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In this paper, we address the question of what minimal cognitive features are necessary for 

learning to process and extract grammatical structure from language. We build a 

minimalistic computational model containing only the two core features chunking and 

sequence memory and test its capacity to identify sentence borders and parse sentences in 

two artificial languages. The model has no prior linguistic knowledge and learns only by 

reinforcement of the identification of meaningful units. In simulations, the model turns out 

to be successful at its tasks, indicating that it is a good starting point for an extended model 

with ability to process and extract grammatical structure from larger corpora of natural 

language. We conclude that a model with the features chunking and sequence memory, 

that should in the future be complemented with the ability to establish hierarchical 

schemas, has the potential of describing the emergence of grammatical categories through 

language learning. 

 

1. Introduction 

In the search for the cognitive mechanisms underlying human language learning 

capacity, chunking has been identified as essential for overcoming memory 

constraints in online language processing (Christiansen & Chater 2016). The idea 

that language acquisition occurs through language use and through continuous 

updating of linguistic knowledge encoded as chunks or constructions (Bybee 

1985, Tomasello 2003) has recently been successfully implemented in a chunk-

based language acquisition model (McCauley & Christiansen 2019).  



  

Sequence learning has also been pointed out as central for the language 

capacity (Bybee 2002, Christiansen et al. 2002, Frank et al. 2012). Faithful 

sequence representation has additionally been suggested to be uniquely human 

(Grant & Roberts 1976, MacDonald 1993, Roberts 2002, Ghirlanda et al 2017). 

Combined with chunking, sequence memory enables the storing of the sequential 

order of a chunk’s components. The combination of these two features allows for 

the successive building up of a hierarchy of chunks that can support the 

identification of meaningful constructions in language processing. 

The aim of this paper is to test whether the two features chunking and 

sequence memory are sufficient to extract simple grammatical structure from 

strings of artificial languages containing structures that are typical for natural 

languages. By implementing a minimal model architecture where no linguistic 

properties are predefined and evaluate its ability to extract sentences and 

grammatical structure in simple artificial languages, we aim at commenting the 

potential of the model to represent core features of the human language learning 

capacity. Furthermore, we compare a model with hierarchical chunking capacity 

to a model with a simpler incremental chunking capacity, in order to discuss 

whether and how chunking supports language learning. We also aim at discussing 

whether this model is a good starting point for an extended model able to process 

and extract grammatical structure from larger corpora of natural language.  

 

2. Model 

The task of the model is to segment a stream of incoming stimuli into meaningful 

units, conceptualized as sentences. The input consists in two small artificial 

languages with simple grammars. The first language contains one transitive verb 

and two nouns that can have the syntactic functions of subjects or objects. The 

word order of the language can be subject-verb-object or object-verb-subject, 

depending on how it is parsed. The first language thus consists of four sentences: 

(1) noun1 verb noun1 

(2) noun1 verb noun2 

(3) noun2 verb noun1 

(4) noun2 verb noun2 

The second language is similar to the first one but increases complexity by 

introducing the possibility of adding a subordinate clause after each noun. The 

subordinate clause consists of a verb and a noun, making the language recursive. 

For both language conditions, sentences are repeated randomly in a string that 



  

constitutes the input to be processed by the model’s learning mechanism. The 

input contains no cues that reveal the sentence borders. The processing of the 

input is performed by an associative learning mechanism in which v( s → b ) is 

the stimulus-response association between stimulus s and behaviour b which 

estimates the value v of performing behaviour b when encountering stimulus s. 

As a consequence of experience, an agent learns about the value of responding 

with b to s according to          

Δ v( s → b ) = α [u - v( s → b ) ] , 

 

where u is the reinforcement value and α regulates the rate of learning. A target 

behaviour b is associated with every stimulus and the corresponding 

reinforcement value u is positive. Otherwise, the reinforcement value u is 

negative.  

In our learning simulations, the learning mechanism perceives two elements 

and their internal temporal order before each decision. The first element can be 

atomic or complex, depending on previous chunkings. When perceiving a 

sequence, the mechanism has two basic possibilities of behaviours:  

(i) Place border: A border is placed between the first and the second element 

in the pair. The model then suggests that a sentence ends where the border 

is placed and begins where the last border was placed. 

