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Abstract
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Inland waters are an essential component of the global carbon cycle as they are very active sites
for carbon transformation processes. Much of this carbon is transformed into the greenhouse gas
carbon dioxide (CO2) and emitted into the atmosphere. The biogeochemical and hydrological
mechanisms driving CO2 concentrations in inland waters are manifold. Although some of them
have been studied in detail, there are still knowledge gaps regarding the relative importance of
the different CO2-driving mechanisms, both on a spatial and a temporal scale. The main aim of
this thesis was to fill some of the knowledge gaps by studying long- and short-term effects of
enhanced dissolved organic carbon (DOC) concentrations on surface water partial pressure of
CO2 (pCO2) as well as to investigate both internal (i.e., within the water body) and external (i.e.,
catchment) drivers of pCO2 in inland waters. Based on analyses of long-term data from more
than 300 boreal lakes and streams and on results from two mesocosm experiments as well as
a detailed catchment study, one of the main results of the thesis was that DOC concentrations
were, on a temporal scale, generally uncoupled to pCO2. Indeed, additions of allochthonous
DOC to lake water could result in increased pCO2 in waters but not as originally expected by
stimulation of bacterial activity but instead by light driven suppression of primary production,
at least in mesotrophic waters. Changes in the carbonate system was also found to be a main
driver for surface water pCO2. Finally, also external processes such as groundwater inputs
contributed substantially to variations of surface water pCO2. In a detailed study on carbon
in groundwater, pCO2 in groundwater was found to decrease with soil depth and correlated
negatively with pH, which increased with soil depth. Conclusively, this thesis show that pCO2

does not follow the trends of increased DOC in boreal surface waters but instead correlates with
changes in primary production and shifts in the carbonate system. Additionally, the dominating
mechanisms driving pCO2 clearly differ between lakes and streams. Consequently, simulations
of future CO2 dynamics and emissions from inland waters cannot rely on DOC concentrations as
a pCO2 predictor, but rather need to incorporate several pCO2 driving mechanisms, and consider
the difference between lakes and streams.
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δ13C-DIC 
 
ANC 

Stable carbon isotope of dissolved in-
organic carbon 
Acid neutralizing capacity 

BCP 
CH4 
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C:N 
CO2 
CO3

2- 
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DOC 
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H3PO4 
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- 
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P 
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Bacterial carbon production 
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Carbonic acid 
Phosphoric acid 
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Photosynthetically active radiation 
Nitrogen 
Partial pressure of carbon dioxide 
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Particulate organic carbon 
Total organic carbon 
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Introduction 

Carbon is the chemical basis of all known life and by definition is present in 
all organic compounds. The transformation of carbon compounds, from inor-
ganic to organic during photosynthesis or from organic to inorganic during 
respiration and decomposition, essentially defines the actions of living organ-
isms and therefore play a fundamental role for life on Earth (Brown et al. 
2015). The carbon cycle is the biogeochemical cycle by which carbon is ex-
changed between land, water and the atmosphere, and comprises a sequence 
of events that are key to make life on Earth possible. Carbon in the atmosphere 
exists in two main forms, carbon dioxide (CO2) and methane (CH4), both of 
which are greenhouse gases (Wigley & Schimel 2005). 

Since the industrial revolution, human activities have greatly modified the 
exchange of carbon between land, water and the atmosphere. Atmospheric 
CO2 concentrations increased from about 280 ppm before the industrial era to 
about 410 ppm in 2019. Only about half of the CO2 emissions from human 
activities are reflected in this increase, the other half has been sequestered on 
land, in inland waters and in the oceans (Battin et al. 2009). 

Carbon in inland waters 
Although inland water ecosystems cover only about 1% of Earth’s surface, 
inland waters play a major role in the global carbon cycle (Battin et al. 2009; 
Cole et al. 2007). Historically, inland waters have been considered passive 
pipes merely transporting carbon from land to the ocean (Cole et al. 2007). 
However, it is now well known that inland waters are also very active sites for 
transformation and storage of carbon (Aufdenkampe et al. 2011; Battin et al. 
2009; Cole et al. 2007; Tranvik & von Wachenfeldt 2009). The most recent 
estimate of the terrestrial input of carbon to inland waters suggested that 5.1 
Pg C is delivered to inland waters annually (Drake et al. 2018). Out of this 5.1 
Pg C, 3.9 Pg is annually outgassed, mostly as CO2 (Drake et al. 2018), which 
is even higher than the terrestrial carbon sink for anthropogenic emissions of 
2.8 Pg C yr-1 (Canadell et al. 2007). Inland waters also sequester as much, or 
more carbon as the oceans do (Clow et al. 2015). 

Carbon compounds in inland waters can be either organic or inorganic. The 
organic carbon is composed of two major fractions, a dissolved and a particu-
late phase. These are defined based on isolation techniques using filtration 
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through a membrane filter with a defined pore size. Dissolved organic carbon 
(DOC) is typically the fraction that passes through a filter with 0.2 to 0.45 µm 
pore size, whereas the fraction retained by the filter is termed particulate or-
ganic carbon (POC) (Tranvik & von Wachenfeldt 2009). More than 90% of 
the total organic carbon (TOC) in inland waters consist of DOC (Thurman 
1985). The dissolved inorganic carbon (DIC) pool in inland waters consists of 
dissolved CO2, carbonic acid (H2CO3), bicarbonate (HCO3

-) and carbonate 
(CO3

2-). These inorganic compounds readily interconvert from one to another 
as a function of their relative concentration, pH and temperature, a concept 
which is referred to as the carbonate system. In the 1990’s it was realized that 
the majority of lakes worldwide are supersaturated with CO2 relative to the 
water-atmosphere equilibrium (Cole et al. 1994), and since then subsequent 
research has shown that inland waters effectively emit large amounts of CO2 
to the atmosphere (Raymond et al. 2013). 

CO2 in inland waters can originate from internal or external sources (Cole 
1999; Hotchkiss et al. 2015; Tranvik 1992). The key internal biogeochemical  
mechanisms that drive CO2 concentrations in inland waters are microbial min-
eralization and photochemical oxidation of DOC, primary production and dis-
tribution of carbonate system variables (del Giorgio & Peters 1994; Hope et 
al. 1994; Jansson et al. 2007; Lazzarino et al. 2009; Tranvik 1992). Further-
more, DIC can be imported directly from the surrounding terrestrial environ-
ment where it is produced via respiration or weathering in the catchment soils. 
Hence, catchment hydrology is also of importance for CO2 concentrations in 
inland waters. Although some of the biogeochemical and hydrological mech-
anisms driving CO2 concentrations in inland waters have been intensely stud-
ied, there is still some controversy regarding which processes are most im-
portant. Understanding the mechanisms driving inland water CO2 concentra-
tions across spatial and temporal scales is important to allow for generaliza-
tions and predictions of inland water CO2 responses to environmental change 
(Seekell & Gudasz 2016). 

DOC quantity and quality 
DOC consists of a heterogeneous mixture of different carbon compounds that 
vary in quality. The quality of DOC can vary greatly due to differences in 
origin as well as transformation processes. In inland waters, DOC can origi-
nate either from surrounding terrestrial areas (i.e., allochthonous) or from in 
situ release of carbon from phytoplankton, algae and macrophytes (i.e., au-
tochthonous). 

Allochthonous DOC is derived from vascular plant material, root exudates 
and the primary and secondary metabolites of microorganisms, mostly accu-
mulating in the organic horizon of the soil (Aitkenhead-Peterson et al. 2003; 
Mostofa et al. 2013). Allochthonous DOC is transported from the soil to 
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aquatic ecosystems through advective transport in surface- and groundwaters 
(Aitkenhead-Peterson et al. 2003). Although DOC quality can vary consider-
ably, it can generally be divided into humic-like or protein-like components 
(Kothawala et al. 2014). Allochthonous DOC is generally structurally com-
plex and composed of colored, aromatic, high molecular weight compounds 
such as humic substances (Williams et al. 2010) and is thus often considered 
to be more humic-like. Due to the high molecular weight and aromaticity of 
humic-like DOC, it has been regarded as recalcitrant (Miller & McKnight 
2010). However, it has also been shown that high molecular weight DOC is 
more bioreactive than low molecular weight compounds (Amon & Benner 
1996), and that the most aromatic, highly colored fractions with high molecu-
lar weight have shorter half-lives (Köhler et al. 2013; Weyhenmeyer et al. 
2012a). 

