as

CM = T

(
∂S

∂T

)
M

=

(
∂U

∂T

)
M

= −T
(
∂2F

∂T 2

)
M

(10a)

CH = T

(
∂S

∂T

)
H

=

(
∂E

∂T

)
H

= −T
(
∂2G

∂T 2

)
H

(10b)

where the last equality comes around due to the relations of Eq.(4). Another response function that is widely used is the
magnetic susceptibility which gives a quantitative description of what kind of in�uence a variation in magnetic �eld has
on the magnetization of the system. It is de�ned as

χx =

(
∂M

∂H

)
x

(11)

which with the relations of Eq.(4) result in two types of susceptibilities, one of constant temperature and one with constant
entropy6

χT =

(
∂M

∂H

)
T

= −
(
∂2G

∂H2

)
T

(12) and χS =

(
∂M

∂H

)
S

= −
(
∂2E

∂H2

)
S

(13)

The thermodynamic relations presented here serves as a foundation in quantifying and calculating the thermodynamic
properties of magnetic materials. However, magnetic phase transitions have proven to be elusively di�cult to describe as
they bring forth abrupt changes and discontinuities in the mentioned thermodynamic quantities. One of these properties
that are altered across a phase transition is the non-zero order parameter, i.e magnetization M , which de�nes the ordered
phase of a magnet below some critical transition temperature. When the temperature rises above the critical temperature,
the magnetization vanishes, and the system becomes paramagnetic with no preferred magnetic orientation. This means
that at the critical point the phase transition alters the state of the system and its thermodynamic properties, which can
happen in either a smooth or disrupt fashion. The nature of the transition can be classi�ed as either a �rst-order transition,
in which the �rst derivative of the free energy is discontinuous (i.e the magnetization M), or a second-order transition in
which it is the second derivative of the free energy that is discontinuous (e.g the susceptibility χ). The speci�c value of
the critical temperature is a material speci�c quantity which is constant if no external stimuli are present, but under the
in�uence of e.g a magnetic �eld, the value is not �xed but rather a function of the applied �eld. For ferromagnets, the
transition temperature generally increases monotonously with �eld strength while it the opposite for antiferromagnets8.
Mapping the corresponding critical temperature values one can compile phase diagrams portraying the set of variable
values that trigger a transition.

The abrupt changes in these thermodynamic quantities give rise to interesting consequences, e.g enhancements in the
magnetocaloric e�ect which will be discussed in section 2.2.

2.1.2 Statistical mechanics

Statistical mechanics is a powerful and, in many cases, necessary tool that circumvents the problematic and often unsolvable
equations of motion that arise in a classical description of a many-body problem and instead approaches the matter in a
stochastic fashion. Here, the system is quanti�ed in terms of its possible microstates, a representation of all the system's
attainable phase space con�gurations. This means that a speci�c microstate corresponds to a particular state of the
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system, which in turn implies that the whole set of microstates completely describes the system of interest. Allowing
the energy of the system to span an arbitrarily large range of energy levels, following the so-called canonical formalism,
leads to the conclusion that some states are less likely to occur than others at thermal equilibrium. This means that it is
justi�able to prescribe a �nite probability to each of these microstates such that they precisely re�ect the probability to
�nd the system in a speci�c state with energy E. This means that their collective behaviour, averaging all the possible
con�gurations, should mirror the observable macroscopic properties of the system5.

The probabilistic nature of these microstates enables physicists to tackle the problem in a completely new manner,
and the theory has �ourished since the early 1900s. It was at this early time that the microstates got a physically suitable
probability distribution, the so-called Boltzmann distribution, which depend on the energy of the microstate and the
system's equilibrium temperature. A central quantity that is derived using the Boltzmann distribution and contains all
the information of the microstates is the partition function

Z =
∑

All microstates

e
− H
kBT =

∑
All microstates

e−βH =
∑
E

g(E)e−βE (14)

in which kB is the Boltzmann constant, β = (kBT )−1, H is the Hamiltonian describing the system of interest with
corresponding energy eigenvalue E and g(E) is the density of state at that particular energy level. The partition function
is summed over all possible microstates of the system, meaning that it scales with its size and the degrees of freedom per
interacting particle.

The last equality in Eq.(14) represents a more appropriate way to calculate the partition function. Here, the sum
covers all the energy levels of the system instead of the more abstract notion of microstates, though it retains the energy
state degeneracy by weighting the distribution with the density of states, which essentially is a measure of the number of
states per energy level. With this at hand, one can de�ne the probability that the system is found in a speci�c state as

Pµ =
g(Eµ)e−βEµ

Z
(15)

where Eµ corresponds to the energy output of the Hamiltonian in the state µ. Continuing using the tools of statistics,
one can write down an expression for the expectation value of an observable quantity Q by summing up its contribution
per microstate and weighting it with its corresponding probability

〈Q〉 =
∑
µ

QµPµ =
1

Z

∑
µ

Qµg(Eµ)e−βEµ (16)

In the case of the expectation value of the Hamiltonian, i.e 〈E〉, one may exploit the exponential form of the partition
function to specify 〈E〉 in terms of a partial derivative of Z with respect to β, i.e

U = 〈E〉 = − 1

Z

∂Z

∂β
= −∂ logZ

∂β
(17)

Here the energy expectation value has been noted to correspond to the internal energy U due to the fact that the
Hamiltonian itself encompasses all the interactions of interest leading to a full coverage of all the energy con�gurations
of the system. This in turn implies that it should be possible to describe the system's internal energy in terms of the
expected occupation of energy levels, namely 〈E〉. A consequence of this notion is that the magnetic work, e.g Zeeman
interaction, can be implicitly included in the internal energy, resulting in no explicit work terms in the thermodynamic
equations of Eq.(3). This means that the di�erential form of U in Eq.(1) will be exactly equal to the in�nitesimal change
in heat dQ, which in turn makes the heat capacity uniquely speci�ed by the derivative of U with respect to T regardless
of the form of the Hamiltonian. Here one may also notice that the statistical mechanics approach also eliminates the
need to �x M or H in order to specify a heat capacity; the two de�nitions of Eq.(10) are in this formulation equivalent.
Relabelling it as C, statistical mechanics de�nes the heat capacity as

C = T

(
∂S

∂T

)
=
∂U

∂T
= kBβ

2 ∂
2 logZ

∂β2
(18)

where the last equality follows from the form of Eq.(17). An interesting consequence of the particular form of U is that
the energy �uctuations, i.e its mean square deviations, are related to the heat capacity itself. By using Eq.(16-18) one
obtains the following alternative form of the heat capacity

〈(E − 〈E〉)2〉 = 〈E2〉 − 〈E〉2 =
∂2 logZ

∂β2
=

C

kBβ2
(19)

The magnetic susceptibility of Eq.(11) can in a similar fashion as the heat capacity be related to the �uctuations of
the magnetization itself, taking on the form
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χ = β
(
〈M2〉 − 〈M〉2

)
(20)

Another useful quantity that can be computed from Eq.(18) is the entropy, which is obtainable after integration with
respect to temperature. Using the fact that the entropy should vanish at zero temperature to remove possible integration
constants the result becomes

S = −kBβ
∂ logZ

∂β
+ kB logZ (21)

The equations outlined in this section show how the previously de�ned thermodynamic quantities can be calculated
within this new stochastic approach. Here, one may notice that all thermodynamic properties are connected to the
partition function itself, meaning that if the partition function is known, then all features of the system can be extracted
from its notion. Unfortunately, complete knowledge about this quantity is rare to �nd, though a numerical method that
computes the density of states, necessary in the calculation of the partition function, is discussed in section 2.4.

2.2 The magnetocaloric e�ect

Figure 1: Illustration of the magnetic entropy under the

presence and absence of an external magnetic �eld. The

isothermal and adiabatic processes indicated here empha-

size the enhanced entropy and temperature change be-

tween these two descriptions.

The �rst scienti�c reports on the Magnetocaloric e�ect dates back to
1917 from an experimental study by P. Weiss and A. Pickard9. They
discovered a slight temperature change in nickel while varying a mag-
netic �eld close to its magnetic phase transition temperature, indicating
the existence of a caloric e�ect of purely magnetic nature. In the 1920s,
P. Debye10 and W. F. Giauque11 independently suggested a process
that could e�ectively cool substances down to sub-kelvin degrees by
repentantly demagnetize certain paramagnetic salts. This was later re-
alized in 1933 by W. F. Giauque and D. P. MacDougall12 where they at-
tained a temperature of 0.25K in gadolinium sulphate, Gd2(SO4)8H2O,
and the technique has since then been frequently used to cool matter
down to very low temperatures. On the other hand, the compelling pos-
sibility of room temperature refrigeration based on the magnetocaloric
e�ect soon started to be investigated, and in 1976, G. V. Brown and S.
S. Papell13 showed that gadolinium, Gd, with a transition temperature
of 294K, could be used to accomplish a net cooling with the aid of an
alternating magnetic �eld of about 7T in strength. This was the �rst
step in an extensive scienti�c pursuit of �nding magnetic materials ex-
hibiting substantial magnetocaloric properties whilst being operational at room temperature conditions3. In this section,
we will dive deeper into the physics and research of the magnetocaloric e�ect to depict its underlying mechanism and
showcase the ideas of magnetic cooling devices.

The thermal response that some magnetic materials display whence a�ected by an external magnetic �eld is commonly
caused by the interplay between the magnetic moments and the vibrational modes of the atomic lattice. It all emerges
due to the conservation of the system's total entropy under adiabatic conditions, i.e the full entropy stays constant before
and after a variation of some intensive or extensive variable. Keeping in mind that the system's degrees of freedom are
embedded in terms of the electrical, lattice (phonon) and magnetic contributions suggest that the total entropy should be
composed of the individual entropies related to these subcategories. When the volume and pressure are held constant, the
premise is that the full entropy is merely a function of temperature and external �eld. Putting this all together we obtain

S(T,H) = Sm(T,H) + SEl(T,H) + SLat(T,H) (22)

where Sm, SEl and SLat are the magnetic, electronic and lattice entropy contributions respectively. In most cases, the
�eld dependency of the electronic and lattice entropies is negligible compared to the magnetic part. This means, to a large
extent, that if a magnetic �eld is applied isothermally only the magnetic entropy is a�ected and altered. In the case of a
ferro or paramagnet, the moments tend to align with the �eld which in turn causes the system to be more structured, thus
reducing the magnetic and total entropy by an amount |∆S| which is the di�erence in total entropy before and after the
change in �eld at constant temperature. Removing the magnetic �eld under adiabatic conditions forces the temperature to
be lowered due to the fact that the temperature is the only free parameter in the entropy function and the third postulate
of thermodynamics dictates a reduction in thermal energy in relation to the previous entropy change |∆S|. This shows
up as a decrease in the vibrational energy of the lattice which lowers the system's overall kinetic energy, and thus also its
temperature. So, the conservation of entropy before and after �eld removal induces a net cooling of the system that is
purely driven by a thermodynamic cycle of isothermal and adiabatic variation of an external �eld. The reverse is usually
observed in antiferromagnets as magnetic �elds tend to force the magnet's oppositely oriented moments to a less ordered
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canted state which in turn leads to an increase in entropy. This would make the thermodynamic cycle discussed above
end up heating the material instead of cooling it. The magnetic materials that exhibit these properties have what is called
an inverse magnetocaloric e�ect, while those of the �rst category are named the conventional type.

