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Abstract

Radial basis function (RBF) methods are meshfree, i.e., they can
operate on unstructured node sets. Because the only geometric
information required is the pairwise distance between the node
points, these methods are highly flexible with respect to the ge-
ometry of the computational domain. The RBF approximant
is a linear combination of translates of a radial function, and
for PDEs the coefficients are found by applying the PDE op-
erator to the approximant and collocating with the right hand
side data. Infinitely smooth RBFs typically result in exponen-
tial convergence for smooth data, and they also have a shape
parameter that determines how flat or peaked they are, and that
can be used for accuracy optimization. In this thesis the focus
is on global RBF collocation methods for PDEs, i.e., methods
where the approximant is constructed over the whole domain
at once, rather than built from several local approximations. A
drawback of these methods is that they produce dense matri-
ces that also tend to be ill-conditioned for the shape parameter
range that might otherwise be optimal. One current trend is
therefore to use over-determined systems and least squares ap-
proximations as this improves stability and accuracy. Another
trend is to use localized RBF methods as these result in sparse
matrices while maintaining a high accuracy. Global RBF collo-
cation methods together with RBF interpolation methods, how-
ever, form the foundation for these other versions of RBF–PDE
methods. Hence, understanding the behaviour and practical as-
pects of global collocation is still important. In this thesis an
overview of global RBF collocation methods is presented, focus-
ing on different versions of global collocation as well as on method
properties such as error and convergence behaviour, approxima-
tion behaviour in the small shape parameter range, and prac-
tical aspects including how to distribute the nodes and choose
the shape parameter value. Our own research illustrates these
different aspects of global RBF collocation when applied to the
Helmholtz equation and the Black–Scholes equation.
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Chapter 1

Introduction

In this introductory section we describe the fundamental ideas of radial basis
function (RBF) approximation methods and we also give a brief historical
overview, listing some of the important steps in the development of these
methods. We also present the focus of this thesis, list the PDE applications
that we have used in our own research, and provide a motivational exam-
ple that illustrates the competitiveness of RBF methods. In Section 2 we
describe radial basis functions and their properties in more detail and in
Section 3 we list different versions of RBF methods for time-independent
PDEs. In Section 4 we then describe how to solve time-dependent problems
and we also briefly discuss stability issues. In Section 5 we present results
regarding approximation in the limit where the RBFs become flat and in
Section 6 we provide a more detailed description of RBF approximation er-
rors. We conclude with some practical aspects of RBF approximation in
Section 7 and a summary in Swedish in Section 8. Throughout this thesis a
general overview of each topic is presented along with illustrating examples
from our own research.

1.1 Fundamental ideas

A radial function, φ, defined on Rd, is a function whose value at each point
depends only on the distance between that point and the centre point of the
function, i.e.,

φ(x) = ϕ(r), x = (x1, . . . , xd) ∈ Rd, r =
√
x2

1 + · · ·+ x2
d. (1.1)

In radial basis function (RBF) approximation, we first choose a set of node
points or use a node set where data is available. At each node we centre
a translate of a specific radial function, which is typically the same for all
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4 Chapter 1. Introduction

nodes. We then use these translates as basis functions (RBFs) and let a
linear combination of them form our approximant, i.e., we have

s(x, ε) =
N∑

j=1

λjφ(‖x− xj‖, ε), (1.2)

with the coefficients λ1, . . . , λN for the N basis functions centred at the
nodes x1, . . . ,xN .

For interpolation of the given data f = (f1, . . . , fN )T at the node points
(x1, . . . ,xN )T , we match the approximant with the corresponding data value
at each node point, i.e.

s(xi, ε) = fi, i = 1, . . . , N, (1.3)

or in matrix form

Aλ = f , (1.4)

where

Aij = φ(‖xi − xj‖, ε),
fi = f(xi).

(1.5)

Once we have solved the system (1.4) for the coefficients λj , we can evaluate
the approximant (1.2) at any point in the computational domain.

The corresponding technique for partial differential equations (PDEs)
is called collocation. In this case we apply the PDE interior and boundary
operators to our approximant and then match the resulting expressions with
the given right hand side data at the corresponding nodes. Global colloca-
tion simply means that we approximate the solution function over the whole
computational domain at once, in contrast to building the global solution
from a combination of local approximations.

With RBF approximation methods, the only geometric information needed
is the pairwise distance between points. This makes RBF methods easy to
implement for problems of any dimension. There is no need to set up a
computational mesh and the node distributions are not confined to spe-
cific structures like for example tensor product grids. The RBF methods
are thus very flexible with respect to the geometry of the computational
domain. Another advantage is that the infinitely smooth RBFs result in
methods featuring exponential convergence for smooth solutions.

A drawback of global RBF methods is that the globally supported RBFs,
i.e., the RBFs whose values are non-zero on the whole computational do-
main, result in dense matrices which makes the corresponding systems of
equations computationally expensive to solve. This includes the infinitely
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smooth RBFs which typically also produce ill-conditioned matrices, espe-
cially for the parameter values that lead to the highest accuracy.

1.2 A brief historical overview

The RBF method using the so called multiquadric (MQ) RBF was in-
troduced for interpolation of scattered topography data in the late 1960s
[43, 44]. The MQ method however remained largely unknown until the pub-
lication of [38] in 1982, where the RBF method using MQ was found to
perform the best in a comparison of various scattered data interpolation
methods [50]. This result may have inspired other researchers to study the
MQ method and in 1990 excellent results for this method were presented,
not only for scattered data interpolation but also for the estimation of par-
tial derivatives, as well as for the solution of PDEs [50, 51]. In the early
years of research on RBF methods for PDEs, the focus was on global col-
location methods. In more recent years, overdetermined RBF systems and
least squares solution approximations have been favoured, as this improves
stability and accuracy [93]. The current trend is also to use localized RBF
methods as these result in sparse matrices while maintaining a high accu-
racy. One such method is the RBF-generated finite difference (RBF–FD)
method, first described in [98] in 2000. The idea of the RBF–FD method is
to form computational stencils, similar to those in finite difference methods,
by constructing derivative discretizations based on RBF interpolants on lo-
calized node sets [26]. Another localized method is the radial basis function
partition of unity method (RBF–PUM). The PUM method was presented
in the context of finite element methods in [73, 1] in the 1990s. In the latter
of these two articles, the authors list different shape functions used for data
fitting, including RBFs, and mention that these can also be used in varia-
tional formulations for the solution of PDEs, thus implicitly suggesting the
possibility of combining RBFs with PUM. An algorithm, similar to PUM,
for scattered data fitting can also be found already in [37] from 1977. The
theory of RBF interpolation was combined with a partition of unity method
in [100] in 2002. Since then, RBF–PUM versions have also been developed
for PDE applications [45, 87, 59, 10]. The basic concept of the RBF–PUM
approach is to divide the computational domain into mildly overlapping sub-
domains that together cover the domain, and to then construct a local RBF
approximation on each subdomain. The global solution is then given by the
sum of these local approximations multiplied by partition of unity weight
functions, i.e., a set of compactly supported functions whose sum is one at
each point in the global domain. For more extensive recent works on RBF
methods and related topics, see for example [5, 101, 94, 18, 88, 26].
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1.3 Thesis focus, PDE applications and a motiva-
tional example

