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Abstract

Rational drug design for G protein-coupled receptors (GPCRs) is limited by the small num-

ber of available atomic resolution structures. We assessed the use of homology modeling to

predict the structures of two therapeutically relevant GPCRs and strategies to improve the

performance of virtual screening against modeled binding sites. Homology models of the D2

dopamine (D2R) and serotonin 5-HT2A receptors (5-HT2AR) were generated based on crys-

tal structures of 16 different GPCRs. Comparison of the homology models to D2R and 5-

HT2AR crystal structures showed that accurate predictions could be obtained, but not neces-

sarily using the most closely related template. Assessment of virtual screening performance

was based on molecular docking of ligands and decoys. The results demonstrated that sev-

eral templates and multiple models based on each of these must be evaluated to identify the

optimal binding site structure. Models based on aminergic GPCRs showed substantial

ligand enrichment and there was a trend toward improved virtual screening performance

with increasing binding site accuracy. The best models even yielded ligand enrichment com-

parable to or better than that of the D2R and 5-HT2AR crystal structures. Methods to con-

sider binding site plasticity were explored to further improve predictions. Molecular docking

to ensembles of structures did not outperform the best individual binding site models, but

could increase the diversity of hits from virtual screens and be advantageous for GPCR tar-

gets with few known ligands. Molecular dynamics refinement resulted in moderate improve-

ments of structural accuracy and the virtual screening performance of snapshots was either

comparable to or worse than that of the raw homology models. These results provide guide-

lines for successful application of structure-based ligand discovery using GPCR homology

models.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007680 March 13, 2020 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Jaiteh M, Rodrı́guez-Espigares I, Selent J,

Carlsson J (2020) Performance of virtual screening

against GPCR homology models: Impact of

template selection and treatment of binding site

plasticity. PLoS Comput Biol 16(3): e1007680.

https://doi.org/10.1371/journal.pcbi.1007680

Editor: Alexander MacKerell, University of

Maryland School of Pharmacy, UNITED STATES

Received: November 7, 2019

Accepted: January 23, 2020

Published: March 13, 2020

Copyright: © 2020 Jaiteh et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Except for a

supplementary data set, all relevant data are within

the manuscript and its Supporting Information

files. The supplementary data set, which contains

MD simulation input files and trajectories, is freely

available for download from the Dryad Digital

Repository at https://doi.org/10.5061/dryad.

xwdbrv19m.

Funding: This project was supported by grants

from the Swedish Research Council (2017-4676),

the Swedish strategic research program eSSENCE,

http://orcid.org/0000-0002-9229-5314
http://orcid.org/0000-0002-1602-8679
http://orcid.org/0000-0003-4623-2977
https://doi.org/10.1371/journal.pcbi.1007680
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007680&domain=pdf&date_stamp=2020-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007680&domain=pdf&date_stamp=2020-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007680&domain=pdf&date_stamp=2020-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007680&domain=pdf&date_stamp=2020-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007680&domain=pdf&date_stamp=2020-04-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007680&domain=pdf&date_stamp=2020-04-06
https://doi.org/10.1371/journal.pcbi.1007680
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5061/dryad.xwdbrv19m
https://doi.org/10.5061/dryad.xwdbrv19m


Author summary

Three-dimensional structures of proteins combined with computational methods have

become widely used to identify starting-points for drug discovery. However, this powerful

approach is limited by the lack of atomic resolution structures for many drug targets. G

protein-coupled receptors (GPCRs) belong to the largest family of cell surface receptors

and play roles in numerous physiological processes. As GPCRs are important therapeutic

targets, there is significant interest in applying structure-based in silico screening to accel-

erate the drug discovery process. However, GPCRs have been notoriously difficult to crys-

tallize and structures are lacking for >80% of the family. We assessed prediction of GPCR

structure based on previously determined crystal structures as templates by using the

homology modeling method. We explored strategies to identify models suitable for virtual

screening with the molecular docking method and to further refine structures using

molecular dynamics simulations. Our calculations revealed that the closest homologue of

a target is not necessarily the best template and demonstrated how accurate binding site

models with excellent ability to identify ligands can be obtained. The results highlight

strengths and weaknesses of structure prediction methods and provide guidelines for suc-

cessful application of virtual screening to proteins of unknown structure.

Introduction

G protein-coupled receptors (GPCRs) constitute a large superfamily of membrane proteins

and play key roles in cellular signaling. GPCRs recognize chemically diverse molecules and

binding of their endogenous ligands leads to activation of intracellular signaling pathways [1].

As GPCRs control numerous physiological processes, compounds that either stimulate or

block their activity are valuable tools to understand receptor function and have therapeutic

applications. Efforts to develop drugs that target GPCRs have been remarkably successful. Cur-

rently, 34% of medications approved by the US Food and Drug Administration mediate their

effects via GPCRs and are used to treat a wide range of conditions, e.g. cardiovascular, neuro-

psychiatric, and neurodegenerative diseases [2].

Advances in structural biology during the last decade led to a rapid increase of the number

of atomic resolution structures of GPCRs. Structures of 64 unique GPCRs have been solved,

providing opportunities to use molecular modeling to accelerate drug discovery. Structure-

based virtual screens of large chemical libraries against GPCRs, followed by experimental test-

ing of top-scoring compounds, have successfully identified leads of many therapeutic targets,

including biogenic amine [3–8], purine [9], peptide [10,11] and protein-binding receptors

[12]. The fact that molecular docking can be used to search chemical libraries with>100 mil-

lion compounds [8] and identify ligands with hit rates as high as 73% [4] suggests that virtual

screening can make important contributions to drug discovery.

Despite the increasing number of experimentally determined GPCR structures, crystalliza-

tion remains challenging and atomic resolution information is lacking for >80% of the non-

olfactory receptors [13]. One approach to circumvent this problem is protein structure predic-

tion using homology modeling. A template with>30% sequence identity to the target is con-

sidered sufficient to use homology modeling, but the utility of the resulting structures will

depend on the application [14]. As reflected by community-wide GPCR structure prediction

assessments, modeling of receptor-drug complexes is challenging. Although templates with

>35% sequence identity were available, only a small number of research groups identified

ligand binding modes close to the experimentally determined complexes for the A2A adeno-

sine, D3 dopamine, 5-HT1B and 5-HT2B serotonin receptors. No research group was able to
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accurately model ligand binding modes if only distant templates were available, e.g. for the

CXCR4 and smoothened GPCRs [15–17].