The change in entropy and temperature can be enhanced in a region close to a phase transition as some of the
thermodynamic quantities are discontinuous from one phase to another. This peculiarity can be exploited with the fact
that the critical temperature is not a �xed quantity, but instead rather malleable, and can be shifted to higher or lower
values with the aid of an external �eld, as discussed in section 2.1.1. This means that the temperature in the isothermal
part of the cycle can be chosen in such a way that it lies in between the two transition temperatures occurring with and
without the presence of the �eld. At this particular point, the two entropy descriptions, i.e S(T, 0) and S(T,H), exhibit
dissimilar behaviour, with one being in the ordered state while the other, disordered. When the �eld is applied, it drives
the system to transfer from one phase to another, signi�cantly amplifying the entropy change as illustrated in Fig. 1. This
enhancement produces an even greater e�ective temperature variation per thermodynamic cycle, increasing the overall
e�ciency and usefulness. Hence, to produce optimal performance, the magnetic material itself should exhibit both large
entropy and temperature alterations while at the same time have an inherent transition point close to room temperature
to make use of this highly desired caloric quality.

In these processes, entropy is evidently a central quantity that governs the e�ectiveness of the caloric cycle, and thus
also the total induced temperature change. One way of obtaining the entropy stems from the Maxwell relation of Eq.(7),
which after integration with respect to �eld becomes

∆S = ∆S(T, 0→ H) =

H∫
0

(
∂M

∂T

)
H′
dH ′ (23)

This equation connects the magnetic entropy change with the combined rate of change of the magnetization with respect
to temperature over the full interval of the applied �eld. The derivative in this expression becomes discontinuous in a
second order phase transition, as discussed in section 2.1.1, which in turn can produce a peaked behaviour in ∆S close
to the material's innate transition temperature. Another way of computing the change in entropy comes from statistical
mechanics and more precisely Eq.(18). Here, after integration with respect to temperature, the equation shows that the
entropy at temperature T and �eld H is given by

S(T,H) = S0 +

T∫
0

C(T ′, H)

T ′
dT ′ (24)

where S0 correspond to an integration constant and can generally be taken to be zero as the fourth postulate of ther-
modynamics a�rms that the entropy should vanish at absolute zero. The contribution of the magnetic �eld is implicitly
included in the heat capacity which makes it possible to determine the �eld induced isothermal change in entropy, i.e
∆S(T, 0→ H) as

∆S = ∆S(T, 0→ H) = S(T,H)− S(T, 0) =

T∫
0

C(T ′, H)− C(T ′, 0)

T ′
dT ′ (25)

The change in entropy is in this case computed as the temperature cumulative di�erence of heat capacities in the presence
and absence of �eld. The integrand will in a similar fashion to the previous ∆S formula show a peaked behaviour under
a second order phase transition due to the fact that the second order derivative of Eq.(10) is discontinuous.

The two equations of isothermal entropy variation presented here o�er two distinctly di�erent ways to measure and
compute the system's change of entropy. The �rst equation, Eq.(23), require direct measurement of the magnetization
under varying �eld strength at di�erent temperature steps, experimentally achievable via e.g superconducting quantum
interference devices (SQUID) magnetometry14. While on the other hand, varying the same set of variables, caloric
measurements of the heat capacity via e.g di�erential scanning calorimetry (DSC)15 enable indirect determination of
the change in entropy via the second equation, Eq.(25). Computation of the magnetization and the heat capacity via
numerical simulation will be of a completely di�erent matter as the models used to simulate the magnet constrain and
limits the system via e.g approximations, �nite systems or even the extent of the models themselves. The extraction of
the two discussed entropy variations via numerical simulations is, therefore, the central part of this study, and its speci�cs
are discussed throughout the paper.

Knowledge about these two expressions makes it possible to indirectly ascertain the material's adiabatic temperature
change, by �rst noting that the entropy itself is a function of only temperature and �eld, which means that its exact
di�erential will be of the form

dS =

(
∂S

∂T

)
H

dT +

(
∂S

∂H

)
T

dH (26)
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Relating the two terms of the right hand side with the form of Eq.(18) and Eq.(7), the entropy di�erential becomes

dS =
C

T
dT +

(
∂M

∂T

)
H

dH (27)

Here, as it is the adiabatic process of the thermodynamic cycle that is considered, the in�nitesimal change in entropy is
per de�nition zero, dS = 0. With this in mind, rearranging the terms of Eq.(27) and integrating, one obtains the adiabatic
temperature change as

∆T = ∆T (T, 0→ H) = −
H∫

0

T

C(T,H ′)

(
∂M

∂T

)
H′
dH ′ (28)

This formula enables indirect measurements of the e�ective temperature change per thermodynamic cycle, but it requires
both of the aforementioned quantities of magnetization and heat capacity as functions of both �eld and temperature to be
computed. Experimental direct measurements, via temperature sensors, give a straightforward indication of the material's
actual performance, circumventing the need to map out the results of M and C with respect to �eld and temperature3.

The scienti�c investigation concerning the materials exhibiting substantial magnetocaloric e�ect is an extensive, active
and continuously growing �eld of research, and too large to be justi�ably reviewed in this paper. A brief and general
summary of the materials that demonstrate the phenomena will instead be presented in order to still capture the overall
development in the �eld. Discussing the �ndings will make way to the �nal topic of the magnetocaloric section which is
a short summary of the basic concepts of refrigeration devices and their inner workings. A thorough and comprehensive
review of the experimental �ndings and methodologies can be read in the paper written by V.Franco and co-workers of
Ref.[16], Ref. [3] written by M. Bali et al and Ref.[17] by J. Lyubina.

Generally, all sorts of magnetic materials display some sort of magnetocaloric e�ect, but usually only in minute amounts.
Substantial magnetocaloric properties are rather rare, but even rarer are the ones that have a transition temperature around
ambient temperature. The materials manifesting these attributes can predominantly be grouped into classes and families
of crystalline or amorphous compounds and alloy. An intriguing feature of alloying with di�erent elemental compositions
and concentrations is the possibility to tailor the transition temperature of the material and its magnetic properties to
be suitable for a speci�c purpose. One of the largest groups of these materials, and the one that has gained the most
interest, is gadolinium related alloys. The rare earth element itself possesses exceptionally large magnetic moments, about
∼ 7.5µB per atom, and exhibit signi�cant magnetocaloric properties around 294K, even on its own2. This insinuates
that a number of alloys doped with gadolinium should showcase similar caloric qualities, which has been observed in
e.g Gd1−xDyx, Gd1−xTbx, GdxHo1−x, Gd1−xYx and Gd5Si2Ge2 in which the x label corresponds to the concentration
in percent of the elements. Many of these alloys display a broadening in the operational temperature in contrast to
pure gadolinium making the refrigeration process more �exible. Another distinguishing feature of the gadolinium-based
materials is the small hysteresis losses, meaning that the loss of thermal energy due to the realignment of the moments
under varying �eld is negligibly low. Altogether, the gadolinium alloys are often regarded as the benchmark and reference
prototype in the development of e�ective refrigeration devices, but unfortunately, they are not expected to be relevant
when it comes to upscaled mass productions due to the high cost of the rare earth elements.

Another promising class of materials is the lanthanum-based compounds, more precisely, La(FexSi1−x)13 compositions,
which can also be appended with e.g hydrogen, carbon and cobalt for an even broader range of features. Even though
lanthanum is a rare earth element, the stoichiometric composition of the compound allows for fewer lanthanum atoms per
unit cell compared to the mentioned gadolinium alloys. With the abundance of the other constituent elements, the La-
Fe-Si compounds become an a�ordable candidate for mass-produced refrigeration devices. This class of material produces
comparable results to the gadolinium-based ones, with adiabatic temperature changes reaching, for example, ∆T ∼ 15.4K
measured in a La(Fe0.9Si0.1)13H1.1 crystal at 287K under the variation of a magnetic �eld of 5T 18. A drawback with
these compounds is that without proper production preparation, i.e annealing at high temperatures for up to weeks at
length, the materials become quite brittle and di�cult to handle. An interesting upshot of this is that the materials are
manufactured as grains or �akes instead of the conventional blocks or sheets which reduces the mechanical stress and
increases the surface to volume area, an important factor to consider in the actual refrigeration prototypes3.

Some manganese and iron-based compounds, e.g MnFeSixP1−x, MnFeP1−xAsx and MnFeP1−xGex also show very at-
tractive caloric properties in ambient conditions. The compounds containing arsenic show excellent adiabatic temperature
changes, up to ∆T = 9.8K for MnFeP45As55 at 308K for ∆H = 5T 19, but the toxicity of arsenic must be taken into
consideration in domestic devices. Substituting arsenic with silicon or germanium still retains equivalent caloric qualities
of the compounds, though at the cost of increased hysteresis losses, which in certain circumstances can be remedied with
the addition of boron17.
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Magnetic materials exhibiting magnetocaloric e�ects
MC material T [K] |∆S|[J Kg−1 K−1] |∆S|[J mol−1 K−1] |∆T |[K] ∆H[T] Reference
Gd 294 11 1.73 13d 5 20
Gd5Si2Ge2 280 19 2.08 15i 5 20
La(Fe0.88Si0.12)13 195 23 1.35 8.6i 5 21
La(Fe0.9Si0.1)13 184 30 1.77 12.1i 5 21
La(Fe0.9Si0.1)13H1.1 287 31 1.84 15.4i 5 18
Mn1.24Fe0.71P0.46Si0.54 320 12 0.55 3.0i 1 22
MnFeP0.45As0.55 308 18 0.99 9.8i 5 19
CoMnSi 250 6.5 0.31 1.7d 5 23
Ni52.6Mn23.1Ga24.3 300 18 1.09 12i 5 24
Ni55Mn20Ga25 311 29 1.76 2.2d 5 25
Ni45.2Mn36.7In13Co5.1 317 18 1.16 6.2d 2 26
Ni50Mn37Sn13 299 18 1.17 12i 5 27

Table 1: A selection of magnetic materials exhibiting substantial magnetocaloric properties. The temperature of the isothermal

measurements is denoted as T , the isothermal entropy change correspond to ∆S, the adiabatic temperature change as ∆T and the

complete variation of magnetic �eld is represented as ∆H. The superscripts i and d correspond to results obtained via indirect or

direct measurements respectively.