The focus of this thesis is on the theory, behaviour and practical aspects
of global RBF collocation methods. As stated above, the trend is shifting
from these methods towards localized and least squares versions. However,
the results for global RBF collocation are still relevant, as interpolation and
global collocation together constitute the foundation on which the localized
methods are built.

For reference in subsequent chapters, where various results of our own
research are presented as illustrations of different aspects of RBF approxi-
mation, we here list the application problems we have used. We also present
a motivational example illustrating the efficiency of the RBF method.

1.3.1 The Helmholtz equation

The Helmholtz equation, which is a time-independent linear PDE, is in all
examples given by

L1u(x) = −∆u(x)− κ2u(x) = 0, x ∈ Ω1 = Ω. (1.6)

We have chosen this problem because it is in general harder to solve than
the Laplace and Poisson equations, especially for large wavenumbers. Some
reasons for this are the indefiniteness of the operator, the wave nature of the
solution, and the typically more complicated boundary conditions. There
is also a problem parameter, κ, which can be varied in order to study its
connection with the RBF method parameters.

The simplest model problem is one-dimensional, with Ω = (0, 1), and
non-reflecting (or radiation) boundary conditions given by

L2u(x) = −du
dx

(x)− iκu(x) = −2iκ, x = 0,

L3u(x) =
du

dx
(x)− iκu(x) = 0, x = 1.

(1.7)

The analytical solution for this problem is u(x) = exp(iκx), if κ is constant.

The second problem is two-dimensional with a rectangular domain Ω =
(0, L1) × (0, 1). At the top and bottom boundaries, we use the Dirichlet
boundary condition

L4u(x) = u(x) = 0, x = (0, x2) or x = (L1, x2), (1.8)

indicating that we consider a waveguide type of problem. The conditions at
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the left and right boundaries are

L2u(x) = − ∂u

∂x2
(x)− iβmu(x) = −2iβm sin(αmx1), x = (x1, 0),

L3u(x) =
∂u

∂x2
(x)− iβmu(x) = 0, x = (x1, 1),

(1.9)
where αm = mπ

L1
, βm =

√
κ2 − α2

m, and m ≥ 1 is an integer. These condi-
tions allow for just one propagating mode in the solution, which is given by
u(x) = exp(iβmx2) sin(αmx1), assuming that κ is constant.

The third and final problem is also two-dimensional, but the domain Ω
is now enclosed between two curves γ1(x2) < x1 < γ2(x2), x2 ∈ (0, 1), see
Figure 1.1. The Dirichlet condition (1.8) is modified to hold at γ1 and γ2.

L4u(x) = u(x) = 0, x = (γj(x2), x2), j = 1, 2. (1.10)
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Figure 1.1: Wave propagation in an M-shaped duct. The source position
is indicated by the marker at the left boundary and the wave number is
κ = 6π. The real part of the solution is displayed.

At the left and right boundary, we here use so called Dirichlet–to–Neumann
map (DtN) radiation boundary conditions [52]

L2u(x) = − ∂u

∂x2
− i

∞∑

m=1

βm〈u(·, 0), ψ0
m〉ψ0

m(x1)

= −2i

∞∑

m=1

Amβmψ
0
m(x1), x2 = 0,

L3u(x) =
∂u

∂x2
− i

∞∑

m=1

βm〈u(·, 1), ψ1
m〉ψ1

m(x1) = 0, x2 = 1,

(1.11)

where, for a fixed x2, the modes ψx2m =
√

2 sin(αm(x1 − γ1(x2)), with αm =
mπ

γ2(x2)−γ1(x2) . The inner product is given by
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〈u(·, x2), ψx2m 〉 =

∫ γ2(x2)

γ1(x2)
u(x1, x2)ψx2m (x1) dx1, (1.12)

and the amplitudes are chosen to emulate a point source, i.e., Am = ψ0
m(xs),

where xs is the position of the source in the vertical coordinate. The
(DtN) conditions allow for any combination of modes to move transparently
through the vertical boundaries. For practical and computational reasons,
however, the infinite sum is truncated at µ(x2) = bκ(γ2(x2)−γ1(x2))

π c.

1.3.2 The Black–Scholes equation

The Black–Scholes equation is a time-dependent linear PDE that is posed as
a final value problem in its original formulation. Here we use a transformed
version of the PDE, where time is reversed to make standard texts on time-
integration for PDEs applicable, and all variables have been scaled to be
dimensionless. The details of the transformation can be found in [78]. The
transformed problem reads





∂

∂t̂
P (t̂,x) = LP (t̂,x), t̂ ∈ R+, x ∈ Rd+,

P (0,x) = Φ(x), x ∈ Rd+,
(1.13)

where

LP = 2r̄

d∑

i=1

xi
∂P

∂xi
+

d∑

i,j=1

[
σ̄σ̄T

]
ij
xixj

∂2P

∂xi∂xj
− 2r̄P, (1.14)

and P (t̂,x) is the value of the option at the transformed time t̂ when the
underlying scaled assets have the values given by x. Furthermore, the co-
efficient r̄ is the scaled short interest rate, σ̄ is the scaled volatility and d
denotes the number of underlying assets and thus the number of spatial
dimensions of the problem. We use the following contract function for a
European basket call option

Φ(x) = max

(
1

d

d∑

i=1

xi − K̄, 0

)
, (1.15)

where the scaled strike price in our case is K̄ = 1.