Autochthonous DOC is mostly produced by algae and phytoplankton, how-
ever macrophytes and autotrophic bacteria also contribute to the synthesis of 
autochthonous DOC (Likens 1973). Autochthonous DOC is generally more 
protein-like, has low molecular weight and less color (Bertilsson & Jones 
2003; Guillemette & del Giorgio 2011). Protein-like DOC, is often labile and 
biologically reactive (Guillemette & del Giorgio 2011; McKnight et al. 2001). 
Protein-like DOC can, however, be more persistent in inland water due to con-
stant renewal despite the loss of other components (Kothawala et al. 2014). 

Differences in the composition of DOC, and hence its quality, e.g. driven 
by its origin, affect its biogeochemical functions. DOC can be transformed 
through processes such as microbial mineralization, photochemical oxidation, 
flocculation and sorption to clay, and when DOC is transformed, its quality 
changes. All these transformations change the quantity and the quality of the 
DOC pool, which subsequently influences the fate of the carbon, whether it is 
degraded and emitted as CO2 or CH4, sequestered into sediments or exported 
to the ocean. One of the major pathways is the emission of CO2 to the atmos-
phere, which is highly influenced by microbial and photochemical degrada-
tion of DOC (Graneli et al. 1996; Tranvik 1992). 

Microbial mineralization of DOC and its influence on 
CO2 concentrations 
Heterotrophic bacteria are the most abundant organisms in all ecosystems, and 
a great fraction of the annual primary production is metabolized by them. Con-
sequently, they play a critical role in the carbon cycle and the largest fluxes of 
carbon in inland waters is that from the pool of organic matter into microor-
ganisms (Cole 1999). Bacteria respire organic carbon to gain energy which is 
used to sustain cellular processes. Thereafter, the respired fraction is released 
as CO2, which can subsequently be emitted to the atmosphere. Terrestrially 
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sourced DOC can fuel secondary production within inland waters by hetero-
trophic bacteria. In many inland water ecosystems, the mineralization of or-
ganic carbon by microorganisms outweighs carbon fixation by primary pro-
ducers, hence these systems are heterotrophic (where respiration is greater 
than primary production) and are thus sources of CO2 to the atmosphere. 

Several studies have shown that, on a spatial scale, there is a positive rela-
tionship between DOC and the partial pressure of CO2 (pCO2) due to microbial 
respiration of terrestrial DOC (e.g. Lapierre & del Giorgio 2012; Sobek et al. 
2003). This relationship between DOC and pCO2 has been suggested to be the 
main reason for the CO2 supersaturation observed in the majority of inland 
waters across the globe (del Giorgio et al. 1997; Hope et al. 1996; Jonsson et 
al. 2001). On a temporal scale, however, much less is known about the rela-
tionship between DOC and pCO2. Surface water DOC concentrations have 
been increasing in the boreal region since the 1990’s (Filella & Rodriguez-
Murillo 2014; Monteith et al. 2007), suggesting that pCO2 might have con-
comitantly increased. Therefore, assessing the long-term DOC and pCO2 re-
lationships in boreal inland waters is an important undertaking. 

Photochemical oxidation of DOC and its influence on 
CO2 concentrations 
Solar radiation provides the primary driving force for biogeochemical cycles 
and is fundamental to the cycling of organic matter in inland water ecosys-
tems. Most of the solar radiation that reaches the Earth’s surface is converted 
into thermal energy, however a significant part is diverted into photochemical 
processes (Zepp et al. 1995). Photochemical reactions caused by solar radia-
tion can change the physical, chemical and optical properties of water and play 
an important role in transforming DOC, subsequently affecting CO2 produc-
tion (Kopacek et al. 2003; Vähätalo et al. 2003). Photochemical transfor-
mations of DOC can have both direct and indirect effects on surface water 
pCO2.  Photochemical transformation of allochthonous DOC has been demon-
strated to produce bioavailable substrates and increased bacterial activities, 
thereby also producing CO2 through respiration, however, concurrently au-
tochthonous DOC was converted to substances of lower microbial substrate 
quality during radiation, thus decreasing DOC bioavailability which could 
lead to decreased CO2 production (Tranvik & Bertilsson 2001). This suggests 
that phototransformation of DOC can both enhance and reduce DOC bioavail-
ability and CO2 concentrations. Furthermore, DOC can be directly converted 
to DIC through photochemical oxidation (Graneli et al. 1996). 
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Primary production and its influence on CO2 
concentrations 
Primary production is the synthesis of organic compounds from inorganic 
compounds, such as CO2 and water, through photosynthesis. Eventually, much 
of the primary production is converted back to CO2 via respiration, however 
some carbon accumulates in biomass and organic matter. Consequently, pri-
mary production could be a strong driver of pCO2 in inland waters. Primary 
production in inland waters is regulated by factors such as light, temperature 
and the supply of nutrients. The light climate in lakes and streams can be 
highly impacted by the water color. The water color could vary greatly de-
pending on the DOC concentration since terrestrially derived DOC contains 
large amounts of colored humic-like DOC giving the water a brownish color 
(Roulet & Moore 2006). This browning effect has been particularly evident in 
surface waters across the boreal region where water color has been increasing 
since the 1990’s (Haaland et al. 2010). Increased water color could lead to less 
light being available for photosynthesis, and subsequently less CO2 bio-uptake 
(Jones 1992). However, it is still largely unknown if and how this increase in 
water color will alter pCO2 through a change in primary production in inland 
waters. 

The role of the carbonate system for CO2 concentrations 
Aquatic primary production is affected by the presence of dissolved carbonate 
species, and is thus tightly linked to the carbonate system. The carbonate sys-
tem is the set of DIC species produced by the equilibria: 

 
1ሻ	ܪଶܱܥଷ 	⇌ ଷܱܥܪ

ି 	⇋ ଷܱܥ	
ଶି 

 
When CO2 dissolves in water it exists in chemical equilibrium with H2CO3: 
 

2ሻ	ܱܥଶ ൅	ܪଶܱ	 ⇋  ଷܱܥଶܪ	

Hence, in inland waters the concentration of H2CO3 can be considered equiv-
alent to the CO2. The concentrations of the various carbonate species depend 
on the pH of the solution. Concomitantly, the pH in inland water is susceptible 
to biological influence from CO2 consumption (photosynthesis) and CO2 pro-
duction (respiration, decomposition), which affect the ratio between 
CO2:HCO3

-:CO3
2 (Talling 2010). Hence, the pH of a solution is essentially 

controlled by the carbonate system (Roberts & Allen 1972). Increased CO2 in 
inland waters due to reduced photosynthesis could lead to more acidic waters 
as pH decreases. However, inland waters have a natural protection against 
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acidification, a buffering capacity, referred to as alkalinity. Alkalinity is a 
measure of the amount of bases in a solution which can neutralize hydrogen 
ions from strong acids and is usually determined by titration against sulfuric 
acid (H2SO4) to the endpoint of the acid-base reaction (Mattson 2009). Alka-
linity can also be referred to as a conservative property regarding the addition 
or the removal of CO2 through biological activity, which respectively decrease 
or raise pH. A closely related term is acid neutralizing capacity (ANC), which 
may include any type of buffering. The major buffers in most inland waters 
are HCO3

- and CO3
2-. Alkalinity in inland waters is derived from several 

sources: weathering of rocks and soil, exchange reactions in soils, biological 
uptake and reduction of strong anions, evaporation and precipitation of min-
erals and atmospheric deposition of dust (Mattson 2009). 

