
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at Proceedings of the ACM International
Conference on Supercomputing.

Citation for the original published paper:

Popov, M., Jimborean, A., Black-Schaffer, D. (2019)
Efficient thread/page/parallelism autotuning for NUMA systems
In: ACM (ed.), International Conference on Supercomputing New York, NY, USA:
Association for Computing Machinery (ACM)
https://doi.org/10.1145/3330345.3330376

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-396173



E�icient Thread/Page/Parallelism Autotuning
for NUMA Systems

Mihail Popov
Uppsala University
Uppsala, Sweden

mihail.popov@it.uu.se

Alexandra Jimborean
Uppsala University
Uppsala, Sweden

alexandra.jimborean@it.uu.se

David Black-Scha�er
Uppsala University
Uppsala, Sweden

david.black-scha�er@it.uu.se

ABSTRACT
Current multi-socket systems have complex memory hierarchies
with signi�cant Non-Uniform Memory Access (NUMA) e�ects:
memory performance depends on the location of the data and the
thread. �is complexity means that thread- and data-mappings
have a signi�cant impact on performance. However, it is hard to
�nd e�cient data mappings and thread con�gurations due to the
complex interactions between applications and systems.

In this paper we explore the combined search space of thread
mappings, data mappings, number of NUMA nodes, and degree-
of-parallelism, per application phase, and across multiple systems.
We show that there are signi�cant performance bene�ts from op-
timizing this wide range of parameters together. However, such
an optimization presents two challenges: accurately modeling the
performance impact of con�gurations across applications and sys-
tems, and exploring the vast space of con�gurations. To overcome
the modeling challenge, we use native execution of small, repre-
sentative codelets, which reproduce the system and application
interactions. To make the search practical, we build a search space
by combining a range of state of the art thread- and data-mapping
policies.

Combining these two approaches results in a tractable search
space that can be quickly and accurately evaluated without sacri-
�cing signi�cant performance. �is search �nds non-intuitive con-
�gurations that perform signi�cantly be�er than previous works.
With this approach we are able to achieve an average speedup of
1.97× on a four node NUMA system.

CCS CONCEPTS
•General and reference→Measurement; Performance; •Computer
systems organization→ Multicore architectures; •So�ware and
its engineering→ Memory management; Scheduling;

KEYWORDS
NUMA, autotunning, thread placement, page placement, code iso-
lation, OpenMP, performance optimization
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Figure 1: Scatter and compact thread mappings on a two
NUMA nodes system. Scatter increases bandwidth by
spreading threads across memory controllers, but hurts la-
tency to shared data by forcing such accesses to go over the
node-to-node communications link. Compact does the op-
posite by grouping threads on the same node. �e optimal
con�guration depends on both the application and system.
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1 INTRODUCTION
Large multi-core systems enable increased core counts by tying
together multiple processor dies (nodes) through node-to-node
communications links. �ese links provide shared access to the
entire physical memory space and increase overall bandwidth with
separate memory controllers per node, but result in non-uniform
memory latency and bandwidth depending on which core is access-
ing which node’s memory. �e resulting Non-Uniform Memory
Access (NUMA) e�ects can cause signi�cant performance problems
if memory pages and threads are not appropriately mapped to the
correct nodes at the correct times. Unfortunately, choosing the best
mapping is a complex problem as it depends on both the applica-
tion’s behavior, which changes across application phases, and the
details of the NUMA system.

Figure 1 illustrates the complexity of mapping just two threads
(T1 and T2) with two private pages (P1 and P2) and one shared
page (Ps) on a simple two-node NUMA system. In this example,
T1 accesses the shared page Ps before T2. With the standard Linux
�rst-touch (FT) page mapping policy, this will result in Ps being

342



E�icient Thread/Page/Parallelism Autotuning
for NUMA Systems ICS ’19, June 26–28, 2019, Phoenix, AZ, USA

placed on whichever NUMA node T1 runs on. Even for such a
simple example, there is a wide range of mapping choices.

Mapping: �reads. �e le� column of Figure 1 shows the
resulting thread- and page-mappings for a compact mapping policy
that places all threads on the same NUMA node. In this case, both
threads have local access to the shared page Ps through the node’s
memory controller. �e compact mapping thereby provides low-
latency to the shared data, as the threads share the LLC and use the
direct DRAM link to access the page. However, this mapping also
delivers lower bandwidth for the private pages P1 and P2 as they
share the same DRAM link and LLC.

An alternative is to use a sca�er thread mapping (Figure 1, right),
which places the threads on di�erent NUMA nodes. As a result,
accesses from T2 to Ps are remote, since they must cross the node-to-
node interconnect link, thereby increasing latency compared to the
compact mapping’s local accesses. However, the sca�er mapping
increases overall bandwidth as each thread accesses its private
pages P1 and P2 in its local DRAM via its own memory controller
and LLC. In general applications have a mixture of private and
shared pages, making the choice of thread mapping non-trivial.

Mapping: Pages. Typical applications have millions of shared
and private pages active at any given time, which drastically compli-
cates their mapping. To simplify this, many page mapping policies
have been proposed. �ey target known NUMA bo�lenecks such
as latency, by mapping pages to threads that most frequently access
them (page locality), or congestion, by distributing pages across
nodes to increase overall bandwidth (page balancing). Applications
that are sensitive to a mixture of latency and congestion require a
mixed [10] policy that places pages to balance latency and band-
width. Unfortunately, it is di�cult to determine an application’s
sensitivity, which makes page placement challenging.

Mapping: NUMADegree. In Figure 1, only one node was used
with the compact mapping. It has been observed that some appli-
cation/system combinations perform be�er when run on fewer
NUMA nodes due to improved sharing through the LLC and re-
ductions in remote DRAM accesses. �is indicates that the NUMA
degree, the number of NUMA nodes used, can be an important
parameter. Previous work has included the NUMA degree as an
implicit part of the thread mapping [9]. However, this parameter
can be independently adjusted for both threads and pages, thereby
exposing a further range of interesting con�gurations.