Reliable techniques for GPCR modeling would make it possible to extend the use of struc-

ture-based ligand discovery to many unexplored drug targets. An increasingly employed strat-

egy to evaluate models is to use molecular docking to assess if the binding site can identify

known active compounds among decoys [18–24]. A model that displays high enrichment of

known ligands is considered to be a good representative of the receptor structure and suitable

for virtual screening. Despite the challenges involved in predicting the structures of GPCR-

ligand complexes, several virtual screens against homology models have been successful

[12,25–31]. For example, Carlsson et al. demonstrated that a high quality model of the D3

dopamine receptor performed as well as a crystal structure in prospective molecular docking

screens [29]. However, it should be noted that virtual screening based on GPCR homology

models has several caveats. First, it is not clear if the approach is restricted to targets for which

closely related templates are available. Prediction of drug complexes will be sensitive to confor-

mations of side chains and loop regions forming the binding site, which are difficult to model

based on distant templates. A common rule of thumb is to select the template with the highest

sequence identity to construct a homology model. However, benchmarks of homology model-

ing have not found any clear correlation between the sequence identity of the template and vir-

tual screening performance [32] and, intriguingly, GPCR models based on distant templates

have occasionally resulted in better ligand enrichment than closely related ones [33,34]. Sec-

ond, prospective docking screens against homology models are generally carried out against a

single rigid structure of the binding site. As GPCRs are flexible proteins, a model with static

side chains will not capture induced-fit effects and may fail to identify ligands that are recog-

nized by different conformations. Consideration of multiple receptor conformations has the

potential to improve ligand enrichment, but will also increase the computational cost of virtual

screening. Finally, a homology model will contain errors originating from structural differ-

ences between the target and template, which are likely to increase with decreasing sequence

identity. Refinement of homology models with more rigorous methods such as molecular

dynamics (MD) simulations could lead to improved structures. However, the accuracy and

virtual screening performance of raw and MD-refined homology models have rarely been

compared [31,35].

In this work, we explored strategies to identify GPCR homology models suitable for virtual

screening. The D2 dopamine receptor (D2R) and 5-HT2A serotonin receptor (5-HT2AR) were

selected as targets. The D2R and 5-HT2AR belong to the family of aminergic receptors and

modulation of both targets is essential for the therapeutic effect of many antipsychotic drugs

[36]. Homology models based on 16 crystal structure templates, representing both closely and

distantly related receptors, were generated. The models were evaluated based on their agree-

ment with recently determined D2R and 5-HT2AR crystal structures, and sets of known ligands

were docked to the binding sites to evaluate their virtual screening performance. We also

investigated if predictions could be improved by using ensembles of homology models or by

refinement with MD simulations. Finally, we assessed the influence of extracellular loop

regions on virtual screening performance and the possibility that the choice of template may

inflict bias toward certain ligand chemotypes.

Results

Homology modeling based on 16 different templates

Homology models of the D2R and 5-HT2AR were generated based on crystal structures of 12

aminergic receptors and four non-aminergic GPCRs (Table 1). Representative structures of
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two adrenergic (β1AR [37] and β2AR [38]), two dopamine (D3R [39] and D4R [40]), one hista-

mine (H1R [41]), three serotonin (5-HT1BR [42], 5-HT2BR [43], and 5-HT2CR [44]), and four

muscarinic (M1R [45], M2R [46], M3R [47], and M4R [45]) receptors were selected as tem-

plates. A set of more distantly related non-aminergic templates was selected to cover GPCRs

that recognize different types of ligands and included the Rhodopsin (Rho [48]), CXCR4 che-

mokine (CXCR4 [49]), A2A adenosine (A2AAR [50]), and Cannabinoid 1 (CB1R [51]) recep-

tors. In order to enable comparisons of the homology models to the experimental D2R or

5-HT2AR structures, which were crystallized in inactive conformations, templates determined

in inactive states were selected in a majority of the cases. In a few instances, templates crystal-

lized in intermediate conformations were used (5-HT1BR and 5-HT2BR). Sequence alignments

were facilitated by the strongly conserved topology of GPCRs and manually adjusted for the

second extracellular loop (ECL2) as this region is involved in ligand recognition (S1 and S2

Files). The 16 templates covered a wide range of transmembrane helix (TM) and binding site

(BS) sequence identities with the D2R and 5-HT2AR (Table 1), ranging from 21% to 77% and

6% to 94%, respectively. Crystal structures of the 5-HT2CR and D3R shared the highest TM

sequence identities with the 5-HT2AR (75%) and D2R (77%), respectively. As expected, the TM

and BS sequence identities to the target receptors were low for the four non-aminergic tem-

plates (21–37% and 6–19%, respectively).

For each template, the program MODELLER [53] was used to generate a set of 250 homol-

ogy models per target, from which the 50 structures with the best DOPE scores [54] were

extracted for analyses. Homology models derived from the same template varied in the side

chain conformations and in the backbone of the loops due to gaps or insertions in the align-

ment. For models based on the same template, the average pairwise RMSDs of side chains in

Table 1. Crystal structures selected as templates for homology modeling of the D2R and 5-HT2AR.

Receptors a PDB codeb Sequence identity (%)

D2R 5HT2AR

TMc BSc TMc BSc

β1 Adrenergic (β1AR) 2VT4 44 59 41 59

β2 Adrenergic (β2AR) 2RH1 41 56 39 63

D3 Dopamine (D3R) 3PBL 77 94 41 53

D4 Dopamine (D4R) 5WIU 51 71 39 50

H1 Histamine (H1R) 3RZE 38 34 32 41

5-HT1B (5-HT1BR) 4IAR 46 47 36 44

5-HT2B (5-HT2BR) 4IB4 40 47 66 75

5-HT2C (5-HT2CR) 6BQH 45 53 75 88

M1 Muscarinic (M1R) 5CXV 35 19 31 25

M2 Muscarinic (M2R) 3UON 34 22 29 25

M3 Muscarinic (M3R) 4DAJ 36 22 35 31

M4 Muscarinic (M4R) 5DSG 36 25 30 28

Rhodopsin (Rho) 1F88 25 19 21 19

CXCR4 chemokine (CXCR4) 3ODU 25 13 22 9

A2A Adenosine (A2AAR) 4EIY 37 13 30 16

Cannabinoid 1 (CB1R) 5U09 26 6 22 9

a Receptor names and abbreviations.
b PDB code of the crystal structure used as template.
c The TM sequence identity was calculated based on the residues specified in S1 Table.
d The BS was defined using the definition of Michino et al.[52] and only included residues in the TM region.

https://doi.org/10.1371/journal.pcbi.1007680.t001
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the binding site ranged from 0.9 to 2.0 Å (S2 Table). The largest variation in binding site struc-

ture was obtained for the non-aminergic templates whereas the lowest was obtained from the

template with the highest BS sequence identity. Models obtained from different templates also

displayed variation in the backbone structure due to differences in the relative orientations of

the helices and loop regions.

Comparison of homology models to crystal structures

The availability of crystal structures of the D2R [55] and 5-HT2AR [56] allowed us to evaluate

the accuracy of the homology models. The average RMSDs to the experimental structure for

the TM (RMSDTMBB), BS backbone (RMSDBSBB) and BS side chains (RMSDBSSC) were calcu-

lated. Although the resolutions of the crystal structures were not high enough to distinguish all

side chain atoms in the electron density maps, RMSDBSSC was calculated to assess if the overall

shape of the binding pocket was captured (S3 Table and S1 Fig). There was a marked average

improvement of structural accuracy if the templates with low (<30%) and high (>50%)

sequence identities were compared whereas the results varied in the 30–50% range (Fig 1).