Influence of catchment processes on CO2 concentrations 
in inland waters 
It is not only the processes occurring within lakes and streams that are of im-
portance for carbon dynamics in inland waters. Much of the DOC and DIC in 
inland waters originates from the surrounding catchment, hence catchment 
processes could be key regulators of surface water carbon concentrations. 
Groundwater inputs can be strong regulators of CO2 concentrations in both 
lakes and streams (Hotchkiss et al. 2015; Leith et al. 2015; Marce et al. 2015; 
Weyhenmeyer et al. 2015; Winterdahl et al. 2016). Groundwater has been 
shown to be oversaturated in CO2, produced through microbial respiration of 
organic matter in soil and root respiration (Crawford et al. 2014; Leith et al. 
2015; Macpherson 2009). Mineral weathering can also be a strong driver of 
groundwater CO2 (Boerner & Gates 2015). The two key types of mineral 
weathering occurring in soils are carbonate weathering and silicate weather-
ing. Both carbonate and silicate weathering consumes soil CO2, which is pro-
duced through soil respiration, and produces HCO3

-. Mineral weathering can 
also lead to increased ANC and enhanced pH through the release of base cat-
ions and consumption of CO2. Hence, the carbonate system within a lake or a 
stream could be as important as the carbonate system in the surrounding catch-
ment for regulating surface water CO2 concentrations. For instance, a carbon 
budget for Sweden showed that CO2 consumption through mineral weathering 
corresponded to 25% of the CO2 efflux from lakes and streams (Humborg et 
al. 2010). 

The importance of groundwater input for surface water chemistry can vary 
depending on a number of factors such as stream order, time of year, ground-
water level and catchment hydrology (Hotchkiss et al. 2015; Peralta-Tapia et 
al. 2015). Furthermore, the relative importance of shallow and deep ground-
water input for surface water chemistry can also vary depending on similar 
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factors (Tiwari et al. 2014). For instance, due to the strong hydrochemical 
connectivity between the catchment soil and headwater streams, the concen-
tration of CO2 in headwater stream water is largely dependent on the CO2 con-
centration in the surrounding terrestrial areas (Vidon et al. 2010). Further 
downstream, the importance of in situ carbon transformation processes in-
creases (Hotchkiss et al. 2015). Concurrently, the ratio of shallow to deep 
groundwater input changes towards greater influence from deeper groundwa-
ter further downstream (Peralta-Tapia et al. 2015). The importance of deep 
groundwater input to stream surface water chemistry also varies seasonally 
due to changes in flow rate. During spring, the contribution of deeper ground-
water to surface water chemistry is diluted by increasing inputs of shallow 
groundwater and surface runoff, whereas during winter, at base flow, the rel-
ative contribution from deeper groundwaters increases (Humborg et al. 2010). 
Further, it has been suggested that deep groundwater inputs can be more in-
fluential at regulating stream chemistry than in-stream processes in down-
stream rivers (Tiwari et al. 2014). Despite this importance of deep groundwa-
ter, most studies on groundwater contributions to surface water chemistry 
have been using information from shallow depths down to ca. 1 m (i.e., 
Deirmendjian & Abril 2018; Grabs et al. 2012; Ledesma et al. 2016; Rasilo et 
al. 2017). Studies investigating the water chemistry of deeper groundwater are 
required to accurately assess how water chemistry from deeper groundwater 
could contribute to surface water chemistry. Consequently, there is a need for 
comprehensive studies and quantifications of carbon species in deeper 
groundwater, across both spatial and temporal scales. 

Water residence time (WRT), both in the landscape and within the water 
body could also be a key regulator of surface water CO2 concentrations 
(Algesten et al. 2004; Catalán et al. 2016). Organic carbon loss was found to 
increase rapidly with increasing WRT up to 2-3 years (Algesten et al. 2004) 
and CO2 production has been shown to be more efficient in waters with long 
WRT due to more time available for microbial mineralization (Hanson et al. 
2011). Runoff is predicted to decrease due to global warming, subsequently 
increasing WRT (Catalán et al. 2016) and with increasing WRT, CO2 produc-
tion may increase. Changes in precipitation can also impact WRT, and with 
climate change predicted to induce significant changes in many parts of the 
world in regards to precipitation, with increases in some areas and decreases 
in others (Martel et al. 2018), this could potentially have a large impact on 
CO2 in inland waters. With decreased precipitation, WRT, and subsequently 
CO2 production, may increase. Decreased precipitation would also lead to re-
duced discharge and consequently lead to a higher relative contribution from 
deeper groundwater than surface runoff and shallow groundwater to surface 
water chemistry (Carroll et al. 2018). 
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Figure 1 Conceptual figures illustrating the biogeochemical and hydrological CO2 
driving mechanisms that could be of importance for controlling CO2 concentrations 
in surface water of boreal lakes and streams. Photochemical oxidation is, however, 
not covered in the studies of this thesis. 
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Aims of the Thesis 

The overarching aim of this thesis was to get a better understanding of the 
biogeochemical and hydrological mechanisms driving CO2 concentrations in 
inland waters (Figure 1). The studies on which the thesis is based upon include 
both internal (within lake and streams) and external (catchment) carbon trans-
formation processes, cover a range of spatial scales, stretching from the entire 
Sweden, to a single catchment, to a mesocosm experiment in a lake, as well 
as different temporal scales ranging from four weeks to 21 years. Different 
spatial and temporal scales were combined to provide a comprehensive under-
standing of the mechanisms driving surface water pCO2, which is urgently 
needed for the prediction of future CO2 emissions from inland waters.  

 
More specifically, the aims of this thesis were to: 

 Investigate long-term effects of increased DOC on pCO2 in boreal 
inland waters (Paper I). 
The investigation was performed using long-term monitoring data 
from lakes, streams and river mouth systems distributed all across 
Sweden. 
 

 Examine short-term effects of increased DOC on pCO2 in lake wa-
ter (Paper II). 
The short-term effects of DOC on lake water pCO2 were examined 
through two mesocosm experiments in a lake in eastern Sweden. 
 

 Assess internal drivers of surface water pCO2 (Paper II, IV) 
Internal pCO2 drivers were assessed through two mesocosm exper-
iments in a lake in eastern Sweden and by investigating long-term 
trends in lakes and streams using monitoring data. 
 

 Investigate external drivers of surface water pCO2 (Paper III, IV) 
Catchment drivers of surface water pCO2 were investigated by ex-
ploring the spatial and temporal variability of organic and inor-
ganic carbon concentrations in groundwater at intermediate depth 
in a catchment in northern Sweden as well as assessing long-term 
trends in catchment hydrology using monitoring data 
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Methods 

Study sites 
The study sites for the individual papers of this thesis ranged spatially from 
the national scale of Sweden (Paper I and IV), to the catchment scale (Paper 
III), to the mesocosm scale (Paper II) (Figure 2). In Paper I and IV, water 
chemical data acquired from the Swedish national freshwater monitoring pro-
gram were used (Fölster et al. 2014). The data are made freely available by 
the Swedish University of Agricultural Sciences (SLU). For Paper I, an initial 
data set comprising 178 lakes, 86 streams and 42 river mouth systems was 
used. To get a complete data set with a minimum of four samples for each year 
for the period 1997 to 2013 a subset of the 306 waters, which resulted in a 
total of 71 lakes, 30 streams and 4 river mouths, was used. The same 105 water 
systems were initially used in Paper IV, and from these, the waters which had 
increased significantly in pCO2 during the study period were used for further 
analysis, resulting in eight lakes and five streams. In Paper III, groundwater 
in the Krycklan catchment in northern Sweden, a boreal catchment dominated 
by forest and peatlands, was sampled across three seasons. For Paper II, two 
mesocosm experiments were conducted in the meso-eutrophic Lake Erken in 
eastern Sweden. 