Mapping: Degree of Parallelism. Applications further bene�t
from di�erent degrees of parallelism on di�erent systems [34]. For
example, the optimal mapping for a system may under-subscribe
cores in order to increase the per-core shared cache or bandwidth.

Challenge: Search Space. �e choices for thread mapping,
page mapping, NUMA degree, and degree of parallelism are not
independent [11], requiring a coupled search to identify the best
option. In addition, applications have distinct phases with varying
behavior. �is means that not only may each application phase
require a di�erent optimal policy, but that the choices made for
earlier phases may a�ect the choices for later phases, due to the
need to change con�gurations between phases [23]. Furthermore,
each NUMA system has di�erent characteristics, which means that
the best mapping for an application on one particular system may
not be the same for another system.

�e combination of the interdependence of thread mapping, page
mapping, NUMA degree, and degree of parallelism, with per-phase
and inter-phase application behavior and per-system di�erences
leads to a very large search space: optimizing an application with
two phases on a four NUMA nodes system naively, requires evalu-
ating over 600 con�gurations. (We parameterize this search space
in Table 1 to demonstrate how we explore it.)

Challenge: Performance Modeling. Choosing the best map-
ping requires understanding the combined e�ect of the optimiza-
tions on the application and target system. Unfortunately, systems
are complex and diverse: they have di�erent NUMA factors (ratio
of local to remote access latency), topologies, bandwidth/latency,
caching, prefetching, etc. Application behaviors are also complex
and diverse: they have di�erent bandwidth/latency sensitivities,
arithmetic intensity, memory/cache footprints, etc., all of which
may vary over time. �ese characteristics result in di�erent perfor-
mance bo�lenecks depending on the combination of application,
system, and mapping. To choose the best mapping, these com-
plex interactions must be accurately evaluated without incurring
prohibitively high overhead.

E�cient and E�ective NUMA Optimization. Optimizing
NUMA mappings can lead to substantial (up to 2×) performance
improvements [9]. Although previous studies identi�ed speci�c
NUMA bo�lenecks and provided policies to address them, there is
currently no method to select the most e�cient overall mapping
for a given application and system for two reasons: First, the search
space of thread- and page-mappings, NUMA degree, and degree of
parallelism, combined with application phases and system-speci�c
behavior is so large that previous works have had to decouple them
and search each one independently. A typical approach has been to
�rst optimize thread mappings for a �xed degree of parallelism, and
then choose the best page mapping given the found thread mapping.
�is simpli�cation vastly reduces the search space, but at a loss of
optimization opportunities. Second, there are no straight-forward
ways to both quickly and accurately model the complex perfor-
mance e�ects of these mappings on applications and systems. �is
limitation combines with the large search space to make it either
hard to �nd the best con�guration (due to inaccurate performance
predictions of fast models) or impractical (due to slow performance
evaluations of full application execution).

In this paper, we address both of these challenges and deliver
an approach that can automatically, and rapidly, explore the cou-
pled search space of thread- and page-mappings, NUMA degree,
degree of parallelism, and application phases for any system. To
provide fast and accurate performance modeling, we turn to native
execution of the applications on the target system. While this will
faithfully reproduce the performance e�ects, naive native execution
is prohibitively slow. To reduce this overhead, we extract and run
short codelets (Section 3.2), which provide representative behavior
of the application in a tiny fraction of the runtime. �is allows us to
quickly, and accurately, evaluate the performance of a given thread
and page mapping.

While codelet-based native execution allows us to evaluate con-
�gurations much more quickly, the search space of con�gurations
is still impractically large. To address this, we parameterize the
search space based on existing NUMA policies (Section 3.3.2). �is
parameterization is built by combining state of the art thread, page,
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�read Mappings
�read NUMA Degree (TND) �read Placement Policy (TPP) Note:
Sandy Bridge:1,2,4 Sca�er If TND >= NT, Sca�er and Contiguous are the same
Broadwell:1,2 Contiguous2 If TND = 1, Sca�er and Contiguous are the same

Page Mappings
Page NUMA Degree (PND) Page Placement Policy (PPP) Note:
Sandy Bridge:1,2,4 First-touch, Locality, Locality and First-touch require that TND matches
Broadwell:1,2 Balance, Mix, Dataset the PND to be applied

Degree of Parallelism
Number of �reads (NT) Note:
Sandy Bridge:2,4,8,16,32 NT >= TND
Broadwell:2,4,8,10,20 NT <= TND * Cores per NUMA node

Application Regions
First, �nd the best mapping for each region separately
Second, evaluate each region’s mapping on the other regions to �nd the best mapping for the full application

Table 1: Parameterized NUMA search space. We evaluate di�erent thread and page placement policies (TPP and PPP) with
di�erent NUMA degrees for the threads (TND) and the pages (PND) across di�erent numbers of threads (NT). Unlike previous
works, we explore all combinations of this search space.

and parallelism policies that address di�erent NUMA bo�lenecks,
and applying them to each codelet to �nd the best overall mapping.
When optimized together, these policies cover a large portion of
the total search space and are able to deliver signi�cantly be�er
performance than applying the policies individually.

�e contributions of this paper are:

• A codelet-based infrastructure to quickly and accurately
pro�le page mappings via native execution. (Section 3.2).

• A parameterization of the thread/page/parallelism search
space that implements a combined optimization of state-
of-the-art NUMA mappings for a target application and
system. (Section 3.3).

• �e explicit evaluation of the number of NUMA nodes used
independently for thread- and page-mappings, thereby
�nding optimizations that have not been previously ex-
plored.

