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Abstract

In this report a theoretical study have been made in the research
field of Materials physics. The system under consideration is based
on a similar system from an article. The system consists of a junction
between a normal metal and a topological insulator, where one of the
materials vibrates. Between the materials there can arise a tunneling
current of electrons. The study is to see if an applied voltage over the
system can make the vibrating material to exhibit a non-trivial
dynamic. From the result we could conclude that the vibrating
material were affected by the tunneling current. For different applied
voltages we could see a clear difference in the phase and strength of
the current when one of the materials vibrated. By studying the
Logarithmic Fourier transformation of the current. It was concluded
that the system can exhibit resonance, for lower voltages, and that
the resonance frequency are dependent on the applied voltage. The
calculations of the vibrating material’s displacement were done both
analytically and numerically. The computations were done using only

arbitrary values of the coefficients.

Abstract

I den hér rapporten har en teoretisk studie genomforts inom
forsknings omradet fér materialfysik. Systemet som studien utgatt
ifran ar baserat pa ett liknande system ifran en artikel. Systemet
bestar av en normal metall och en topologisk isolator som &r
separerade fran varandra, dar ett av materialen vibrerar. Mellan
materialen kan det uppsta en stréom av tunnlande elektroner. Studien
gar ut pa att se om en applicerad spanning Gver systemet kan fa det
vibrerande materialet att ge upphov till en dynamik som inte &r
uppenbar. Frén resultatet kan vi konstatera att det vibrerande
materialet paverkades av tunnelstrommen. For olika applicerade
spanningar kunde vi se en tydlig skillnad i strommens fas och styrka
nér ett av materialen vibrerade. Genom att studera den Logaritmiska
Fourier transformen av strommen. Kan vi dra slutsatsen att systemet
kan uppvisa resonans for laga spanningar och att resonans frekvensen
ar beroende av spanningen. Berdkningarna for det vibrerande
materialets avvikelse gjordes bade analytiskt och numeriskt.
Berékningarna utférdes endast med godtyckliga varden pa
koefficienterna.
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1 Introduction

The main study in this report is theoretical and in the research field of Ma-
terials Physics. The system under consideration is a classical Hamiltonian
system.

The theory behind this project is based on a article, Vibrating Super-

conducting Island in a Josephson Junction [1]. In this article, the main study
is the Josephson effect. This effect makes it possible for a supercurrent to
flow across a junction of two superconductors in the absence of any electric
field. The superconductors are separated with an insulating barrier and at
low temperature the supercurrent flows without resistance. If an additional
dc voltage is applied over the junction the tunneling current will be stronger
and oscillatory [3]. In this project, a similar but simplified physical system
of the one in the article is under consideration. The main difference is the
materials of the conductors used for the junction. In this study the junction
is between a normal metal and a topological insulator. One of the materials
is attached to a spring and oscillates harmonically as a function of time when
the applied voltage is zero, this can be described as a vibrating island.

In short the hypothesis is whether it is possible to find an electric current as
a driving force in a classical Hamiltonian system. Since the two metals have
very different material properties, the system might exhibit a non-trivial dy-
namic. The trivial dynamic would correspond to a situation where there is
no interaction between the current of the tunneling electrons and the vibrat-
ing island.

The goal with the project is to study the changes in the electric current
between the materials when one of the materials vibrates. The current is
analyzed for different arbitrary distances and dc voltages. It is moreover, in-
vestigated if the system can exhibit resonance behaviour and if it is possible
to control the resonance frequency by changing the voltage.



2 Review

The main theory is based on the article Vibrating Superconducting Island in
a Josephson Junction [1|. In this article, the main study is the ac Josephson
tunneling current. The system consists of a moving superconducting island
between two superconducting leads. The superconducting material is special
in the sense that there is a net attraction between electrons close to the Fermi
surface. This attraction is the effect of screening by the ionic motion that
overcomes the repulsive Coulomb interaction between the electrons. The net
attraction gives rise to the possibility of forming bound electron pairs called
Cooper pairs [3]. According to the Josephson effect at low temperatures, it
is possible for Cooper pairs to cross a thin insulating barrier by quantum-
mechanical tunneling. The tunneling Cooper pairs create a supercurrent
across the junction which is a quantum-mechanical phenomena called the
Josephson current. The dc current flows across the junction without resis-
tance and in absence of an electrical field, this is called the dc Josephson
effect. Then if a dc voltage is applied over the junction the current becomes
stronger and oscillatory which give rise to the so called ac Josephson effect [3].