Mesocosm Experiment set-up 
Two mesocosm experiments were performed, each lasting four weeks (Paper 
II). The first experiment was conducted in June-July (Experiment A) and the 
second in August-September (Experiment B) 2016. Both experiments had five 
replicates of four treatments (Figure 3a). In Experiment A, the four treatments 
were; (1) addition of DOC concentrated by reverse osmosis from a humic 
stream draining a forested wetland (i.e., reverse osmosis); (2) DOC from 
HuminFeed® (Humintech, GmbH, Grevenbroich, Germany), an alkaline ex-
tract of Leonardite (i.e., HuminFeed); (3) a mix of reverse osmosis concentrate 
and HuminFeed (i.e., mixed); and (4) no addition of DOC (i.e., control). Start-
ing DOC concentrations for Experiment A were: 18.4, 18.1, 23.5 and 13.0 mg 
L-1 for the reverse osmosis, HuminFeed, mixed and control treatments, respec-
tively. In Experiment B the four treatments consisted of; (1) addition of re-
verse osmosis concentrate of DOC from the same humic stream water as in 
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Experiment A (i.e., reverse osmosis); (2) shading by covering of the outside 
of the mesocosms using black polyethylene film and on top using black chif-
fon fabric (i.e., shading); (3) addition of reverse osmosis concentrate of DOC 
and shading (i.e., DOC-shading); and (4) no DOC addition or shading (i.e., 
control). Starting DOC concentrations for Experiment A were: 16.4, 12.0, 16.4 
and 12.0 mg L-1 for the reverse osmosis, shading, DOC-shading and control 
treatments, respectively. 

 

 
Figure 2 Study sites for each individual paper of this thesis; location of Swedish 
study lakes (circles, n=71), streams (diamonds, n=30), and river mouths (squares, 
n=4) (Paper I) (a), location of Swedish study lakes (circles, n=8), and streams (dia-
monds, n=5) (Paper IV) (b), location of groundwater wells in the Krycklan catch-
ment in Northern Sweden (Paper III) (c), and location of the mesocosm experiment 
in Lake Erken (Paper II) (d). 

 

 
Figure 3 Aerial photograph (photo credit: Erik Sahlée) of the mesocosm experiment 
in Lake Erken  (a), sampling of the mesocosms (b), and groundwater sampling in the 
Krycklan catchment (c, d). 
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Mesocosm and field sampling 
Water sampling of the mesocosms were conducted weekly starting on the first 
day of the experiment and then four more times including the final sampling 
at the end of the experiment (Figure 3b) (Paper II). Sampling of pCO2 was 
performed first at each sampling occasion to avoid outgassing due to turbu-
lence and disturbance from water sampling. Water samples for pCO2 analysis 
were taken with a syringe directly below the surface whereas water samples 
for all other analyses were collected using a tube sampler (1.5 m long, ~ 3 liter 
volume). 

Sampling of groundwater was carried out in June (summer) and September 
(autumn) 2017 and in May (spring) 2018 (Figure 3c, d) (Paper III). Water was 
sampled from 16 groundwater wells with depths ranging from 3.4 to 19.5 m. 
The total volume of water in the well was determined before sampling and at 
least three times the volume of the well of water was removed prior to sam-
pling to ensure collection of only the new infiltrating water. In a few wells the 
water refilled at such a slow rate that sampling took several days. Water tem-
perature and pCO2 were measured directly in the field while samples for anal-
ysis of DOC, DIC, the stable carbon isotope of DIC (δ13C-DIC), CH4, pH and 
total nitrogen (N) were stored in the dark at 4°C for a maximum of seven days 
until analysis. Water samples collected for DIC and CH4 analysis were col-
lected in the same vial and acidified directly using phosphoric acid (H3PO4). 

pCO2 analyses 
All samples for pCO2 measurements collected for this thesis (Paper II and III) 
were analyzed directly in the field using the headspace equilibration method 
(described in Sobek et al. (2003)) as modified by Kokic et al. (2015). Bubble-
free water samples of 30 mL were taken with a 60 mL polypropylene syringe 
equipped with a three-way stopcock. A 30 mL headspace of ambient air was 
then introduced and the syringe was vigorously shaken for one min to equili-
brate the dissolved gas from the water into the headspace. The equilibrated air 
was then transferred into another syringe before being analyzed on a portable 
infrared gas analyzer (IRGA, EGM-4). All gas samples were analyzed within 
5 min of sampling. The pCO2 of ambient air was also measured to correct for 
the pCO2 in the equilibrated air samples. The pCO2 was calculated according 
to Weiss (1974) using Henry’s law constant, correcting for temperature, at-
mospheric pressure and added ambient air CO2. 

For Paper I and IV, CO2 was calculated based on water temperature, alka-
linity and pH according to Weyhenmeyer et al. (2012). From this, pCO2 was 
calculated using Henry’s law corrected for temperature and atmospheric pres-
sure (Weiss 1974). 
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Additional chemical analyses 
All chemical analyses for Paper I and IV were performed in an accredited 
laboratory at the Swedish University of Agricultural Sciences (SLU) follow-
ing standard limnological procedures. Analytical methods are published 
online on SLU’s website. TOC concentrations were considered equivalent to 
DOC concentrations since the particulate fraction of organic carbon generally 
is less than 1% in boreal inland waters (Laudon et al. 2011). 

For the mesocosm experiment (Paper II), additional chemical analyses 
were performed by members of the KAWater team. Filtered water samples 
were analyzed on a Sievers M9 TOC analyzer for DOC concentrations while 
DIC concentrations were measured on a Sievers 900 TOC analyzer. Bacterial 
carbon production (BCP) was analyzed using the 3H-leucine incorporation 
method by Smith & Azam (1992). Ethanol extractions were performed with 
subsequent spectrophotometry analysis to establish chlorophyll a (chl a) con-
centrations following standard techniques (Kutser et al. 2005). The pH was 
measured directly in the mesocosms using a YSI multiprobe. Light was meas-
ured at seven depths in each mesocosm with a light meter. Total N and total 
phosphorus (P) were analyzed on unfiltered samples on a SEAL AutoAna-
lyzer. Water color was measured as absorbance at 420 nm (abs420) using a 
Lambda 40 UV/VIS spectrophotometer (Paper II). 

Additional groundwater chemical analyses were performed by laboratory 
staff at the Department of Forest Ecology and Management at SLU (Paper III). 
The DOC was measured as TOC on a Shimadzu TOC-VCPH. For DIC and 
CH4 determination, a headspace method was used and headspace CO2 and CH4 
concentrations were analyzed by gas chromatography (GC) (Wallin et al. 
2010; Wallin et al. 2014; Åberg & Wallin 2014). Concentrations of DIC and 
partial pressure of CH4 (pCH4) were then calculated using temperature-de-
pendent equations for the carbonate equilibrium (Gelbrecht et al. 1998) and 
Henry’s Law (Weiss 1974). The δ13C-DIC was analyzed from the CO2 head-
space using an isotope ratio mass spectrometer. Total N was measured on a 
Shimadzu TNM1 whereas the pH was measured with a Mettler Toledo 
Digi117-water combined pH meter. 

Catchment hydrology 
In addition to the water chemical data acquired from the Swedish national 
freshwater monitoring program, hydrological data downloaded from the Swe-
dish Meteorological and Hydrological Institute (SMHI)’s website was used 
for Paper IV. Data acquired were monthly average precipitation, discharge 
and groundwater for the catchments of the study lakes and streams. 
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Statistics 
In this thesis a variety of different statistical approaches were used, i.e., Mann 
Kendall trend tests, one way analyses of variances (ANOVAs), repeated 
measures ANOVAs, linear regressions and partial least squares regressions 
(PLS). Assumptions of normality and heteroscedasticity were tested prior to 
statistical analyses. If necessary, transformations of data or non-parametrical 
methods were applied in order to test significance. To identify long-term 
changes, non-parametric Mann Kendall trend tests were performed on yearly 
median water chemical and hydrological values (Paper I and IV). To find in-
fluential variables on lake and stream surface water pCO2 PLS were used (Pa-
per IV). One way ANOVAs were used to evaluate the direct effects of DOC 
additions in the mesocosm experiments whereas repeated measures ANOVAs, 
with mesocosm as a random effect, were performed to test for differences in 
pCO2 and pCO2 drivers between mesocosm treatments (Paper II). One way 
ANOVAs were used to test for differences in groundwater chemistry between 
seasons (Paper III). Linear regressions were performed on the mean of the 
values measured at the different seasons to investigate relationships between 
groundwater chemistry and depth as well as between groundwater pCO2 and 
other groundwater carbon species (Paper III). 
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Results and Discussion 