• A whole-application optimization that evaluates mappings
per- and across OpenMP regions. (Section 3.4).

• �e validation of the resulting autotuning strategy over
di�erent benchmarks including NAS and RODINIA. (Sec-
tion 4).

• A case study of potential performance instability caused
by the interaction between the OpenMP runtime and the
Operating System (OS). (Section 4.2).

2 MOTIVATION
To show the importance of optimizing across thread- and page-
mappings, NUMA degree, and parallelism for each system, we �rst
look at two benchmarks on two systems. �is evaluation high-
lights the performance bene�ts (Section 2.2) of our work which
combines these optimizations over previous work which uses a
system-independent approach that optimizes for con�gurations
independently. At the same time, this example identi�es the signif-
icant cost (Section 2.3) of exploring such a large space.

2.1 Evaluation Setup
For this exploration we evaluate the benchmarks BT (NAS C OpenMP
[16, 28]) and Streamcluster (Rodinia [4]) on Intel Sandy Bridge
(8 core/4 node) and Broadwell (10 core/2 node) systems. For each
benchmark we consider the dominant OpenMP region (ZSolve
for BT, which represents 30% of the execution time, and Pgain for
Streamcluster, which which covers 70% the time) and execute each
application three times to reduce noise1.

For page mappings we consider: �rst-touch (page placed on
the node that �rst accesses it), locality (pages placed on the node
that most frequently access them to minimize latency), balanced
(pages spread across nodes to maximize bandwidth), and mix (a
combination of locality and balanced). For thread mapping we
consider sca�er (threads placed round-robin across NUMA nodes)
and contiguous2 (threads placed sequentially across NUMA nodes).
For parallelism, we consider two con�gurations: enough threads to
�ll one NUMA node and enough to �ll all NUMA nodes. For the
NUMA degree, we consider 1 or 2 nodes for the Broadwell system
and 1, 2, or 4 nodes for Sandy Bridge, for both threads and pages
separately.

By explicitly searching the NUMA degree for both threads and
pages, we evaluate counter-intuitive con�gurations that use di�er-
ent numbers of nodes for thread- and page-mappings. For example,

1All performance measurements presented in this section are normalized to the stan-
dard baseline [25] of the default sca�er thread placement with Linux’s �rst-touch
page placement strategy and one thread for each core. We include more degrees of
parallelism and an additional page mapping policy in our �nal exploration in Section 4.
�e complete search space is presented in Table 1. To implement these policies, we
map threads using KMP AFFINITY and pages with the Linux move pages function.
Section 3.3 further details the exploration process.
2 We explored contiguous instead of the previously de�ned compact mapping. Both
policies sequentially map threads across the NUMA nodes. However, for a �xed
TND, compact allocates threads to a node only when all the previous nodes have
been saturated while contiguous evenly distributes the threads across the TND nodes.
�erefore, compact may cause signi�cantly unbalanced thread mappings (some nodes
are fully saturated while others are empty). We selected contiguous because coupling
it with TND allows us to reproduce the sequential compact mapping while preserving
a balanced thread allocation.
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Figure 2: (Higher is better) Speedups for BT (Zsolve)
and Streamcluster (Pgain) on Sandy Bridge and Broadwell.
While optimizing only for page- or thread-mappings pro-
vides performance gains, coupling both parameters leads to
signi�cantly better results. �ese results include choosing
the best NUMA degree and degree of parallelism.

a con�guration may map threads to two NUMA nodes using sca�er
and pages to only one node, or map threads to only one node and
use a balanced page mapping across all nodes. As a result of this
�exibility, we consider 96 con�gurations on the Sandy Bridge sys-
tem (the full search space is explored in Section 4). We are able to
reduce the search space to 58 con�gurations by avoiding duplicate
con�gurations, e.g., when all threads are mapped to the same node,
then both locality and �rst-touch result in the same page mappings
and sca�er and contiguous in the same thread mappings.

2.2 Potential of Co-optimization
Optimizing across both threads and pages is critical for per-
formance. Figure 2 shows the bene�ts for the two applications on
the two systems, normalized to the default con�guration3. Opti-
mizing for both threads and pages together delivers an average of
1.54× improvement across the BT and Streamcluster regions. �e
improvements are larger for the Sandy Bridge system as it has more
NUMA nodes, which makes it more sensitive to NUMA optimiza-
tions. If the page and thread optimizations are applied separately
the gains are smaller: no gain for Streamcluster on Sandy Bridge,
while on Broadwell thread optimization alone provides only half
the bene�t. We note that most of existing NUMA optimization tech-
niques either target thread [5, 34] or page [2, 6, 26, 32] mappings
but do not jointly consider both due to the huge search space size.

�ere is a large performance diversity across NUMA opti-
mizations. Figure 3 shows the performance for each con�guration
for the two benchmarks. In particular, there are signi�cant gains
(up to 2.2×) but there is not a unique optimal con�guration. For
a �xed system (Sandy Bridge) and a �xed degree of parallelism
(32 threads) (A), di�erent codes bene�t from di�erent mappings:
page locality or mix with contiguous threads are optimal for BT
while Streamcluster bene�ts from page balance with sca�er threads.
For a �xed system (Sandy Bridge) and code (BT) (B), di�erent de-
grees of parallelism bene�t from di�erent mappings: contiguous
3When we only optimize for threads or pages, we used First-touch or Sca�er-threads
on all cores, respectively.

and sca�er threads have the same performance with 8 threads, but
contiguous outperforms sca�er with 32 threads. On a �xed code
(Streamcluser) and with one thread per core (C), di�erent systems
bene�t from di�erent mapping policies: for Broadwell, it is more
e�cient to map the threads to a single node (1.14× speedup) while a
similar mapping delivers poor performance on Sandy Bridge (2.0×
slowdown). While it is not surprising that we observe di�erent
optimal mappings, it is interesting to notice that even policies such
as mix [10] that optimize trade-o�s between locality and balance,
and are supposed to optimize all con�gurations, cannot adapt to
even this small set of applications and systems.