In this study, we consider a similar but simplified physical system. The
system consists of a normal metal and a topological insulator separated with
a thin insulating barrier. One of the materials oscillates harmonically when
no voltage is applied to the system.

2.1 Material properties and the effects of a tunneling current

The main difference between this project and the study in the article, is
the materials considered in the systems. In the article, the superconductive
materials give rise to the possibility of tunneling Cooper pairs, which creates
an ac Josephson current across the insulating barrier when a dc voltage is
applied. The Josephson effects only occurs when both materials are super-
conductors. The effect has been experimentally verified and can be used
to measure precise voltage standards. There have also been other studies
of junctions with different materials that are separated with an insulating
barrier at constant distance. When a voltage is applied over the junction it
gives rise to a flowing current of tunneling unbounded electrons.

The result states that a tunneling current of electrons between two normal
metals would obey Ohm’s law for low voltages, and increase proportional to



the voltage applied. While if one of the metals is a superconductor and the
other one is a normal metal, there is a critical voltage that is dependent on
the superconductors energy gap. For voltages below this critical value the
current is zero. When the critical voltage is exceeded, it can break up the
Cooper pairs in the superconductor which leads to a current of tunneling
electrons that increases fast when the voltage is increased [4].

2.2 Oscillatory behaviours

A system might exhibit an oscillatory behaviour if it is displaced from a posi-
tion of stable equilibrium. The theory of oscillations is widespread through-
out the society. It is commonly used in everyday systems and it has impor-
tant physical properties that can be used in different physical applications
and approximations. Historically, it could be used in a balance wheel for
navigation. Today, we have devices as the atomic clock that uses the vibra-
tions of an atom to regulate the time keep [5].

Depending on the physical system properties, different harmonical motions
can arise. In our considered system, the oscillatory motion of the vibrating
island is treated as simple harmonic when the applied voltage is zero. When
a non zero voltage is considered, we treat the oscillations as a driven damped
linear harmonic motion, derived from the effective Hamiltonan of the system.

In a simple harmonic motion, the restoring force of the system is conserva-
tive and proportional to the displacement. This motion is typically used for
describing systems with small oscillations, for example, a mass on a spring,
or a pendulum. The energy in such a system is conserved and the motion
remains unchanged with time.

If the system is affected by a resistive force, the oscillations become damped
with time. There are many applications of different forces that can act on
the system, such as, sliding friction or friction from a medium in the system.
Depending on the magnitude of the damping coefficients, the system can be
underdamped or overdamped. For an underdamped system, the damping
coefficient should be smaller then the system’s natural frequency, and vice
versa for an overdamped system [5]. In the underdamped system the fre-
quency of the oscillations is less then the natural frequency of the system.
The motion oscillates with time and the amplitude decays exponentially with



a dependence on the damping coefficients magnitude. A larger value on the
damping coefficient means that the motion decreases faster with time. In a
overdamped system the frequency of the oscillations is larger then the nat-
ural frequency of the system. The oscillatory motion of the system is so
damped that it decays exponentially towards the systems equilibrium po-
sition with almost no oscillatory motion. A larger value on the damping
coefficient means that the motion decreases slower with time.

A system can also be driven by an external force. The oscillatory motion
can behave differently depending on how the external force affects the sys-
tem with time. Since a damping factor decreases the system’s energy and
the oscillatory motion dies out with time. A driving force adds energy to the
system. With a external force it is possible to maintain a oscillatory motion
in a damped system. It is also possible for the system’s motion to change
dramatically and increase in amplitude.

If the force acting on the system is constant in time, the equilibrium po-
sition shifts, but the oscillatory behaviour does not change. If there is also
a damping effecting the system, the oscillatory motion decreases with time
towards the shifted equilibrium position. If the external force acting on the
system is periodic instead of constant, it acts on the system with a driving
frequency. The amplitude of the oscillatory motion then depends on both
the natural frequency and the driving frequency of the system. Often in a
physical systems driven by a periodic force, the amplitude reaches its largest
value when the driving frequency is close to the systems natural frequency.
Then if there is a damping acting on the system, this damping will also de-
crease the amplitude [5].

In the theory of oscillations there is a physical phenomena called resonance.
This can occur when the damping in the system is small, or, non existing
and when a periodic driving force is present. If the driving frequency is ap-
proximately the same as the systems natural frequency the amplitude of the
oscillation increases drastically with time [5]. It is important to investigate
if resonance can occur in a system, since the increase in energy in the system
can have different consequences on the system, for example, it can change
the structure of the system.