The last family of materials that will be assessed is the Heusler alloys. This group of materials is stoichiometry de�ned
by the formula X2Y Z in which X corresponds to some transition metal element, Y being either transition, rare-earth
or alkaline rare-earth and Z represent an element from the p-block. X corresponds in many cases to nickel of the 3d
transition elements but can be chosen to be, for example, iron, cobalt and platinum. The Y component is usually the
constituent that induces the alloy's magnetic properties on its own or in union with the X component and is often times
chosen to be manganese. Lastly, gallium, indium, tin or antimony has shown to be common elements taking the place
of the Z atom in the formula. The substantial magnetocaloric e�ects that can be found in a number of these alloys
are mainly contributed by a structural phase transition coinciding with the magnetic phase transition. This conjoined
transition boosts the caloric property of the material to signi�cant values, almost comparable to the previously mentioned
categories16. Unfortunately, the reliance on the structural phase transition causes the Heusler alloys to be rather volatile
as it is common that the �rst thermodynamic cycle results in an agreeable temperature change while subsequent magnetic
�eld variations only produce a fraction of the e�ect. An example of this principle can be seen in Ni45Mn37In13Co5

examined in the temperature interval 313K ≤ T ≤ 321K under the �eld variation ∆H = 1.9T from Ref.[17]. The �rst
cycle produced an adiabatic temperature change of about |∆T | ∼ 4.3K while the second and succeeding �eld variations
only induced a change of about |∆T | ∼ 1.3K. This is attributed to the magnetically di�cult or inconceivable task of
returning the structure to its starting con�guration for each repetition of the cycle. This means that after the �rst �eld
variation, the crystal structure and its magnetism are altered from the material's initial state and can only be returned to
its original con�guration by annealing or being subjected to a very strong magnetic �eld ∼ 10T . Another inconsistency of
the measured magnetocaloric properties of the Heuseler alloys is the discrepancy between direct and indirect measurements
of the thermodynamic quantities. The rather large di�erence in |∆T | in Ni-Mn-Ga alloy measurements can be taken as
an example. Here, indirect measurements of Ni52.6Mn23.1Ga24.3 from Ref.[24] showed a temperature di�erence of 12K
while a similar composition of Ni55Mn20Ga25 from Ref.[25] showcased a directly measured temperature di�erence of 2.2K.
The disagreeing results are unlikely caused by the minuscule dissimilarities of the alloy compositions. A more plausible
explanation would be that the adiabatic temperature change formula of Eq.(28) has been wrongfully misused. Since
the Maxwell relations, which were determined on the premise of no volume or lattice contributions, have been directly
implemented in the derivation of Eq.(28), causes the formula to disregard any e�ects related to structural alterations.
This gives rise to artifact remnants when computed, which in turn causes an exaggerated �nal result16. These primary
features make the Heusler alloys as a category improbable candidates for e�ective magnetocaloric devices.

Table 1 displays a selection of magnetic materials and their magnetocaloric properties from the mentioned classi-
�cations. As been previously discussed, the isothermal entropy and adiabatic temperature change give a considerable
indication of the absolute e�ectiveness of the material, but these values are not the only contributing qualities to have
in mind when developing refrigeration devices. Cost of production, thermodynamic reversibility, operation temperature,
hysteresis losses, brittleness, corrosion and heat dissipation properties are but some complementary factors to consider in
this scheme. Another central aspect to re�ect upon is the heat exchange itself between the caloric material and, usually, a
heat transfer �uid. The �uid serves as a heat dissipation medium that is either heated or cooled during the thermodynamic
cycle, which after completion is carried away from the magnet. The transferred heat from cycle to cycle can then be merged
into a net cooling channel, constituting the overall net cooling e�ect of the refrigeration device. Here, the addressed grain
or �ake structures are excellent designs in the regard that the contact area between the magnet and the heat transfer �uid
is greater compared to the more conventional stacked sheet shapes. This facilitates the heat exchange in such a way that
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a decrease in the lag time can be observed between completion of the thermodynamic cycle and temperature equilibration
of the two mediums. The compatibility between the magnet and the heat transfer �uid becomes an important matter as
the risk of oxidation or corrosion would render the caloric material useless, and with it, a short-lived refrigeration device.
The inclination of these e�ects di�ers from magnet to magnet and a protective coating could very well be necessary in
order to shield the magnetic material from direct contact with the �uid.

The source of the magnetic �eld has also been a topic of discussion; whether to use super strong permanent magnets
or a wired electromagnet, pulsed on and o� by an alternating electric current. The requirement of very strong magnetic
�elds is still one of the biggest drawbacks of the magnetocaloric e�ect, and the absolute output of the entropy and
temperature change scale with the strength of the applied �eld. The alternative of an electromagnetic source, i.e an
electromagnet, that can be pulsed on and o� is an appealing option as the �eld strength can be tuned by simply varying
the magnitude of an electric current. Unfortunately, electromagnets have proven to be highly energy ine�cient due to
excessive heat productions in the form of Joule heating in the coils of the electromagnet. Permanent magnets, on the
other hand, circumvent these de�ciencies but are at the same time limited in the sense that they can only produce
�elds up to ∼ 2T in strength, achievable via e.g Fe-Nd-B permanent magnets. Improved capacities can be obtained
by the use of superconducting magnets which can push the absolute �eld strength to higher order values, making the
overall refrigeration more e�ective. Though, the generally low operation temperature of superconducting magnets makes
magnetocaloric devices based on this source unlikely to make their way into domestic environments and might only be
useful for large industries. The variation of the �eld itself is made possible by either mechanically moving the permanent
magnet or the magnetocaloric material in and out of range of the magnetic �eld16.

2.3 E�ective Heisenberg spin Hamiltonian and the LKAG method

Some magnetic materials experience a spontaneous magnetic ordering below a critical temperature; the so-called Curie
temperature Tc in the case of ferro- or ferrimagnets and Néel temperature TN for antiferromagnets. When temperatures
rise above the critical temperature, the orientation of the magnetic moments suddenly becomes random triggering the
magnet to behave like a paramagnet. The mechanism behind spontaneous magnetic ordering is completely quantum
mechanical in its nature and its fundamental description stems from the Pauli exclusion principle which states that two
identical fermions cannot occupy the same quantum state. This causes the electrons in a many-body system, like in a
solid, to have a collective wavefunction that is antisymmetric under the interchange of two electrons. Since the typical
non-relativistic electronic Hamiltonian, or molecular Hamiltonian under Born-Oppenheimer approximation, describing the
multitude of Coulomb interactions between electrons and nuclei is spin independent, the total electronic wavefunction must
be a product of a spatial part governing the coordinates of the electrons and a spin part containing the spin information
of the electrons. The antisymmetry of the wavefunction constrains the spin and spatial states in such a way that in
some cases a spin-dependent splitting of energy eigenvalues occurs which in turn results in an energetically preferred spin
orientation28. This mechanism gives an explanation of why spontaneous magnetic order can occur and its close relationship
with the interchange of spins has given it the name exchange interaction.

Focusing on an explicit formulation of the phenomena, the indirect spin-dependency of the electronic Hamiltonian
makes it possible to detach the spin degrees of freedom in such a way that an e�ective spin Hamiltonian that only takes
the exchange interactions into account can be constructed. Unfortunately, due to its complexity, only approximate models
have been developed which are, in general, only representative for particular classes of magnets. One of the most famous
models of magnetism is the Heisenberg model which relies on the existence of localized magnetic moments which interact
with each other via exchange interactions. By also taking magnetic �elds into consideration, the e�ective spin Hamiltonian
will be of the form

H = −
∑
i 6=j

Jijmi ·mj −H
∑
i

mi (29)

where the �rst term corresponds to the Heisenberg model which pairwise couples the magnetic moments mi and mj via
the exchange coupling parameter Jij while the second part is called a Zeeman term in which every magnetic moment
interacts with a magnetic �eld H. Without an external �eld, the sign and strength of Jij determine the ground state
con�guration of the moments. A positive nearest neighbour coupling orients the moments parallel to each other while a
negative signed nearest neighbour Jij align the moments in a canted or antiparallel fashion depending on the symmetry of
the lattice. The coupling itself can be of a direct nature where the moments' wavefunctions overlap and a�ect each other
directly according to Pauli's principle. The moments may also interact with each other through indirect coupling in which
the exchange is mediated between moments via an intermediate particle, like an electron, which simultaneously couples to
both of the paired localized moments. The indirect exchange coupling that is mediated via mobile conduction electrons
is known as the Rudermann�Kittel�Kasuya�Yosida (RKKY) interaction29,30,31 and it shows how even well-separated
moments can in�uence each other and give rise to magnetic order. An interesting feature of the RKKY interaction is
that the coupling strength exhibits a damped oscillatory behaviour, dropping o� with distance and �uctuating between
positive and negative signed values.
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Figure 2: Figurative illustration of the nearest

neighbour Jnn and next nearest neighbour Jnnn

exchange coupling in a ferromagnetic simple cubic

environment.

This means that the interaction is quite long ranged, but at certain distances,
the coupling is of ferromagnetic nature while at other coordinates it is instead
antiferromagnetic32.