Long-term effects of increased DOC on surface water 
pCO2  
Over the past 20 years, DOC concentrations have been increasing in surface 
waters across the boreal region (Evans et al. 2005; Filella & Rodriguez-
Murillo 2014; Monteith et al. 2007). On a spatial scale, high DOC concentra-
tions have been shown to correspond to high levels of surface water pCO2. 
However, the effect of a long-term DOC increase on pCO2 in inland waters 
are still unknown. In Paper I, the long-term relationship between DOC and 
pCO2 in boreal inland waters was investigated. In more than half of the 105 
study waters, DOC was found to have increased significantly during the pe-
riod 1997 to 2013, however, only a few of those showing a DOC increase also 
increased in pCO2 (Figure 4). Overall, long-term water chemistry trends in 71 
lakes, 30 streams and four river mouth systems were investigated. Out of the 
39 lakes that had increased in surface water DOC concentrations during the 
17-year study period, merely four had also increased in pCO2. Half of the 30 
streams had increased in DOC and of those 15 streams, only two had also 
increased in pCO2. While all four river mouths had increased in DOC during 
the period 1997 to 2013, none of them showed an increase in pCO2. These 
results relate to a previous study of long-term pCO2 trends in lakes of the Ad-
irondack park in northeastern U.S, where only six out of 31 lakes had in-
creased in pCO2 (Seekell & Gudasz 2016). Contradicting the results of this 
thesis, Seekell & Gudasz (2016) did, however, also observe a significant in-
crease in DOC in the six lakes with enhanced pCO2. Due to the established 
spatial relationship between surface water DOC and pCO2 and the results from 
the six study lakes of Seekell & Gudasz (2016), enhanced pCO2 levels were 
expected in most of the waters that had increased in DOC. It was expected that 
either in situ CO2 production through bacterial mineralization of allochtho-
nous DOC would have increased or the inflow of catchment produced CO2 
would have increased in conjunction with the increased DOC input. However, 
this was not the case in the majority of the study waters in Paper I. Both in situ 
CO2 production and CO2 input from the catchment may indeed have increased, 
however other processes, that at the same time draw down the pCO2, must 
have been stimulated to a greater extent. The lack of long-term DOC-pCO2 
relationship could potentially have been due to a change in hydrological pat-
terns. Although precipitation has decreased in some areas of Sweden, in many 
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areas precipitation, and therefore also runoff, have increased since the 1990’s 
(Bengtsson & Rana 2014; Chen et al. 2015; Weyhenmeyer et al. 2016). This 
increase in precipitation could have resulted in a dilution effect of the CO2-
rich groundwater input, leading to the observed uncoupling of DOC-pCO2 
trends on a temporal scale. In addition to hydrological changes, the lack of 
DOC-pCO2 relationships could potentially be explained by a change in alka-
linity or DOC quality for some of the systems (Kothawala et al. 2014; Seekell 
& Gudasz 2016). 

 
Figure 4 Percentage of surface waters of Swedish boreal lakes (n=71), streams 
(n=30) and river mouths (n=4) that had increased significantly in dissolved organic 
carbon (DOC), partial pressure of carbon dioxide (pCO2) and both DOC and pCO2. 
The black and grey parts of the bars combined refer to the systems investigated in 
Paper I with significant increases during the period 1997 to 2013. The grey part of 
the bar alone refers to the systems investigated in Paper IV during the period 1997 to 
2017. 

Short-term effects of increased DOC on lake water 
pCO2  
After discovering that DOC and pCO2 were uncoupled through time, I wanted 
to investigate the short-term effect of increased DOC on surface water pCO2. 
The effect of enhanced allochthonous DOC input could be three-fold (Figure 
1). Firstly, allochthonous DOC may function as a carbon source to hetero-
trophs, stimulating CO2 production. Secondly, DOC could contribute to water 
color, hence increasing light attenuation and potentially hampering CO2 con-
sumption by primary producers. Thirdly, DOC may have an acidifying effect, 
which can lead to decreased pH with a subsequent increase in CO2 as the dis-
tribution within the carbonate system shifts. In Paper II, two mesocosm ex-
periments were performed in a meso-eutrophic lake. In the first mesocosm 
experiment, DOC concentrations were manipulated, whereas in the second ex-
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periment both DOC concentrations and light climate were manipulated. Dur-
ing the four-week durations of the experiments, a significant pCO2 increase 
was observed in all treatments relative to the control (Figure 5). Hence, there 
was a clear short-term response of pCO2 to the allochthonous DOC input. Ad-
ditionally, pCO2 also increased during the four-week experiment due to a 
change in light climate. Generally, the pCO2 increases were most pronounced 
during the first one to two weeks of the experiments, further emphasizing how 
quick the responses to DOC additions were. Also, the first pCO2 measure-
ments were performed about 18 hours after DOC additions, and already then, 
a clear increase in pCO2 could be seen in the majority of the treatments. The 
lack of long-term pCO2-DOC relationship and the clear short-term pCO2-
DOC relationship could be related to the quality of the DOC. This has previ-
ously been shown in a study comparing short-term and long-term bacterial 
carbon consumption (Guillemette & del Giorgio 2011). The labile carbon is 
quickly consumed leaving behind the more recalcitrant carbon, hence the mi-
crobial response to enhanced allochthonous DOC input might be more pro-
nounced in the short-term. However, there was no difference in bacterial pro-
duction between any of the treatments in either of our mesocosm experiments 
despite the increased pCO2. Lennon (2004) performed a mesocosm experi-
ment with DOC additions where he measured the CO2 response and, similar 
to our mesocosm studies, found a significant increase in CO2 in response to 
enhanced DOC concentrations. However, contradicting to the results of this 
thesis, Lennon (2004) also found a significant increase in bacterial productiv-
ity. Two of the key differences between ours and Lennon’s (2014) mesocosm 
experiments are the length and sampling strategy. Our experiments were per-
formed for four weeks, sampling on a weekly basis whereas Lennon’s (2014) 
experiment was performed for 10 days with daily sampling. The short-term 
effect of DOC on bacterial production may indeed be short, and the increase 
of the bacterial activities during the first week in response to the added alloch-
thonous DOC might have been missed. However, there are several mecha-
nisms other than bacterial mineralization affecting pCO2 in inland waters, 
some closely related to DOC, others independent of DOC. 

Internal drivers of surface water pCO2 
Our mesocosm experiments (Paper II) allowed me to get a better mechanistic 
understanding of the effect increased DOC input could have on lake water 
pCO2 and to further explore the internal drivers of surface water pCO2. To test 
the results on a broader scale, a study which included field observations was 
performed. In Paper IV, long-term monitoring data were used to investigate 
reasons behind significantly increasing pCO2 in eight lakes and five streams, 
distributed all across Sweden that had increased in pCO2 during the 21-year 
period of 1997 to 2017. In the mesocosm experiments (Paper II), the DOC 
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additions as well as the shading had a strong effect on the light climate de-
creasing the amount of light available for photosynthesis. There was a nega-
tive relationship between pCO2 and light climate (Figure 6a, b). The increased 
light attenuation must have had a negative impact on primary production, de-
creasing CO2 bio-uptake and subsequently increasing the pCO2 in the meso-
cosms. In Paper IV, there was also a potential negative effect of shading 
through darkening of the waters on primary production. Of the eight study 
lakes, four had increased in water color (i.e., absorbance at 420 nm), which 
was used as a proxy indicator for primary production, and this could have been 
a reason for the observed pCO2 increase. These results relate to previous stud-
ies showing a negative effect of shading on primary production caused by al-
lochthonous DOC (Ask et al. 2009; Carpenter et al. 1998). The large natural 
variation in water color due to differences in DOC concentrations and DOC 
sources could potentially be a reason for variation in primary production 
(Carpenter et al. 1998). In the mesocosms, chl a had increased in all treat-
ments, which was a bit surprising as chl a often has been used as a proxy 
indicator for primary production (Huot et al. 2007; Michelutti et al. 2005; 
Roehm et al. 2009), and should thus have decreased with increased shading. 
However, primary producers are able to produce more chlorophyll to compen-
sate for the lack of light (Richardson et al. 1983), hence water color may be a 
more suitable proxy indicator for primary production in this context. 