3 Theory

3.1 Hypothesis

If a voltage is applied to the system under consideration, it gives rise to an
electric current of tunneling electrons between the materials. An effective
Hamiltonian can then be constructed for the vibrating island in the system,
using the Hamiltonian for a harmonic oscillator, and the Hamiltonian for
the current. From the effective Hamiltonian, the equation of motions can
be derived using Hamilton’s equations. The current can, then, be computed
with the vibrating island’s displacement and momentum.

An analysis of the current is made, to study whether the current is effected
by the displacement of the vibrating island, and how it changes due to differ-
ent voltages. It is moreover, investigated if the system can exhibit resonance
behaviour and if it is possible to control the resonance frequency by changing
the voltage.

3.2 Model

The formula for the current of tunneling electrons and the Hamiltonian for
the current were provided by Jonas Fransson [2].

3.2.1 The Effective Hamiltonian

The effective Hamiltonian for the vibrating material is described by the
Hamiltonian for the classical harmonic oscillator and the Hamiltonian from
the tunneling current of electrons.

H — Hosc + H[ (1)
The Hamiltonian for the simple harmonic oscillator is described by
2 2
pe(t) | ku(t)
2
2m + 2 2)

Here p(t) is the momentum of the oscillator, u(t) is the displacement of the
oscillator from its equilibrium position, m is the mass of the oscillator and
k is the spring constant. The mass of the spring is neglected.

Hosc =

The Hamiltonian for the tunneling current of electrons are described by
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here the constants are defined as
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where f is Planck’s constant, e is the electron charge, N is the density of
electron states, D is the electronic band width, D, is a high-energy cut off,
V is the voltage and 7(t) is the tunneling rate of the electrons.

The effective Hamiltonian can be expressed as

2 2 3
P (t) = Eku(t) E JoV
H= om 2 2 3
eV? /3 leV /2] 9

with the tunneling rate of the electrons described by
7(t) = Toe— ") (6)

Here « is the strength of the coupling between the electronic and mechanical
degrees of freedom and 7 is the tunneling rate at ¢ = 0. The tunneling rate
is defined such that when u(¢) > 0, the distance between the normal metal
and topological insulator increases. This leads to a exponentially decreasing
tunneling rate, and for u(t) < 0 it is exponentially increasing.

The effective Hamiltonian can be rewritten as

2 2 3
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3.2.2 The tunneling current

The current of tunneling electrons between a normal metal and topological
insulator can be calculated with following formula [2].

1% D
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Here the first term in the current is directly dependent on 7, if the system
were stationary only this term would contribute to the current. While the
other terms are dependent on the time derivative of 7, such that the vibrating
motion of the island gives rise to the contribution from these terms. The
constants are defined in equation (4).

3.3 Derivation of equations of motions

To derive the equation of motions for the displacement and the momentum
we use Hamilton’s equations [6].

du(t) — oH
ot 9p
op(t)  OH
ot Ou 9)

The equation of motion for the displacement becomes

Ou(t)  p(t)
= —= 1
ot m (10)
and for the momentum
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We can now construct two new constants

h 3.2
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Combining equations (10) and (11), the time derivative of the momentum
can be expressed as a function of u(t) and p(t)

8];5:5) _ *]’Cu(t) + J16—2au(t) + F26—2au(t)p,,5? (13)
The system is now expressed as two coupled first order nonlinear differential
equations
ou(t) _ @
ot m
(%;f) = —ku(t) + Jye 2ov® 4 Fge%‘“(ﬂfﬁ) (14)

3.4 Analytical Solution
3.4.1 Linearization of the coupled nonlinear system

A way to approach an analytical solution is through linearization. This
can be done by using a Taylor expansion of e=2¢4(®) for small values of the
exponent (au(t) < 1). The nonlinear terms can then be replaced with

e~ 20 ~ 1 — 2au(t) + O((au)?) (15)

The system can, then, be expressed as two coupled first order linear differ-
ential equations.

du(t) _ p(t)
ot m
8%(;5) = —ku(t) + J1 — 2aru(t) + ngs) (16)
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3.4.2 Solving the system of linear equations

Taking the second derivative with respect to time of the displacement in
equation (16), the time derivative of the momentum can be expressed in
terms of the displacement, such that

Op(t) O?u(t)

ot "o (17)

The coupled system in equation (16) can now be expressed as a second order
linear differential equation of u(¢) by combining it with (17). This gives

2
% u(t) T du(t) n k—l—QOleu(t) _ N

ot? m Ot m m (18)

Equation (18) can be rewritten as a classical equation of motion

dult) + wolu(t) = F (19)
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where the constants are defined as
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m
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W=\ T
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Here, the damping factor of the system is defined as I', the natural fre-
quency of the system is wg and the driving force is F, with the condition

that k£ + 2aJ; > 0.

