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Abstract: In this work, the meso-tetra[4-(2-(3-n-pentadecylphenoxy)ethoxy]phenylporphyrin (H2P),
obtained from the cashew nut shell liquid (CNSL), and its zinc (ZnP) and copper (CuP) metallic
complexes, were applied as emitting layers in organic light emitting diodes (OLEDs). These
compounds were characterized via optical and electrochemical analysis and the electroluminescent
properties of the device have been studied. We performed a cyclic voltammetry analysis to determine
the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO)
energy levels for the porphyrins, in order to select the proper materials to assemble the device. H2P
and ZnP presented fluorescence emission band in the red region, from 601 nm to 718 nm. Moreover,
we verified that the introduction of bulky substituents hinders the π–π stacking, favoring the emission
in the film. In addition, the strongest emitter, ZnP, presented a threshold voltage of 4 V and the
maximum irradiance of 10 µW cm−2 with a current density (J) of 15 mA cm−2 at 10 V. The CuP
complex showed to be a favorable material for the design of OLEDs in the infrared. These results
suggest that the porphyrins derived from a renewable source, such as CNSL, is a promising material
to be used in organic optoelectronic devices such as OLEDs.

Keywords: cashew nut shell liquid; porphyrins; photoluminescence; electroluminescence; OLEDs

1. Introduction

In the last few decades, organic light-emitting diodes (OLEDs) have attracted interest due to the
several advantages like flexible and full-color devices, wide-viewing angle, lightness, transparency,
and low power consumption [1–4]. OLEDs are spread in several fields such as imaging, lighting,
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automotive, transportation, communication, agriculture, and medicine. These devices have been
currently commercialized in TVs, tablets, computers, and smartphones [1–5].

An efficient OLED is obtained through a multi-layer arrangement used between the electrodes
(anode and metallic cathode) and the emitting material layer (EML). Additional layers are composed
of electron or hole injection layers (EIL, HIL), electron or hole transport layers (ETL, HTL), and in some
cases, electron and/or hole blocking layers (EBL, HBL), which is applied to confine the charges within
the EML [6,7]. For practical applications of colored displays, the three primary colors (blue, green, and
red) are required [8,9].

Several studies highlight the optimal efficiency of polymer devices [10], polycyclic aromatic [11],
and carbazole derivatives [12,13] as blue-and-green emitters. For red-emitting materials, porphyrins
derivatives have received considerable attention for their saturated red emission, strong absorption,
high stability, good film-forming properties, and higher efficiency of energy transfer and electron
transport [8,9,14,15].

The chemical stability and the possibility of tailoring their optical properties make porphyrins
promising candidates for active materials in optoelectronic devices, since the optical, photophysical,
and electrochemical properties can be modified via the insertion of peripheral substituents on the ring
and as well as metallic atoms on the porphyrins’ cores [15].

Nowadays, sustainability is becoming an important issue in device fabrication. A good way to
make the process more environmentally friendly is to use low-cost renewable sources and simpler
architecture (fewer layers) in the device assembling, as well as the use of common/abundant materials
that provide the same efficiency [5].

In this context, cashew nut shell liquid (CNSL) was used as a natural alternative to build up the
porphyrin structure. CNSL is a renewable and abundant source of phenolic compounds, obtained as
a subproduct of the cashew nut industry (Anacardium occidentale L.) [16–18]. The industrial CNSL is
mainly composed by cardanol (about 65%), which presents interesting chemical characteristics and
allows diverse functionalization and applications [19–22].

Based on these considerations, and those in previous works from our group regarding the
preparation of meso-porphyrins [18,21,23–26], we report the synthesis of cardanol-derivate porphyrins
with respect to its application as an emitting layer in OLEDs. The photophysical and electrochemical
properties of the porphyrins are investigated in solution and in thin film, and we also investigate the
use of these compounds as emitters in simple OLED devices through electroluminescence analysis.
These compounds showed a strong absorption in the visible region and a consequently pronounced
photoemission in the red with a characteristic well-defined for porphyrins.