In order to make use of the model and make the system material speci�c,
the determination of the coupling constant Jij is of paramount importance.
This has proven to be no easy task, but one method proposed in 1987 by
Lichtenstein and co-workers, currently known as the LKAG method33, was
successful in developing a formula that interlinked electronic structure calcu-
lations with the exchange parameter, meaning that self-consistent ab initio

determination of Jij could be realized. The general idea behind this proce-
dure is that an in�nitesimal rotation of two magnetic moments at site i and j
in a collinear ferromagnetic ground state will cause an energy variation in the
Heisenberg model proportional to the exchange parameter Jij and the two
angle rotations as well. At the same time, looking into the problem of two
in�nitesimal rotations from a multiple scattering point of view, following a
similar formalism as the Korringa, Kohn and Rostoker (KKR) Green function
method34, one may derive a total energy variation that is proportional to a
prefactor and, similarly, the two angle rotations. Relating the exchange parameter with this prefactor one ends up with
the LKAG formula

Jij =
1

π

εF∫
−∞

dεIm
[
TrL(piT

↑
ijpjT

↓
ji)
]

(30)

where εF is the Fermi energy, pi is the spin-dependent inverse single site scattering operator (ISO) evaluated at site i, T ↑ij
(T ↓ij) is the scattering path operator (SPO) governing the scattering process between site i and j in the collinear spin-up
(spin-down) channels and the trace runs through the orbital space comprised of both angular and magnetic quantum
numbers L = (l,m). Full derivations of the formula can be found in the original paper of Ref. [33] .

Looking closer into Eq.(30) to deduce the meaning of the individual components and how Jij can be obtained from
electronic structure calculations one may start o� disclosing the nature of the ISO and SPO. In brief, multiple scattering
theory relies on the inde�nite and subsequent scatterings of electron waves, propagating from one scattering event to the
next. The single site scattering operator, ti = p−1

i , describes a single scattering event occurring at site i which is governed
by its local potential Vi, while the SPO of both the spin-up and spin-down channels

τij =

(
T ↑ij 0

0 T ↓ij

)
(31)

describes the scattering process between site i and j. In other words, the SPO is described by an in�nite Dyson series of
single-site scatterings, meaning that the SPO is a sum of all possible scattering paths that can occur going from site i to
site j. This is neatly formulated as35

τij = tiδij + tiG0

∑
k 6=j

τkj (32)

where G0 is the system's free Green function, which is viable in the interstitial regions between sites where the electrostatic
potential is more or less �at, following the so-called mu�n-tin approximation. This gives the free Green function the
interpretation of a propagator function, which propagates the scattering particle from one site to the other, interlinking
the multitude of scattering events between site i and j in Eq.(32). In order to determine the SPO, the scattering process
at each local site must �rst be established and computed. In other words, the single site scattering operator ti governing
this process, expressed as36

ti =
1

V −1
i +G0

(33)

is a key quantity of this formalism. With these equations at hand, the exchange parameter Jij can be readily determined if
the atomic local potential Vi and the Green function G0 is known for the system of interest. There are many di�erent ways
to properly determine the values of Vi and G0, and the interested reader can �nd a full description on the topic and a more
extensive explanation of the multiple scattering method in Ref. [37]. Though generally, self-consistent electronic structure
calculations are the most commonly used procedure as many ground state properties, including the atomic potentials Vi,
can be extracted from the solid.
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The LKAG method has since its appearance given physicists a proper justi�cation to implement e�ective spin models
to research the magnetic interactions of magnets by making the exchange parameter material speci�c. Not only that, but
the method has also shed some light on the promise of accurate ab initio calculations of magnetic properties. Regrettably,
the method comes with a couple of limitations. One of the main �aws is that it assumes a collinear, often ferromagnetic,
initial ordering, neglecting non-collinear and canted orientations. Another limitation is that it does not include spin-orbit
coupling which becomes increasingly relevant in e.g rare-earth elements and thin-�lm systems where relativistic e�ects are
non-negligible38. In 2017, a theory of non-collinear exchange interactions was proposed by A. Szilva and co-workers39 in
which they showed that the energy variations derived from a multiple scattering formalism could rarely be fully mapped
onto a Heisenberg exchange parameter alone. It was shown that, more often than not, the expression came with an
extra term, which meant that there was no longer a one-to-one procedure of computing Jij , except in the particular
case of collinear systems in which the LKAG formula could be retrieved. This mismatch implies that even ferromagnets,
studied at �nite temperatures where the magnetic structure starts to deviate from the collinear ground state, are not
completely described by the Heisenberg model alone, only approximately. A. Szilva and co-workers also showed in 201340

that the Heisenberg exchange parameter mapping is still legitimate to a large extent in systems where the magnetic
moments collectively exhibit small deviations from the collinear case, e.g ferromagnets at low temperatures. Though, as
the temperature increases, closing in on the transition temperature, the less and less applicable the mapping becomes,
and more clever methods should instead come into use. A temperature dependent Heisenberg exchange coupling was
suggested by another research group in 2012 by D. Böttcher and co-workers41 in which they proposed a systematic way to
link electronic structure calculations with Monte Carlo simulations to progress the Jij in temperature. Also, the issue of
computing the exchange parameter in systems of strong spin-orbit coupling was discussed in 2003 by L. Udvardi et al.42

via a fully relativistic KKR method which included the sometimes necessary relativistic e�ects to process the spin-orbit
contributions.

2.4 Monte Carlo methods

Modern Monte Carlo methods started to crop up in the 1940s as a mean to estimate analytical theories by taking on a
stochastic approach to deal with di�cult and analytically unsolvable problems. These methods soon thereafter started
to be moulded to �t the scheme of statistical physics which sought a way to probe the intricate phase space of a system
by means of stochastic sampling. This meant that random numbers were introduced in the calculations in such a way
that the whole phase space could be accessed by some �nite probability43. A number of algorithms with di�erent areas
of applicability have been developed to systematically process this approach and the two that are used in this study
are the Metropolis algorithm44 and the Wang-Landau method45,46. Here we will discuss these algorithms based on the
Hamiltonian described in section 2.3 and the premises of magnetic system simulations.

2.4.1 Metropolis algorithm

The core of the Metropolis algorithm for a rigid spin system is that it is a methodical process to sort and select the most
favourable spin con�guration that minimizes the energy output of the Hamiltonian. This is done by �rst assuming a
transition probability equilibrium between successively linked con�gurations, meaning that there are some collective spin
state con�gurations Sn and Sm that are as likely to transition from the n state to the m state as they are to transition
the other way around. Following classical statistical mechanics laid out in section 2.1.2 to �rst determine the probability
of �nding the system in state n and m respectively and then impose this transition probability equilibrium one �nds that
it is of the form

PnWn→m = PmWm→n (34)

where Pn is the probability that the system is in state n given by Eq.(15) and Wn→m is the to transition probability going
from state n to m43. This is known as the detailed balance condition and rearranging it with the explicit form of the
canonical probability Eq.(15) one obtains the ratios

Wn→m

Wm→n
=
Pm
Pn

= e−β∆E (35)

where ∆E = Em − En is the relative energy di�erence between these two states. This puts some constraints on the
transition probabilities W , but as long as W is chosen such that it satis�es this condition and every state can be accessed
with some �nite probability then it is a legitimate choice. One of these choices was made in 1953 by Metropolis et al.44

where they proposed the famed form of the transition probability as

Wn→m =

{
e−β∆E , if ∆E > 0

1 , otherwise
(36)

This tells us that if the energy di�erence is negative or equal to zero then there should de�nitely be a transition from
state n to m, while if the energy di�erence is greater than zero then there is still a probability to transition according
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to the Boltzmann distribution shown above4. Transforming this scheme into an algorithm that �nds the system's energy
minimum one may infer that the states are linked to each other in such a way that any new state is generated by its
predecessor. This means that any new state that is created is compared with the transition condition in Eq.(36) to see
whether or not it replaces the current state con�guration. If it does, this new state becomes the reference state in the
upcoming computations while if it does not replace the current state then it is discarded, and a new iterative cycle may
proceed with the old reference state instead. This chain of linked states is called a Markov chain and its evolution is
completely determined by the current state in the process and, with a suitably chosen initial state, should narrow down
and converge towards the energy minimum of the Hamiltonian after su�ciently many iterations43.

Unfortunately, this is not always the case. If the energy landscape of the Hamiltonian is rough meaning that there are
deep energy wells that are not the true ground state but di�cult for the algorithm to breach through, then the output
of the program might not re�ect the true energy minimum of the system. This pseudo-minimum could also happen if
the program stops before the energy minimum could be reached. In other cases when the ground state is or is almost
degenerate with several other states then the program may output di�erent state con�gurations from run to run and this
is especially true for �nite temperature simulations. The severity of these problems depends heavily on the complexity of
the system of interest, but generally a long chain of iterations is performed to minimize the risk of obtaining a pseudo-
minimum, while a great number of reruns of the complete process and averaging the output results produce a better
estimate of the system's properties.

Here, a summarized pseudo code of the algorithm is presented with the Heisenberg spin system in mind. Notice that
this procedure is only evaluated at a given speci�ed temperature T . This means that several iterations of increasing
temperature values need to be performed to properly map the thermodynamic properties of the system.

1. Initialize the lattice by de�ning a spin con�guration and calculate its energy.
2. Choose a random lattice site.

3. Randomize the spin orientation of that site, i.e its spherical angle coordinates si(φ, θ)→ si(φ̃, θ̃)
and calculate the energy di�erence ∆E between the two spin con�gurations.

4. Generate a random number r ∈ (0, 1) and if r < e−β∆E then keep the new con�guration as the current reference,
otherwise keep the old orientation and go to (5).

5. Go back to step (2) and reiterate until satisfactory convergence.

2.4.2 Wang-Landau method

A di�erent take on Monte Carlo sampling is the Wang-Landau method that, instead of reiterating over the system's state
con�gurations per temperature step as is necessary for the Metropolis algorithm, focuses on obtaining the temperature
independent density of states g(E) discussed in section 2.1.2. This means that as long as g(E) can be determined, all
other thermodynamic quantities can be extracted from its corresponding partition function de�ned in Eq.(14) at any given
temperature. This intriguing concept reveals a whole new way of approaching statistical physics problems and o�er an
alternative numerical algorithm to e.g the Metropolis algorithm.

The general idea of the method is based on the fact that a random walk in energy space with su�ciently many steps
will eventually cover the whole energy landscape of the system. Exploiting this concept by modifying the visitation
probability of each energy state by a factor inversely proportional to the density of states itself will lead to the formation
of a su�ciently uniform visitation-per-energy histogram that is by de�nition density of state dependent. It will be shown
that the �nal form of the histogram can be used to approximate the shape and form of the system's true density of states.