The solution for this differential equation can be expressed as a linear com-
bination of a homogeneous solution and a particular solution. The homoge-
neous solution should satisfy the differential equation when F = 0.

The characteristic equation for the homogeneous differential equation can
be expressed as

2+ Tr 4+ w2 =0 (21)
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which have the roots

r r
ry = —5 + (5)2 — QU(]2 (22)
The solution of interest arises when the value inside the square root is less
then zero, since it will yield the oscillatory motion that is being studied.
This solution will be described below. The other solutions for the over-

damped motion can be found in the Appendix.

r
If (5)2 —wp? < 0:

The roots of the characteristic equation can be expressed as

T T T
ri 5 T/ wo (2) 5 Tiw (23)
The homogeneous solution is
up(t) = e~ /20 <A1008(wt) + Agsin(wt)> (24)

The w in the roots of the characteristic equation is also referred to as the
systems eigenfrequencies and have an important impact on the systems dy-
namics.

For the second part of the solution we need to find a particular solution.
Let us make an ansatz that is dependent on the function on the right hand
side of equation (19). In this case the function is constant from the lineariza-
tion. Therefore we should try

up = At> + Bt + C (25)

The ansatz plugged into equation (19) yields that A = B = 0, so this gives

wo’C = F (26)
The constant should be equal to
’a
C=—"—" 27
- 27)
Our particular solution becomes
J1
= 28
Up muwog? (28)



The linear combination of the homogeneous and particular solution is defined
as
u(t) = up(t) + up (29)

where the choice of uy(t) is described above.

3.5 Nummerical Solution

A numerical method was used on the nonlinear coupled system in equation
(14). The alogrithm used to solve these first order differential equations were
Runge-Kutta 4 for a coupled system. All calculations were done in MAT-
LAB. The algorithm can be constructed as follows [7].

Consider the following system

2D — pu(e) )
WO — gutty, i) (30)

Each iteration is with time such that 511 = tx + k. Here k is the time step.
Then from setting initial conditions u; and pg it is possible to compute the
next step in time with the following

1
Ug+1 = up + 6(”1 + 2ng + 2n3 + n4)

1
Pk+1 = Pk + 6(m1 + 2mg + 2mg + my) (31)

where

ny = k;f(uk‘apk)
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n m
ny = kf (ux + 5o+ 50

n2 m2
mg = kf(up + — . pr+ =)

2 2
ng = kf(ug + ns, pr, + ms)
my = kf(ur + ng, pr +m3) (32)
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4 Result

The result in this report will use only arbitrary values of the constants in
equation (19) for studying the currents behaviour at different voltages. This
is because the dimensional analysis of the coefficients in the model yields
different results.

Displacement u(t) for Voltage: 0 -Simple_ Harmoni_c Oscillator
0.4 == Analytical Solution

—Numerical Solution

Displacement u(t)

04 I I I I I
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5

Time, t

Figure 1: Displacement u(t) for the vibrating island, as a function of time,
with zero applied voltage. The graph shows the solution for a theoretical
simple harmonic oscillator unaffected by the tunneling current, the analytical
solution affected by the tunneling current and the numerical solution affected
by the tunneling current.

Figure 1, shows the displacement of the vibrating island, when the applied
voltage is zero. When the applied voltage is zero, the effective Hamiltonian
should become the same as the Hamiltonian for the simple harmonic oscil-
lator. This is because all the terms in the Hamiltonian for the current are
directly dependent of the applied voltage, such that the contribution becomes
zero. A theoretical solution for a simple harmonic oscillator has also been
computed and graphed. This is to ease the comparing with the computed
solutions and to clearly show the differences with the solutions affected by
the current.
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Studying the difference in the displacement between the theoretical solu-
tion of a simple harmonic oscillator and the calculated solutions. The error
between the analytical solution and the theoretical solution are equal to zero.
While the error between the numerical solution and the theoretical solution
is of order O(107!). This is assumed to be the numerical error and can be
neglected.