Adapting the NUMA degree provides additional perfor-
mance gains. �e optimal con�guration for Streamcluster on
Sandy Bridge counterintuitively uses 2 nodes for thread mapping
and 4 nodes for page mapping. Indeed, balance page mapping
provides 1.35× (2 nodes) and 1.56× (4 nodes) speedups. Naively
mapping threads and pages to the same number of NUMA nodes,
or across the full system, would miss such optimizations. Similarly,
there are no signi�cant performance di�erences when executing
Streamcluster with 10 or 20 threads on Broadwell: the optimal
solution in both cases uses a single node for thread mapping.

2.3 Search Cost
Finding the optimal mapping for each application requires a per
application region exploration of thread- and page-mapping, NUMA
degree, and degree of parallelism. �is search is expensive due to
the size of the search space and the time it takes to evaluate the
performance of each con�guration in the search space, as well as
the overhead of pro�ling the applications’ page access pa�erns for
the �rst-touch and locality/balance page mappings4.

For Streamcluster on Sandy Bridge system, we required two
pro�ling runs with pin for the two degrees of parallelism consid-
ered, which took approximately 45 minutes each. For the evalu-
ated OpenMP region and degree of parallelism, there are 29 possi-
ble page- and thread-mappings, taking into account the available
NUMA nodes for each. For each combination of parallelism and
per-region page/thread mapping, executing the application to mea-
sure performance takes approximately 4 minutes. �is results in a
total tuning time of 5 hours (2 ∗ 45 minutes to pro�le the accesses +
2 ∗ 29 ∗ 4 minutes to explore the mappings) for an application that
executes in 4 minutes. �is is the cost of the exploration without
the codelets search speedup. While the overhead for this coupled
optimization search is extreme, it delivers an average of 1.5× perfor-
mance gain over optimizing each parameter individually. (For our
�nal evaluation in Section 4, we consider 6 degrees of parallelism
and all regions of the application.)

2.4 Sampling Applications
OpenMP applications tend to have regular phases dominated by
repeated parallel regions calls [28] with consistent data access pat-
terns [32]. As a result, we can reduce the search cost by sampling
these parallel regions. Figure 4 shows the execution time of Zsolve
from BT (le�) and Pgain from Streamcluster (right) with a default
thread sca�er placement across 4 nodes with �rst touch page place-
ment (blue) and with our optimized mapping (orange). For BT the
4Collecting page accesses with Pintool [22] incurs a 10× execution overhead.
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Figure 4: (Lower is better) Execution time for instances of
the parallel regions Zsolve from BT (le�) and Pgain from
Streamcluster (right). �e default NUMA con�guration is in
blue and the optimized con�guration found from pro�ling
only the �rst region instance is shown in orange.

performance of the regions is very consistent over time, indicating
that sampling will be accurate. For Streamcluster there is signif-
icant performance variation, which will result in lower accuracy
predictions from sampling. To evaluate this e�ect, we randomly

selected �ve instances from the region to pro�le and used them
to optimize the application. �e resulting �nal execution times
were similar, indicating that this variation did not a�ect the overall
optimization. We further investigate accuracy in Section 4.4.

2.5 �e Need for NUMA Optimization
As seen in the above examples, there is a wide diversity of ap-
plication/optimization/system interactions that make the optimal
choice non-obvious in many cases. We have shown examples where
one optimization may yield the best results for a given application
on a given system, but not for the same application on another
system, and where the optimal number of threads or NUMA de-
gree assigned to an application is not the maximum the system
supports. We have further seen how these optimizations cannot
be done independently to obtain the best results, necessitating a
coupled approach wherein they are optimized together. However, a
brute-force search here is prohibitively expensive due to the num-
ber of con�gurations and the time needed to pro�le page access
and evaluate the resulting performance via native execution. �is
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Figure 5: Codelet based mapping search strategy work�ow.

overhead can be dramatically reduced if we can evaluate individual
phases of applications instead of the whole execution, which we
have shown provides su�ciently accurate results for optimization
across OpenMP applications.

3 OPTIMIZATION
3.1 Work�ow
Figure 5 presents our optimization work�ow. �e process starts
by extracting codelets of the key parallel regions (including the
data needed to execute them, see Section 3.2). �e codelets are
then executed for each degree of parallelism to capture the page
access pa�erns using Numalize [11]. We combine the resulting
information with the target system speci�cation to produce a search
space of thread- and page-mappings, NUMA degrees, and degrees-
of-parallelism. �e best con�guration for each region is then found
by replaying the codelets for each con�guration and measuring the
resulting performance (Section 3.3). Finally, the inter-region e�ects
are evaluated by looking at how each region’s optimization choice
a�ects the other regions in the application given their execution
order. From this we choose the best optimization for the application
as a whole (Section 3.4).

3.2 Codelet Capture
To create a codelet for a region of an application we need to capture
the input working set (data) required to replay the codelet and the
default NUMA page mapping so that the codelet can reproduce
them (e.g., to evaluate �rst-touch).

We use the Codelet Extractor and REplayer (CERE [7]) frame-
work to capture and replay codelets. CERE uses Ptrace [27] to
capture the memory by spawning a process which controls and
monitors the application execution. To capture the default NUMA
page mapping, CERE protects the application’s memory space and
starts its execution. When a protected page is accessed by the appli-
cation, CERE intercepts the fault and records the thread of this �rst
access to the page. CERE then unprotects the page and continues
executing the application.