2. Materials and Methods

2.1. General

All reagents and solvents were purchased from Sigma-Aldrich (St. Louis, MO, USA), Synth
(Diadema, Brazil), and Vetec Quimica (Rio de Janeiro, Brazil) and used as received. The solvents used
were: hexane (C6H14), dichloromethane (CH2Cl2), chloroform (CHCl3), N,N-dimethylmethanamide
(DMF), and ethanol (C2H6O). The chemical reagents used in this work were: pyrrole, boron
trifluoride diethyl etherate (BF3·OEt2), 2,3-dichlro-5,6-dicyano-1,4-benzoquinone (DDQ), zinc
acetate dihydrate (Zn(CH3COO)2·2H2O), and copper acetate dihydrate (Cu(CH3COO)2·2H2O).
Poly(3,4- ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and 1,3,5-Tris(1-phenyl-
1Hbenzimidazol-2-yl)benzene (TPBi) were purchased from Clevios (Heraeus, Hanau, Germany)
and Lumtec (New Taipei City, Taiwan), respectively. Absorption and emission spectra of the
solutions were measured in dichloromethane at room temperature with an Agilent Cary 60 UV-Vis
spectrophotometer (Agilent, Santa Clara, CA, USA) and Shimadzu RF-6000 fluorimeter (Shimadzu,
Kyoto, Japan), respectively. 1H-Nuclear Magnetic Resonance (NMR) and 13C-NMR spectra were
obtained in deuterated chloroform (CDCl3) using an NMR Bruker Avance DPX 300 spectrometer
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(Billerica, MA, USA) operating at 300 (1H) and 75 (13C) megahertz (MHz). Mass spectra (MS)
were analyzed on a Bruker Microflex LT (MaldiTOF) (Billerica, MA, USA) using alphacyano, and
dichloromethane as a matrix and 5% TFA as mobile phase. Elemental analysis (CHN): the percentage
composition of the samples was analyzed on a PerkinElmer 2400 Series II (Waltham, MA, USA).
The X-ray diffraction (XRD) analysis was performed in an X-ray powder diffractometer Xpert Pro
MPD (Panalytical) (Panalytical, Almelo, the Netherlands) using Bragg–Brentano geometry in the range
of 5◦–120◦ with a rate of 1◦ min−1. CoKα radiation (λ = 1.7889 Å) was used and the tube operated at
40 kV and 30 mA. The cyclic voltammetry (CV) was performed on an Ivium Compact Stat using glass
carbon as working electrode, a platinum wire as the auxiliary electrode, and Ag/Ag+ as the reference
electrode. The procedure was performed at room temperature under a nitrogen atmosphere at a range
of−2 V to 2.0 V with a step of 50 mV s−1 and standardized for the redox couple ferrocenium/ferrocene
(Fc+/Fc). The UV-Vis and photoluminescence (PL) spectra of the porphyrins were performed on thin
films (30 nm) grown via spin coating. Tetrahydrofuran (THF) solutions of porphyrins were prepared
with concentration of 4 mg/mL and the films were deposited at 900 rpm for 60 s onto quartz substrates.
The deposited films were dried at 70 ◦C to remove residual solvent. The PL spectra of the thin films
were recorded at room temperature (298 K) on a Photon Technology International (PTI) fluorescence
spectrophotometer (Photon Technology International, Birmingham, NJ, USA).

2.2. Synthesis of the H2P, ZnP, and CuP porphyrins from Cardanol

The free-base meso-tetra[4-(2-(3-n-pentadecylphenoxy)ethoxy]phenyl porphyrin (H2P) from
cardanol was prepared according to the procedure previously described in literature [18,23]. Despite
the synthesis being already published, we highlight some relevant aspects here. The procedure
followed three steps (Scheme 1). In the first step, the cardanol (13.16 mmol) (1) reacted with 1,2-
dibromoethane (174.00 mmol) using KOH (39.49 mmol) as a base to give the (1-(2-bromoethoxy)-3-
pentadecylbenzene) (2). The system was maintained at 70 ◦C and stirring for 6 h. The reaction mixture
was treated with 50 mL of distilled water and filtered in a funnel with a paper filter. The obtained
solid was purified through recrystallization as described in the methodology of Ribeiro et al. [18].
The product was obtained as a white solid and a reaction yield of 86% (4.6 g). In the second step,
the synthesis of the 4-[2-(3-n-pendacylphenoxy)-ethoxy]benzaldehyde (3) was obtained via reaction of
the compound 2 (7.30 mmol) and 4-hydroxybenzaldehyde (10.90 mmol) using KOH (23.30 mmol) as a
base in 50 mL of DMF. The system was stirred at 100 ◦C for 6 h, then purified via recrystallization [18].
Finally, a white solid was obtained as a product with a yield of 56% (1.8 g).Materials 2019, 10, x FOR PEER REVIEW  4 of 15 
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The third phase involved the synthesis of 5,10,15,20-tetra-[4-(2-(3-
pentadecyl)phenoxy)ethoxy]phenylporphyrin (4), which was obtained by reacting the compound
(3) (2.21 mmol) with pyrrole (2.21 mmol) and NaCl (55.25 mmol) in 50 mL CHCl3 (stabilized with
0.8% ethanol) and degassed for 10 min with N2. Then, BF3OEt2 (0.72 mmol) was added. After 10 min,
DDQ (1.64 mmol) was added and the mixture was stirred at room temperature for 1 h in an inert
atmosphere. The reaction mixture was treated with 100 mL of a mixture of DMF/ethanol (7:3 v/v)
under vigorous stirring. Then, the product was filtered and then purified via chromatography in a
silica gel column with dichloromethane as the eluent. The final product was obtained as a purple solid
with 26% (300 mg) reaction yield.