In [49], the authors show that the problem we consider here is actually
well-posed without boundary conditions as long as the growth at infinity is
restricted. Therefore, we only use near- and far-field boundary conditions.
This means that no boundary conditions are employed at boundaries of the
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type Γi = {x | x ∈ Rd+, x 6= 0, xi = 0}, i = 1, . . . , d. The near-field
boundary can be seen as the single point x = 0, and there we enforce

P (t̂,0) = 0. (1.16)

The problem is defined on Rd+, but for computational reasons we need to
restrict the problem to a finite domain. Given the structure of the contract
function (1.15) we choose a far-field boundary surface of the type

∑d
i=1 xi =

C, where the constant C is chosen to bring the surface far enough from the
origin for the far-field solution (1.17) to be an accurate approximation. We
then use this asymptotic solution as our far-field boundary condition

P (t̂,x)→ 1

d

d∑

i=1

xi − K̄e−2r̄t̂, ‖x‖ → ∞. (1.17)

1.3.3 A motivational example

As previously mentioned, one of the drawbacks of global RBF methods is
that they produce dense matrices, increasing the storage space needed and
making the corresponding systems of equations computationally expensive
to solve. However, in Paper I, we solved the Black–Scholes equation (1.13)
in 1D and 2D and compared the time and memory requirements of the
RBF method for different solution errors with those of an adaptive finite
difference (FD) method, which produces a sparse system matrix. The results
can be seen in Figures 1.2 and 1.3. The RBF method is faster than the FD
method in both 1D and 2D and the memory requirements are similar for the
methods in 2D. This shows that global RBF methods can be competitive
even in geometries where standard methods producing sparse matrices are
available.
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Figure 1.2: Time efficiency comparison between the RBF method (circles)
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for the one-dimensional Black–Scholes problem.
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Figure 1.3: Time and memory efficiency comparison between the RBF
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Chapter 2

RBF types and
well-posedness of the
interpolation problem

There are different ways to categorize RBFs. In this section we briefly
discuss the different types of RBFs and their characteristics as well as con-
ditions for the well-posedness of the interpolation problem (1.2)–(1.5). A
more detailed description, especially concerning the convergence and error
behaviour associated with the different RBF types, is given in Section 6 and
some general guidelines on the choice of RBF and related issues are dis-
cussed in Section 7. Examples of the most commonly used RBFs are listed
in Tables 2.1 and 2.2.

2.1 RBF types

Our focus is mainly on the infinitely smooth RBFs, i.e., RBFs that are in-
finitely many times differentiable. These RBFs also have a shape parameter,
ε, that determines how flat or peaked the RBFs are, see Figure 2.1. Flatter
basis functions result in higher accuracy for smooth functions, but also worse
conditioning and numerical instability. The shape parameter naturally in-
troduces a possibility for optimization but it is typically difficult to know
what shape parameter value to choose a priori. The infinitely smooth RBFs
typically lead to exponential convergence as the node density increases and
as the shape parameter decreases. This has been observed numerically for
the commonly used RBFs and proved theoretically for the GA and (inverse)
MQ RBFs [18, 70, 101, 67]. Unfortunately though, the condition numbers
of the interpolation matrices of the infinitely smooth RBFs grow exponen-
tially both with decreasing minimum distance between node points and with

11



12 Chapter 2. RBF types and well-posedness

Table 2.1: Some examples of strictly positive definite RBFs. Note that the
Bessel-type RBFs φd are strictly positive definite in up to d dimensions for
d = 2, 3, . . . [29]. Kν is the modified Bessel function of the second kind
and of order ν, Γ is the gamma function and pd,k(εr) ∈ Pdeg=k are certain
polynomials of degree k.

Strictly positive definite RBFs

Infinitely smooth RBFs φ(r, ε)

Gaussian (GA) e−(εr)2 , ε > 0
Inverse multiquadric (IMQ) 1√

1+(εr)2

Generalized IMQ 1
(1+(εr)2)β

, β > 0

Inverse quadratic (IQ) 1
1+(εr)2

Bessel-type RBFs (φd) on Rk, k ≤ d Jd/2−1(εr)

(εr)d/2−1 , d = 2, 3, . . .

Piecewise smooth RBFs φ(r, ε)

Matérn functions on Rd Kβ−d/2(εr)(εr)β−d/2

2β−1Γ(β)
, β > d

2

Wendland CSRBF ϕd,k on Rd (1− εr)bd/2c+2k+1
+ pd,k(εr)

Table 2.2: Some examples of strictly conditionally positive definite RBFs.
Strictly conditionally positive definite RBFs

Infinitely smooth RBFs φ(r, ε) Order

Multiquadric (MQ)
√

1 + (εr)2 1

Generalized MQ (GMQ) (1 + (εr)2)β/2, 0 < β 6∈ 2N dβ2 e
Piecewise smooth RBFs φ(r) Order

Radial powers (RPn) rβ, β = 1, 3, 5 . . . dβ2 e
Thin plate splines (TPSn) rβ log r, β = 2, 4, 6 . . . β

2 + 1

decreasing shape parameter value [18, 101].

Figure 2.1: The shape of the Gaussian (GA) RBF for three different shape
parameter values. (Image courtesy of Elisabeth Larsson.)

Most of the piecewise smooth RBFs do not have any shape parameter
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and thus they cannot be optimized in that sense. That makes them simpler
to use as there is no need to choose a shape parameter value. They also
lead to less ill-conditioned systems than the infinitely smooth RBFs with
condition numbers growing algebraically with the node density [18, 101].
This type of RBF however can only give algebraic convergence [18, 105, 101].

Both the infinitely smooth and the piecewise smooth RBFs have global
support, i.e., they are non-zero over the whole computational domain, which
leads to dense matrices in the resulting systems of equations. But there are
also compactly supported RBFs. These RBFs are non-zero only in a fi-
nite region around their centre and the support size is determined by the
shape parameter value. The condition number of the interpolation matrix
corresponding to this RBF type grows algebraically with decreasing mini-
mum node distance and the compactly supported RBFs also result in sparse
matrices, but similarly to the piecewise smooth RBFs they can only give
algebraic convergence [18, 101]. This convergence also comes at the cost
of keeping the support-size fixed when increasing the node density, which
corresponds to increasing the bandwidth of the interpolation matrix. If the
bandwidth is kept constant there will essentially be no convergence and so
another approach, such as multilevel methods, is recommended for this type
of RBF [18].