It begins by �rst de�ning the probability to visit a speci�c energy level E as Pµ ∝ 1/g(Eµ). This probability is then
altered each time that energy is visited by increasing the density of state by a modi�cation factor f0, such that

g(E)old → g(E)new = g(E)oldf0 (37)

where f0 > 0. This means that the probability to visit that energy level decreases every time the random walker passes
by, which in turn causes highly degenerate levels to only reach a certain number of visitations before transitions to more
exotic energy states become more probable. The probability to transition from energy E1 to E2 within the scheme of the
Wang-Landau method with the detailed balance condition is then given by

WE1→E2
= min

[
g(E1)

g(E2)
, 1

]
(38)

After su�ciently many iterations the histogram should have systematically reached a point when it has become somewhat
�at. At this stage, the resulting g(E) should have converged towards a good estimate of the system's density of states. To
improve these results one may reiterate the procedure with a �ner modi�cation factor, e.g f1 =

√
f0. The histogram of the

previous run is then discarded to start the process anew, but the density of states on the other hand is saved. This will
improve the resolution of the �nal density of states as the modi�cation of the transition probability becomes less rough.
When a new "�at" histogram, meaning that it does not di�er between its lowest to highest point by more than ∼ 30%,
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has been achieved one can further polish the density of states with even more reiterations of �ner modi�cation factors
fi+1 =

√
fi until satisfactory accuracy45,46.

Here in this study, the exploration of the energy space is performed by reorienting the spin direction of a randomly
chosen spin in our lattice matrix. The system's total energy before and after the spin re-orientation are examined according
to Eq.(38) which then determine whether this new energy state is accepted in the random walk scheme of the method.
If accepted, then that state con�guration becomes the current reference state and its corresponding density of states and
histogram are modi�ed with the factor f0 = e ≈ 2.71828.... If not, a new random spin is chosen, and the procedure
continues as described above. When the complete process is complete, the density of states is normalized to re�ect
the physically accurate energy degeneracy of the system. This is done by noting that the initial ground state of e.g a
ferromagnetic system without external �eld can only have a collective spin up or spin down con�guration, i.e a two-fold
degeneracy. After normalizing the density of states to re�ect this property, it can then be implemented via the scheme
laid out in section 2.1.2 to calculate the desired thermodynamic quantities.

A summarized pseudo code of the algorithm is presented here which follows the rigid spin structure of the Heisenberg
model. Notice that many of the parameters are chosen by the user, meaning that the accuracy and computation time is
determined by e.g the span in histogram "�atness" and the �ne-tuned value of the �nal modi�cation factor.

1. Choose a condition of histogram "�atness", modi�cation factor f0 and its desired �nal value f�nal.
2. Initialize the lattice with a spin con�guration and calculate its energy E1.
3. Set g(E) = 1 for every energy state.
4. Choose a random lattice site.

5. Randomize the spin orientation of that site, i.e its spherical angle coordinates si(φ, θ)→ si(φ̃, θ̃)
and calculate the energy of the spin con�guration E2.

6. Determine the transition condition WE1→E2 according to Eq.(38).
7. Generate a random number r ∈ (0, 1) and if r < WE1→E2 then keep the new con�guration and modify

the histogram and the density of states following Eq.(37), otherwise keep the old orientation and go to (4).
8. If the histogram does not meet the criterion of "�atness", then go to (4). If it does, reduce the modi�cation value

by e.g fnew =
√
fold and go to (9).

9. Discard the current histogram and repeat (4)-(8) until the modi�cation factor has reached its desired value.
5. Normalize the �nal g(E) with its exact form at the ground state.

3 Method

This chapter presents the methods and procedures used in this project to conduct the simulations and extract the various
magnetocaloric quantities. The �rst of the following two sections describes the procedure to carry out the magnetic
simulations, while the second section addresses the numerical processing of the results, e.g the methods of integration
and di�erentiation. The simulation procedure was executed in two main stages, especially regarding the material realistic
simulations, of Fe and CoMnSi. First, spin-polarized ground state electronic structure calculations of a prede�ned crystal
lattice were self-consistently computed, leading to proper extraction of the material speci�c exchange coupling parameters
Jij . In the second stage, the coupling parameters were employed together with the minimal spin Hamiltonian of Eq.(29)
to conduct the actual Monte Carlo simulations.

The simple cubic reference system was set up with a lattice parameter of one atomic Bohr radius and a nearest
neighbour exchange interaction strength of 1.0mRy. Next nearest and additional neighbouring interactions were not
included. A mean-�eld estimate of the transition temperature, denoted T ∗C in the results, was calculated via28

T ∗C =
2

3
S(S + 1)z

Jnn
kB

(39)

in which the spin S was set to the typical electron 1
2 -spin while the number of nearest neighbours, z, was set to six for the

simple cubic lattice. The transition temperature estimate tuned out as T ∗C ≈ 473K.
The two methods of entropy extraction, namely the ∆S derived from the heat capacity of Eq.(24) and ∆S computed

via the temperature derivative of the magnetization of Eq.(23), were both calculated for all systems simulated by the
Metropolis algorithm. In the simulations governed by the Wang-Landau method, only the ∆S of the heat capacity method
was implemented as it was deemed su�cient to cross-check the two algorithms in terms of their main di�erentiating feature,
namely the source of energy computation. The calculated internal energies of these two Monte Carlo methods were then
used to determine the heat capacity, which in itself, was calculated in two di�erent ways. One derived from the temperature
derivative of the internal energy of Eq.(18) while the other from the variance formula of Eq.(19).

All results concerning the isothermal change in entropy were uniformly shifted such that the low-temperature limit
tended towards zero. This action, justi�ed by the fourth postulate of thermodynamics, removes any constants of integration
and lets the methods be compared on equal terms.
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3.1 Computer simulations

The electronic structure calculations were performed via the so-called SPR-KKR software package47 which utilizes a
multiple-scattering KKR Green function formalism to compute the spin-polarized ground state structure by implementing
the self-consistency scheme of density functional theory (DFT). The necessary input �les to run the SPR-KKR program
were set up via its included graphical user interface, XBand . The crystal data used to construct the materials' crystal lattice
was gathered from the Inorganic Crystal Structure Database (ICSD)48. The self-consistent calculations were performed in
fully relativistic mode using a spdf -orbital basis set while implementing the VWN local spin density exchange-correlation
functional49. When the ground state was obtained, the resulting local potentials were used to compute the exchange
coupling parameters of the low-temperature state via the LKAG formula, a feature also implemented in the SPR-KKR
software.

The second stage, i.e the Monte Carlo simulations, were performed using the UppASD software50,51 following the
outlined Metropolis and the Wang-Landau algorithms. Here, the lattice structure, exchange coupling parameters and
magnetic moments were imported from the output of the SPR-KKR results and used to set up the system and the
necessary terms in the Hamiltonian of Eq.(29). The Metropolis simulations were thermally equilibrated with about 6 · 104

Monte Carlo lattice sweeps and measured using another 5 · 104 Monte Carlo sweeps. A number of simulations, each
with a di�erent pair of temperature and magnetic �eld values, were performed for each material which meant that the
thermodynamic quantities of the system could be mapped out. The Wang-Landau simulations underwent ∼ 20 reiteration
of the histogram re�nement process, ending up with a �nal modi�cation factor of f20 ≈ 1.0000009537 and a ∼ 80%
�at histogram, or until the upper limit of 5 · 107 Monte Carlo steps was reached, in which the last successfully computed
histogram was used. The density of states and the partition function were calculated when the �nal iteration was complete.
These quantities were later used to compute the thermodynamic properties of the materials. The Wang-Landau simulations
were performed with the same set of magnetic �eld values as the Metropolis algorithm.

Each material was simulated twice, once with a lattice size of 12× 12× 12 cells and another time of size 24× 24× 24.

3.2 Numerical post-processing methods

The choice of post-processing methods, especially di�erentiation, may contribute to additional errors in the �nal result.
Numerical di�erentiation tends to amplify the inherent errors of discrete data while integration smooths out minor ir-
regularities. These two mathematical operations were necessary tools in this study to properly analyze the Monte Carlo
results produced by the simulations. Here, the integrals were computed via a two-point trapezoidal rule

b∫
a

f(x)dx ≈
N∑
n=1

∆xn
2

[f(xn−1)− f(xn)] (40)

in which the length of the subintervals, i.e ∆xn = xn − xn−1, were in most cases non-uniform across the span of the
temperature and magnetic �eld intervals.

Di�erentiation on the other hand, was performed using two di�erent approaches. One of the methods computed the
derivatives via a combination of a forward and backward di�erence rule

f ′(xn) ≈ 1

∆xf∆xb
[∆xbf(xn+1) + ∆xff(xn−1) + (∆xf −∆xb)f(xn)] (41)

where ∆xf = xn+1 − xn and ∆xb = xn − xn−1. The other method analytically di�erentiated a set of locally �tted
polynomials, computed via the least square �t method around each data point produced in the simulation results. The
�t themselves were adjusted such that their order would match the roughness and curvature of the functions in a vicinity
around the point of di�erentiation52.

4 Results

The following section summarizes the magnetocaloric results of the simulated materials and provides an assessment of
the entropy extraction methods. The thermodynamic quantities that are related to di�erentiation, e.g ∆S via the heat
capacity method and ∆T , were computed using the analytical derivative method described in section 3.2, as it was seen
that it generally produced more accurate results. The �rst material under scrutiny is the toy model simple cubic system in
which all the entropy extraction methods are put to the test and their di�erences and similarities discussed. The resolution
of the Monte Carlo simulations and the numerical processing methods are investigated in the last part of the simple cubic
section. The succeeding parts display the results from the �rst-principle simulated Fe and CoMnSi materials.
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4.1 Simple cubic structure

(a) (b)

Figure 3: Graph displaying the change in the Curie temperature for the simple cubic system under

the in�uence of an external magnetic �eld. The results in Fig. (a) were extracted from a 123 lattice

system while Fig. (b) from a 243 system.

Figure 3 displays how the phase
transition temperature of the 123

and 243 sized systems shifts to
greater temperature values as
a consequence of increasing the
magnetic �eld strength. The Curie
points shown in these graphs cor-
respond to the extremum points
of consecutively computed second-
degree polynomials, locally �tted
around the sharp divergence peak
of the magnetic susceptibility pro-
duced from the Metropolis simu-
lations. The critical temperatures
of the simple cubic system, re-
gardless of the size of the lattice,
exhibit a clear linear dependency
with respect to incremental �eld
strengths, all in accordance with
what was discussed in section 2.1.1. The Curie points of the larger 243 lattice system are more closely condensed around
the linear trend than the corresponding set of data of the 123 lattice, indicating that the cumulating quantities computed
via the Metropolis algorithm become less �uctuating and more precise the larger the system becomes.