The synthesis of the derivatives of copper (CuP) and zinc (ZnP) was adapted from Attanasi et
al. [27]. H2P (1 g, 0.50 mmol) was mixed with acetate metal salts X(CH3COO)22H2O (X = Zn or Cu)
(5 mmol) in DMF (20 mL) and the reaction mixture was refluxed under microwave irradiation for
10 min at 140 ◦C and the power was set at 1000 W (Scheme 2). After cooling to 25 ◦C, chloroform
was added, and the mixture was washed with water. The chloroform layer was dried over Na2SO4,
filtered, and concentrated under reduced pressure. The crude products were purified using silica gel
column chromatography eluted with dichloromethane/hexane (7:3 v/v), and the complexes ZnP and
CuP were collected in the first fraction eluted as purple with 87% (90 mg) and red with 93% (95 mg)
solids, respectively, and characterized using NMR (Figures S1–S6), UV-visible spectroscopy and mass
spectrometry (Figures S7–S9) and XRD analyses (Figure S10).
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H2P: (26% yield). 1H NMR (300 MHz, CDCl3, δ ppm): −2.73 (s, 2H, N−H), 0.90 (t, 9H,
J = 6.5 Hz, CH3), 1.28 (s, 72H, CH2–(CH2)12–CH3), 1.67 (m, 6H, Ph−CH2−CH2), 2.64 (t, 6H, J = 8.0 Hz,
Ph−CH2), 4.51 (d, 12H, J = 4.5 Hz, O–(CH2)2−O), 6.85–8.12 (28H, Ph−H), 8.89 (s, 8H, H-β pyrrolic).
13C NMR (75 MHz, CDCl3, δ ppm): 14.30 (CH3), 22.89 (CH2–CH3), 29.56-32.13 (CH2−(CH2)12−CH3),
36.31 (Ph–CH2), 66.79 (O−(CH2)2−O), 111.91–158.99 (C-aromatic). MS (MALDI-TOF): m/z: for
C113H144N4O7[M+], observed: 2000.0000; required: 2000.9224. Elemental analysis (CNH) for
C113H144N4O7 (Found: C 81.29, N 3.65, H 8.76%; required: C 81.25, N 3.35, H 8.69%).

CuP: (yield: 93%). 1H NMR (300 MHz, CDCl3, δ ppm): 0.88 (t, 9H, J = 6.0 Hz, CH3), 1.27
(s, 72H, CH2−(CH2)12−CH3), 1.65 (m, 6H, Ph−CH2−CH2), 2.63 (t, 6H, Ph−CH2), 4.46 (d, 12H,
O−(CH2)2−O), 6.86 (6H, H-aromatic). 13C NMR (75 MHz, CDCl3, δ ppm) 14.56 (CH3), 23.15
(CH2−CH3), 29.81–31.88 (CH2–(CH2)12−CH2), 36.55 (Ph−CH2), 66.45 (O–(CH2)2−O), 111.61–158.70
(C-aromatic). MS (MALDI-TOF): m/z: for C113H142N4O7Cu [M+], observed: 2062.0000; required:
2062.4526. Elemental analysis (CNH) for C113H142N4O7Cu (Found: C 78.28, N 3.47, H 8.41%; required:
C 78.37, N 3.23, H 8.26%).