 

 
Figure 5 Weekly variations in the partial pressure of carbon dioxide (pCO2) under 
four treatments (see legends in figure) during two four-week mesocosm experi-
ments, Experiment A (a) and Experiment B (b), with dissolved organic carbon 
(DOC) additions and/or changed light climate through shading. Values are mean 
(±SE, n=5). Error bars are sometimes so small that they are hidden within the sym-
bols.  
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Figure 6 Relationships between partial pressure of carbon dioxide (pCO2) and aver-
age photosynthetically active radiation (meanPAR) throughout the entire water col-
umn in the mesocosm (a, b) and time-weighted averaged pH (c, d) from two four-
week mesocosm experiments with dissolved organic carbon (DOC) additions and/or 
changed light climate through shading (see legend in figure for treatments). The left 
panel refer to result from the first experiment and the right panel refer to the second 
experiment. 

Nutrient limitation can also be an important factor controlling primary pro-
duction and thus regulating pCO2 (Figure 1). In Paper II, the DOC additions 
led to higher concentrations of total P, which is another proxy indicator of 
primary production since P often is the limiting nutrient for primary produc-
tion in inland waters. If the primary producers in the mesocosms were nutrient 
limited, this enhanced total P should have led to increased primary production, 
and consequently decreased pCO2. However, the opposite pattern was ob-
served. In Paper IV, total P was used as a proxy indicator for primary produc-
tion, in addition to light climate, and no evidence for nutrient-limited primary 
production being the reason for the observed pCO2 increase in the lakes during 
the period 1997 to 2013 was found. In regards to the streams in Paper IV, three 
of the five study streams had decreased significantly in total P during the 21-
year study period and it is possible that this hampered primary production, 
which resulted in the pCO2 increase. Overall, there were high variations in the 
relationships between changes in pCO2 and total P, suggesting that in some 
waters nutrient limited primary production could be driving factor for pCO2, 
whereas in other waters this process would be less important. 

In the mesocosm experiments (Paper II), there was also a strong relation-
ship between pCO2 and pH (Figure 6c, d). Allochthonous DOC can be quite 
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acidic due to humic acids. In the first experiment there were two different 
sources of DOC, and one of these, which was extracted from humic stream 
water (i.e., the reverse osmosis treatment) had a pH of 3.4. This reverse osmo-
sis DOC was also used in the second experiment. All reverse osmosis DOC 
addition treatments showed a significant increase in pCO2 already on the day 
after DOC additions. This acidic DOC input probably resulted in an instant 
shift in the carbonate system with decreased pH and a subsequent increase in 
pCO2. The reduced primary production due to changes in the light climate 
could also have led to a reduced pH, adding on to the observed negative rela-
tionship between pCO2 and pH. This was particularly apparent in the second 
experiment in the treatment with added DOC and changed light climate due 
to shading as this treatment had a much higher pCO2 than the treatment with 
only DOC addition, despite having the same DOC concentrations. In Paper 
IV, two of the five streams decreased in pH, hence it is possible that the ob-
served long-term pCO2 increase was due to distribution changes within the 
carbonate system in these two waters. The importance of the carbonate system 
on surface water pCO2 has recently been demonstrated (Marce et al. 2015; 
Stets et al. 2017) and the results from this thesis further emphasize the need 
of acknowledging the carbonate system in research of CO2 dynamics in inland 
waters and subsequent gas exchange with the atmosphere. 

Paper IV also allowed us to explore the factors affecting DOC mineraliza-
tion within lakes and streams, such as DOC concentration, water temperature 
and DOC quality (Figure 1). Of the eight lakes and five streams, four lakes 
and two streams had increased significantly in DOC during the 21-year study 
period (Figure 4). Despite the general uncoupling of long-term DOC-pCO2, it 
is still possible that in these four lakes and two streams, the long-term pCO2 
increase was due to enhanced microbial mineralization resulting from in-
creased DOC concentrations. Temperature can also affect microbial mineral-
ization of DOC as enhanced temperatures have been shown to lead to higher 
mineralization rates in lake sediments (Gudasz et al. 2010). Increased temper-
ature was found in only one of the 13 study waters in Paper IV, hence there 
was no strong trend suggesting temperature would be a key internal driver of 
surface water pCO2. The quality of DOC could also be an important driver of 
surface water pCO2 (Bodmer et al. 2016) and in five of the eight lakes and in 
three of the five streams changes in at least one of the DOC quality proxy 
indicators, abs420/DOC and C:N (i.e., the ratio between DOC and dissolved 
organic N) were observed. The most pronounced DOC quality change was a 
significant increase in C:N, which occurred in five lakes and two streams. An 
increased C:N suggests that the proportion of humic-like DOC has increased 
(Kothawala et al. 2014). There is however, some disagreement regarding the 
reactivity of humic-like DOC. While it has been argued in some studies that 
humic-like DOC can be considered recalcitrant (Hosen et al. 2014; Miller & 
McKnight 2010), in other studies, bioreactivity of DOC has been found to 
increase with increased proportions of humic-like DOC (Amon & Benner 
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1996; Bodmer et al. 2016). Larger and more complex organic compounds 
have also been shown to be associated with elevated CO2 levels (D'Amario & 
Xenopoulos 2015). The results of this thesis are in line with the findings of 
Amon & Benner (1996), Bodmer et al. (2016) and D'Amario & Xenopoulos 
(2015), however, more research into the reactivity of DOC of different quality 
and how this changes through time is needed. 

External drivers of surface water pCO2 
External (i.e., catchment processes) drivers can be as, or even more, important 
as internal drivers for regulating inland surface water pCO2 (Figure 1)  and this 
was further explored in Paper III and Paper IV. In Paper III, dissolved and 
gaseous carbon species in groundwater at 3 to 20 m depth in a boreal catch-
ment were quantified. The aim was to get a better understanding of the carbon 
biogeochemistry of intermediate groundwater since this water can be an im-
portant contributor to surface water chemistry in downstream rivers, particu-
larly during base flow, and in lakes (Hagedorn et al. 2000; Hood et al. 2005; 
Maberly et al. 2013). The groundwater sampled from all 16 wells was super-
saturated with CO2 relative to the atmosphere. This finding is in agreement 
with previous studies investigating CO2 concentrations in groundwater in the 
U.S (Boerner & Gates 2015; Macpherson 2009). A relationship between pCO2 
and depth of the well, with decreasing pCO2 with depth, was also observed 
(Figure 7a). It is quite possible that soil respiration decreases further down the 
soil profile and this could be the reason for the negative pCO2-depth relation-
ship. There was also a negative relationship between pCO2 and pH (Figure 7c) 
as well as a positive relationship between pH and depth (Figure 7b). The neg-
ative relationship between pCO2 and pH was not a surprise, as they are tightly 
linked and can control each other. Consequently, the negative pCO2-depth re-
lationship could be a result of the positive pH-depth relationship, which could 
be due to increased silicate weathering with depth. Higher silicate weathering 
and subsequent increased pH in deeper groundwater has previously been 
shown for groundwater down to 4.3 m depth (Klaminder et al. 2011). Whether 
the pCO2 and pH relationships with depth are due to changes in soil respiration 
or silicate weathering cannot for certain be determined from the results of this 
thesis. Both processes are most probably very important in the soils of this 
catchment and it is likely that they change with depth. Hence, the observed 
pCO2 and pH relationships with depth are likely due to a combination of both 
processes. Due to the tight link between pCO2 and soil respiration as well as 
silicate weathering, these processes can be important external drivers for sur-
face water pCO2. 
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Figure 7 The partial pressure of carbon dioxide (pCO2) (a) and pH (b) in groundwa-
ter wells at different depths and the relationship between pCO2 and pH (c) in the 
groundwater of the Krycklan catchment. The symbols in panel c are color coded ac-
cording to the depth of the sampled well. For all variables, data are presented as 
mean values ± standard error (n=3, SE). 