The isothermal change in entropy, and in particular the ∆S a�ected by the largest considered �eld variation of 5T , is
displayed in Fig. 4. Here, the two algorithms and the majority of the entropy extraction methods are showing practically
the same general traits. A �at and steady low-temperature entropy behaviour which is broken o� by an exponentially
growing peak around ∼ 460K, just under the estimated mean �eld transition temperature. This enhanced large entropy
peak around the system's inherent transition point follows the discussed theories of section 2.2, neatly depicting the
ampli�ed e�ects brought forth by driving the magnet in and out of phase. There is one method that deviates signi�cantly
from the general behaviour which is the variance heat capacity computed ∆S. The results of this method are shown
in relation to the other methods in the embedded graphs in the �gures, and will be abbreviated as ∆SC∗ from now on.
For the 123 system, the ∆SC∗ shows no sign of a peaked vertex around TC , though in the 243 arrangement, the peak is
retrieved but the low-temperature regime is still too irregular to �t with the other methods. Another entropy result that
portrays �uctuating features, but to a lesser degree, is the Wang-Landau method computed in the same way as ∆SC∗ . This
particular method will be referred as ∆SWL∗ from now on. It exhibits the familiar peaked trait but at low temperatures,
it �uctuates and sometimes deviates considerably from the generally �at and smooth line of the other methods. On the
other hand, the ∆S of both the Metropolis and Wang-Landau procedures computed via the heat capacity method, which
in turn was determined via the temperature derivative of the internal energy from Eq.(18), show consistent and excellent
results regarding the entropy calculations.

(a) (b)

Figure 4: The isothermal change in entropy under the in�uence of a �eld variation of ∆H = 5T are shown here. Fig. (a) displays ∆S

simulated using a 123 lattice system while Fig. (b) shows ∆S from a 243 system. T ∗c shows the zero �eld mean-�eld estimate of the Curie

temperature of the simple cubic system. The embedded graphs display a zoomed out version of the original �gures that capture the widely

deviating behaviour of the heat capacity computed ∆S of Eq.(25) with the heat capacity calculated from the variance formula of Eq.(19).
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These two results will here on after be addressed as ∆SC and ∆SWL respectively. The last method, which will be
denoted ∆SM , corresponds to the change in entropy computed via the temperature derivative of the magnetization from
Eq.(23). This method, just as the results from the ∆SC and ∆SWL approaches, shows promisingly smooth and consistent
results. For the smaller system, the 123 lattice, the ∆SM and ∆SC produce the same absolute peak value value of
∆S ≈ −0.11JK−1mol−1, while both the Wang-Landau results generate the slightly smaller value of ∼ −0.07JK−1mol−1.
For the larger 243 system, it is instead the ∆SC method that stands out. With an entropy variation of ∼ −0.25JK−1mol−1,
it trumps the other methods whose values are of the magnitude ∼ −0.18JK−1mol−1.

(a) (b) (c)

(d) (e) (f)

Figure 5: These graphs display the ∆S results, calculated from the Metropolis simulations under varying magnetic �eld strengths. The results

on the top row are computed in a 123 lattice system with (a) corresponding to the di�erentiation heat capacity method ∆SC , (b) the magnetic

order di�erentiation method ∆SM and (c) the variance heat capacity method ∆SC∗ . Bottom row shows column wise the respective methods

but simulated using a 243 sized system. The embedded graphs show a zoomed in version of ∆S around the transition peak.

(a) (b)

(c) (d)

Figure 6: The ∆S of varying magnetic �eld magnitudes from the Wang-Landau simulations are

shown here. The graphs on the top row are computed in a 123 system with (a) corresponding to

the di�erentiation heat capacity method ∆SWL and (b) the variance heat capacity method ∆SWL∗ .

Bottom row shows column wise the respective methods but simulated on the larger 243 sized system.

The embedded graphs show a zoomed in version of ∆S around the transition peak.

The methods of entropy ex-
traction are not in all cases re-
liable and universal, even though
the results related to the 5T �eld
variations display agreeable and
promising qualities. The graphs
in Fig. 5 show the induced
change in entropy under varying
�eld strengths for all the Metropo-
lis computed methods and lat-
tice sizes. Results based on the
heat capacity variational method
are highly unreliable regardless of
lattice size, though as seen pre-
viously, ∆SC∗ manages to cap-
ture the characteristic transition
peak in the larger 243 system, but
is unfortunately too irregular in
the low-temperature regime to be
evaluated on equal terms with the
other methods. The ∆SC of Fig.
5a only show desired results in the
5T �eld variation. All entropy
variations driven by magnetic �eld
values less than this produce irreg-
ular and erratic results, but the redeeming familiar qualities are retrieved in the corresponding 243 lattice system of

19



Fig. 5d, where all ∆S, regardless of �eld variation strength, result in excellent and smooth entropy curves. A particularly
reliable method seems to be the ∆SM approach with the results of both the 123 and 243 systems demonstrating consistent
and accurate entropy variations. Though in the 123 of Fig. 5b, the normally distinguishing peak is blurred with minuscule
�uctuations, but again, is remedied in the larger lattice system of Fig. 5e.

(a) (b)

Figure 7: The adiabatic change in temperature computed via Eq.(28) under the in�uence of di�erent magnetic �eld strengths is shown

here. Fig. (a) displays ∆T simulated using a 123 lattice system with a maximum temperature alteration of ∼ 3.4K, while Fig. (b) show the

temperature change of a 243 system with a maximum output of ∼ 4.3K.

(a)

(b)

(c)

Figure 8: These �gures display the 243

lattice ∆S results extracted from simula-

tions of variable number of Monte Carlo

sweeps. Figure (a) corresponds to ∆SM ,

(b) to ∆SC and (c) to ∆SC∗ .

Unlike the smooth entropy changes computed from the systems simulated
via the Metropolis algorithm, the Wang-Landau results all show an unfortu-
nate trend regardless of lattice size, which is severe �uctuations throughout
the whole temperature interval. For instance, the low magnetic �eld varia-
tions in all graphs of Fig. 6, up to about 2T , do not reproduce a signi�cantly
noticeable peak around TC , but in its stead are random �uctuations of the
same magnitude. The familiar peaked behaviour is brought back under larger
�eld variations, though compared to the results of the Metropolis algorithm,
the peak itself is generally broadened and not as sharp. The variance com-
puted results, i.e ∆SWL∗ , of both lattice sizes show the same irregularity as
the variance computed ∆SC∗ of the Metropolis algorithm, but in this case,
the peak is somewhat noticeable for both the 123 and 243 lattice systems.

The �nal computed thermodynamic quality is the adiabatic change in
temperature, ∆T from Eq.(28), which is shown in Fig. 7. The minuscule
�uctuations around TC , seen in Fig. 7a, are caused by the blurred peak
behaviour of the temperature derivative of the magnetization, which can also
be observed in ∆SM of Fig. 5b, which are carried along and reproduced in
these results. The form of ∆T is much sharper and distinct in Fig. 7b due
to the prominent vertex resolution of both the ∆SM and ∆SC methods seen
in Fig. 5d and Fig. 5e.

Another topic of interest concerning the accuracy of these simulations is
the convergence criteria with respect to the number of Monte Carlo steps.
Figure 8 display the ∆SM , ∆SC and ∆SC∗ computed using a 243 system
with the prede�ned 5 · 104 Monte Carlo sweeps. The results are compared
with simulations performed with a 50% increase and decrease in the num-
ber of Monte Carlo steps. The ∆SM method has converged well in all three
simulations while ∆SC only in the 5 · 104 and 7.5 · 104 ones, leaving the cal-
culations performed with 50% fewer steps dissimilar with the others. The
variance method shows again a rough and �uctuating low-temperature be-
haviour, but the greater 7.5 · 104 Monte Carlo sweep simulation seems to
start to take on a similar appearance as the other methods, but it is still not
su�ciently smooth in the low-temperature regime.

A comparison between the numerical method of di�erentiation, computed
via Eq.(41), with the analytical derivative of the polynomial �t is shown in
Fig. 9. Even though the internal energy of the ∆SWL results were di�eren-
tiated, the comparison between the numerical and analytical derivatives are
omitted here due to the practically identical outcome; a result of the densely
sampled temperature points and the general broadened peak of the Wang-
Landau method. On the other hand, the ∆SM and ∆SC methods display a
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certain degree of discrepancy, with ∆SM more severe than ∆SC . The point around TC is su�ciently stable in the internal
energy derivative of the ∆SC method to make the peak accurately captured by both di�erentiation methods, but for the
magnetization derivative, the inherent Monte Carlo �uctuations are enhanced in the numerical di�erentiation. Even the
analytical derivative method carries along the �uctuations in the 123 system, but the results improve in the larger lattice
simulation, reproducing the characteristic divergence peak associated with these types of second order phase transitions.

(a) (b)

Figure 9: The numerical post-processing method of di�erentiation regarding the analytically di�erentiated polynomial �t and the numerical

derivative are compared in these graphs. ∆SC is displayed in (a) and ∆SM in (b). Results of both methods were extracted from simulations

of a 243 sized lattice system.

4.2 Bcc Fe

(a) (b)

Figure 10: These graphs display the change in the Curie temperature for the bcc Fe system under

the in�uence of varying external magnetic �elds. The results in Fig. (a) were extracted from a 123

lattice system while Fig. (b)shows the Curie points of a 243 sized system.

Figure 10 shows in a similar fash-
ion to the simple cubic results,
the varying transition tempera-
ture under the in�uence of ex-
ternal magnetic �elds. In this
case, the 123 system portrays a far
more non-linear behaviour than
that of the corresponding sim-
ple cubic system of Fig. 3, but
the transition points of the 243

Fe system are in contrast more
concisely described by the linear
trend. The innate transition tem-
perature of the simulations are un-
derestimated by about 100K in
comparison with the experimental
value of TEC = 1044K53.