Displacement u(t) for Voltage: 0.4 MSimple Harmonic Oscillator

0.4 == Analytical Solution
—Numerical Solution

Displacement u(t)

04 I I I I I
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5

Time, t

Figure 2: Displacement u(t) as a function of time for an applied voltage of
0.4

In Figure 2, we can study the behaviour of the displacement of the vibrat-
ing island for an applied voltage of 0.4. The theoretical solution for the
simple harmonic oscillator are not dependent on the voltage and is still the
same as in Figure 1. The analytical- and numerical solution of the displace-
ment is being affected by the tunneling current. We can see that there is
a small phase shift in the oscillatory motion and that there is a damping
occurring. If we look closely we can also see that there is a shift upwards in
the equilibrium position of the oscillatory motion. As time goes the oscilla-
tory motion decreases and eventually the displacement becomes constant at
the new equilibrium position. The analytical and numerical solutions are in
good agreement with each other. The error between the solutions is of order
O(1073) and can be neglected.
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Displacement u(t) for Voltage: 1.5 |M¥Simple Harmonic Oscillator
6 == Analytical Solution
—Numerical Solution

Displacement u(t)

Time, t

Figure 3: Displacement u(t) as a function of time for an applied voltage of
1.5

Figure 3, shows the displacement for a large applied voltage. We have seen
in the previous figure 1, how the applied voltage is directly effecting the
displacement. To large values of the voltage makes the linear approximation
used for the analytical solution unstable. Here we clearly see a difference

between the numerical and analytical solution when the applied voltage is
1.5.
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Current for different Voltages -V =0

-V =0.1
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Current I(t)

Time, t

Figure 4: Analytical- and Numerical Current as a function of time

In Figure 4, the current have been computed with the displacement of the
vibrating island. We have the analytical- and numerical solution of the
current computed for different voltages. When the applied voltage is zero,
we have a ac current that oscillates around zero and does not change its
behaviour with time. When the voltage is increased the current becomes
stronger and the equilibrium position is shifted towards higher values. Since
the displacement is damped and becomes constant after a while, the current
becomes constant when the island stops vibrating due to the damping. Here
we also see that a higher applied voltage is effecting the phase of the current.

18



Logarithmic Fourier transformation of the Current my -0

mV =0.03

log, (1 1(w) %)

Figure 5: Logarithmic Fourier transformation of the current as a function of
frequency. Here wy is fixed while the driving frequency w is varied.

Figure 5, shows the Logarithmic Fourier transformation of the current as a
function of frequency. We clearly see that there is an increase in the energy
of the current around w ~ 3.2, this is when the driving frequency approaches
the systems natural frequency, such that w =~ wg. We also see a small effect
in the amplitude when the driving frequency approaches 2wy. When the
applied voltage is increased there is still an effect in the energy around wq
and 2wg. But for higher voltages the systems damping is also increasing
which makes the resonance behaviour decreases.
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5 Discussion

In this part of the report we will try to analyze the displacement of the vi-
brating island and the currents behaviour for different voltages.

In previous section, by studying figure 1,2 and 3. We analyzed the behaviour
of the displacement of the vibrating island, for zero applied voltage, a small
applied voltage and for a large applied voltage. If we vary the voltage in this
interval, where the analytical- and numerical solutions are in an agreement
with each other, the behaviour of the displacement is still the same. The
equilibrium position is shifted upwards depending on the applied voltage,
this is because the force is directly proportional V3. This behaviour were
predicted for when a constant force is acting on the system. Since the lin-
ear approximation for the analytical solution makes the force approximately
constant, this is what we would expect. We could also see that the oscilla-
tory motion decreases with time and for higher voltage the damping defined
as I increases. The damping effecting the system is probably due to how the
current affects the mechanical vibrations of the island, since it becomes zero
when the applied voltage is zero. To see how the system reacts if we change
the strength of the driving force or the damping we can set them to be equal
to zero. When only the defined driving force is set to zero the oscillatory
motion still decreases with time. But the equilibrium position is not shifted
and the oscillations are symmetric around 0. Then if we restore the force and
change the damping to zero. The oscillations remains with time and does
not decrease. We can also see the shift upwards in the equilibrium position
of the oscillations. This result is what we would expect for the driving force
and the damping coefficient.

When we analyzed the current in figure 4, we saw that it was dependent
on the vibrating islands displacement. When a applied voltage were affect-
ing the system it damped the oscillatory behaviour of the current, such that
the current became constant after a while. We also saw that for different
applied voltage, there were different phase shifts in the oscillatory motion of
the current. The strength of the tunneling current were also very dependent
on the strength of the applied voltage. Then when the damping were set to
be zero, to study how the system reacted, the current remained oscillatory
and didn’t become constant with time. But when the damping were restored
and the force were set to zero, there were no visible difference in the currents
behaviour.
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Then we tried to study the Logarithmic Fourier transformation of the current
as a function of the driving frequency. We could see that when the applied
voltage were low, we clearly had a resonance behaviour when the driving fre-
quency approached the systems natural frequency. Then when the voltage
were increased the amplitude decreased. This is probably dependent on the
damping coefficient of the system that is increasing with the applied voltage.
For a resonance behaviour to occur the damping of the system needs to be
small. If we continue to increase the voltage the peaks becomes more damped
until they almost disappears. The natural frequency of the system, wgy de-
fined in equation (20), is directly dependent on the constant .J1, in equation
(12). Since J; is proportional to V3 the applied voltage affects the systems
natural frequency. The resonance frequency of the system is approximately
the same as the systems natural frequency, so it is also changing for different
voltages.
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6 Recommendation