ZnP: (yield: 87%). 1H NMR (300 MHz, CDCl3, δ ppm) 0.88 (t, 9H, J = 6.0 Hz, CH3), 1.27 (s, 72H,
CH2−(CH2)12−CH3), 1.68 (m, 6H, Ph−CH2−CH2), 2.63 (t, 6H, Ph−CH2), 4.54 (d, 12H, O−(CH2)2−O),
6.86–8.13 (28H, H-aromatic), 8.89 (s, 8H, H-β pyrrolic); 13C NMR (75 MHz, CDCl3, δ ppm) 14.10
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(CH3), 22.68 (CH2−CH3), 29.36–31.93 (CH2–(CH2)12−CH2), 36.10 (Ph−CH2), 66.45 (O–(CH2)2−O),
111.73–150.53 (C-aromatic). MS (MALDI-TOF): m/z: for C113H142N4O7Zn [M+], observed: 2064.0000;
required: 2064.2966; Elemental analysis (CNH) for C113H142N4O7Zn (Found: C 78.28, N 3.47, H 8.41%;
required: C 78.37, N 3.23, H 8.26%).

2.3. Fabrication and Characterization of the OLEDs

The structure of devices consists in tri-layer architecture constructed onto ITO (indium tin
oxide) coated glass substrates with a sheet resistance of 15 Ω square−1 (anode), which were cleaned
via ultrasonication using an industrial detergent solution for 10 min, followed by consecutive
ultrasonication in deionized water for 10 min until the detergent elimination. Finally, the substrates
were ultrasonicated in acetone for 15 min and isopropyl alcohol for additional 15 min.

The PEDOT:PSS, used as hole transporting layer, was deposited using spin coating at 2000 rpm
for 60 s and a thermal treatment at 100 ◦C. The emitting layer, i.e., the porphyrins (H2P, ZnP, and
CuP), were dissolved in tetrahydrofuran (THF) 4 mg mL−1 and the films were deposited via spin
coating (900 rpm for 60 s). The electron transporting layer, TPBi, as well as LiF and Al films, were
successively deposited via thermal deposition in a Leybold deposition system (Leybold, Cologne,
Germany) integrated in a MBraun glove-box (MBraun, Garching, Germany). The deposition chamber
base pressure was 6.7 × 10−4 Pa. The deposition rates for organic was in the range of 0.1 nm s−1,
the LiF was 0.01 nm s−1 and 0.2 nm s−1 for the aluminum cathode. The layer thickness was accurately
controlled through a quartz crystal monitor (INFICON) (Inficon, Balzers, Liechtenstein) during the
deposition and the thickness value was successively confirmed by a profilometer measurements.
The OLEDs’ active areas were about 4 mm2 and the device were operated with a forward-bias voltage.

Electroluminescence (EL) spectra were obtained using a Photon Technology International (PTI)
fluorescence spectrophotometer (Photon Technology International, Birmingham, NJ, USA) while EL
brightness was measured with a calibrated radiometer/photometer (United Detector Technology,
Hawthorne, CA, USA) from United Detector Technology (UDT-350). The current–voltage (J–V)
characteristics were simultaneously measured with the EL spectra.

3. Results and Discussion

3.1. XRD Analysis, Absorption, and Photoluminescence Properties

The XRD analysis of the compounds H2P, CuP, and ZnP were performed and the shapes of the
diffraction patterns were typical of polycrystalline powders, as shown in Figure S10.

The UV-visible spectra of the compounds H2P, ZnP, and CuP were measured in CH2Cl2 and thin
films, as shown in Figure 1, and the corresponding data are summarized in Table 1. The spectrum
exhibits characteristic bands of porphyrins in two distinct regions derived from π→ π* transitions of
the highly conjugated aromatic porphyrin ring. The most intense band (Soret band) around 400 nm,
emerged from transitions of the ground state to the second excited state (S0 → S2), while bands with
molar absorbance magnitude lower (Q bands) between 500–700 nm are assigned to transitions to the
first excited state (S0 → S1) [28,29].

As depicted in Figure 1a, the absorption spectrum of H2P shows a strong Soret band at 421 nm,
and four shorter Q bands at 515, 556, 592, and 650 nm. After the introduction of the metal atom to
the porphyrin core, the number of Q-bands was reduced due to increased symmetry. As expected,
ZnP displayed two Q bands at 550 and 590 nm, while CuP exhibits these bands at 541 and 579 nm.
In addition, the metalloporphyrins showed blue or redshifts in their Soret bands when compared
to free-base due to interactions between the atomic orbitals of metallic center and π-orbitals of the
porphyrinic macrocycle [28]. The solid-state absorption spectra of the compounds were obtained from
the film, deposited by spin-coating onto glass (Figure 1b). H2P and ZnP exhibits a red shift of the
Soret band of 16 and 28 nm, respectively, compared to its solution, whereas for the CuP, no shift was
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observed. The small difference between the film and solution-processed compounds could be due to
the formation of aggregates of porphyrins [30], which will be discussed further.