When the application reaches the region to capture, CERE again
protects the full memory space and captures the content (data) and
address of any page accessed during the region to allow them to be
used later for replay. �is provides both the information on which
thread �rst touched each page (for replaying the �rst-touch policy)
as well as the actual data needed to replay the codelet. We start the
codelet capture just before the parallel region starts at kmpc fork,
which results in a codelet that can execute with di�erent numbers

of threads by adjusting the variable OMP NUM THREADS [28]. In
this work, we used 4KB pages but we can explore di�erent sizes if
size is kept constant across capture and replay.

We extend CERE to record the Instruction Pointer (IP) of the
access and track dynamically allocated memory segments coming
from libraries such as malloc, realloc, and memalign. To do so,
CERE records the allocation’s addresses and collects the order of
the memory function calls by augmenting the standard allocator
via LD PRELOAD and protecting pages to detect accesses to them.
Some special memory sections must not be protected to avoid
deadlocks, such as the pages containing the code of the tracing
library, the OpenMP runtime, and the segmentation fault handler.

Recording the allocated segments’ addresses allows CERE to
identify the allocation site of all the memory accesses that touch dy-
namically allocated data. �is information is useful when coupled
with the instruction that accesses the data to identify groups of
pages that are allocated and used together, and apply dataset-based
mapping policies over them (see Section 3.5). Collecting the mem-
ory function calls’ order allows us to optimize page mappings in
the original application despite Address Space Layout Randomiza-
tion [31] (ASLR), which changes the absolute addresses of dynami-
cally allocated pages across di�erent executions (see Section 3.4).
�ese updates will be released as part of CERE.

3.3 Search Space
3.3.1 Fast Codelet Exploration. Once codelets are captured they

can be replayed on any system using di�erent page- and thread-
mappings, NUMA degrees, and degrees of parallelism to quickly
evaluate optimizations. To measure a codelet’s performance, CERE
restores the data accessed by the codelet to the appropriate locations
in memory, warms the cache state by executing the codelet once,
and then executes the codelet 10 times and reports the median exe-
cution time. �is allows rapid evaluation of multiple con�gurations
compared to executing the full application, while still including the
complex application and system-level interactions that a�ect per-
formance. Section 4.4 compares the performance gains predicted
by the codelets to measurements on the applications themselves
and shows that a codelet based on the �rst instance of a parallel
region is accurate enough to enable e�ective optimization.

3.3.2 Generating the Search Space. We consider the previously
described (Table 1) mapping policies in section 2.1 (thread scat-
ter/contiguous, page �rst touch/local/balance/mix and dataset) and
evaluate them across the available number of NUMA nodes and
parallelism of the target system. �e additional dataset policy is
described in Section 3.5.

3.3.3 Collecting memory information. To optimize pages for
locality or balance, we need to know how pages are accessed by
threads over time. For locality, pages are mapped to the node of the
thread that accesses them most frequently, while balance spreads
them across all threads that access them. �is requires a costly
pro�ling of page accesses per thread for each degree of parallelism.
To reduce the pro�ling cost, we only execute and pro�le the �rst
instance of each OpenMP region via codelet replay. We use the
Pin-based Numalize [11] tool to capture the threads accessing each
page.
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�e time saved by only capturing memory information for a
codelet easily outweighs the overhead of codelet capture itself. For
instance, on Streamcluster, capturing and pro�ling the codelet took
210 seconds, which is 10× faster than pro�ling the whole application
once. However, only pro�ling the �rst instance of a region does
not provide the information needed for �rst-touch accesses, which
are likely to have happened earlier in the application’s execution.
Instead, we collect this information during the codelet capture.

3.4 Optimizing �eWhole Application
While the above search �nds the best con�guration per applica-
tion region, it does not consider how each region a�ects the other
regions in the application. In particular, the NUMA optimization
choices for one region may reduce the performance of a later region,
due to where pages are placed, or introduce a signi�cant overhead
by requiring pages to be re-mapped between regions [23].

To address such behaviors, we perform an additional exploration
step. We consider two regions A and B, for which we found the best
region-speci�c optimizations Ca and Cb. To optimize the whole
application:

(1) We statically check if Ca and Cb share pages/threads that
are mapped di�erently. If not, there is no con�ict and we
can apply Ca to A and Cb to B. To perform this check, we
compare the memory accesses that we collected during the
codelet capture.

(2) Otherwise, we measure codelet B with Ca and A with Cb
and select the most e�cient solution for both.

For applications with multiple regions, we evaluate all best-per-
region con�gurations. Across our benchmarks, only 3 (CG, BT, SP)
were sensitive (> 3%) to such region con�icts. Section 4.6 explains
how we optimized BT and SP.

Another challenge in optimizing page mappings is that data
addresses of dynamically allocated pages change across executions
due to Address Space Layout Randomization (ASLR). As a result,
for each page, we know which node to map it to and its address
during pro�ling, but we do not know the corresponding address
for future executions. To solve this, we can calculate the o�set of
the page right a�er the memory allocation call as we kept track
of the allocation calls order, and then use the new base address
for subsequent runs to identify the page and placement. For our
evaluation, we simply disable ASLR.

3.5 Dataset Page Mapping Policy
In addition to the policies discussed earlier, we add a dataset-based
page-mapping policy. �e intuition is that a particular dataset is
likely to be used uniformly across threads, and that we can map the
dataset by dividing it up into as many chunks as there are threads,
and mapping the chunks across the nodes [32]5.