The RMSDTMBB had a moderate correlation with the TM sequence identity for both targets

(R = –0.80 and –0.59 for the D2R and 5-HT2AR), respectively (Fig 2). A trend towards more

accurate BS models for templates with higher sequence identity was obtained for the 5-HT2AR

(R = –0.74 and –0.77 for RMSDBSBB and RMSSBSSC, respectively). In contrast, relatively small

improvements in binding site accuracy were obtained for the D2R with increasing sequence

identity (R = –0.29 and –0.60 for RMSDBSBB and RMSSBSSC, respectively). The weaker correla-

tions were largely due to the fact that the D3R and D4R templates (71% and 94% BS sequence

identity) did not have better RMSD values than 5-HT2CR and adrenergic receptor templates

with 50–60% BS sequence identity. This result was supported by visual inspection of the mod-

els, which showed that the serotonin and adrenergic receptor templates led to better predic-

tions of TM6 in the binding site region compared to the dopamine receptor structures.

Molecular docking and ligand enrichment by homology models and crystal

structures

Molecular docking screens of known ligands were carried out to further evaluate the homology

models. For each of the 16 templates, 50 models were prepared for docking with DOCK3.6

Fig 1. Structural accuracy of homology models based on templates with different levels of sequence identity. The

average RMSDTMBB (green and blue bars), RMSDBSBB (dark green and blue bars), and RMSDBSSC (grey bars) to the

crystal structures were calculated for 50 models per template. Bar charts of structural accuracy using templates with

different levels of sequence identity was calculated for (A) the D2R and (B) 5-HT2AR.

https://doi.org/10.1371/journal.pcbi.1007680.g001
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[57,58]. A total of 822 and 650 known ligands of the D2R and 5-HT2AR combined with prop-

erty-matched decoys [59] were docked to the homology models. Each compound was sampled

in thousands of orientations in the binding sites, which were held rigid in the calculations. Suc-

cessfully docked compounds were ranked by their predicted binding energy using a physics-

based scoring function [57]. In total, the structures of>80 million complexes were predicted to

evaluate virtual screening performance of the models. Enrichment of ligands over decoys was

analyzed based on receiver operating characteristic (ROC) curves and quantified using the

adjusted logarithm of the area under the curve (aLogAUC). The aLogAUC favors early enrich-

ment, which is desirable in virtual screening, and positive values indicate that the docking scor-

ing function performs better than random selection. For example, an aLogAUC value of 10

corresponds to identifying more than twice the number of ligands than expected from random

selection [57]. To classify our enrichment results, we defined aLogAUC values of<10, 10–15,

>15–20, and>20–25, and>25 as poor, fair, good, very good, and excellent, respectively.

There was a large variation in the shapes of the ROC curves and aLogAUC values (S2 Fig

and S4 Table), reflecting differences in the predicted structures of the binding sites. Even for

Fig 2. Relation between structural accuracy and sequence identity. The average RMSDTMBB (A and D), RMSDBSBB (B and E), and RMSDBSSC (C and F)

to the crystal structures for 50 models of the D2R (A-C) and 5-HT2AR (D-F) based on different templates. The solid line represents a linear regression and R

is Pearson’s correlation coefficient.

https://doi.org/10.1371/journal.pcbi.1007680.g002
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the models based on the closest templates, the differences in aLogAUC between the best and

worst models were 14 units and ligand enrichments ranged from poor to excellent. The tem-

plate Rho resulted in a large number of models with enrichments close to or worse than what

would be expected from random selection. For all the other templates, at least one model with

ligand enrichment better than random selection was identified. The homology models were

analyzed based on the median and maximal aLogAUC values, which are presented in Fig 3

and S4 Table. The median enrichment was taken as a measure of the quality of a template and

the model with the highest aLogAUC value was assumed to be the best representative of the

receptor structure. Good to very good median enrichments were obtained for seven out of the

12 aminergic templates. Of the five aminergic templates that resulted in fair ligand enrich-

ments, four were based on muscarinic receptor structures, which shared relatively low

sequence identities with the targets. Poor (D2R) to fair (5-HT2AR) median ligand enrichments

were also obtained for the D4R template. The worst virtual screening performance was

obtained among the models based on four non-aminergic templates. Two (CXCR4 and CB1R)

and one (CB1R) template resulted in good median enrichment for the D2R and 5-HT2AR,

respectively. The other distant templates either resulted in poor or fair ligand enrichments.

To further assess the quality of the models, we analyzed the best enriching structures for

selected templates. For the aminergic templates, the best enriching models showed at least

good enrichment and eight out of 12 models had very good to excellent enrichments. There

were also structures with good to very good maximal enrichments among the screened

CXCR4-, CB1R-, and A2AAR-based models, suggesting that these would be useful in virtual

screening. The predicted binding modes of the 50 highest-ranked known ligands were

inspected for the best-enriching models based on D3R, 5-HT2CR, CXCR4, A2AAR, and CB1R

(Table 2). The binding modes were classified as good if the ligands formed a salt bridge to the

conserved Asp3.32 (superscripts refer to Ballesteros-Weinstein residue numbering [60]) and

extended towards TM5/6 with an aromatic moiety. It should be noted that these binding mode

features are not only present in the D2R and 5-HT2AR crystal structures, but are conserved in

all experimentally determined structures of aminergic GPCRs [61]. For the homology models

based on the closest aminergic templates, 98–100% of the top-ranked ligands were docked in

Fig 3. Ligand enrichment by homology models. Distribution of aLogAUC values for (A) D2R and (B) 5-HT2AR

models based on 16 different templates. Distributions are shown using a boxplot representation. Each boxplot

describes the results for 50 models obtained based on one template. The box represents the 50th percentile of the data

and the black band shows the median value. The lowest and highest aLogAUC values are represented by the whiskers.

The gray boxplot corresponds the results of all 600 models based on aminergic receptor templates. Ensemble

enrichments are represented by red filled circles.

https://doi.org/10.1371/journal.pcbi.1007680.g003
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reasonable binding modes. In contrast, only the D2R model based on CXCR4 resulted in a

high percentage of good ligand binding modes (96%) among the non-aminergic templates.

For the other models based on non-aminergic templates, the predicted binding modes were

judged to be poor with only 0–15% good poses. In fact, despite that there were D2R models

based on the A2AAR with very good enrichment, the ligand binding site was not correctly

identified. A majority of the top-ranked ligands formed a salt bridge to Glu952.65 instead of the

conserved Asp3.32. Similarly, in the case of the best enriching 5-HT2AR models based on CB1R,

the salt bridge to Asp3.32 was captured, but the ligands extended towards a pocket formed by

TM2 and TM7 instead of TM5.