Materials 2019, 10, x FOR PEER REVIEW  6 of 15 

 

porphyrinic macrocycle [28]. The solid-state absorption spectra of the compounds were obtained 
from the film, deposited by spin-coating onto glass (Figure 1b). H2P and ZnP exhibits a red shift of 
the Soret band of 16 and 28 nm, respectively, compared to its solution, whereas for the CuP, no shift 
was observed. The small difference between the film and solution-processed compounds could be 
due to the formation of aggregates of porphyrins [30], which will be discussed further. 

 

Figure 1. (a) UV-Vis absorption spectra of H2P, CuP, and ZnP in CH2Cl2, and in (b) solid state. 

Figure 2 shows the photoluminescence (PL) spectra of H2P, CuP, and ZnP recorded both in 
solution and in thin film (data in Table 1). In Figure 2a, upon 421 nm photoexcitation, H2P showed 
two bands, a strong peak at 657 nm and a weaker band at 718 nm, which is a typical fluorescence 
spectrum of porphyrin in the red region. The emission spectrum from ZnP exhibited a maximum 
band at 601 nm and a smaller band at 652 nm, with a blue-shift in relation to H2P due to influence of 
the metal. Fluorescence quantum yield values for H2P and ZnP were similar (Table 1) and agree with 
the reported literature [29]. CuP did not exhibit fluorescence under the same conditions. 
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Table 1. Absorption and emission data for compounds H2P, CuP, and ZnP in CH2Cl2 at 298 K.

UV-vis λmax (nm) Soret; Q (log εmax/ M−1 cm−1) PL λmax (nm)

Compound In Solution a In Film b In Solution In Film ΦF

H2P
421 (5.6);

515 (4.3); 556 (4.2); 592 (4.1); 650
(4.1)

437;
522; 559; 596;

652
657; 718 669; 726 0.17

CuP 418 (5.5);
541 (4.2); 579 (4.0)

421;
545 ____ 810 ____

ZnP 423 (5.6);
550 (4.3); 590 (4.1)

451;
560 601; 652 613; 654; 718 0.13

a Measured in CH2Cl2 (2 × 10−6 M) solution. b Measured from thin films on glass. c Fluorescence quantum yield
measured using tetrapyridylporphyrin (ΦF = 0.069) as standard.

Figure 2 shows the photoluminescence (PL) spectra of H2P, CuP, and ZnP recorded both in
solution and in thin film (data in Table 1). In Figure 2a, upon 421 nm photoexcitation, H2P showed
two bands, a strong peak at 657 nm and a weaker band at 718 nm, which is a typical fluorescence
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spectrum of porphyrin in the red region. The emission spectrum from ZnP exhibited a maximum band
at 601 nm and a smaller band at 652 nm, with a blue-shift in relation to H2P due to influence of the
metal. Fluorescence quantum yield values for H2P and ZnP were similar (Table 1) and agree with the
reported literature [29]. CuP did not exhibit fluorescence under the same conditions.Materials 2019, 10, x FOR PEER REVIEW  7 of 15 
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Figure 2b shows the emission spectra of H2P and ZnP in film. Comparing with the spectra of the
Figure 2a, differences are observed in the spectral profile as well as a red-shift in about 12 nm. This
was due to the formation of aggregates porphyrins in the solid state. It has been reported that the
π-conjugation of porphyrins causes intermolecular interactions, which depending on the morphology
of the aggregation, can be classified into type H or J. In the H-type aggregates, molecules are aligned
parallel to each other (face-to-face), and the emission bands are blue-shifted and generally lead to the
fluorescence quenching. In J-type aggregates, the molecules are arranged in the edge-to-edge direction,
inducing a red-shift in absorption and emission bands, and remain optically allowed [31–33].

To confirm the formation of aggregates, a fluorescence emission analysis was performed varying
the concentration in solution, as shown in Figure 3. It was observed that the modification in
concentration altered the spectral profile without causing fluorescence quenching, indicating the
formation of J-aggregates [32,34,35]. Besides that, we verified that the profile obtained in the film
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(Figure 2b) had the same characteristic as the one obtained from a 2× 10−4 M solution. In this material,
the introduction of a bulky substituents hindered the π–π stacking and induced the formation of
J-aggregate favoring the emission in the aggregated solid state [32,33].
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As mentioned above, the CuP did not show any fluorescence in solution. It is known that copper
is a paramagnetic atom (with an unpaired electron in the d orbital) that causes fluorescence quenching
due to the mixing of spin multiplicity from the paramagnetic metallic center and the porphyrin ring
itself, increasing the intersystem crossing process [36–38].