(a) (b)

Figure 11: The isothermal change in entropy of Fe under the in�uence of a 5T magnetic �eld is shown here. Fig. (a) displays ∆S simulated

in a 123 lattice system and Fig. (b) shows ∆S coming from a 243 system. TEC = 1044K corresponds to the experimentally determined zero

�eld Curie temperature53.
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The results concerning the isothermal change in entropy under a total �eld variation of 5T are displayed in Fig. 11
with the 123 system's results on the left and the corresponding 243 sized con�guration on the right. The characteristic
second-order transition peak is seen here centred around ∼ 950K and is showing great similarities in shape and form
with the one of the simple cubic system. As previously determined, the methods relying on the variance computed heat
capacity, in particular ∆SC∗ , show no sign of improvement in these material realistic simulations. In the 243 sized system,
the variance dependent Wang-Landau results show a clear and severe increase in inherent �uctuations, almost reaching the
discrepancy of the ∆SC∗ method. Surprisingly enough, the same rough behaviour is not found in the smaller 123 system,
which is the opposite of what was seen in the simple cubic results. The more reliable ∆SC , ∆SWL and ∆SM methods
produce consistent and similar results, but the ∆SWL method still portrays the minuscule Monte Carlo �uctuations of
the Wang-Landau algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 12: These graphs display the ∆S results of Fe under varying magnetic �eld strengths, all generated via the Metropolis algorithm. ∆S

of the top row were extracted from a 123 lattice system with (a) corresponding to the ∆SC method, (b) the ∆SM method and (c) the ∆SC∗

method. Bottom row displays column wise the respective methods but simulated on the larger 243 sized system.

(a) (b)

(c) (d)

Figure 13: The ∆S of Fe under varying magnetic �eld strengths from the Wang-Landau simulations

are shown here. The graphs on the top row are computed in a 123 system with (a) corresponding to

the di�erentiation heat capacity method ∆SWL and (b) the variance heat capacity method ∆SWL∗ .

Bottom row shows column wise the respective methods but simulated on larger 243 sized system.

The largest change in entropy in
the 123 system with a value of
∼ −0.13JK−1mol−1 is produced
by the ∆SM method, however, in
the 243 system, it is the ∆SC
method that generates the great-
est entropy variation with a value
of ∼ −0.2JK−1mol−1.

The change in the Fe entropy
driven by a number of di�erent ex-
ternal magnetic �eld values, sim-
ulated via the Metropolis algo-
rithm, is shown in Fig. 12. The
∆SC method of the 123 system
exhibit some irregularities around
TC , but to a degree far less se-
vere than the results of the corre-
sponding simple cubic case of Fig.
5a. Similar improvements are seen
in the ∆SM method which now
shows a more consistent and re-
liable entropy extraction than in
the simple cubic results, where
the previously observed �uctua-
tions around the peak have here
ceased. The results produced from
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the Wang-Landau method in the low magnetic �eld regime . 2T , seen in Fig. 13, still exhibit �uctuations that are of the
same amplitude as the entropy output itself, but the peaked behaviour is again retrieved for larger values of ∆H.

(a) (b)

Figure 14: The adiabatic change in temperature of Fe computed via Eq.(28), using the di�erentiated heat capacity method, under the in�uence

of di�erent magnetic �eld strengths are shown here. Fig. (a) display ∆T simulated using a 123 lattice system with a maximum temperature

alteration of ∼ 8.1K while Fig. (b) shows the temperature change of a 243 system with a maximum output of ∼ 10.2K.

The adiabatic change in temperature of the bcc Fe magnet is displayed in Fig. 14. ∆T related to both of the simulated
lattice sizes display the signature transition peak but the vertices of the larger system are comparably narrower and steeper
in character than those of the 123 system. The maximum relative temperature variation goes from ∆T ≈ 8.1K in the 123

lattice con�guration to ∼ 10.2K, generated by the larger lattice structure.

4.3 CoMnSi

(a) (b)

Figure 15: Graph displaying the change in the Curie temperature for the CoMnSi material driven

by variable external magnetic �eld strengths. The results in Fig. (a) were extracted from a 123

lattice system while Fig. (b) shows the Curie points of a 243 system.

This last section presents the
magnetocaloric qualities of the
CoMnSi compound. Simulations
of the 243 lattice system via the
Wang-Landau method were omit-
ted due to too extensive mem-
ory usage and lengthy computa-
tion times. All other methods are
reviewed in a similar fashion as
previous results.

The linear shift in the Curie
temperature is displayed in Fig.
15. Both of the lattice systems
exhibit a clear linear dependency,
with the 123 con�guration having
the smallest deviation from the �t

(a) (b)

Figure 16: The isothermal change in entropy of the CoMnSi compound under the in�uence of a �eld variation of ∆H = 5T is shown here.

Fig. (a) displays ∆S simulated in a 123 lattice system while Fig. (b) shows ∆S coming from a 243 system. TEC = 420K corresponds to

the experimentally determined zero-�eld Curie temperature, while TEt = 250K represents the point of the metamagnetic �rst order phase

transition, converting from an antiferromagnetic to a ferromagnetic state23.
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of all examined materials. Another feature that stands apart compared to the other materials is the matching rate of
increase in the transition temperature for the 123 and 243 lattice systems, indicating that the simulations of the CoMnSi
material have converged well in both cases. This quality is found throughout all of the CoMnSi results, where e.g the ∆S
method of the two lattice sizes produce almost identical amplitudes and shapes.

(a) (b) (c)

(d) (e) (f)

Figure 17: ∆S of CoMnSi calculated from the Metropolis simulations under varying magnetic �eld strengths are displayed here above. The

top row represent the 123 lattice system with (a) corresponding to the ∆SC method, (b) the ∆SM method and (c) the ∆SC∗ method. The

bottom row show column wise the respective methods but simulated using a 243 sized system.

(a) (b)

Figure 18: The ∆SWL and ∆SWL∗ methods of varying magnetic �eld strengths of the 123 system

are shown here on the left and right respectively.

The change in entropy of the
CoMnSi compound, driven by a
5T �eld, is shown in Fig. 16. The
TEt label in the graphs indicates
the position of the experimentally
veri�ed metamagnetic �rst-order
magnetic transition, from an an-
tiferromagnetic con�guration to a
ferromagnetic one, occurring at ∼
250K, while TEC points out the fa-
miliar experimental Curie temper-
ature taking place at ∼ 420K23.
As previously established, all ∆S
methods, not counting the ∆SC∗

and ∆SWL∗ procedures, compute the change in entropy in a precise and reliable fashion, with a peaked value of
∼ −0.24JK−1mol−1 produced in the 123 lattice system and ∼ −0.27JK−1mol−1 in the 243 con�guration around ∼ 470K.

(a) (b)

Figure 19: The adiabatic change in temperature of CoMnSi is shown here. Fig. (a) displays ∆T simulated using a 123 lattice system and

Fig. (b) the 243 structure. Both lattice sizes produce a maximum temperature change of ∼ 7.9K.
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The results concerning the adiabatic change in entropy of various �eld alterations are displayed in Fig. 17 and Fig. 18.
The transition peak resolution is greatly improved in these results over those of the Fe and the simple cubic systems as
there are no observed Monte Carlo �uctuations around the material's simulated TC for any of the ∆SC or ∆SM methods.
∆SWL still exhibits a great deal of these previously seen defective traits, though compared to the counterpart of the other
materials, the peak of the ∆H = 2T is here quite distinguishable and portray a physically sound general form.

The adiabatic change in temperature of the CoMnSi material is displayed in Fig. 19. Interestingly, the ∆T related
to the two lattice systems exhibit practically identical general shapes and forms, with both of them almost reaching a
maximum temperature alteration of 8K.

System Size Computation time Number Total
and algorithm per simulation [s] of simulations computation time[s]
Simple cubic (Metropolis) 123 ∼ 20 276 5 520

243 ∼ 60 276 16 560
Simple cubic (Wang-Landau) 123 ∼ 11 000 6 66 000

243 ∼ 69 000 6 414 000
Bcc Fe (Metropolis) 123 ∼ 60 276 16 560

243 ∼ 180 276 49 680
Bcc Fe (Wang-Landau) 123 ∼ 10 000 6 60 000

243 ∼ 88 000 6 528 000
CoMnSi (Metropolis) 123 ∼ 500 174 87 000

243 ∼ 5 000 174 870 000
Bcc Fe (Wang-Landau) 123 ∼ 92 000 6 552 000

243 - - -

Table 2: Computation time estimates of the performed Monte Carlo simulations are displayed here†. The extracted computation

times should be regarded as �gurative and approximate numbers, solely emphasizing the di�erences in e�ciency of the algorithms.

The last topic that is brought up in this study discusses the e�ciency regarding the simulation time of the Metropolis
algorithm and the Wang-Landau method. Approximate computation times per Monte Carlo simulation are taken from
each considered material and lattice size to appropriately represent the simulation conditions of its category. These
estimates, with the total number of considered magnetic �eld and temperature values, produce a cumulative simulation
time which approximately indicates the time scale of the simulations without the use of parallelization, all shown in table
2. The displayed results are by no means �xed values, due to the fact that the convergence criteria of the Monte Carlo
methods may di�er from simulation to simulation, but also because of varying computation loads that may cause the
processing power to drop, and thus also a�ect the length of the simulations.

5 Discussion

The results concerning the isothermal change in entropy produced by the ∆SC and ∆SM methods exhibit very similar
and sound general behaviours and the minute discrepancies between them mainly boil down to details of simulation and
the discontinuous nature of the phase transitions. This reassuring outcome preserves the theoretical integrity of these
two approaches, even though they are originating from di�erent theoretical backgrounds; ∆SM from thermodynamics and
∆SC from statistical mechanics. The agreeing nature of these methods can be partially explained by the thermodynamic
attributes of the individual terms of the e�ective spin Hamiltonian. The Heisenberg model establishes the magnetic
structure of the material, constituting the source of the exchange governed magnetic ordering, while the Zeeman term
provides the system with external stimuli. This means that from a thermodynamical point of view, the Heisenberg model
can be regarded as representing the internal energy of the system whereas the Zeeman term corresponds to the work acted
upon it. Indeed, by computing the expectation value of the Hamiltonian and taking the exact di�erential of 〈H〉, omitting
the �eld �xed dH contribution, one obtains an expression notably reminiscent of the di�erential form of the internal
energy of Eq.(1). This implies that the statistical mechanics approach, which encompasses all involved interactions within
the Hamiltonian notion, also harbours the necessary work terms of a thermodynamic description, leading to the implicit
equivalence of the two frameworks, which justi�es the identical outcome of these two procedures.