Docking screens were also carried out against crystal structures of the D2R and 5-HT2AR

(S5 Table). The D2R screen yielded an excellent ligand enrichment (aLogAUC = 26.6) that out-

performed the enrichment scores of all the 800 evaluated homology models. One of the

5-HT2AR crystal structures also yielded excellent virtual screening performance (aLo-

gAUC = 26.1), but the enrichment was slightly lower than the maximum enrichment obtained

for homology models based on the 5-HT2CR and 5-HT2BR templates. Similar to homology

models based on closely related templates, close to 100% of the top-ranked ligands had reason-

able binding modes in the crystal structures (Table 2).

As an additional control, we also docked the D2R and 5-HT2AR ligands to the template

crystal structures used to generate the homology models. In previous studies, template struc-

tures and homology models were found to enrich ligands equally well [32,62]. The calculated

ligand enrichments by the templates are presented in S6 Table. A homology model that per-

formed better than the corresponding template was identified for 14 and 16 out of the 16 sets

of D2R and 5-HT2AR models, respectively. A few template structures enriched ligands very

well, e.g. adrenergic and serotonin receptors. The result can be explained by that these recep-

tors also recognize biogenic amines and are hence likely to bind many D2R and 5-HT2AR

ligands. Large improvements of ligand enrichment were obtained for some of the distant tem-

plates, e.g. the muscarinic receptors and CXCR4.

Accuracy of ECL2 and its impact on ligand enrichment

One of the most challenging aspects of GPCR modeling is to predict the structure of ECL2,

which is part of the orthosteric site and has varying length and diverse sequences[15–17,63].

Whereas the ECL2 of the 5-HT2AR was well predicted by several templates (e.g. 5-HT2CR), the

D2R loop had a unique shape that was not captured by any available crystal structure (S3 Fig).

Table 2. Assessment of overall binding modes of the 50 top-ranked ligands for homology models based on differ-

ent templates and the crystal structures.

Quality of ligand binding modesa

D2R 5-HT2AR

Template Good Bad Good Bad

Aminergicb 50 0 49 1

CXCR4 48 2 7 43

A2AAR 0 50 2 48

CB1R 1 49 1 49

Crystal structure 48 2 49 1

a Binding modes that captured a charge-charge interaction with Asp3.32 and extended towards TM5 with an aromatic

moiety were classified as “Good”. Binding modes that failed to fulfil one of these criteria were classified as “Bad”.
b Template with the highest TM and BS sequence identity to the D2R (D3R) and 5-HT2AR (5-HT2CR).

https://doi.org/10.1371/journal.pcbi.1007680.t002
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To investigate if a more accurate loop could improve ligand enrichment, we generated a new

set of D2R models based on the D3 subtype with the structure of ECL2 extracted from the D2R

crystal structure. This model hence had a perfect structure of ECL2, and the TM region was

based on the most closely related template. The resulting models had a median aLogAUC of

23.6, which was 7.0 aLogAUC units better than the models based on the D3R crystal structure

and close to that of the D2R crystal structure (aLogAUC = 26.6).

Early studies of GPCR homology modeling discovered that virtual screening performance

could be insensitive to or even improved by excluding ECL2 from the calculations [63]. To

assess this option, we rescreened all homology models in the absence of ECL2. The median

aLogAUC values were either comparable to or higher than those obtained with the loop pres-

ent (S7 Table). The largest differences were found for D2R models based on the D3R, D4R, and

Rho templates, which all performed substantially better if ECL2 was excluded. The Rho tem-

plate positioned the D2 loop in a region where it blocked accurate positioning of ligands,

which explained the improved results in this case. To further assess the quality of the predicted

complexes, ligand binding modes were analyzed for the D2R and 5-HT2AR models based on

the closest aminergic template. For the D2R and 5-HT2AR models with the best ligand enrich-

ments, the binding modes of docked ligands were judged to be equally well predicted in the

presence (Table 2, 98–100% good binding modes) and absence (100% good binding modes) of

ELC2.

Relation between ligand enrichment, sequence identity, and structural

accuracy

We assessed if the median ligand enrichments displayed by the homology models correlated

with sequence identity or structural accuracy. Only the aminergic templates were included in

this analysis because the non-aminergic templates generally did not produce reasonable ligand

binding modes. For the D2R, no correlation was found between sequence identity and aLo-

gAUC whereas moderate correlation was found for TM (R = 0.66) and BS (R = 0.84) regions

of the 5-HT2AR (Fig 4). The lack of correlation for the D2R was partly due to that the models

based on the D3 and D4 subtypes yielded surprisingly low ligand enrichments. However, it

should be noted that this result was consistent with the fact that both the binding site struc-

tures (Fig 2B and 2C) and ECL2 (S3 Fig) were relatively poorly predicted by these templates.

For example, the 5-HT2CR and adrenergic receptor templates with 50–60% BS sequence iden-

tity resulted in more accurate binding site models and also yielded better ligand enrichment.

Interestingly, removing ECL2 (S4 Fig) significantly improved the correlation between ligand

enrichment and sequence identity for the D2R models (R = 0.67 and 0.84 for TM and BS,

respectively) whereas the results for the 5-HT2AR were unaffected (R = 0.66 and 0.89 for TM

and BS, respectively). Finally, we evaluated the relationship between ligand enrichment and

structural accuracy (Fig 5) and found a moderate correlation between RMSDBSSC and aLo-

gAUC for both receptors (R = –0.73 and –0.85 for D2R and 5-HT2AR, respectively).

Ligand enrichment by ensembles of homology models

An alternative to using a single rigid structure in docking screens is to consider an ensemble of

models, which could account for binding site plasticity. The ensemble enrichment was calcu-

lated by identifying the best docking score of each docked compound among multiple homol-

ogy models, leading to a single aLogAUC value for the entire set. The ensemble enrichments

were calculated for the aminergic templates by considering the 50 homology models generated

in each case and the combined set of 600 homology models (Fig 3 and S4 Table).
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For the D2R, the ensemble enrichments were consistently better than the medians of the

individual models. Templates resulting in models with good median enrichments had very

good or excellent ensemble enrichments, and good ensemble enrichments were obtained for

models with poor or fair median enrichments. For 10 out of 12 templates, the ensemble

enrichments were even comparable to the maximal individual enrichments, but there was no

significant improvement over the best individual models. For example, the models of the D2R

based on the D4R crystal structure resulted in poor performance (median aLogAUC = 9.0)

whereas the ensemble had good ligand enrichment (aLogAUC = 18.1), which was similar to

the maximal enrichment of the individual models (aLogAUC = 17.8). Finally, the ensemble

Fig 4. Relation between ligand enrichment and sequence identity. The median aLogAUC values of the D2R (A-B) and 5-HT2AR (C-D) homology models

based on aminergic templates with different TM (A and C) or BS (B and D) sequence identities. The solid line represents a linear regression and R is

Pearson’s correlation coefficient.

https://doi.org/10.1371/journal.pcbi.1007680.g004

Fig 5. Relation between ligand enrichment and structural accuracy. The median aLogAUC and average RMSDBSSC

to the crystal structures for 50 homology models of the D2R (A) and 5-HT2AR (B) based on aminergic templates. The

solid line represents a linear regression and R is Pearson’s correlation coefficient.

https://doi.org/10.1371/journal.pcbi.1007680.g005
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enrichment for all D2R models based on aminergic templates was very good (aLogAUC = 21.1),

which was close to five aLogAUC units greater than the median of this set. For the 5-HT2AR,

the ensemble enrichments were very good to excellent for six templates. However, in contrast

to the results for the D2R, the ensemble enrichments did not reach values comparable to the

best individual models. Instead, ensemble aLogAUC values were close to the medians for 10

templates and significantly improved over the median only in one case. The ensemble enrich-

ment for all the 5-HT2AR models was very good (aLogAUC = 23.8), which was better than the

median ligand enrichment of this set.