We use two criteria to group pages into datasets: the call that
allocates the data and the instruction that �rst accesses the page.
If two pages share the same allocation call, they are considered to
belong to the same dataset. �e �rst-access instruction is addition-
ally used to group data that are statically allocated and therefore do

5We have the ability to apply di�erent mapping strategies to each dataset but we were
unable to �nd any bene�t to this, despite Trahay et. al. reporting bene�ts for doing so
on Streamcluster [32]. We suspect this is due to the system di�erences.
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Figure 6: Violin plot with probability density on the X axis
demonstrating the observed Streamcluster performance in-
stability. Streamcluster has two distinct behaviorswhen exe-
cuted on SandyBridge due to initialization (�rst-touchplace-
ment) happening on the core that the OS launches the appli-
cation on instead of the core chosen byOpenMPa�er its �rst
parallel region.

not have an explicit allocation site. Allocation calls and �rst-access
instructions are collected during the codelet capture.

We can also change the size of the blocks within a dataset. We can
reduce the block size to 1 to mimic page interleaving, which evenly
distributes the pages according to their addresses. In section 4, we
use datasets with the largest available block size (number of pages
within the data set divided by number of threads).

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
We evaluate our optimizations over 17 benchmarks from the NAS
3.0 C OpenMP benchmarks [16, 28] using the Class A working
set size and the Rodinia benchmarks [4] with the largest provided
datasets (native-input). Applications were compiled using LLVM
3.8 [20] for 64-bit x86 and linked against the Intel/LLVM Run-
time [1]. �reads were explicitly pinned. Performance numbers
were collected by selecting the median across 3 runs. We extracted
and optimized codelets for all benchmark regions that accounted
for more than 5% of the application parallel execution time. �e tar-
get system architectures are: Sandy Bridge (Intel E5-4605, 2.7GHz,
20MB LLC, 128GB RAM, 4 nodes/32 cores) and Broadwell (Intel
E5-2630 v4, 2.2GHz, 25MB LLC, 128GB RAM, 2 nodes/20 cores).

4.2 Streamcluster Performance Instability
During our experiments, we observed signi�cant performance in-
stability in Streamcluster on Sandy Bridge: a minority of the ex-
ecutions were 5× faster than the median runs. Figure 6 shows
the runtime of 31 executions of Streamcluster on Sandy Bridge
versus Broadwell, which show li�le variation. �is is particularly
signi�cant as Streamcluster is o�en identi�ed as one of the most
interesting applications for NUMA optimizations as it is sensitive
to interconnect congestion. Previous works have suggested diverse
– and inconsistent – optimizations for it (e.g., using multiple NUMA
nodes [6, 32, 35] or a single one [34] for thread mapping).

We examined the local- and remote-bandwidth of the bimodal
Sandy Bridge behavior and saw that the fast executions have nearly
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exclusively local DRAM accesses, while the slow ones exclusively
access remote DRAM. For these experiments all OpenMP threads
were mapped to the same, single node in the 4-node system and
the standard �rst-touch page policy was used. �is indicates that
the performance instability of this benchmark is due to how the
data is placed relative to how the OpenMP runtime places threads.

�e reason for this is that Streamcluster initializes (�rst-touches)
its data before its �rst OpenMP parallel region. As a result, the
placement of the thread that does this �rst-touch, and, hence, the
data’s placement, is based on the OS thread mapping at the start of
the application and not the OpenMP thread mapping, which takes
e�ect later. �is instability is less signi�cant on Broadwell due to
its having fewer NUMA nodes for the OS to choose among. Note
that this behavior is legal under the OpenMP speci�cation [8], as
OpenMP only promises that threads are bound to cores when the
application reaches the �rst parallel region.

To address this, we implemented a compiler pass to insert a
parallel OpenMP call before initialization, which forces OpenMP
to bind the threads before the data is �rst touched. �is produces
the desired, and expected, �rst-touch mapping. For the rest of the
paper, we use this approach to remove the performance instability.

4.3 Region Optimization
To estimate the performance potential of our search space and
be�er understand which con�gurations improve the performance,
we pro�led each codelet across diverse subsets of the search space.
Figure 7 shows the performance of each region for six subsets of
our full search space, representing the optimizations proposed in
previous work, as well as the full search space. If an application
has more than one region, we display the application name (BT)
and the region (xsolve), e.g. bt xsolve.

From Figure 7 we can see that none of the subsets are able to
achieve the best results on all benchmarks, and that there are several
benchmarks where our full search space is required to achieve the
best results. For example, the regions from btree, �, and bfs perform
best with a PPP (Page Placement Policy) exploration. However, PPP
provides no bene�t for nn, which instead requires an exploration
of TND. For cg and needle, one region in each (needle 176 and
cg 405) can obtain the optimal performance with PPP/PND, but
their other regions (needle 116 and cg 551) require the full search
space to achieve the best results. Overall, our full search is able to
achieve an average speedup of 2.48× (median 2.23×) compared to
1.84× (median 1.27×) for the best subset of existing TPP/NT/TND
searches [12, 17, 27, 29, 30, 34].

4.4 Codelet Prediction Accuracy
Figure 8 (top) shows the predicted speedups from optimizing the
�rst instance of each region in the application via the codelet vs.
the actual performance achieved by all instances of that region in
the application with the optimization. �e codelets predict average
speedups of 2.5× on Sandy Bridge and 1.4× on Broadwell, while
the actual application speedups are 2.0× and 1.2×, respectively.