However, in the solid state (aggregate form), CuP exhibited luminescence (Figure 4). In the
aggregated state, the CuP complex came from process “aggregation-induced emission” (AIE) due
to the restriction effect of intramolecular rotations (RIR) caused by the J-aggregates that block the
non-radiative pathway allowing radioactive decay in the NIR region [31,33,39].Materials 2019, 10, x FOR PEER REVIEW  9 of 15 

 

 

Figure 4. Photoluminescence of CuP in film (λexc = 435 nm). 

3.2. Electrochemical Properties 

Cyclic voltammetry (CV) was used to evaluate the redox properties of H2P, CuP, and ZnP in a 
CH2Cl2 solution [1 mM] containing 50 mM of TBAPF6 as a supporting electrolyte under a nitrogen 
atmosphere. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular 
orbital (LUMO) energy levels were determined from the oxidation and reduction potentials, 
respectively. 

The CV curves were calibrated using the ferrocenium/ferrocene (Fc+/Fc) redox couple as an 
external standard. The HOMO and LUMO energy levels were obtained through Equations (1) and 
(2) [40], where e is the electron charge, φ is the correction factor between the ferrocene value in the 
literature with the observed during the measures, 𝐸  (V) and 𝐸  (V) are, respectively, the 
onset potentials for oxidation and reduction relative to the standard hydrogen electrode (SHE). 𝐸 (𝑒𝑉) = 𝑒. 𝐸 (𝑉) + 4.4(𝑒𝑉) − 𝑒. φ(V) (1) 𝐸 (𝑒𝑉) = 𝑒. 𝐸 (𝑉) + 4.4(𝑒𝑉) − 𝑒. φ(V) (2) 

All data are compiled in Table 2. The free base H2P exhibited in the cathodic sense one reversible 
reduction wave with E½ = −1.23 V, which corresponds to the reduction of the porphyrin ring. By 
changing the sweep direction to the most positive range, two reversible oxidation waves in E½ = 0.93 
V and E½ = 1.27 V were observed and can be attributed to the first and second monoelectronics 
oxidation of the porphyrin ring. For the ZnP and CuP complexes, there were small changes of the 
oxidation and reduction potentials to more negative values (see Supporting Information). 

According to Stute and coworkers [41], the E½ values depended on the number and nature of 
donor atoms in the porphyrin core. However, the influence of Cu(II) and Zn(II) on the reduction 
potentials was not as distinct as that of the ligand. All energy gap values, known as electrochemical 
gaps, were close to the usual value for porphyrins and metalloporphyrins [41,42], and to the 
theoretical value of 2.18 eV given by Gouterman et al. [43]. 

Table 2. Electrochemical data of H2P, ZnP, and CuP at 25 °C in CH2Cl2. 

Compound EHOMO (eV) ELUMO (eV) GAP (eV) 
H2P −5.20 −3.20  2.00 
ZnP −5.10 −3.00  2.10 
CuP −5.20 −3.00  2.20 

Figure 4. Photoluminescence of CuP in film (λexc = 435 nm).



Materials 2019, 12, 1063 9 of 15

3.2. Electrochemical Properties

Cyclic voltammetry (CV) was used to evaluate the redox properties of H2P, CuP, and ZnP in a
CH2Cl2 solution [1 mM] containing 50 mM of TBAPF6 as a supporting electrolyte under a nitrogen
atmosphere. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) energy levels were determined from the oxidation and reduction potentials, respectively.

The CV curves were calibrated using the ferrocenium/ferrocene (Fc+/Fc) redox couple as an
external standard. The HOMO and LUMO energy levels were obtained through Equations (1) and
(2) [40], where e is the electron charge, ϕ is the correction factor between the ferrocene value in the
literature with the observed during the measures, Eoxi

onset (V) and Ered
onset (V) are, respectively, the onset

potentials for oxidation and reduction relative to the standard hydrogen electrode (SHE).