Influence of template on enrichment of ligand chemotypes

A potential concern regarding the use of a static homology model in virtual screening is that

the binding site conformation of the template could bias the results towards specific chemo-

types, in particular compounds similar to the co-crystallized ligand. Such effects were analyzed

in detail for homology models of the D2R. D2R ligands similar to eticlopride and doxepin were

identified as these ligands were bound in the D3R and H1R templates, respectively [39,41]. A

set of piperidine/piperazine-like ligands were also collected as this is a privileged scaffold for

aminergic receptors and a representative compound (ritanserin) was co-crystallized in the

5-HT2CR template [44]. The three sets of compounds (S8 Table) and decoys were docked to

D2R models based on the D3R, H1R, and 5-HT2CR templates. The calculated aLogAUC values

indicated a bias toward chemotypes similar to the co-crystallized ligands (Fig 6). For each tem-

plate, the best ligand enrichment was obtained for the set of compounds similar to the co-crys-

tallized ligand and the largest differences were found for the eticlopride- and doxepin-like

ligands. Doxepin-like compounds were not identified by the D3R-based model (aLogAUC =

–5.3), but the enrichment of the same set of compounds by the H1R model was excellent (aLo-

gAUC = 42.4). Similarly, the enrichment of eticlopride-like ligands was stronger by the D3R-

based model (aLogAUC = 48.3) than by the H1R-based (aLogAUC = 25.0). To investigate if

chemotype bias could be alleviated by considering an ensemble of structures, we combined the

model based on the D3R with either the H1R or 5-HT2CR-based models. The ensembles based

on two templates led to strong enrichment of all three chemotypes and also slightly improved

the enrichment of the full set of ligands compared to the D3R-based model.

Fig 6. Influence of template on enrichment of ligand chemotypes. Enrichment (aLogAUC) of eticlopride- (blue

bars), doxepin- (yellow bars), piperidine/piperazine-like (red bars), and all (grey bars) D2R ligands by D2R homology

models. Homology models based on three different templates (D3R, H1R, and 5-HT2CR) and ensemble enrichments of

the D3R model combined with either the H1R and 5-HT2CR models were evaluated.

https://doi.org/10.1371/journal.pcbi.1007680.g006
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MD simulation refinement of homology models

MD simulations of homology models based on close and distant templates were performed to

explore if structural accuracy and virtual screening performance could be further improved.

MD simulations of D2R and 5-HT2AR models based on D3R and 5-HT2CR, respectively, were

carried out for the apo form and in complex with the co-crystallized ligands of the templates,

which were active at the both the targets and templates [64,65]. For the Rho-based models,

only the apo form was considered. Each system was equilibrated in a hydrated lipid membrane

and three simulation replicates of 100 ns were generated.

MD simulation snapshots were first compared to the homology model used as starting

structure. For the models based on closely related templates, the average RMSDTMBB values

were 1.3–1.9 Å and 1.7–2.2 Å for the simulations of the D2R and 5-HT2AR, respectively (S9

Table and S5 Fig). The Rho-based models drifted further away from the homology models

with average RMSDTMBB values of 2.3–2.4 Å and 3.2–3.4 Å for D2R and 5-HT2AR, respectively

(S9 Table and S5 Fig). Visual inspection of simulation snapshots showed that the overall topol-

ogy of the receptors was maintained with no large conformational changes in the TM region.

In the 5-HT2AR simulations, unfolding of a few residues at the intracellular tips of TM5 and

TM6 simulations was observed, which may be attributed to that intracellular loop three was

not included in the simulations. In simulations of the receptor-ligand complexes, the binding

modes of eticlopride and ritanserin were maintained throughout the simulation.

Each MD simulation trajectory was clustered and 50 snapshots (cluster centers) were com-

pared to the corresponding crystal structure of the target receptor (Fig 7). For the D2R models

based on the D3 subtype, the RMSDTMBB to the crystal structure were similar for the apo and

holo forms with median values ranging from 1.2 to 1.7 Å for the six trajectories. For compari-

son, the D2R homology model used as starting structure had a corresponding RMSDTMBB of

1.4 Å. Overall, 44%, 58%, and 62% of the MD-refined structures had improved TM backbone,

BS backbone, and BS side chain RMSD values compared to the homology model, respectively.

Inspection of the snapshots confirmed that the TM region remained close to the initial homol-

ogy model, but there was a larger variation in ECL2, which reduced the volume of the binding

site. The Rho-based homology model of the D2R had an RMSDTMBB to the crystal structure of

2.2 Å. The corresponding median RMSD values for the MD snapshots were 1.8–2.0 Å. In this

case, 87%, 50%, and 11% of the MD-refined structures had improved TM backbone, BS back-

bone, and BS side chain RMSD values compared to the homology model, respectively. The

improved accuracy was due to rearrangement of TM6 in the vicinity of the binding site. How-

ever, inspection of the models also showed that TM3 was shifted inward and blocked access

to part of the binding site occupied by aminergic ligands. For the 5-HT2AR, the median

RMSDTMBB to the crystal structure ranged from 1.4 to 1.9 Å for the simulations based on the

5-HT2CR homology model, which had an RMSDTMBB of 1.6 Å. The binding site, which was

very well predicted by the homology model, slightly diverged from the crystal structure in the

holo simulation and was maintained for the apo form. Overall, 38%, 37%, and 32% of the MD

snapshots showed improved agreement with the crystal structure for the TM backbone, BS

backbone, and BS side chains, respectively. The Rho-based 5-HT2AR homology model drifted

substantially further away from the crystal structure with median RMSDTMBB values of 3.1–3.5

Å, which can be compared to 2.3 Å for the homology model. None of the MD-refined struc-

tures were better than the initial homology model in this case.