If further research on this project would be of interest it might be possible,
with access to the right material, to try verifying this behaviour experimen-
tally. I believe it would be possible since there have been experiments to
verify the Josephson current. Another thing that can be improved in this
project is the coeflicients for the current and Hamiltonian. Since only arbi-
trary values could be used for the coefficients. There might be possible to
correct the coefficients with correct units and get a more complete theory
statement.

7 Conclusion

In this report a study have been made on how a current of tunneling electrons
can effect a system with a normal metal and a topological insulator, while
one of the materials vibrates. The calculations and the result is theoretical in
the research field of Materials physics. The provided model was solved both
analytically and numerically and the solutions were in good agreement with
each other. Only arbitrary values could be used in the calculations, since the
dimensional analysis of the coefficients in the provided model yields differ-
ent results. The behaviour of the current and displacement of the vibrating
island were studied for different applied dc voltages. From the result it was
concluded that the vibrating island were affected by the tunneling current.
The displacement of the vibrating island showed a underdamped oscillatory
motion and the equilibrium position were shifted upwards. We could also see
a phase shift in the oscillatory motion that were dependent on the applied
voltage. The currents behaviour seams to be very dependent on the vibrat-
ing materials displacement. For higher voltages the strength of the current
were increased and there were also a visible phase shift in the oscillatory
motion. From studying the Logarithmic Fourier transform of the Current as
a function of the driving frequency we could clearly see resonance behaviour
for low voltages. Higher applied voltage damped the resonance behaviour of
the system. We also concluded that the resonance frequency should be af-
fected by the applied voltage since the systems natural frequency is directly
dependent on the voltage.
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9 Appendix
9.1 Homogeneous solutions for overdamped motions

T
If (5)2 —wp? > 0:
The roots of the characteristic equation can be expressed as

T I
T4 5 (2) wo

The homogeneous solution is

T
If (%) —we?=0:
2
The roots of the characteristic equation can be expressed as
T = ’r’_,’_ =Tr_ = —5

The homogeneous solution is

uh(t) = Alert + AQtert
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9.2 MATLAB code
9.2.1 Skript

% Elektrisk styrning av mekaniska vibrationer %%
% Carolina Nilsson, Degree project C

clear all; close all;

tic;

global k alpha Jl Gamma2 m Gamma;

%% Time interval and stepsize %%

time = 10;

h = 0.001;

%% Initial conditions %%

= [0 0.1 0.2 0.3 0.4 0.50.6 0.7]; % [Voltage]
0 = 0;

0 = 10"(-2);

% Loop for different voltages %%

for j = l:length(v)

Vo =v(]);

%% Arbitrary values %%
k = 0.1;

m = 0.01;

Tao = 1;

e = 1;

alpha = Tao/10;
Dc = 0.6;

D = 1;

h_bar = 1;

N = 1;

%% Constants %%
Tao2_N = N=* (Tao"2);

JO0 = (pi*(e”3)xN)/ (2+«h_bar* (Dc"2));
Gammal = - (2xe=*N)/ (h_barx (Dc"2));
GammaO = ((2%exN«*D)/ (h_bar*(Dc"2))) (1+log(Dc/D));
if vV ==
C = 0;
else
C = log(abs((exV)/2)/Dc);
end
J1l = ((h_bar=*(V"3)*(Tao"2)*alpha)/ (3xe))*J0;
Gamma2 = - ( (2% (alpha”2)* (Tao”"2)*h_bar)/e)* ( Gammalx*V
+ Gammalx* ( ((ex(V*2))/4) = ( 3/2 — C) ));
Gamma = - (GammaZ2/m) ;
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oe

Frequency %%

w0 = sqgrt (k/m);

wl = sqgrt ((k+2+«alpha*Jl)/m);
fO0 = w0/ (2xpi);

fl = wl/ (2*pi);

%% Driving force %%

F = Jl/m;

[

%% Check for which solution that is being used %%
Omega = (Gamma/2)"2-wl"2;