The main deviating features of these two methods are then not caused by some intrinsic theoretical discrepancy, but
instead seem to be related to various �nite size e�ects; inconsistencies and errors brought forth due to the limiting �nite
size of the system when simulated. An example of the misbehaviours associated with these e�ects can be seen in the

† The simulations were performed on supercomputers at NSC (National Supercomputer Centre) at Linköping, provided by SNIC (Swedish
National Infrastructure for computing).
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results of the typically linear increase of the Curie temperature. In these results, the smaller 123 systems tend to exhibit
larger deviations from the �tted linear slope whilst the larger 243 systems show good agreement with the linearity of the
trend. Another distinguishing �nite size problem that is observed for the simple cubic and Fe systems is the enhanced ∆S
magnitude of the transition peak of the 243 system compared to the smaller 123 con�guration, sometimes di�ering up to
100% from one another. This makes it di�cult to accurately identify a point in which the system itself starts to properly
describe and mimic the bulk properties of the material. In these cases, it might be necessary to implement sophisticated
scaling techniques to extract the bulk systems' true thermodynamic properties. This is however not seen in the CoMnSi
results, where the ∆S and ∆T of both of the two lattice systems show good agreements with one another, indicating that
the simulations might already be representing the bulk of the material. Last side e�ect of the systems' �nite size which
will be discussed is directly a�ecting the precision of the ∆SC and ∆SM methods around the transition peak. Here, the
Monte Carlo �uctuations occasionally become too severe to produce a reliable reading on the entropy, which is the case for
∆SC in Fig. 5a, while at other times, such as for ∆SM in Fig. 5b and ∆SWL in Fig. 6a, the �uctuations are manageable
but still too irregular to adequately capture the physics of the phenomena. It seems that in the more material realistic
systems the severity of these erroneous e�ects in the 123 lattice systems are reduced, which in turn makes the general
shape and form of ∆S more consistent with its reliable 243 sized counterpart. For the Fe material, it is mainly the ∆SC
method that still portrays some inconsistencies while the ∆SM show no sign of �uctuations around TC . This indicates, at
least for the Metropolis algorithm, that an increase in the system size and the inclusion of exchange interactions beyond
the nearest neighbour coupling stabilizes the Monte Carlo �uctuations by re�ning the discrete con�guration space and
energy landscape of the system. The improved discretization of the energy states produces more closely packed energy
levels which in turn makes the energy function of the Hamiltonian smoother, resulting in a more well-de�ned energy
minimum. It is then unlikely that the innate Monte Carlo �uctuations spread too far from this point, making the readings
on the energy and magnetization more accurate and dependable. That is why the material realistic magnets, especially
the CoMnSi compound and the larger lattice systems, lack the erratic behaviours seen in the simple cubic and smaller 123

lattice systems.
Both of the ∆SC and ∆SM methods have uniformly proven themselves to be reliable methods of entropy extraction,

but on the other side of the spectrum, the methods based on the irregular variance computed heat capacity, namely the
∆SC∗ and ∆SWL∗ methods, are remarkably inadequate in describing the magnetocaloric properties of materials. The
severity of the involved �uctuations render the results derived from these procedures highly impractical, and even though
the transition peak seems to be satisfactorily described by the ∆SC∗ procedure in the larger 243 system, the inherent
Monte Carlo �uctuations at low temperatures are too unpredictable to deem any of these procedures viable.

The results obtained from the Wang-Landau simulations are generally less attractive than those produced by the
Metropolis algorithm due to a couple of reasons. The computed ∆SWL do produce readings on the relative entropy values
comparable to the ∆SC and ∆SM methods, but its overall shape is unfortunately considerably more irregular as a result
of substantial Monte Carlo �uctuations. Another interesting but undesirable feature, seen in the simple cubic and Fe
results, is that the transition peak of ∆SWL do not grow in linear proportion to the applied �eld, a detail that is captured
by its Metropolis counterpart, as seen in Fig. 6 and Fig. 13. This particular de�ciency does not seem to be a side
e�ect of the �nite size of the system, as the results obtained from the larger 243 systems also portray the same defective
behaviours. The CoMnSi results on the other hand are much better. They exhibit the desired linear growth in ∆SWL with
respect to external �eld seen Fig. 18, but that only holds for �eld variations of 2T or larger. For all considered materials,
the peak of the computed ∆SWL caused by small �eld variations, ∆H / 2T , are in most cases rarely noticeable in the
myriad of erratic Monte Carlo �uctuations, and only changes in entropies driven by large �elds retrieve the familiar peaked
behaviour. Last matter about this procedure to discuss is related to the lengthy computation times of the simulations.
Even though the Wang-Landau method requires fewer simulations to adequately map out the thermodynamics of the
systems, the exceedingly long computation time per simulation, sometimes up to over 1000 times that of its Metropolis
counterpart, render the Wang-Landau algorithm computationally too demanding. Combining these reasons together one
may conclude that the Wang-Landau procedure is, unfortunately, an inadequate and ine�ective method when studying
various magnetocaloric qualities of this type.

The observed over and underestimation of the Curie points might be caused by illegitimate use of the extracted exchange
interactions. In all of these simulations, the exchange couplings were taken to be temperature independent and operative
at thermally induced non-collinear con�gurations. In other words, the coupling itself was said to be constant throughout
the temperature interval of the simulations and uniquely described by the materials' ground state structures. But it was
shown in section 2.3 that it is not possible to completely map a non-collinear magnetic state onto the Heisenberg model
alone, making the used approximation less and less valid the closer the simulations get to the paramagnetic transition. For
future sake, assuming that the Heisenberg coupling is instead temperature dependent would be an improved approximation
that might correct the simulated estimates, despite the fact that it neglects the discussed di�cult unique mapping scheme.

Out of the three considered materials, it is only the CoMnSi compound that has been previously studied with respect to
its magnetocaloric qualities, as shown in table 1, making it the only material that can be used to compare and benchmark
the magnetocaloric results of this study with experiments. The magnitude of the computed ∆S in this study seems
to capture the isothermal behaviour of the material, as the change in entropy is remarkably close to its experimental
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counterpart, di�ering with only ∼ 0.07JK−1mol−1 in value. This makes the ab inito approach taken here highly attractive
and might very well prove to be a useful method to study magnetocaloric materials at room temperature conditions. The
adiabatic change in temperature on the other hand is greatly overestimated in these results, but this comes as no surprise
due to two reasons. One is because of the known discrepancies between the direct and indirect estimation of ∆T , where in
this case the experimental value was obtained via direct probing, which explains the comparably low-temperature value.
The other reason, and the one that makes these two results in fact incompatible with each other, is that the phase transition
that was studied in the experiments occurred at the metamagnetic antiferromagnetic to ferromagnetic transition point
TEt = 250K, not at the Curie point TC ≈ 470K which is studied here. This directly points out a substantial �aw in these
results which is the absence of an entropy and temperature peak that should have occurred around the material's inherent
TEt point, expressing the enhanced magnetocaloric properties related to the corresponding �rst order phase transition. As
a consequence of this fact, another �aw that can be observed with this particular simulation is that this approach has
determined a ferromagnetic ground state structure and not the experimentally veri�ed antiferromagnetic con�guration.
This causes the simulations to be unable to properly reproduce the metamagnetic transformation, making the ∆S and
∆T results produced in this study mere estimates of the material's less interesting second order phase transition. This
leads us to conclude that the agreeing ∆S results are just coincidental, but the similarity in absolute magnitude still hints
that the used procedure might be onto something, making it a potentially accurate method in the study of magnetocaloric
materials.

Why the procedure did not capture the metamagnetic transition of the CoMnSi compound might be explained by
its troublesome structural transformation at the TEt temperature, an e�ect often simultaneously occurring in conjunction
with magnetic �rst-order phase transitions. It has been seen that the unit cell structure of CoMnSi changes and shrinks
across the phases54, which is not taken into account in these simulations. Unfortunately, structural transitions have proven
themselves to be particularly di�cult to treat, and accurately describing the phenomena in a self-consistent numerical
scheme is no easy feat. This leads us to the shortcomings of the prescribed simulation method. Many of the magnetocaloric
qualities of the materials listed in table 1 are partially assisted by structural transitions which amp up the thermodynamic
properties of the magnetic �rst order transitions. This is a characteristic trait of the Heusler alloys, which make them not
suited for this type of simulation study. The rare-earth magnets like gadolinium and the lanthanum-based alloys on the
other hand do not exhibit this sort of behaviour and could very well be implemented in the used numerical scheme. But
these heavier elements come with their own drawbacks, one of which is the matter of the highly localized f -orbitals that
cause the rare-earth elements to behave di�erently than those materials composed of only spd-states. The problem emerges
in the electronic structure calculations due to correlation e�ects, meaning that the localized f electrons interact with the
itinerant conduction electrons in such a way that an independent electron picture, often associated with the local density
approximation (LDA), is no longer a legitimate point of view. The electron states should instead be regarded as connected,
or so-called correlated, to one another which complicate the usual electronic structure calculations55. Accurately describing
the phenomena is in itself an active �eld of research, and approximate solutions have been developed, such as the Hubbard
corrected LDA-U model56,57, that takes the e�ect into account, enabling precise calculations of the electronic structure of
the rare-earth elements. This implementation has already been adopted in the SPR-KKR scheme, making these types of
simulations possible.

5.1 Conclusion and outlook

In this study, simulations have been performed with three types of materials, a toy-model simple cubic system, material
realistic bcc Fe and CoMnSi compound via two Monte Carlo methods, the Metropolis algorithm and the Wang-Landau
method. The ultimate goal was to determine the most suitable method of entropy extraction that would accurately and
precisely re�ect the magnetocaloric properties of simulated magnetic materials.

Many of the obtained thermodynamic results are in good agreement with theoretical and experimental intuition, while
other aspects of these simulations, such as the over and underestimation of the transition points or not being able to
capture the �rst order transitions, leave room for improvements. The computed isothermal changes in entropy on the
other hand, have shown that the methods based on di�erentiation, namely the ∆SC and ∆SM methods, produce accurate
and reliable results, while those relying on a variance computed heat capacity, i.e ∆SC∗ and ∆SWL∗ , are inappropriate.
The consistency and credibility of the ∆SC and ∆SM methods are not to be taken for granted, as �nite size e�ects
may a�ect the complete shape and form of the entropy functions or blur the transition peak with uncertain �uctuations.
But generally, the ∆SM method is the one that produces the most trustworthy results. The magnetocaloric quantities
computed via the Wang-Landau algorithm are unfortunately not suitable for scienti�c investigations due to persistent
inherent Monte Carlo �uctuations and lengthy simulation times.

As a concluding remark, even though the simulations failed to identify the point and nature of the experimentally
determined ambient phase transition of the CoMnSi compound, the optimistically close entropy values suggest that
simulations of this sorts might be worthwhile doing. Further research on the topic by including the rare-earth magnets
into the simulation scheme may one day lead the way to an ab initio approach in determining novel materials that exhibit
substantial magnetocaloric qualities.
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