2.2 RBF positive definiteness and well-posedness
of the interpolation problem

In the remainder of this section we focus on some conditions related to the
well-posedness of the interpolation problem.

Definition 2.2.1 ([18], Theorem 3.2.). A real-valued continuous function φ
is positive definite on Rd if it is even, i.e., φ(x) = φ(−x), and if

N∑

i=1

N∑

j=1

cicjφ(xi − xj) ≥ 0, (2.1)

for any N pairwise different points x1, . . . ,xN ∈ Rd, and c = (c1, . . . , cN )T

∈ RN . The function φ is strictly positive definite on Rd if the quadratic
form (2.1) is zero only for c ≡ 0.

Some examples of strictly positive definite RBFs are listed in Table 2.1.
The strict positive definiteness of an RBF guarantees that the interpolation
matrix A in (1.5) is positive definite too, and thus invertible.

Some RBFs fulfil similar but less strict conditions given in Definition 2.2.2.
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Definition 2.2.2 ([18], Theorem 7.1.). A real-valued continuous even func-
tion φ is conditionally positive definite of order m on Rd if

N∑

i=1

N∑

j=1

cicjφ(xi − xj) ≥ 0, (2.2)

for any N pairwise different points x1, . . . ,xN ∈ Rd, and c = (c1, . . . , cN )T

∈ RN satisfying
N∑

i=1

cip(xi) = 0, (2.3)

for any real-valued polynomial p of degree at most m − 1. The function
φ is strictly conditionally positive definite of order m on Rd if the
quadratic form (2.2) is zero only for c ≡ 0.

Some examples of strictly conditionally positive definite RBFs are presented
in Table 2.2. Most of these RBFs do not automatically guarantee the in-
vertibility of the interpolation matrix in its simplest form given by (1.5).
Instead we need to append some extra terms to the interpolant as described
below, see [18]. Using a radial function, φ(r), that is conditionally positive
definite of order m, let the interpolant be

s(x, ε) =
N∑

j=1

λjφ(‖x− xj‖, ε) +
M∑

k=1

αkpk(x), x ∈ Rd, (2.4)

where p1, . . . , pM form a basis for the M =

(
m− 1 + d
m− 1

)
-dimensional lin-

ear space Pdm−1 of polynomials of total degree less than or equal to m − 1
in d variables. Now we have N + M unknown coefficients so we need to
add M conditions, which are chosen as (2.5) below. Note the similarity
between these conditions and the conditions in Definition 2.2.2, and that
this particular choice together with some additional requirements specified
in Theorem 1 guarantees well-posedness of the interpolation problem using
(2.4).

N∑

j=1

λjpk(xj) = 0, k = 1, . . . ,M. (2.5)

We now have the following system of equations for the interpolation problem

(
A P

P T O

)(
λ
α

)
=

(
f

0

)
, (2.6)
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where Aij = φ(‖xi − xj‖, ε), i, j = 1, . . . , N , Pik = pk(xi), i = 1, . . . , N ,
k = 1, . . . ,M , λ = (λ1, . . . , λN )T , α = (α1, . . . , αM )T , f = (f1, . . . , fN )T ,
0 is a zero vector of length M and O is an M ×M zero matrix.

For the purpose of presenting a theorem on the well-posedness of the
interpolation problem (2.6) we introduce the concept of polynomial unisol-
vency.

Definition 2.2.3. A finite set of points X = {x1, . . . ,xN} ⊂ Rd is said to be
m-unisolvent if the only polynomial of total degree at most m interpolating
zero data on X is the zero polynomial. This is equivalent to saying that any
polynomial p ∈ Pdm is uniquely determined by its values on X .

The following theorem now gives the conditions for which the interpolation
problem (2.6) is well-posed:

Theorem 1 ([18], Theorem 7.2.). If the real-valued even function φ is
strictly conditionally positive definite of order m on Rd and the points x1, . . . ,
xN form an (m-1)-unisolvent set, then the linear system of equations (2.6)
has a unique solution.

We are really free to append any M linearly independent functions in
(2.4) and not just polynomials. With the particular choice of adding polyno-
mials of degree at most m− 1 we get reproduction of polynomials of degree
up to m− 1 provided that the set X is (m− 1)-unisolvent. This means that
if the interpolation data comes from a polynomial of total degree at most
m− 1, then it is exactly interpolated by (2.4).

Some strictly conditionally positive definite RBFs of order one are special
in the sense that they guarantee well-posedness of the simplest interpolation
system (1.4), i.e., they do not need the extra terms in (2.4). These include
the radial powers φ(r) = rβ for 0 < β < 2, as well as the generalized MQ
RBFs φ(r, ε) = (1 + (εr)2)β with 0 < β < 1 [18], including MQ as a special
case, as conjectured in [39] and proved in [74].





Chapter 3

Global collocation methods
for PDEs

In this section we describe three different versions of global RBF collocation.
These methods have been compared in the literature and the accuracy has
been found to be very similar for the non-symmetric and the Hermite-based
methods [56, 18]. The third method, where the PDE is imposed also on the
boundary, was found to be less accurate when keeping the total number of
node points the same as for the other methods [56]. Some other advantages
and drawbacks of each approach are briefly discussed at the end of each
method description.

All methods are applied to the following general time-independent PDE
problem on a given domain Ω ⊂ Rd

Lu(x) = f(x), x ∈ Ω,

LBu(x) = g(x), x ∈ ∂Ω.
(3.1)

3.1 Non-symmetric collocation

The non-symmetric collocation approach was first presented by Kansa [50,
51] using the MQ RBF and it is therefore also referred to as Kansa’s method
or sometimes the multiquadric method. Kansa also originally used different
shape parameter values at the different node points but for simplicity and
clarity of presentation we use a constant shape parameter here.

The non-symmetric method is the most straight-forward type of collo-
cation. We begin by letting our RBF approximant be a linear combination
of translates of the radial basis function, φ, centred at the N points ξj ∈ Ξ.