EHOMO(eV) = e.Eoxi
onset(V) + 4.4(eV)− e.ϕ(V) (1)

ELUMO(eV) = e.Ered
onset(V) + 4.4(eV)− e.ϕ(V) (2)

All data are compiled in Table 2. The free base H2P exhibited in the cathodic sense one
reversible reduction wave with E 1

2 = −1.23 V, which corresponds to the reduction of the porphyrin
ring. By changing the sweep direction to the most positive range, two reversible oxidation waves in
E 1

2 = 0.93 V and E 1
2 = 1.27 V were observed and can be attributed to the first and second monoelectronics

oxidation of the porphyrin ring. For the ZnP and CuP complexes, there were small changes of the
oxidation and reduction potentials to more negative values (see Supporting Information).

According to Stute and coworkers [41], the E 1
2 values depended on the number and nature of

donor atoms in the porphyrin core. However, the influence of Cu(II) and Zn(II) on the reduction
potentials was not as distinct as that of the ligand. All energy gap values, known as electrochemical
gaps, were close to the usual value for porphyrins and metalloporphyrins [41,42], and to the theoretical
value of 2.18 eV given by Gouterman et al. [43].

Table 2. Electrochemical data of H2P, ZnP, and CuP at 25 ◦C in CH2Cl2.

Compound EHOMO (eV) ELUMO (eV) GAP (eV)

H2P −5.20 −3.20 2.00
ZnP −5.10 −3.00 2.10
CuP −5.20 −3.00 2.20

3.3. Fabrication of the OLEDs Ddevices

The structure of devices consisted in a tri-layer architecture constructed onto ITO (indium
tin oxide)-coated glass substrates with a sheet resistance of 15 Ω square−1 (anode). The poly(3,4-
ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), used as a hole transporting layer,
was deposited via spin coating onto the ITO. The emitting layer (H2P, ZnP, and CuP) was
deposited via spin-coating using tetrahydrofuran (THF) as a solvent. The electron transporting layer,
1,3,5-tris(1-phenyl-1Hbenzimidazol-2-yl)benzene (TPBi), as well as LiF and Al films, were successively
deposited via thermal deposition.

The resulting devices, with the respective layers thicknesses (nm) (Figure 5), were:
OLED-1 ITO/PEDOT:PSS(40)/H2P(30)/TPBi(25)/LiF(0.1)/Al(100)
OLED-2 ITO/PEDOT:PSS(40)/ZnP(30)/TPBi(25)/LiF(0.1)/Al(100)
OLED-3 ITO/PEDOT:PSS(40)/CuP(30)/TPBi(25)/LiF(0.1)/Al(100)
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3.4. Electroluminescence (EL)

The energy level diagram shown in Figure 6 was drawn based on the values of the HOMO and
LUMO energy levels determined from the cyclic voltammetry. The HOMO levels for porphyrins were
around 5.2 eV, indicating an energy barrier of 0.2 eV for hole injection when compared with PEDOT:PSS.
On the other hand, an electron barrier of about 0.5 eV was present between the LiF/Al electrode and
the LUMO TPBi levels, indicating that for all OLEDs fabricated in this study, the holes were more
efficiently injected than electrons, and in the interface porphyrins/TPBi, the holes were accumulated
by an energy barrier of 1.0 eV, increasing the probability of recombination in the porphyrins.Materials 2019, 10, x FOR PEER REVIEW  11 of 15 
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In Figure 7 are shown the EL spectra of OLEDs 1, 2, and 3 as a function of applied voltage and
current (top), and the irradiance versus current density curves for the devices (bottom). For OLED-1
(Figure 7a), the shape (halfwidth) of the emission band was independent of the driving voltage values,
indicating that the charges carriers generated excitons within the H2P layer. The EL spectrum of the
OLED-1 had two bands, one of lower intensity at 650 nm and another more intense one at 750 nm.
By varying the applied voltage from 8 V to 10 V, the peak at 657 nm showed a small variation of
intensity, while the peak at 750 nm increased proportionally to the voltage. The EL emission spectrum
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of OLED-1 matched the photoluminescence (PL) spectrum of Figure 4 in the formation of J-aggregates
characterized by the increase in the concentration involved in the film. A possible explanation for
this emission is the formation of exciplexes at the porphyrin/TPBi interface in a non-equilibrium
regime such as the application of an external electric field. In this case, the energy levels were depleted,
deviating from the rigid energy levels alignment (showed in Figure 6). In fact, this energy-level
diagram should be interpreted as an initial guide for engineering the devices’ heterojunctions. At the
interfaces, several interactions can lead to changes in the electronic structure resulting in optical
absorption/emissions that deviate from what one should expect by looking at the rigid diagram.
The same feature was previously reported in the literature [44,45]. The threshold voltage (Von) of the
OLED-1 was 8 V and the maximum irradiance observed was 0.5 µW cm−2 at a current density (J) of
47 mA cm−2 at 12 V (Figure 7d).
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OLED-1 (H2P), OLED-2 (ZnP), and OLED-3 (CuP).