Although it was hypothesized that the observed long-term pCO2 increase 
could have been due to increased groundwater level, since groundwater can 
be an important source of CO2 to surface water, no support for this hypothesis 
was found in Paper IV. During the 21-year study period from 1997 to 2017, 
groundwater levels had remained the same in all 13 study catchments, except 
the catchment of the stream Bergmyrbäcken, where groundwater levels had 
decreased. Since precipitation can affect the ratio of surface runoff to ground-
water input to lakes and streams, and thus surface water pCO2, long-term 
trends in precipitation were also investigated. As with groundwater, very little 
change had occurred in precipitation during the period 1997 to 2017 in the 
study catchments. Precipitation had remained the same in all study catch-
ments, except the catchment of Fräcksjön where precipitation had decreased. 
Since a decrease in precipitation could lead to lower surface runoff to ground-
water input, and thus more CO2-rich groundwater entering the lake, the ob-
served decrease in precipitation could potentially be the reason to the observed 
pCO2 increase in Fräcksjön. Overall, very little long-term changes in the hy-
drological processes in the study catchments were found. Likewise, the con-
ditions were stable across seasons in all measured organic and inorganic car-
bon species in the study catchment investigated in Paper III. This suggests that 
below ground conditions are generally stable through time and although 
groundwater can be an important regulator of surface water chemistry, internal 
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processes appeared to more strongly regulate pCO2 of the study waters of Pa-
per IV than external processes. 
 



 32 

Conclusions and Future Perspectives 

The role of inland waters in the carbon cycle, particularly the transport and 
transformation of carbon along the land to ocean aquatic continuum, through 
river systems, lakes, estuaries and coastal waters, to the open ocean must be 
considered in climate change mitigation schemes. In the most recent report of 
the Intergovernmental Panel on Climate change (IPCC), alarming information 
on accelerated global warming can be found (IPCC 2014). Global warming is 
to a large extent induced by greenhouse gas emissions, and more than one 
quarter of the total annual CO2 emissions is emitted from inland waters (Drake 
et al. 2018; IPCC 2014). Consequently, inland waters play an important role 
for greenhouse gas emissions, hence future estimates of CO2 emissions from 
inland waters are needed. Additionally, understanding the turnover of carbon 
in inland water ecosystems and integrating these fluxes into the global carbon 
cycle are important steps toward appropriate CO2 management. One important 
step towards better predictions of future CO2 emissions from inland waters 
and better management practices towards CO2 mitigation is to better under-
stand the biogeochemical and hydrological mechanisms regulating inland wa-
ter CO2 concentrations, which was the main goal of this thesis. Overall, the 
complexity of the drivers of CO2 dynamics in inland waters is demonstrated 
and several mechanisms that are at play concomitantly are highlighted (Table 
1, Figure 8). On a spatial scale, there is a positive DOC-pCO2 relationship and 
therefore DOC concentrations are often used to predict pCO2 and thereby CO2 
emissions from inland waters. Consequently, it was expected that the observed 
increase in surface water DOC concentration across the boreal region over the 
past 20 years had resulted in an increase in pCO2, however a positive relation-
ship on a temporal scale could not be established. Furthermore, in our meso-
cosm study no support for the hypothesis that increased allochthonous DOC 
input stimulates bacterial activities was found. Instead, addition of DOC to 
lake water in our mesocosm experiments resulted in a reduction of light avail-
able for photosynthesis thus reducing the photosynthesis to respiration ratio, 
which turned out to be the main driver of the increased pCO2. Another key 
driver of the increased pCO2 was an increase in pH due to decreased photo-
synthesis as well as addition of acidic DOC. If the input of colored DOC to 
inland waters increase in a warmer and wetter climate, the light conditions 
may change sufficiently to suppress primary production and lead to enhanced 
CO2 emissions. In the fourth paper, it was shown that reasons behind pCO2 
increases are rather site-specific with complex interactions of drivers that 
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clearly differed between lakes and streams. The dominating mechanism in 
lakes was stimulation of microbial mineralization by increased DOC and/or 
changed DOC quality or suppressed primary production due to light limitation 
by increased water color. In streams, the dominating mechanism was either 
carbonate system distribution changes due to decreased pH or a possible de-
creased primary production due to nutrient limitation. Such site-specific pat-
terns show the importance of including several pCO2 driving mechanisms, and 
of recognizing the difference between lakes and streams, when aiming to pre-
dict future CO2 emissions from inland waters. Consequently, simulations of 
future CO2 emissions from inland waters need to consider the findings of this 
thesis. 

 

Table 1. Summary of the key hydrological and biogeochemical surface water CO2 
driving mechanisms found in the studies of this thesis. 

System Mechanism 

Lakes  
    Internal Light limitation/decreased photosynthesis (Paper II, IV) 
 Increased acidity/decreased pH (Paper II) 
 Increased DOC concentration (Paper IV) 
 Changed DOC quality (Paper IV) 
Streams  
   Internal Increased acidity/decreased pH (Paper IV) 
 Nutrient limitation/decreased photosynthesis (Paper IV) 
Lakes & Streams  
   External Surface runoff (Paper I) 
 Groundwater input (Paper I, III) 

 
 Soil respiration (Paper III) 
 Weathering/pH (Paper III) 

 
For future studies one important topic to investigate is the relationship be-

tween DOC quality and pCO2. Both the quality of DOC within inland waters 
and in the catchment soils as both could have an effect on surface water pCO2. 
Moreover, food web processes were not covered in this thesis, but could po-
tentially also be strong regulators of CO2 emissions from inland waters and 
should therefore be considered in future studies. Furthermore, in Paper III, 
concentrations of both organic and inorganic carbon species in groundwater 
were shown to vary greatly on a spatial scale. This information is critical when 
aiming to upscale carbon concentrations in groundwater to regional or larger 
scale since it shows the importance of multiple sampling locations as well as 
sampling at different depths. Groundwater can be an indirect source of CO2 
emissions due to the influence of groundwater on surface water chemistry, 
therefore more studies into the carbon dynamics of groundwater are needed. 
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It could be particularly useful to model groundwater movement and investi-
gate the connectivity between groundwater at different depths and surface wa-
ter.  

 
Figure 8 Conceptual figure showing the key biogeochemical and hydrological 
mechanisms driving CO2 concentrations in surface waters of boreal lakes and 
streams, which are discussed in this thesis. The mechanisms that are shown in figure 
1, but not in figure 8 were found not to be important for CO2 concentrations in the 
boreal lakes and streams included in this thesis. Photochemical oxidation was how-
ever removed as it was not investigated in the studies of this thesis. The different ro-
man numbers refers to the papers of this thesis where the processes were found to be 
dominating. 
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Sammanfattning på svenska 

Inlandsvatten är en essentiell resurs för liv på jorden. Förutom det självklara 
att inlandsvatten används som dricksvatten, förser inlandsvatten mänsklig-
heten med många viktiga funktioner som produktion av mat och energi, trans-
port och rekreation. Trots att inlandsvatten endast täcker ungefär 1% av jor-
dens yta så har de stor betydelse i jordens kretslopp av kol. Kol är en av livets 
byggstenar och förekommer i alla levande organismer. Kol förekommer som 
organiska och oorganiska föreningar och kan genom ett antal olika biokemiska 
processer lätt omvandlas från den ena föreningen till den andra. Omvand-
lingen av organiskt kol till oorganiskt kol sker genom respiration och nedbryt-
ning medan omvandling av oorganiskt kol till organisk kol sker via fotosyntes. 
Dessa processer definierar huvudsakligen levande organismer och spelar där-
för en grundläggande roll för livet på jorden. Kol ingår i växthusgasen koldi-
oxid som har ökat markant i atmosfären genom mänsklig påverkan och lett till 
påtagliga klimatförändringar.  