Molecular docking of ligands and decoys were carried out against the MD snapshots to

compare their virtual screening performance to the homology models (S10 Table). The MD-

refined homology models based on the Rho template were not assessed because the orthosteric

binding site had either collapsed (D2R) or clearly drifted far away from the crystal structures
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Fig 7. Structural accuracy of MD simulation snapshots. RMSD distribution of the TM backbone, BS backbone, and BS side chains of MD

snapshots to the crystal structure for the D2R (A-C) and 5-HT2AR (D-F). Distributions of RMSD values for the three sets of snapshots based on the

Rho-based models (MDRho/Apo) and homology models based on the most closely related template in apo (MDTemplate/Apo) and holo forms

(MDTemplate/Holo) are shown using a boxplot representation. The box represents the 50th percentile of the data and the black band shows the median

value. The lowest and highest RMSD values are represented by the whiskers. The horizontal lines show the RMSD values of the homology model

used as starting structure.

https://doi.org/10.1371/journal.pcbi.1007680.g007
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(5-HT2AR). The median ligand enrichments ranged from poor to fair for the six sets of snap-

shots of the D2R. The median enrichments were consistently worse than for the homology

models based on the same template (Fig 8), which could be explained by the large variation in

ECL2 among the snapshots. The best performing MD-refined structures had enrichments that

were comparable to that of the best homology model. For the 5-HT2AR, the median ligand

enrichments for the MD snapshots ranged from fair to very good (Fig 8). The best median and

maximal ligand enrichments were obtained if the ligand was present in the simulation and, in

this case, the results were comparable to that of the homology models based on the same tem-

plate. In the snapshots from the apo simulation, side chains partially blocked the binding site,

resulting in worse ligand enrichment than the homology models. In agreement with the results

obtained for sets of homology models, ensemble enrichments did not outperform the best

individual MD snapshots. Instead, the results were either comparable to the best model (D2R)

or the median (5-HT2AR).

Discussion

Homology modeling has the potential to bridge the gap between the large number of GPCRs

in the human genome and the few experimentally determined structures available to study

these at atomic resolution. We evaluated the performance of structure-based virtual screening

against homology models based on different templates and strategies for treating binding site

plasticity. Four main findings emerged from the modeling of two drug targets from the GPCR

family and extensive molecular docking screens against predicted receptor structures. First,

our results generally agreed with the notion that selection of a template with higher sequence

identity will lead to better models. However, the correlation between structural accuracy and

sequence identity was not particularly strong because the best binding site model was not nec-

essarily based on the closest homolog. Second, molecular docking can be used to identify mod-

els that perform well in virtual screening and ligand enrichment increased with binding site

accuracy. Homology models based on distant templates (<30% sequence identity) are in most

cases not suitable for virtual screening because of modeling errors in the binding site, which

makes it difficult to obtain accurate predictions of receptor-ligand complexes. Third, consider-

ation of binding site plasticity by screening ensembles of structures did generally not improve

Fig 8. Ligand enrichment by MD simulation snapshots. Distributions of aLogAUC values for 50 homology models

(HM) and sets of 50 snapshots from three MD simulations per template for the (A) D2R based on the D3R template

and (B) 5-HT2AR based on the 5-HT2CR template. Results for HM, apo (MDAPO), and holo forms (MDHOLO) are

shown using a boxplot representation. The box represents the 50th percentile of the data and the black band shows the

median value. The lowest and highest alogAUC values are represented by the whiskers. The ensemble enrichments of

each set of 50 models are represented by red filled circles.

https://doi.org/10.1371/journal.pcbi.1007680.g008
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virtual screening performance, but in favorable cases, the results were comparable to the best

individual model. Finally, MD refinement led to moderate improvements of structural accu-

racy in some cases, but virtual screening performance of simulation snapshots were either

comparable to or worse than that of homology models.

A widespread assumption is that the template with the highest sequence identity to the tar-

get will result in the best homology model. To assess this rule of thumb, we analyzed relation-

ships between sequence identity, binding site accuracy, and ligand enrichment. There was a

large variation in ligand enrichment by homology models even if binding site structures were

generated based on the same template. Large sets of models with different side chain confor-

mations must hence be considered to evaluate the quality of a template. This finding makes it

difficult to compare our results to previous studies that were mainly based on a single homol-

ogy model per template [24,32,34]. In agreement with expectations, the most accurate predic-

tions of the 5-HT2AR binding site were obtained based on closely related 5-HT2 subtypes (66–

75% TM sequence identity) and these models showed excellent virtual screening performance.

However, there were also templates with lower TM sequence identity (~40%) that resulted in

comparable structural accuracy and enrichment. In contrast, the best models of the D2R bind-

ing site were not based on the other D2-like receptors (D3R and D4R). Instead, there were tem-

plates with TM sequence identities in the 40–45% range that resulted in better representations

of the binding site and these models also performed well in virtual screening. This result is

consistent with a previous study comparing the virtual screening performance of D2R models

based on the β2AR and D3R templates using a different docking software and ligand sets [21].

Notably, the best homology models were accurate structurally and yielded ligand enrichments

that were comparable to or even better than those obtained using the D2R and 5-HT2AR crystal

structures. Our observations lead to new guidelines for GPCR modeling. If templates with

>30% sequence identity are available, several of these should be evaluated in retrospective vir-

tual screens. All templates with>50% TM sequence identity need to be considered. In addi-

tion, the templates with the highest binding site sequence identity should be prioritized from

the 30–50% range. As template performance could be influenced by chemotype-bias, struc-

tures in complex with different ligands should also be explored if such are available. Finally,

multiple models per template should be evaluated in retrospective docking screens, and the

binding structures that enrich known ligands well will be suitable for prospective screening.

Homology modeling based on templates with <30% sequence identity can occasionally

yield models that show good enrichment and reasonable ligand binding modes, e.g. in the case

of the CXCR4-based model of the D2R. However, in most cases accurate prediction of ligand

binding sites appears to be out of reach for homology modeling based on distant templates.

The backbone structure and ECL2 of the template are likely to deviate from the target, which

will often lead to poor predictions of receptor-ligand complexes. An illustrative prospective

example of the difficulties to make accurate predictions based on distant templates is the

homology models of CXCR4 constructed by Mysinger et al. prior to the release of the crystal

structure. Excellent retrospective ligand enrichment was achieved, but the subsequently

released crystal structure revealed that the ligands were docked to the wrong binding site [12].

Better docking scoring functions as well as accurate representation of backbone and side chain

flexibility will be necessary to improve models of GPCR-ligand complexes.

When only distant templates are available or low ligand enrichments are obtained using

templates with high sequence identity, the structure of ECL2 may be poorly predicted. For

example, we found that the ECL2 of the D2R was different from the other subtypes and

improving the accuracy of the loop improved ligand enrichment. If the accuracy of the ECL2

is uncertain, one approach is to simply exclude it from the model in the docking calculations

[63]. Interestingly, ligand enrichment was then improved or maintained for a majority of the

PLOS COMPUTATIONAL BIOLOGY Performance of virtual screening against GPCR homology models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007680 March 13, 2020 15 / 25

https://doi.org/10.1371/journal.pcbi.1007680


templates. However, considering the structural diversity of ECL2, this approximation is

unlikely to be generally valid. Loop modeling hence remains to be one of the major challenges

of GPCR structure prediction. As ab initio prediction of loops is very difficult, the best

approach for modeling of ECL2 may be to utilize information from multiple templates, e.g. by

extracting the TM and loop regions from different receptors, which was successful in blind

predictions of GPCR structures [13,18].