The EL spectrum of OLED-2 is shown in Figure 7b. The EL emission spectrum of OLED-2 matched
the PL spectrum of ZnP as a thin film and was slightly blue-shifted, with an intense peak observed
at 627 nm and two smaller peaks at 597 and 687 nm. The threshold voltage (Von) was 4 V, and the
maximum irradiance was 8.5 µW cm−2 with a current density (J) of 19 mA cm−2 at 10 V (Figure 7d).
The EL spectrum of OLED-3 had a band in the near-IR at 800 nm (Figure 7c) with a threshold voltage
(Von) of 4V and a maximum irradiance of 2 µW cm−2 with a current density (J) of 97 mA cm−2 at
10 V (Figure 7d). These results indicate the superior performance of the ZnP porphyrin as an OLED
emitting layer compared to H2P and CuP.

The interaction between the atomic orbitals of Zn and π-orbitals of the porphyrinic macrocycle,
allowed for OLED-2 to increase the irradiance (almost 9 times for H2P and 4 times for CuP), as well as
decreasing the current of the device and increasing its lifetime.

Several studies use porphyrin as a dopant, in which they increased the number of layers, and the
device performance depended on the effective overlap of energy transfer from the electron carrier (host)
to the dopant (guest). Therefore, it is important to highlight that in this study, the porphyrins were not
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used as dopants, and that they showed an electroluminescence in the red and a threshold voltage, which
is similar to that reported in other works involving porphyrins as an emitter layer [8,9,14,15,46,47].

4. Conclusions

We reported the application of a CNSL-derived porphyrin and metaloporphyrins, as an emitting
layer in OLEDs, proposing a more sustainable way to produce these devices. All materials were used
as emitting layers in OLEDs, and their electroluminescence properties were studied. The ZnP-based
device presented emission at 627 nm, while the CuP emitted in the near infrared at 800 nm. CuP
complex was a promising material for the design of efficient and stable OLEDs in the infrared. ZnP
had superior stability and irradiance that were 9-fold and 4-fold higher than the OLEDs with H2P
and CuP, respectively. These results are relevant because they represent an interesting alternative in
the production of optoelectronic materials using a more sustainable and efficient route, since they are
derived from a by-product of the cashew nut agroindustry. Additionally, the replacement of heavy
metals by more abundant metals (zinc and copper, for example) and a simpler device can stimulate
the development of low cost eco-friendly materials. Current technological advances should seek the
sustainability on the designing of new products, in particular, materials for optoelectronic applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/7/1063/s1,
Figure S1. 1H NMR (CDCl3, 500 MHz) spectrum of free base porphyrin (H2P).; Figure S2. 1H NMR (CDCl3,
500 MHz) spectrum of zinc porphyrin (ZnP).; Figure S3. 1H NMR (CDCl3, 500 MHz) spectrum of copper porphyrin
(CuP).; Figure S4. 13C NMR spectrum of H2P (500 MHz, CDCl3).; Figure S5. 13C NMR spectrum of ZnP (500 MHz,
CDCl3).; Figure S6. 13C NMR spectrum of CuP (500 MHz, CDCl3).; Figure S7. MS (MALDI-TOF) of H2P m/z:
calcd for 2000.9224 u; found [M+H+] 2000.0000 u.; Figure S8. MS (MALDI-TOF) of ZnP m/z: calcd for 2064.2966
u; found [M+H+] 2064.0000 u.; Figure S9. MS (MALDI-TOF) of CuP m/z: calcd for 2062.4526 u; found [M+H+]
2062.0000 u.; Figure S10. X-ray powder diffraction of CuP, H2P and ZnP.; Figure S11. Cyclic voltammogram of
H2P in CH2Cl2, 50 mM of TBAPF6. Scan rate = 50 mVs−1.; Figure S12. Cyclic voltammogram of ZnP in CH2Cl2,
50 mM of TBAPF6. Scan rate = 50 mV/s.; Figure S13. Cyclic voltammogram of CuP in CH2Cl2, 50 mM of TBAPF6.
Scan rate = 50 mVs−1.; Figure S14. Fluorescence excitation spectrum of H2P monitored at 657 nm.; Figure S15.
Fluorescence excitation spectrum of ZnP monitored at 601 nm.
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