17
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That is,

s(x, ε) =

N∑

j=1

λjφ(‖x− ξj‖ , ε). (3.2)

The collocation or test points, xi ∈ X , are often chosen to coincide with the
centre points. Separating the collocation and centre points can sometimes be
useful though, e.g., in optimal node placement techniques [64, 65, 66, 63] and
to improve accuracy near the boundaries of the computational domain [25].
More details on this can be found in Section 7. Inserting (3.2) into equation
(3.1) and collocating with the PDE at the interior points xi ∈ I and with
the boundary conditions at the boundary points xi ∈ B then results in

Ls(x, ε)|x=xi ≡
∑N

j=1 λjLφ(‖x− ξj‖ , ε)|x=xi = f(xi), i ∈ I,

LBs(x, ε)|x=xi ≡
∑N

j=1 λjLBφ(‖x− ξj‖ , ε)|x=xi = g(xi), i ∈ B,
(3.3)

which can be written in block matrix notation as
(
L

B

)
(
λ
)

=

(
f

g

)
, (3.4)

where

Lij = Lφ(‖x− ξj‖ , ε)|x=xi , xi ∈ I, ξj ∈ Ξ,

Bij = LBφ(‖x− ξj‖ , ε)|x=xi , xi ∈ B, ξj ∈ Ξ,

fi = f(xi), xi ∈ I,
gi = g(xi), xi ∈ B.

(3.5)

There is unfortunately no guarantee that the collocation matrix is non-
singular for this type of collocation [46]. However, many researchers still
prefer using this method because it is so simple to implement and because
the node distributions for which the collocation matrix is singular seem to
be rare [18, 46]. It is also the collocation type that we have used the most
in our own research.

For PDEs with a parameter that can be varied, such as the wavenumber
for the Helmholtz equation, it becomes particularly clear that the system
matrix for non-symmetric RBF collocation may be singular. In Paper II
we present singularity results obtained by analysis of an eigenvalue problem
related to the 1D Helmholtz equation (1.6)–(1.7). We show that for any
given node distribution (with distinct nodes) there are wavenumbers κ that
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lead to a singular collocation matrix. In Figure 3.1, the eigenvalues that lead
to a singular system are computed for different problem sizes using MQ and
GA RBFs. The interesting region is where the wavenumbers are real and
lead to well resolved solutions. For MQ and GA there are no eigenvalues in
this region.
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Figure 3.1: The wave numbers that lead to a singular system for the one-
dimensional Helmholtz problem using N = 6, 8, . . . , 30 from bottom to top,
for MQ RBFs with ε = 5 (left) and GA RBFs with ε = 10 (right).

3.2 Hermite-based collocation

The Hermite-based collocation approach, which is also referred to as sym-
metric collocation, was first suggested in [17] and builds on the interpolation
technique described in [104]. We now let the node and centre point sets co-
incide, so that X = Ξ. This is a necessary condition for the theoretical
foundation of the method, i.e., in order to achieve a symmetric collocation
matrix for real valued operators and a Hermitian collocation matrix for
complex valued operators.

Here we use an approximant of the following form

s(x, ε) =

NI∑

j=1

λjLξφ(‖x− ξ‖ , ε)|ξ=ξj +

N∑

j=NI+1

λjLξBφ(‖x− ξ‖ , ε)|ξ=ξj ,

(3.6)

where Lξ and LξB are the complex conjugates of the PDE and boundary
operators applied to ξ, NI is the number of interior centre points and N is
the total number of centre points.

Inserting (3.6) into (3.1) and collocating with the PDE at the interior
points and with the boundary conditions at the boundary points now yields
the block matrix equation
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

ALLξ ALLξB
ALBLξ ALBLξB


(λ

)
=

(
f

g

)
, (3.7)

where

(ALLξ)ij = LLξφ(‖x− ξ‖)|x=xi,ξ=ξj , xi, ξj ∈ I

(ALLξB
)ij = LLξBφ(‖x− ξ‖ , ε)|x=xi,ξ=ξj , xi ∈ I, ξj ∈ B,

(ALBLξ)ij = LBLξφ(‖x− ξ‖ , ε)|x=xi,ξ=ξj , xi ∈ B, ξj ∈ I,

(ALBLξB
)ij = LBLξBφ(‖x− ξ‖ , ε)|x=xi,ξ=ξj , xi, ξj ∈ B,
fi = f(xi), xi ∈ I,
gi = g(xi), xi ∈ B.

(3.8)
The collocation matrix resulting from this approach is non-singular, in

contrast to the non-symmetric collocation matrix, provided that the RBFs
are strictly positive definite or strictly conditionally positive definite. In
the latter case, suitable polynomial terms must also be appended to the
approximant [18, 104]. The collocation matrix is also, depending on the
PDE operator involved, symmetric or Hermitian which can enable more
efficient implementations. However the matrix is more complicated to as-
semble and it requires smoother basis functions than the non-symmetric
collocation method as it involves higher derivatives.

In Paper II we show that the collocation matrix of the Hermitian-based
approach is indeed Hermitian for the one-dimensional Helmholtz problem
(1.6)–(1.7). The approximant then takes the form

s(x) =

Nop∑

k=1

Nk∑

j=1

λkjLkξφ(x, ξkj ),

where φ(x, ξkj ) = φ(‖x−ξkj ‖), Nop is the total number of interior and bound-
ary equations in the PDE and Nk is the number of centre points belonging

to each corresponding operator Lkξ . Letting collocation and centre points co-
incide, i.e., letting xj = ξj , leads to a system of equations with the following
structure



L1
xL1

ξφ L1
xL2

ξφ L1
xL3

ξφ

L2
xL1

ξφ L2
xL2

ξφ L2
xL3

ξφ

L3
xL1

ξφ L3
xL2

ξφ L3
xL3

ξφ






λ0

λ1

λ2


 =




0
−2iκ

0


 ,
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where the block LjxLkξφ is of size (Nj × Nk), where Nj is the number of

collocation points corresponding to operator Ljx. To see that the coefficient
matrix really is Hermitian, we can use the following differentiation rules for
the RBFs

∂n

∂ξn
φ(xj , xk) = (−1)n

∂n

∂xn
φ(xj , xk), (3.9)

∂n

∂xn
φ(xk, xj) = (−1)n

∂n

∂xn
φ(xj , xk). (3.10)

We can then show for the different blocks in the matrix that the matrix
elements satisfy mjk = mkj . As an example, for elements in the first two
off-diagonal blocks we get

L0
xL1

ξφ(xj , xk) = (− ∂2

∂x2
− κ2)(− ∂

∂ξ
+ iκ̄)φ(xj , xk) = (− ∂2

∂x2
− κ2)(

∂

∂x
+ iκ̄)φ(xj , xk),

L1
xL0

ξφ(xk, xj) = (− ∂

∂x
+ iκ̄)(− ∂2

∂ξ2
− κ2)φ(xk, xj) = (

∂

∂x
+ iκ̄)(− ∂2

∂x2
− κ2)φ(xj , xk).