Inlandsvatten kan innehålla stora mängder kol och koldioxid. Mycket av 
kolet i inlandsvatten kommer från omgivande skog och mark och tidigare 
trodde forskare att inlandsvatten endast transporterar kol vidare till haven. Nu-
mera vet man att en stor del av kolet som kommer från omkringliggande mark 
omvandlas i sjöar och vattendrag till koldioxid genom mikrobiella processer. 
Grundvatten kan genom nedbrytningsprocesser i jorden också bestå av höga 
mängder koldioxid. En stor del av koldioxiden i sjöar och vattendrag har pro-
ducerats direkt i marken och tillförs till vattnet via grundvatten. Det finns även 
andra viktiga processer som kan leda till ändrade koldioxidhalter i inlandsvat-
ten, som bland annat fotosyntes av växtplankton och alger och förändringar i 
pH genom t.ex. försurning. Fotosyntes av växtalger leder också till att orga-
niskt kol produceras inom sjöar och vattendrag. Organiskt kol från terrestra 
miljöer består till stor del av humus, vilket övervägande utgörs av nedbrutna 
växtdelar, och är brunsvart till färgen. Detta gör att inlandsvatten med höga 
mängder organiskt kol är brunaktigt. Ökad brunhet i vatten på grund av höga 
mängder organiskt kol kan leda till minskad produktion av växtalger eftersom 
den bruna färgen på vattnet gör att mindre ljus finns tillgängligt för fotosyntes. 
Humus har också lågt pH, vilket gör att en ökad mängd organiskt kol kan leda 
till försurning. Organiskt kol kan vara av olika kvalité, dels på grund av var 
det har producerats och dels på hur det har bearbetats, vilket gör det lättare 
eller svårare för bakterier att bryta ner det och omvandla det till koldioxid. 
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Genom alla de processer som kan leda till ökade koldioxidhalter i inlandsvat-
ten är många av jordens sjöar och vattendrag övermättade i koldioxid. Detta 
gör att många inlandsvatten avger koldioxid till atmosfären. Trots svårigheten 
att få fram exakta siffror på hur mycket koldioxid som avges från jordens alla 
sjöar och vattendrag så visar ny forskning tydligt på att det handlar om mer 
koldioxid än alla terrestra ekosystem tillsammans tar upp ifrån atmosfären av 
de utsläpp som människan orsakar. För att kunna förstå och förutspå hur kol-
dioxidnivåer i sjöar och vattendrag ändras i förhållande till miljöförändringar 
är det viktigt att förstå processerna som reglerar koldioxidhalterna i inlands-
vatten. Det främsta syftet med denna avhandling var därför att undersöka både 
de koldioxidreglerande processer som verkar inom sjöar och vattendrag och 
de koldioxidreglerande processer som verkar i marken som omgärdar våra in-
landsvatten. Det andra syftet med denna avhandling var att studera de lång- 
och kortsiktiga effekter ökad organisk kolmängd har på koldioxidhalter i in-
landsvatten. 

I den första studien undersöktes vattenkemin i över hundra Svenska sjöar, 
vattendrag och flodmynningar för att identifiera hur koldioxidhalterna påver-
kats av ökad tillförsel av organiskt kol under en 17-årsperiod. I den andra stu-
dien undersökte vi hur en ökad tillförsel av organiskt kol kortsiktigt påverkar 
koldioxidhalten i sjövatten. Detta gjordes genom två mesokosm experiment i 
sjön Erken i östra Sverige där vi manipulerade mängden organiskt kol samt 
ljusklimatet. I det tredje projektet studerade vi mängden organiskt och oorga-
niskt kol i grundvattnet i ett avrinningsområde i norra Sverige. Vi tog prover 
från 16 grundvattenbrunnar som var mellan 3 och 20 m djupa. Detta gjordes 
på våren, sommaren och hösten för att se om det var någon skillnad mellan de 
olika säsongerna. I den fjärde studien återgick vi till de sjöar och vattendrag 
från första studien som hade ökat i koldioxidhalt för att undersöka orsaken till 
ökningen. 

Eftersom bakterier bryter ner organiskt kol och då bildar koldioxid förvän-
tade vi oss att den ökade mängden organiskt kol i ytvattnet skulle leda till 
ökade koldioxidhalter i vår första studie. Dock visade våra resultat att de flesta 
vatten som visade på ökade mängder organiskt kol inte hade fått högre koldi-
oxidhalter under de 17 år som studien täckte. Även om den ökade mängden 
organiskt kol skulle ha lett till en ökad bakteriell nedbrytning så märktes ej 
detta på koldioxidhalterna. Det kan vara så att den ökade nederbörd som ob-
serverats över stora delar av Sverige de senaste 20 åren har lett till att en större 
del av vattenkemin i sjöar och vattendrag påverkas av ytavrinning än av grund-
vattentillförsel. Vatten som tillförs till inlandsvatten genom ytavrinning består 
av större mängder organiskt kol och mindre mängder koldioxid, medan för-
hållandena är det motsatta för grundvatten. Att grundvatten kan ha höga halter 
av koldioxid men små mängder organiskt kol var något vi visade i den tredje 
studien. Den ökade nederbörden kan därför leda till en ökad mängd organiskt 
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kol i ytvatten utan att koldioxidhalten höjs. Samtidigt kan ökad nederbörd re-
sultera i brunare vatten, vilket i sin tur leder till ett ändrat ljusklimat som kan 
påverka växtplankton. 

Resultaten från de två mesokosmexperimenten visade tydligt att den ökade 
mängden organiskt kol ledde till en ökad koldioxidhalt, och detta var till följd 
av minskad fotosyntes av växtalgerna på grund av det ändrade ljusklimat som 
det organiska kolet medförde. Tillsättning av det organiska kolet gjorde att 
mängden ljus i vattnet minskade markant, vilket medförde att växtalgerna tog 
upp mindre koldioxid eftersom det fanns mindre ljus tillgängligt för fotosyn-
tes, vilket ledde till ökade koldioxidhalter. Tillsättningen av organiskt kol 
ledde också till en försurning som gjorde att koldioxidhalterna ökade. Resultat 
från den fjärde studien, där vi undersökte orsaken till varför koldioxidhalten i 
några svenska sjöar och vattendrag hade ökat markant under en 21-års period, 
visar också på hur ändrat ljusklimat och försurning kan leda till högre koldi-
oxidhalter i inlandsvatten. Resultaten från den fjärde studien visade också på 
att kvalitén på det organiska kolet kan ha stor betydelse för hur mycket som 
omvandlas till koldioxid. 

Eftersom processer i omgivande mark också kan ha stor betydelse för kol-
dioxidhalter i ytvatten undersökte vi hur koldioxidhalterna i grundvatten kan 
variera på olika djup i marken. Genomgående fann vi höga mängder koldioxid 
på alla uppmätta djup över hela avrinningsområdet vi studerade. Överlag så 
minskade koldioxidmängden med djup vilket tyder på att de bakteriella akti-
viteterna också minskade med djup. Samtidigt kan silikatvittringen ha ökat på 
djupare nivåer, vilket också leder till lägre koldioxidhalt. 

Sammantaget visar resultaten från denna avhandling att det är stor variation 
i vilken koldioxidreglerande process som har störst påverkan på koldioxidhal-
ten i inlandsvatten. Vi fann inget samband mellan koldioxidhalt och mikrobi-
ell aktivitet, varken på kort eller på lång sikt. Istället visade våra resultat att 
brunare vatten på grund av ökat organiskt material gjorde att växtplankton och 
alger hade mindre ljus tillgängligt för fotosyntes vilket ledde till minskat upp-
tag av koldioxid och därmed högre koldioxidhalt i vattnet. Förändringar i pH 
på grund av försurning från organiskt material och från minskad fotosyntes 
gjorde också att koldioxidhalten höjdes. Vilka koldioxidreglerande processer 
som är viktigast kan skilja mellan sjöar och vattendrag, vilket våra resultat 
tydligt visade. Mängden organiskt material och ljusklimatet visades vara av 
stor vikt i sjöar, medan i vattendrag så var surhetsgrad och mängden näring 
för växtplankton och alger viktiga koldioxidreglerande processer. Tidsper-
spektivet kan också ha väldigt stor betydelse. Därför är det viktigt att under-
söka processer både på kort och på lång sikt. En stor del av jordens sjöar och 
vattendrag kommer fortsätta vara koldioxidkällor i ett ändrat klimat. Ett ändrat 
klimat kommer sannolikt att påverka våra inlandsvatten, men hur de påverkas 
kan vara väldigt individuellt. 
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