Another important aspect of template selection and evaluation, which was not investigated

in this work, is the activation state of the target GPCR. Receptor activation involves a large

movement of TM6 and a contraction of the orthosteric binding site relative to the inactive con-

formation [66]. If structures of a template have been determined in several states, homology

modeling should be performed based on the conformation that is most relevant for the goal of

the virtual screen. In such cases, model evaluation by molecular docking screening can also be

focused on specific ligand sets, e.g. agonists or antagonists [67,68].

Treatment of binding site plasticity is one of the major methodological challenges in molec-

ular docking. One approach to incorporate a flexible representation of the binding site is to

screen ensembles, which can be composed of experimentally determined structures (e.g. from

crystallography or NMR) or be generated computationally (e.g. by MD simulations, normal

mode analysis, or homology modeling) [69]. In this work, we explored the use of homology

model ensembles derived from one or several templates as well as ensembles of MD snapshots.

Our finding that ensembles rarely outperform the best single model agrees with results

obtained in other benchmarks [32,34]. However, it should be noted that there are several sce-

narios where it can be advantageous to use ensembles of models in prospective screens. First,

docking to ensembles is suitable for targets with few or no known ligands. In such cases, the

best models cannot be identified based on ligand enrichment. Our results suggest that the

ensemble enrichment will at least be comparable to the median of the individual models and,

in favorable cases, could have similar performance as the best model. Second, we showed that

consideration of ensembles based on different templates can reduce bias towards certain ligand

chemotypes, which can increase the diversity of hits from docking screens. Finally, as demon-

strated by previous prospective studies [26,28], it will be essential to consider binding site flexi-

bility if the aim of the screen is to identify selective ligands by docking to targets and

antitargets. In such applications, a flexible representation of the receptor is crucial to ensure

that predicted ligands do not bind to any accessible conformation of the antitarget.

Inherent limitations of homology modeling can lead to errors in a predicted structure that

could potentially be corrected by refinement with higher-level methods. Even if templates with

high sequence identity were available for the D2R and 5-HT2AR, there were local deviations

between homology models and crystal structures that influenced virtual screening perfor-

mance. Differences between the relative orientation of the TM helices will increase with

decreasing sequence identity, which will cause errors in the shape of the binding site. Given an

accurate force field energy function and sufficient simulation time, MD should make it possi-

ble to generate relevant conformations of the binding site. Our results suggest that although

MD-refinement can generate receptor conformations that are more similar to the native struc-

ture than the homology model, it is equally probable that the simulations drift further away

from the crystal conformation. Although a larger test set and longer simulations would be

required to quantify the potential of MD simulations to improve GPCR homology models, our

results agree with previous studies of soluble proteins [70]. It should also be noted that MD

protocols that use some restraints on the protein structure have been able to consistently

improve homology modeling accuracy and will likely also be useful for GPCRs [71]. To com-

pare virtual screening performance of homology models and MD snapshots, docking calcula-

tions for snapshots from apo and holo simulations were performed. Ligand enrichments by
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MD snapshots were either worse or comparable to the results obtained for homology models.

One could argue that the ensembles from MD simulations may represent relevant conforma-

tional states of the receptors that were not captured by crystallography or homology modeling.

In line with this idea, Vass et al. demonstrated that different ligand chemotypes were identified

by homology models and MD simulation snapshots in a prospective docking screens against

the H4R [31]. MD-refined structures can hence be useful in virtual screening to improve the

diversity of hits, but considering the high computational cost of simulations and lack of

improvement of retrospective ligand enrichment, homology modeling based on several differ-

ent templates should be prioritized in GPCR structure prediction.

Materials and methods

Sequence alignment and homology modeling

A multiple sequence alignment (MSA) based on aminergic GPCRs from the UniProt database

[72] and the template crystal structures (Table 1) was generated using the MAFFT localpair

algorithm with default parameters [73]. For this MSA, an HMM profile was obtained using

hmmbuild from the HMMER suite [74]. The resulting alignment was manually adjusted if

gaps were present in the TM region and in the extracellular loop regions. TM regions of the

D2R and 5-HT2AR were defined based on well aligned regions in the MSA and structural infor-

mation available for aminergic receptors (S1 Table). The conserved cysteine in ECL2 and the

two following amino acids of the template and target were aligned. Prior to homology model-

ing, the N- and C- termini, intracellular loop 3, and the stretch of ECL2 between TM4 and the

conserved cysteine in ECL2 were excluded from the alignment. Homology models were built

using MODELLER (version 9.14) [53]. A total of 250 models were generated per template-tar-

get pair, and the 50 models with the best DOPE scores [54] were extracted for further analysis.

RMSD calculations, which accounted for side chain symmetry, for the homology models and

crystal structures were performed using PyMol [75]. All statistical analyses were performed

with R 3.6.1 (https://www.r-project.org).

Preparation of known ligands and decoys

Sets of known D2R and 5-HT2AR ligands (activity < 1 μM and molecular weight < 350 Da)

were extracted from ChEMBL20 [76]. The molecular weight range was selected in order to

focus the benchmarking set on compounds with similar properties to those present in chemi-

cal libraries used in virtual screening, e.g. the ZINC database [77]. No filtering based on the

functional activity of the ligands was performed. Property-matched decoys to the D2R and

5-HT2AR ligands (822 and 650 unique ligands with 55146 and 43777 decoys, respectively)

were obtained using the DUD-E approach (http://dude.docking.org/) [59]. To evaluate

enrichments for specific ligand chemotypes, D2R ligands similar to the co-crystallized ligands

of three templates (H1R/Doxepin: 45 ligands, D3R/Eticlopride: 38 ligands, and 5-HT2CR/

Ritanserin: 48 ligands) were identified using clustering and substructure searches (S8 Table).

Compounds were prepared for docking with DOCK3.6 using the ZINC database protocol

[78].

Molecular docking screens

Molecular docking calculations were performed using the DOCK3.6 program [57,58]. The

receptor was described using a version of the AMBER force field. Parameters for the ionized

side chains were used for all Asp, Glu, Arg, and Lys residues. Tautomers of His residues were

selected by visual inspection of hydrogen bonding networks and were the same for all models
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of the D2R (Nε protonated: His33, His106, His393, and His398; Nδ protonated: His442) and

5-HT2AR (Nε protonated: His70, His165 and His182; Nδ protonated: His183). The binding

site of the homology models was defined based on the co-crystallized ligand of the template.

The binding sites of the D2R and 5-HT2AR crystal structures (PDB codes 6CM4 [55] and 6A94

[56], respectively) were defined based on the co-crystallized ligands. Compounds were docked

to a rigid receptor structure using the DOCK3.6 flexible-ligand algorithm with 45 matching

spheres, which were labelled for chemical matching. The number of generated orientations of

the docked compound was determined by the bin size, bin size overlap, and distance tolerance,

which were set to 0.4, 0.1, and 1.5 Å, respectively. The binding energy of each docked com-

pound was calculated as a sum of the van der Waals interaction energy, electrostatics interac-

tion energy, and a ligand desolvation energy term [57]. Enrichment of ligands over decoys was

analyzed using a receiver operating characteristic (ROC) curve. To quantify the ligand enrich-

ment, a semi-log transformation of the ROC curve was performed, followed by integration of

the area under curve to obtain the LogAUC value. The adjusted logAUC (aLogAUC) is calcu-

lated by subtracting the logAUC value obtained from random selection [57].