3.3 Collocation with the PDE on the boundary

The idea of this collocation approach, first presented in [21], is to add more
information on the boundary of the computational domain. The motivation
for this is that the accuracy in RBF approximation, as for most interpolation
methods, tends to be the lowest near the boundaries [25, 56].

We use the following approximant

s(x, ε) =

N+NB∑

j=1

λjφ(‖x− ξj‖ , ε). (3.11)

Since we want to add extra information on the boundary, i.e., collocate
with more conditions there, we also need to add the corresponding number
of centres in order to have as many unknowns as equations in our system.
We place these extra centres just outside the computational domain, as this
keeps the average distance between the node points about the same thus
preserving the conditioning. We let the other centres coincide with the
collocation points as follows

ξj =

{
xj xj ∈ I ∪ B,
a point outside Ω ξj ∈ Ξ \ (I ∪ B).

(3.12)

Collocation with the PDE at the interior node points and with both
boundary conditions and PDE at the boundary points results in
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(
L

B

)
(
λ
)

=

(
f

g

)
, (3.13)

where

Lij = Lφ(‖x− ξj‖ , ε)|x=xi , xi ∈ I ∪ B, ξj ∈ Ξ,

Bij = LBφ(‖xi − ξj‖ , ε)|x=xi , xi ∈ B, ξj ∈ Ξ,

fi = f(xi), xi ∈ I ∪ B,
gi = g(xi), xi ∈ B.

(3.14)

It is important to remember that adding extra information and thus
adding RBF centres actually increases the size of the system to be solved.
We can think of this as needing to add centre points in one dimension less
than the dimension of the computational domain and this is not a negligible
contribution to the total number of node points. Therefore, in order to get
a fair comparison between this approach and the other collocation methods,
we need to make sure that the total number of node points is the same for
all methods.



Chapter 4

Time-dependent problems

There are mainly two different approaches to solving time-dependent PDEs
using global RBF collocation. The first method is the so called method of
lines and the second approach is to use space-time RBFs.

4.1 The method of lines

In the method of lines technique the PDE is semi-discretized, i.e., the spatial
operator is discretized resulting in a system of ordinary differential equations
in time. This system can then be solved by discretization in time using a
standard time-integration method typically based on finite differences. The
solution is thus computed sequentially in time with intervals given by the
time-step, ∆t. When solving time-dependent linear PDEs, the discretized
problem is usually formulated in such a way that the solution values are
computed directly rather than via the explicit computation of the RBF
approximant coefficients. Solving the PDE for the nodal solution values
directly is sometimes referred to as the pseudospectral RBF method (RBF-
PS).

If we have the following general time-dependent PDE (with suitable ini-
tial and boundary conditions not explicitly written out here)

∂u

∂t
(x, t) = Lu(x, t) + f(x, t), (4.1)

where L is the spatial differentiation operator, we get the following general
method of lines formulation with global RBF collocation in space

du

dt
(t) = ALA−1u(t) + f(t). (4.2)

Here, ALA−1 is called the spatial differentiation matrix,

23
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(AL)ij = LΦ(‖x− xj‖, ε)|x=xi ,
Aij = Φ(‖xi − xj‖, ε), (4.3)

and u is a vector containing the solution values at the different spatial nodes.
The chosen time-integration method is then applied to (4.2). Depending on
the number of time levels used in the finite difference approximation of
the time derivative, a number of starting values might need to be computed
through another time-stepping method before switching to the main method.

4.1.1 Stability

As a rule of thumb, the method of lines is stable if the eigenvalues of the
spatial differentiation matrix scaled by the time-step lie within the so called
stability region of the time-discretization operator. Another rule of thumb
is that regardless of the stability properties of the time-stepping method,
the real part of the eigenvalues of the spatial differentiation matrix should
be non-positive in order to avoid growing solution components over time.
For non-normal operators one also needs to study the pseudospectrum, as
small perturbations may shift a part of the numerical spectrum out of the
stability region [99, 87]. The details of the pseudospectrum analysis are
however beyond the scope of this thesis.

For parabolic PDEs implicit time-stepping methods are often used as the
stability restrictions on the time-step would be severe for explicit methods.
For hyperbolic PDEs explicit methods are instead often used because this
class of equations allows larger time-steps. The cost per time step is bigger
for implicit time-stepping methods than for explicit methods, because im-
plicit methods require the solution of a linear system of equations at each
time step, but implicit methods can still outperform explicit ones in terms
of total cost. This is because implicit methods allow significantly larger
time-steps than the explicit methods. In [96] this is demonstrated using
an RBF–PUM method for the Black–Scholes equation for American option
pricing, where the fully implicit method is much more time efficient than
the implicit-explicit method which in turn is more efficient than the fully
explicit method, all because of the time-step restrictions for the explicit and
implicit-explicit methods.

As previously mentioned it is a problem if the spatial differentiation
matrix has eigenvalues with a positive real part as this causes growth in
the corresponding solution components for time-dependent problems. For
non-dissipative operators, this is unfortunately often true for differentia-
tion matrices obtained with RBF collocation using infinitely smooth basis
functions. In [82] the authors prove that RBF methods with conditionally
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positive definite RBFs are time-stable for differential operators with con-
stant coefficients for any node distribution in periodic domains if the matrix
AL is anti-symmetric. For positive definite RBFs the same holds for linear
operators without the constant coefficients condition. The anti-symmetry
leads to a purely imaginary spectrum, but if the centre points are slightly
shifted from the node points, the anti-symmetry property is lost which might
again cause instabilities. The authors also show that for the Gaussian RBF,
certain node distributions can lead to a time-stable RBF method in 1D.
However, stable node distributions are not known for general domains in
higher dimensions and they do not allow adaptive resolution. The authors
therefore instead suggest constructing differentiation matrices by using a
least-squares approximation with boundary conditions enforced strongly.