�e inaccuracy in codelet-predicted speedup comes from two
sources: First, using a single codelet assumes that the each instance
of a region operates over the same data with the same access pat-
terns as the region instance used to extract the codelet. �is is not

necessarily true: di�erent calls can have di�erent behaviors. For
instance, the region � 516 is called six times. Before optimization,
the region’s median execution time is 35M cycles and the total time
(all instances) is 270M cycles. A�er optimization, the median re-
gion execution time is reduced to 17M cycles (2× speedup) and the
total region time to 170M cycles (1.59× speedup). �is di�erence
is because the region instances do not uniformly bene�t from the
optimization. Indeed, in this case, one region instance even sees an
increase in execution time to 50M cycles. A similar e�ect occurs in
needle 116 region from the benchmark NW, which is executed 128
times. Its �rst instance and total execution time before optimization
are 34M cycles and 35M cycles (the �rst instance represents 97%
of the region time), respectively, and 21M cycles (1.6× speedup)
and 58M cycles (0.6× speedup) a�er optimization. A way to re-
duce these e�ects is to trade speed by sampling multiple instances.
Second, we use a codelet warm-up that executes the full codelet
before taking performance measurements. �is approach can be
overly-optimistic [27], leading to be�er performance than expected.
We further discuss these limitations in Section 6.

�e accuracy of codelet performance predictions is most impor-
tant for the search process to determine the correct optimization.
Figure 9 shows how this a�ects the search space for two regions.
For Streamcluster (right), the inaccuracy in the codelet-predicted
speedup will cause the search to pick the third-from-best con�gu-
ration, but the net di�erence in actual performance is very small.
For BT the codelet is accurate enough to pick the best con�gura-
tion. �e average codelet accuracy per region (Streamcluster/BT)
is 94%/99% on Sandy Bridge and 96%/98% on Broadwell.

Despite these limitations, the predicted speedup from the codelets
is accurate enough to �nd signi�cant optimization opportunities
beyond previous work both per-codelet (Section 3) and across the
full application (Section 4.6). If more accuracy is required from the
codelet performance estimation, more samples of the region can be
selected and evaluated during the search process.

4.5 Codelet Search Speed
�e speedup of searching via codelet evaluation, as compared to
full-application evaluation, is shown at the bo�om of Figure 8
(Acceleration). A few regions, such as needle 176, take longer to
optimize with codelets due to the 10 codelet executions used to
measure performance (we replay multiple times the �rst instance
which represents most of the region execution time). Overall, us-
ing codelets results in an average search speedup of 66× (median
8×) by avoiding having to execute the full application for each
con�guration in the search space.

4.6 Whole-Application Performance Gains
Figure 10 shows the e�ect of optimizing for one application region
on the other application regions on Sandy Bridge. For the two ap-
plications (SP top and BT bo�om), the plots show the performance
obtained for each region (groups on the x-axis) if the optimization
chosen for one region (color) is applied to it. For example, the
top-le� plot shows that choosing the optimization for the sp rhs
region (black) dramatically slows down the sp xsolve, sp ysolve,
and sp zsolve regions. Similarly, on the le� side of the plot we
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can see that choosing the optimization for any of the solve regions
(cyan/green) slows down the sp rhs region.

To obtain the best speedup for each region independently, we
would have to migrate pages and/or threads between region invo-
cations. We were unable to �nd a case where migrating pages at
this granularity compensated for the migration cost. Indeed, the
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page migration cost was at least 10× higher than the performance
gains of dynamically migrating the pages for each region.

As a result, a region-based exploration predicts speedups of 2.3×
on BT and 4× on SP, while the actual most e�cient con�guration
speedups for the whole application are 1.6× and 3.3×, respectively,
due to inter-region optimization con�icts. To identify such behav-
iors, we compare the thread and page mappings across the di�erent
regions. If there are di�erences (e.g. sp rhs maps the threads across
4 nodes while the other regions map them to a single one), we mea-
sure the performance of each selected optimization on the codelets
for the other regions in the application. Figure 10 right shows that
the predicted performance provides a good estimate of the actual
results.

To quantify how much such region con�icts reduce performance
gains, we pro�led all parallel regions with all selected optimiza-
tions for the whole application. Figure 11 compares the predicted
gains if there are no region con�icts (region based exploration
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Figure 11: Performance gains for applications withmultiple
OpenMP regions on Sandy Bridge. Only three applications
are signi�cantly a�ected by region con�icts.

prediction) against the actual measurements across the 11 bench-
marks that have multiple regions. Beyond BT and SP, CG is the
third benchmark a�ected by region-con�icts: they cancel the per-
formance gains. As a result, our method provides an arithmetic
mean speedup of 1.97× instead of the 2.09× predicted by the region
exploration on Sandy Bridge. While the performance di�erence
caused by region con�icts is very small (0.12×), it does not mean
that con�icts are negligible: most of the applications do not have
region con�icts and as result, the averages are similar. However, for
applications such as BT, SP, and CG with con�icts, the performance
slowdown is signi�cant (0.67× on average).

To further evaluate our performance gains across di�erent input
sets, we optimized BT, FT, and SP on CLASS B with the mapping
policies found for CLASS A and respectively achieved 1.19×, 1.8×,
and 4.2× speedups on Sandy Bridge. As expected, changing the
input changes the optimization results: performance gains on BT
have been reduced but remain constant on SP and FT. We also
compared our results with a the Intel icc-18.3 and Clang-3.8 com-
pilers for Streamculster on Broadwell before and a�er our thread
tuning: icc code is 1.3× faster than Clang while icc+tuning is 1.5×
faster than Clang+tuning. �is shows that optimizing the code
emphasizes the NUMA e�ects, further increasing our optimization
gains.

5 RELATEDWORK
Here we review methods for collecting memory information on
NUMA systems, exploring NUMA optimizations, and analysing
NUMA performance. For more details, Diener et al. [9] provide a
full state of the art survey for thread and page mappings.

5.1 Collecting Memory Information
Many NUMA tools gather information on how pages are accessed
by threads over time for analysis and subsequent placement deci-
sions. Hardware Performance Monitoring Units (PMU) can be used
during application execution [6, 21, 32] to sample a limited number
of events, such as long-latency or DTLB misses. �e virtual memory
system can be used to lock pages to detect access to them on faults
and record the thread and address accessed [7, 14, 19, 21]. �is
approach does not require sampling, and can collect more detailed
information for �rst/next-touch policies [14, 19] but the overhead of
locking/unlocking and trapping is greater than querying the PMU.
Binary instrumentation [2, 11, 33] can also track page accesses by
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threads and avoid sampling, but the standard tool, Pin [22] incurs
a 10-20× [2] overhead.