Molecular dynamics simulations

MD simulations were performed using the homology model with the best DOPE score [54]. In

these calculations, intracellular loop three, N and C termini were excluded. N- and C-termini

were capped with acetyl and methylamide groups, respectively. Protonation states of ionizable

residues were determined with PropKa [79] except for His393 of the D2R and His182 of the

5-HT2AR models, which were protonated at Nε. A sodium ion was placed close to Asp2.50 in

the TM region, which has been observed in inactive state structures of GPCRs [50]. The

homology models were aligned to a GPCR of the same type in the Orientations of Proteins in

Membranes (OPM) database [80] using STAMP 4.4 [81]. The receptors were then embedded

into a POPC bilayer and solvated. The systems were built using HTMD tools [82]. Each system

was neutralized with sodium chloride (0.15M) before undergoing 5000 conjugate gradient

minimization steps. We used the CHARMM36m force fields for protein, lipids, and ions. We

used the TIP3P model for water [83] and the RATTLE algorithm [84] to constrain bonds

involving hydrogens. Ligand parameters were obtained using the CHARMM General Force

Field (CGenFF) with the ParamChem webserver (legacy version 1.0.0) [85,86]. MD simula-

tions were performed with ACEMD [87]. The systems were equilibrated for 40 ns at 310 K

using a Langevin thermostat with a damping constant of 1 ps-1, a Berendsen barostat at 1 atm

with a pressure relaxation 800 fs and a compressibility factor of 4.57x10-5 with a 2 fs time-step

(NPT ensemble). During the first 20 ns of the equilibration, we applied harmonic position

restraints (1.0 kcal mol-1 Å-2) to the protein backbone and the sodium ion coordinated by

Asp2.50. The restraints were then gradually removed using a slope of -0.095 kcal mol-1 Å-2 ns-1

for 10 ns and fully removed for the last 10 ns. Production runs (three replicas) were performed

in the NVT ensemble and 100 ns were generated with a time-step of 4 fs, using a hydrogen

mass repartition scheme [88], at 310 K using a Langevin thermostat with a damping constant

of 0.1 ps-1. Cutoffs for Lennard-Jones and short-range electrostatic interactions were set to 9 Å
and a smooth switching function was applied when the distance exceeded 7.5 Å. Long-range

electrostatic forces were calculated using the particle-mesh Ewald algorithm [89] with a grid

spacing of 1 Å. The receptors were simulated both in apo forms and in complex with eticlo-

pride and ritanserin for the D2R and 5-HT2AR, respectively. Coordinates were saved every 100

ps. MD trajectories were analyzed using the MDAnalysis [90,91] and MDTraj [92] packages.

Clustering of the trajectories was performed based on the TM backbone using the Ward

method in TTClust [93] and 50 diverse snapshots were selected for analyses.
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Supporting information

S1 Table. Definition of the TM helix region using Ballesteros-Weinstein numbering.

(PDF)

S2 Table. Average pairwise RMSDs for the binding site side chains of the D2R and

5-HT2AR homology models. Statistics are based on 50 homology models per template.

(PDF)

S3 Table. Average RMSDs of D2R and 5-HT2AR homology models to the crystal structures.

Statistics are based on 50 homology models per template.

(PDF)

S4 Table. Ligand enrichment (aLogAUC) by D2R and 5-HT2AR homology models based on

different templates. Statistics are based on 50 homology models per template.

(PDF)

S5 Table. Ligand enrichment (aLogAUC) by the D2R and 5-HT2AR crystal structures.

(PDF)

S6 Table. Ligand enrichment (aLogAUC) by crystal structure templates.

(PDF)

S7 Table. Ligand enrichment (aLogAUC) by D2R and 5-HT2AR homology models without

ECL2. Statistics are based on 50 homology models per template.

(PDF)

S8 Table. Smiles of D2R ligands similar to the co-crystallized ligands of three templates

(doxepin-, eticlopride-, piperidine/piperazine-like ligands) from the ChEMBL database.

(PDF)

S9 Table. Average RMSDs to the starting structure (homology model) of MD snapshots of

the D2R and 5-HT2AR.

(PDF)

S10 Table. Ligand enrichments (aLogAUC) for MD simulation snapshots of the D2R and

5-HT2AR homology models. Statistics are based on 50 snapshots per trajectory.

(PDF)

S1 Fig. Binding site accuracy of homology models. Distributions of the RMSDBSSC to the

crystal structures for 50 models of the D2R (A) and 5-HT2AR (B) based on different templates

using a boxplot representation. The box represents the 50th percentile of the data and the

black band shows the median value. The lowest and highest RMSDBSSC values are represented

by the whiskers.

(TIF)

S2 Fig. Variation in ligand enrichment by homology models based on the same template.

Enrichment curves for 50 (A) D2R (based on D3R template) and (B) 5-HT2AR (based on

5-HT2CR template) homology models. Receiver operating characteristic (ROC) curves for

databases of ligands and property-matched decoys ranked by molecular docking. The percent-

age of ligands identified and decoys found are shown on the y- and x-axis, respectively. The

solid black line represents random enrichment of ligands.

(TIF)

S3 Fig. Comparison of the ECL2 of the D2R and 5-HT2AR to template crystal structures.

(A) Comparison of ECL2 of the D2R (green) to templates (β1AR, D3R, D3R, H1R, M2R,
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5-HT1BR, 5-HT2BR, 5-HT2CR, A2AAR, CB1R, CXCR4, Rho; grey). (B) Comparison of the

ECL2 of the 5-HT2AR (blue) to the 5-HT2CR template (grey). The receptor backbone is shown

as cartoons. The conserved cysteine bridge formed by Cys45.50 is shown as sticks.

(TIF)

S4 Fig. Relation between ligand enrichment and sequence identity. The median aLogAUC

values of the D2R (A-B) and 5-HT2AR (C-D) homology models without ECL2 based on ami-

nergic templates with different TM (A and C) or BS (B and D) sequence identities. The solid

line represents a linear regression and R is Pearson’s correlation coefficient.

(TIF)

S5 Fig. RMSD to the initial structure of the MD snapshots. TM backbone RMSDs of the D2R

(A-C) and 5-HT2AR (D-F) MD snapshots to the initial homology model. The three trajectories of

the Rho-based models (MDRho/Apo, A and D) and models based on the most closely related tem-

plate in apo (MDTemplate/Apo, B and E) and holo forms (MDTemplate/Holo, C and F) are shown.

(TIF)

S1 File. D2R pairwise alignment.

(ZIP)

S2 File. 5-HT2AR pairwise alignment.

(ZIP)
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