In [72] the first known Lax-stability analysis of the RBF collocation
method for convection problems on the circle and sphere is presented sug-
gesting that stability can be achieved on equispaced collocation points.
Small shifts in the node placement however cause instabilities and the ideal
node set might also be impractical or unavailable. Moreover, RBF methods
are the most attractive when collocation points are not equispaced. The
authors therefore suggest a least-squares method in order to minimize the
effect of unstable eigenvalues of the differentiation matrix.

For purely convective PDEs another stabilization technique often used
for other methods is to add a so called hyperviscosity term which is a dissi-
pative term consisting of a power of the Laplacian. The idea is to dampen
high frequency modes while leaving the low frequency modes intact. For
global collocation methods a more efficient approach with a similar effect
is to add −γA−1u to the spatial operator of the PDE, where γ > 0 and
A is the RBF interpolation matrix (1.5) [30]. The eigenvalues of A are of
the order of increasing powers of the shape parameter for infinitely smooth
RBFs and the corresponding eigenvectors are increasingly oscillatory. The
inverse of A has the same eigenvectors as A, but the eigenvalues are the
inverses of those of A. For positive definite RBFs the inverse eigenvalues are
positive and will grow increasingly fast for higher frequency modes. Using
the inverse of A as a filter will therefore dampen low eigenmodes slowly and
high eigenmodes fast. The parameter γ can be used for fine-tuning of the
filter. A small value will lead to gentle damping of the high frequency modes
while a wide range of low frequency modes are left mostly intact.

A semi-Lagrangian method for the simulation of transport on a sphere
using global RBF collocation is presented in [95]. This method does not
require the use of stabilizing terms such as hyperviscosity and thus reduces
the number of parameters that need to be tuned. The idea is to solve a
simple ODE involving the velocity field of the PDE in order to find the
departure point of a so called solution parcel. The idea is that a parcel
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reaching a specific node point at a certain time left the departure point
at the previous discrete time. The current solution is then interpolated
from the node points to the departure points and the new solution value at
each node point is then set to the interpolated value at the corresponding
departure point. The finding of the departure points is a so called upwinding
technique ensuring that the numerical domain of dependence matches the
physical domain of dependence.

4.1.2 The method of lines for the Black–Scholes equation

We now demonstrate the RBF approximation and time-stepping procedure
for the Black–Scholes problem (1.13) from Paper I. We approximate the
solution with a time-dependent linear combination of RBFs centred at the
node points xk, k = 1, . . . , N ,

u(t̂,x) =
N∑

k=1

λk(t̂)φ(ε‖x− xk‖) =
N∑

k=1

λk(t̂)φk(x). (4.4)

For interior node points xk, k = 1, . . . , Ni we collocate with equation (1.13)
and for node points at the near or far field boundaries, xk, k = Ni+1, . . . , N ,
we enforce (1.16) or (1.17), respectively. Now let ui(t̂) = (u(t̂,x1), . . . ,
u(t̂,xNi))

T and ub(t̂) = (u(t̂,xNi+1), . . . , u(t̂,xN ))T . Then from (4.4)

(
ui(t̂)

ub(t̂)

)
=

(
Aii Aib
Abi Abb

)(
λi(t̂)

λb(t̂)

)
, (4.5)

where the total coefficient matrix A has elements ajk = φ(ε‖~xj − ~xk‖) and
the indicated block structure is due to the decomposition of interior and
boundary node points. Furthermore, A is non-singular for standard choices
of RBFs [74], and

Lui(t̂) =
(
Bii Bib

)( λi(t̂)

λb(t̂)

)
=
(
Bii Bib

)
A−1

(
ui(t̂)

ub(t̂)

)

≡
(
Cii Cib

)( ui(t̂)

ub(t̂)

)
, (4.6)

where the matrix elements of B are bjk = Lφ(ε‖xj −xk‖), for j = 1, . . . , Ni

and k = 1, . . . , N .
The eigenvalues of Cii determine the stability limits for the time-steps

of different time advancing methods. For the particular problem consid-
ered here, the size range of the eigenvalues is quite large, but there are no
eigenvalues with positive real part. Therefore, we use the unconditionally
stable BDF–2 method [42] for the time evolution of the problem. We use a
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constant time-step k, set t̂n = kn and let uni ≈ ui(t̂n). The time-stepping
scheme applied to (1.13) now yields

uni + β1u
n−1
i + β2u

n−2
i = kβ0Luni , (4.7)

where β0 = 1, β1 = −1, and β2 = 0 for the first time-step and β0 = 2
3 ,

β1 = −4
3 , and β2 = 1

3 for subsequent steps.
The boundary conditions are enforced at each new time level through

unb = gnb , (4.8)

where gnb = (g(t̂n,xNi+1), . . . , g(t̂n,xN ))T , and

g(t̂,x) =

{
0, x = 0

d−1
∑d

i=1 xi − K̄e−2r̄t̂, ‖x‖1 = C.
(4.9)

Combining (4.6), (4.7), and (4.8) gives the overall scheme for advancing
all unknowns one step in time,
(
I − kβ0Cii −kβ0Cib

0 I

)(
uni
unb

)
=

(
−β1u

n−1
i − β2u

n−2
i

gnb

)
(4.10)

The initial condition from (1.13) in discrete form is

u0
i = fi = (Φ(x1), . . . ,Φ(xNi))

T . (4.11)

Due to the change in β0 between the first and second time-step, we need to
factorize the matrix block I − kβ0Cii twice. However, this can be avoided
by choosing the time-step in a special way [55]. Note that it is important
to incorporate the boundary conditions into the numerical scheme as in
(4.10) rather than updating them separately after each-time step. The latter
approach would introduce an error in the whole domain through the global
coupling of the unknowns and lead to a loss of time continuity. Figure 4.1
shows that (4.10) yields the second-order convergence expected for the BDF–
2 method.