(ii) Chunk: The two elements will then form a chunk that will constitute the 

first element in the next perceived sequence. If the first element is already 

a chunk, different kinds of chunkings may occur.: 

a. Right-chunk: The last element is chunked on the right-hand side to 

the first, without changing the internal structure of the first element. 

b. Sub-chunk: The last element is chunked with a sub-element in the 

first element, causing a restructuring of the first element. The 

number of sub-elements to which the last element can be chunked 

is determined by the structure of the first element. In a binary tree 

structure, chunking can occur with any element or node that is 

accessible from the right-hand side of the tree, illustrated in Fig. 1. 

Flexible chunking (where right-chunking or any accessible sub-chunking can 

occur) generates binary hierarchical tree structures that can have any number of 

left- or right-branches. Fig. 1 illustrates possible chunkings with a complex 

element. In the example, the last element has four chunking possibilities. The 

upper cross indicates right-chunking and the three subsequent crosses indicate 

chunkings at increasingly lower levels. 



  

 

 

Figure 1. Illustration of possible chunkings when the first element is complex.  

 

In order to investigate whether flexible chunking supports learning, we also test a 

simpler mechanism that can only right-chunk, generating purely left-branching 

trees. We call the two mechanisms flexible chunking and right-chunking. 

If a border is placed, positive reinforcement is given for correct identification 

of sentence boundaries and negative reinforcement for identification of incorrect 

boundaries. Reinforcement implies strengthening or weakening the association 

between the perceived sequence and the performed behaviour. This represents the 

concept that a language learner receives an internal or external reward for the 

identification of a meaningful unit i.e. a sentence. Trying to make sense of a 

nonsensical unit, on the other hand, can generate frustration, represented by 

negative reinforcement in the model. When reinforcement is given, it is also back-

propagated to preceding chunkings that contributed to the successful or 

unsuccessful sentence identification.  

Like a naïve language learner, the mechanisms in the model have no prior 

knowledge of grammatical structure. The mechanisms need to explore and 

discover on their own the chunkings that lead to correct sentence identifications 

and positive reinforcement.  

 

 

3. Results 

Results from simulations show that both the flexible chunking mechanism and the 

right-chunking mechanism learn to identify the sentences in the input in the two 

languages. As can be seen in Fig. 2, all sentences in the first, less complex 

language are identified and consequently pointed out after a learning process that 

takes the shape of an S-curve. The learning curves for the two mechanisms are 

very similar with the only difference that the curve of the flexible chunking 



  

mechanism has a slightly steeper S-shape. This is likely due to the larger 

behaviour repertoire resulting from flexible chunking, that slows down learning 

initially. Once succesful chunkings are identified, learning is likely faster because 

both productive right-chunkings and sub-chunkings are reinforced. It is not clear, 

however, which of the two mechanisms learns fastest. 

 

 

Figure 2. Simple sentences. Learning curves of the two mechanism based on sub-chunking and 

incremental chunking. The curves averages correct responses over 250 simulations. 

 

After a complete learning process, both mechanisms had extracted all four 

grammatical sentences in the language and no agrammatical sentences. An 

example of grammars and parsings extracted by the mechanisms is presented in 

Table 1. As can be seen in Table 1, flexible chunking generates both left-

branching and right-branching parsings. There seems to be no tendency for right-

branching or left-branching; they are equally favoured. This is likely due to the 

fact that a chunking followed by a chunking or a sub-chunking are equally likely 

to occur and both lead to successful border placement. Once one of the two 

variants is tried out, it is reinforced, and the mechanism sticks to it. The right-

chunking mechanism, on the other hand, generates only left-branching parsings. 

 



  

Table 1. Grammars for the simple first language extracted by the two learning 

mechanisms 

  FLEXIBLE CHUNKING RIGHT-CHUNKING 

Correct sentence Parsing  Parsing  

noun2 verb noun1 ((noun2 verb) noun1) ((noun2 verb) noun1) 

noun2 verb noun2 ((noun2 verb) noun2) ((noun2 verb) noun2) 

noun1 verb noun2 (noun1 (verb noun2)) ((noun1 verb) noun2) 

noun1 verb noun1 (noun1 (verb noun1)) ((noun1 verb) noun1) 

 

 

The second and more complex language, that involves subordinate clauses, 

generates a more interesting result. As seen in Fig. 3, learning to correctly identify 

sentences in the more complex language takes much longer for the two learning 

mechanisms, but it is now clear that the flexible chunking mechanism learns much 

faster than the right-chunking mechanism An analysis of the parsing generated by 

the flexible chunking mechanism offers a possible explanation to this. 