%% Initial conditions RK4 %%

_4(1,1) = u0 ; % u(t)

_4(1,2) = p0; %p(t)

%% Theoretical constants simple H.O %%

Bl = u0;

B2 = p0/ (m*w0) ;

%% Iteration values RK4 %%

Y
Y

(1,1) = 0;

%% RK4 calculation %%

while t<time

%% RK4 %%
k1l_4
k2_4
k3_4 = RungekuttaSolver(Y_4
k4_4 RungekuttaSolver (Y_4

%% Computation %%

RungekuttaSolver (Y_4(i,:));
RungekuttaSolver (Y_4 (i, :)+(h/2).xk1_4);
(i, 1)
(i,:)

+(h/2) .xk2_4);
+h.*k3_4);

Y_4(i+1l,:) = Y_4(i,:) + (h/6).x(k1_4 + 2.%xk2_4 + 2.xk3_4 + k4_4);
%% Iteration %%

i = 1i+1;

t = t+h;

T(1) = t;

end
%% Analytical Solution %%
theo = AnalyticalSolutions (B1,B2,T,w0,wl,F,m, Gamma,Omega,p0) ;
%% Current computation %%
if ((exVv)/2) <0
beta = ((exV)/2);
else
beta = 0;
end

if v ==20
c2 = 0;
else
C2 = log(Dc/ (abs ((e*V)/2)));
end

26



o

I
+
+
I

+
+

V4
C

o
°

o9

% Current for oscillator %%

_analytisk (3, :) = (sign(V)*J0x (V"2)* (Tao"2)) .*exp(-2.xalpha.*theo(3,:))
(-2.%alpha.* (Tao”2) .* exp(-2.xalpha.xtheo(3,:)) .* (theo(4,:)./m) .*
Gammalx ( ((exV)/2) = (1+C2) + beta/(1-(((exV)/(2xD))"2))) ) );

_numerisk(j, :) = ((sign(V)*xJ0*x (V"2)* (Tao"2)) .*xexp(-2.*alpha.*Y_4(:,1))
(-2.*alpha.* (Tao”2) .x exp(—-2.xalpha.xY_4(:,1)) .* (Y_4(:,2)./m) .x (
Gammalx ( ((exV)/2) % (1+C2) + beta/(1-(((exV)/(2«D))"2)))) ) )';

Figures %%

Colors for figures %%
= zeros (1,10);
olor3 = [zeros(13,1),[0.3:0.05:0.9]"',[0.3:0.05:0.9]1"'];
% Figures Displacement %%

figure (3)

hold on

plot (T,theo(l,:), 'Color',color3(1l,:), 'Linewidth', 2)
plot (T,theo(3,:), 'Color',color3(1l1l,:), 'Linewidth',?2)
plot(T,Y_4(:,1), ' 'Coloxr', [0 O 0], 'Linewidth', 2)

hold off

xlabel ('Time, t');ylabel('Displacement u(t)'); grid on;
title(['Displacement u(t) for Voltage: ' num2str(V)])

( GammaO

Gamma0

legend('Simple Harmonic Oscillator', 'Analytical Solution', "Numerical Solution')

o
)

o

% Error %%

Error_hn abs ((theo(1,:)-Y_4(:,1)"));
Error_ha abs ((theo (1, :)-theo(3,:)));
Error_an = abs((theo(3,:)-Y_4(:,1)"));

figure (length (v) +7)

subplot (3,1,1)

plot (T,Error_ha)

title(['Error displacement H.O, Analytical. Voltage: ' num2str(V) 1)
grid on;

subplot (3,1,2)

plot (T,Error_hn)

title(['Error displacement H.O, Numerical. Voltage: ' num2str (V) 1])

grid on;
subplot (3,1, 3)
plot (T,Error_an)

title(['Error displacement Analytical, Numerical. Voltage: ' num2str (V)
grid on;

%% Controll of approximation %%
disp(['u*xalpha numerisk = ' num2str(Y_4 (length(theo)-1,1)+alpha)])
disp(['uxalpha analytisk = ' num2str (theo (3, length(theo)-1)+alpha)l)
end
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%% Fouriertransform %%