In this paper, we use a hybrid approach that bene�ts from both
user space memory locking (CERE for �rst touch accesses during
codelet capture) and instruction instrumentation (Numalize during
codelet replay). We sample at the region level, which ensures that
whichever region instance we capture is captured with full �delity.

5.2 Optimization/Searching
Online optimization [3, 6] requires very low overhead, which typi-
cally limits the scope of the search. O�ine optimizations [2, 11, 32],
such as our work, require additional pro�ling steps and can be
sensitive to the input data used when pro�ling.

�ere have been many proposals that address �read Mapping [12,
17, 27, 29, 30, 34]. ForestGOMP [3] groups threads sharing data
close to each other in the memory hierarchy. Wang et al. [34] fur-
ther optimize thread placement and degree of parallelism via an
integer programming model that quanti�es bandwidth. Our work
explores a similar con�guration space but provides further gains
by co-optimizing with the page-mapping, as seen in Streamcluster.

Page Mapping [6, 10, 23, 24, 26] has also been extensively ex-
plored. Carrfour [6] implements an online page migration policy
based on PMU sampling, while Dashti et al. [6] map pages to bal-
ance remote access and congestion. Piccoli et al.[26] use compiler
loop analysis and pro�le information to migrate pages for local-
ity, but they cannot take into account page balance due to limited
information. Majo and Gross [23, 24] address incompatible data
access pa�erns within loops by providing developer primitives for
manually distributing pages. Diener et al. [11] coupled both thread-
and page-mapping, with the goal of optimizing for locality, while
our search space targets a wider range of NUMA bo�lenecks.

Figure 7 demonstrates that by combining a broad range of thread-
and page-mapping policies with degree of parallelism, we are able
to achieve signi�cantly be�er speedups than any of them alone.

5.3 Performance Analysis
Many tools [13, 18] exist to assist developers to manually chose ap-
propriate mapping by visualizing NUMA e�ects [2, 32], identifying
bo�lenecks [21], analyzing performance [15], or quantifying local-
ity and balance sensitivity [10]. Our work automatically searches
and applies the best mappings using a wide range of possible opti-
mizations. �e automation of the search is important as Figure 7
showed that no one of these approaches is optimal in all cases.

Automatic optimization requires a su�ciently accurate means
of assessing the performance e�ects of an optimization to correctly
explore the search space. Native execution is one way to avoid the
di�culties of accurately modeling application/system interactions,
but requires that the search be re-run for each system and requires
signi�cant execution time for each con�guration evaluated. Native
execution has been used for exploring thread mappings during
execution [17], using random sampling to explore thread mappings
per application and per phase [29, 30], and evaluating degree of
parallelism [12]. �ese approaches were limited by the cost of
native execution for exploring each con�guration and the huge size
of page mappings. In this work we use codelets [27] to reduce the
overhead of native execution and a set of �ve page mappings to

make the search space tractable. �is makes it the �rst strategy to
simultaneously optimize thread- and page-mappings, along with
NUMA degree, and degree of parallelism.

6 LIMITATIONS AND FUTUREWORK
Our method accuracy is high enough to �nd the right optimizations
and therefore provides signi�cant gains (Figures 8 and 9). In this
section we discuss some of its drawbacks and future work.

Code pa�erns constrain the codelet evaluation [28]. Codelet
replay fails if the application allocates memory (accessed by the
codelet) based on the running number of threads. We replay such
codelets by se�ing a lower number of threads than the one used
during capture (captured Kmeans with 32 threads). Moreover, the
codelet warmup can a�ect the prediction accuracy and speedup.
We warmup caches optimistically by replaying the codelet (the �rst
region call) 10 times over-itself. �is warmup is accurate when
all calls touch similar data (true for most benchmarks), but may
slow down the exploration and cause the codelet to miss-predict
the execution time if the �rst call is more costly than the others
(Needle). To address this issue, we can sample more calls or improve
CERE warmup by keeping a trace of the recently accessed pages
just before the parallel region for each thread [7].

As future work, we plan to prune policies with thread-access-
pa�erns (e.g. use balance with many shared pages) and PMU (e.g.
use bandwidth/latency to guide TND). We note that such models
will be dependent on the target NUMA system.

7 CONCLUSION
�is work shows that the coupled optimization of thread- and page-
mapping, NUMA degree, degree of parallelism, and inter-region
interactions delivers signi�cantly be�er performance across a range
of applications and systems than previous approaches of optimizing
for only one or two particular NUMA bo�leneck(s). While it is well-
known that there is no one optimization that works optimally for
all applications and systems, this work is the �rst to demonstrate a
practical way to automatically explore this large space.

To accomplish this, we have addressed the challenges of param-
eterizing the search space and e�ciently evaluating the e�ects
of each optimization. We addressed the �rst challenge by using
combinations of existing policies that target speci�c NUMA bot-
tlenecks. �e combination of them, when searched in a coupled
manner, allows us to �nd a broad range of solutions. To quickly
evaluate the performance impact of each con�guration change, we
extracted samples of the key parallel regions of each application as
codelets, which we could then quickly re-run for each con�gura-
tion. While the codelets do not perfectly reproduce the application
behavior, they are close enough and fast enough to allow us to iden-
tify signi�cant performance gains across our large con�guration
space.

�is combination of a broad search space and an e�cient and
accurate search methodology allows us to make automatic opti-
mization across a broad range of NUMA criteria practical for the
�rst time.
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