 

 

 
Figure 3. More complex sentences with subordinate clauses. The probability of a subordinate 

clause appearing after a noun is here 0.5 and the maximum number of subordinate clauses per 

sentence is 2. Learning curves of the two mechanisms based on flexible chunking and right-

chunking. The curves average correct responses over 250 simulations. 

 



  

In Table 2, only parsings generated by flexible chunking are presented. Right-

chunking consistently generates left-branching parsings that do not need to be 

illustrated once more. As the number of possible sentences is high, some example 

parsings are demonstrated to illustrate the tendency that was identified. 

 

Table 2. Examples from a grammar extracted by the flexible chunking mechanism 

in the more complex language with subordinate clauses. 

  FLEXIBLE CHUNKING 

Correct sentence Parsing  

noun2 verb noun1 ((noun2 verb) noun1) 

noun1 verb noun2 (noun1 (verb noun2)) 

noun1 verb noun2 verb noun2 ((noun1 verb) (noun2 (verb noun2 ))) 

noun1 verb noun1 verb noun1 verb noun2 (noun1 (verb ((noun1 verb) (noun1 (verb noun2))))) 

 

 

As can be seen in Table 2, there is still no consequent right-branching or left-

branching parsing of the recursive sentence structures with subordinate clauses. 

What can be observed, however, is how chunkings from shorter sentences support 

the building up of longer sentences.  

Firstly, a chunking that is always reinforced in the identification of the 

shorter sentences is noun-verb. This supports the sub-chunking of a noun and a 

verb in subordinate clauses. In the parsing of sentences with subordinate clauses, 

nouns followed by a verb are always preceded by a left parenthesis, indicating 

that the noun and the following verb have been sub-chunked. Secondly, if a sub-

chunking of the verb and a noun occurs in the parsing of a short sentence, as in 

the second example sentence in Table 2, where the verb is sub-chunked with 

noun2, this sub-chunking tends to reappear in subordinate clauses. This can be 

seen in the last two sentences in Table 2, where this sub-chunk appears last in the 

parsing of both sentences.  

Apart from these two tendencies, different and seemingly random parsing 

structures appear. It seems clear, however, that frequent chunkings in shorter 

sentences are reused in longer sentences. This probably explains the fast learning 

of the flexible chunking mechanism. The right-chunking mechanism cannot use 

the support from previous chunkings when learning to identify increasingly 

longer sentences. 



  

 

 

4. Discussion 

These first results from testing the language processing capacity of a minimal 

language learning model are promising for future extensions of the model. The 

fact that a reinforcement learning model including only the two core features 

chunking and sequence memory is able to learn to correctly identify sentences in 

small artificial languages with and without recursion is a preliminary yet powerful 

indication of the potential of the model. The ability of a model to extract 

meaningful constructions with no pre-assumptions concerning grammatical 

categories or rules is compatible with the idea of emergent grammatical categories 

in Radical Construction Grammar (Croft 2001). The comparison between the 

flexible chunking mechanism and the right-chunking mechanism shows that 

flexible chunking initially slows learning down, but if the language is complex 

and contains repetition of structures, learning soon becomes faster than for the 

right-chunking mechanism. This indicates that flexible chunking may be an 

important property of an incremental learning model based on chunking and 

sequence memory. We believe that if exposed to more complex and variable 

grammatical structures, such as those of natural languages, and extended with a 

schematizing feature, the model would most likely chose right-branching or left-

branching parsing of given structures more consistently and this would likely 

increase the utility of flexible chunking even more. 

The principle of flexible chunking is similar to that of unsupervised data-

oriented parsing (U-DOP) (Bod 2006), in the sense that U-DOP can generate any 

tree-structure with no lexical or structural constraints. However, while U-DOP 

requires costly computations to estimate the most probable parse trees, our model 

provides the same flexibility implemented in a simpler way.  

A feature that we believe should be added to the model in the future is the 

ability to establish schemas based on the similarity of the strings and structures 

that enter the decision function. This feature should reduce learning costs, which 

will be necessary for processing natural language corpora with a much higher 

diversity and complexity than the small artificial languages used here. The 

schematizing feature may also generate increasingly abstract schemas organized 

in a hierarchical network that can be studied and compared with conventional 

grammatical descriptions of a language. A possible future application of the 

model is thus to describe the emergence of lexico-grammatical categories through 

language learning, 
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