N = 10000;

freq = linspace (0, 4*wl,N);

for j = 1l:1l:length(v)

for x = 1:1:N
functl (3, x)

trapz (T, I_analytisk (j,:) .xexp(-li.*xfreq(x).*T));

funct2(j,x) = trapz(T,I_numerisk(j,:).*exp(-li.*xfreqg(x).*T));
end
end
figure;
hold on
plot (freq, log(abs (functl(l,:)).”2), 'Color',color3 (1, :), 'Linewidth’',
plot (freq, log(abs (functl (2, :)).”2), 'Color',color3(3,:), 'Linewidth',
plot (freq, log(abs (functl(3,:))."2), 'Color',color3(5,:), 'Linewidth’',
plot (freq, log(abs (functl (4,:)).”2), 'Color',color3(7,:), 'Linewidth',
plot (freq, log(abs (functl (5,:)).”2), 'Color',color3(9,:), 'Linewidth',
plot (freq, log(abs (functl(6,:)).”2), 'Color',color3(10,:), 'Linewidth’,
plot (freq, log(abs (functl1 (7, :)).”2), 'Color',color3 (11, :), 'Linewidth"',

plot (freq, log(abs (functl1(8,:)).”2), 'Color',color3(12,:), 'Linewidth’',
title('Logarithmic Fourier transformation of the Current')

xlabel ('w');ylabel ("log_ {10} ( | I(w) [~{2} )");

plot (freq, log(abs (funct2) .”2), 'k', 'Linewidth', 4)

legend('V = 0','V = 0.03','V = 0.06','V = 0.09','V = 0.12")

grid on;

hold off

%% Figures Current %%

figure;

n=[1357910 11 127;

for j = 1l:length(v)

hold on

plot (T,I_analytisk(j,:), 'Color', color3(n(j),:), ' 'Linewidth', 10)
xlabel ("Time, t');ylabel ('Current I(t)");

%$axis ([0 4 -0.6 2.2]);

grid on;
title('Current for different Voltages')
end

plot (T, I_numerisk, 'k', 'Linewidth',4)

legend('v = 0', 'V =0.1', 'V =0.2', 'V =0.3', 'V=20.4", 'V =0.5",

'V = 0.6', 'V =0.7")
toc;
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9.2.2 Analytical Solution

%% Analytical Solution for Elektrisk styrning av mekaniska vibrationer %%
%% Carolina Nilsson
function exact = AnalyticalSolutions(B1l, B2, t, w0 ,wl,F,m,Gamma, Omega,p0)

exact = zeros (4, length(t));

Constant = (F/ ((wl"2)));

%% Simple Harmonical Oscillator

exact (1l,:) = Blxcos (wOxt)+ B2xsin(wOxt); u(t)

exact (2,:) = mx (-BlxwOxsin (wOxt)+B2+w0xcos (wO*t)); %p(t)

[}

%% Analytical solution
if Omega > 0

wp = —(Gamma/2)+sqrt (Omega) ;

wm = - (Gamma/2)-sqrt (Omega) ;

A2 = (1+((Fxwp)/(wl"2)))/ (mx (wm-wp));
Al = -A2—-(F/ (mx (wl"2)));

uh = (Alxexp (wp*t) )+ (A2xexp (wmxt)) ;

ph = mx (Alxwprexp (Wpxt) +tA2+ wmxexp (wm*t) ) ;
elseif Omega < 0
Al = —-Constant;
A2 (2*p0-m*Gamma*Constant) / (2xm*sqgrt (-Omega) ) ;
uh = exp (- (Gamma/2) *t) .* (Al*cos (sqrt (-Omega) »t) +A2+sin (sqgrt (-Omega) *t) ) ;
ph = m* (- (Gamma/2) .+xuh + exp (- (Gamma/2)*t) .*( —-Alxsqrt (-Omega) *sin (sqrt (-Omega) *t)
+ A2+sqgrt (-Omega) xcos (sgrt (-Omega) *t) ));

else
Al = —-Constant;
A2 = (2+«p0-mxGamma*Constant)/ (2xm) ;
uh = Alxexp (- (Gamma/2) xt) +A2+t+exp (- (Gamma/2) *t) ;
ph = m=* ( (-Gamma/2) * (uh) +A2+exp (- (Gamma/2) *t) ) ;
end
up = Constant;
exact (3, :) = uh+up; %u(t)
exact (4,:) = ph; %p(t)
end

9.2.3 RK4 Solver

RK4 for Elektrisk styrning av mekaniska vibrationer %%
Carolina Nilsson

o
°
o
°

o° oo

function derivative = RungekuttaSolver (Y)
global k alpha Jl1 Gamma2 m;

[}

%% Nonlinear coupled system of differential equations%%
)

derivative = [ Y(2)/m , (-k*Y(1l))+Jlxexp(—-2xalpha=*Y (1))
+Gamma2+exp (—2+alpha*Y (1)) x(Y(2)/m)]1;
end
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