4.2 Space-time RBFs

The second main strategy for solving time-dependent PDEs is to use space-
time RBFs Φj(x, t) = Φ(‖(x, t)−(xj , tj)‖), i.e., radial basis functions whose
values depend on the pairwise distance between points in space-time, typi-
cally with the Euclidean space-time norm

‖(x, t)− (xj , tj)‖ =

√√√√
d∑

k=1

(xk − xkj )2 + (t− tj)2. (4.12)
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Figure 4.1: The error E as a function of the number of time-steps M .
Maximum error over the whole region (+), financial norm (solid), weighted
integral norm (o) and error at x = K̄ (�). For more details, see Paper I.

The general time-dependent equation (4.1) is then solved by global RBF
space-time collocation as

AtA
−1u = ALA−1u+ f , (4.13)

where

(At)ij = ∂Φ
∂t (‖(xi, t)− (xj , tj)‖, ε)|t=ti ,

(AL)ij = LΦ(‖(x, ti)− (xj , tj)‖, ε)|x=xi , and
Aij = Φ(‖(xi, ti)− (xj , tj)‖, ε).

(4.14)

In [76], different versions of space-time-interpolants are listed, for exam-
ple one based on products of a spatial RBF and a time-dependent function
and another one based on space-time RBFs. The space-time RBF approach
is also applied to the Burgers’ equation in [16] and the solution is there com-
puted in time slabs with adaptive node redistribution via so called residual
subsampling for each new time slab.



Chapter 5

The flat RBF limit

When the RBF method was first applied to interpolation and PDE problems
the resulting systems of equations were solved by applying a direct solution
method (RBF–Direct), i.e., by simply inverting the collocation system ma-
trix. This remained the standard (and only available) method for quite some
time. During this period it was widely observed that small shape parameter
values, corresponding to flatter basis functions, led to high accuracy but se-
vere ill-conditioning. An RBF uncertainty principle was formulated in [89],
stating that there is a trade-off between accuracy and conditioning in RBF
approximation methods. This unfortunately led to the widespread miscon-
ception that the ill-conditioning for small values of the shape parameter was
somehow inherent to the RBF methods and so the small shape parameter
range, referred to as the flat RBF limit, was considered to be of less interest.
However, the ill-conditioning has to do with the fact that RBFs, while actu-
ally spanning an excellent approximation space, approach linear dependence
as the shape parameter value decreases. The authors of [13] show that if
stability is analysed in the function space without considering any specific
basis, RBF interpolation is stable, provided that the data is distributed in
a reasonable way. This in turn means that while applying the RBF–Direct
method leads to divergence in the coefficients followed by numerical cancel-
lation when the approximant is computed, the approximant itself actually
stays bounded and well-behaved in exact arithmetic. The ill-conditioning
is thus not intrinsic to RBF approximation, but rather related to a specific
implementation of the process of finding the RBF coefficients. Indeed, the
limit as ε → 0 was investigated analytically in the groundbreaking article
[15] and usually found to be well-behaved. This inspired the development
of stable methods for computation in the flat RBF limit, starting with [34].
These methods then revealed the true behaviour of RBF approximation in
the small ε range, including the existence of optimal shape parameter val-
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ues that were previously hidden by the ill-conditioning of the RBF–Direct
method. The flat limit behaviour and the different types of stable methods
that have been developed so far for the small shape parameter range are
described in the remainder of this section.

5.1 The flat RBF limit for interpolation

The flat RBF limit is investigated analytically in [15]. The authors note
that although the linear RBF system becomes highly ill-conditioned and
the expansion coefficients diverge with a direct implementation, the limiting
interpolants often exist and take the form of polynomials. They also prove
that in the 1D case and with some minor and typically satisfied constraints
on the basis functions, the limit is the Lagrange interpolating polynomial.
This is the lowest order interpolating polynomial, i.e., of degree n−1 if there
are n data points. The authors also make some observations about the 2D
case where they note that the limit may not exist if the nodes make a tensor-
product grid and that when the limit does exist its exact form sometimes
depends on the particular RBF.

The limit behaviour in higher dimensions than 1D is further examined in
[35]. The authors conclude that the limit, when it exists, takes the form of
a multivariate polynomial. It is also noted that the existence of the limit for
most RBFs depends critically on the node point distribution and specifically
how it relates to the concept of polynomial unisolvency. The authors state
that under some mild conditions on the Taylor expansion coefficients of the
radial basis function, and provided that the data distribution is unisolvent
with respect to a basis for the set of all polynomials of degree ≤ K, the
limiting RBF interpolant is the unique interpolating polynomial of degree
≤ K to the given data. This is proved in different ways in [57] and in [90].
If the number of node points is not equal to the dimension of the space
of polynomials of degree ≤ K, the limit exists and is still a polynomial of
degree K, but it is no longer unique. If the unisolvency condition is not
fulfilled, the limiting interpolant may diverge or be a non-unique, possibly
higher degree polynomial. Explicit criteria for the different types of limits
are given in [57]. It is stated that the given conditions on the basis function
are typically fulfilled by the standard analytic RBFs. For the condition that
is related to the expansion coefficients of the RBF, this is just conjectured.
It is later proved in [62], first for strictly positive definite RBFs and then
also for strictly conditionally positive definite analytic RBFs. In [92] the
results of the articles [57] and [62] are reached through a different method
which also allows the author to investigate scenarios where the data points
approach each other. The authors of [35] also conjecture that the Gaussian
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RBF never diverges in the ε→ 0 limit. This is proved in [90].

In [29] a certain class of oscillatory RBFs, including Gaussians as a
special case, is studied and found to feature unconditional non-singularity
with respect to distributions of distinct nodes as well as appearing immune
to divergence in the flat limit.

In [6] the limit interpolant is shown to exist and to be independent of
the RBF choice when the nodes lie on a circle in R2, as long as the Taylor
expansion of the RBF contains only non-zero coefficients. This is the case
for all standard choices of RBFs. In [7] the corresponding result is derived
for RBFs that have zero-coefficients in their Taylor expansion. The only
difference is that in this case the limit may not exist, but when it does it
is again unique and independent of the RBF. The authors give an example
of a case where divergence occurs, for three points that form a orthogonal
triangle in R2, but they also state that if node distributions are chosen
randomly, divergence is unlikely.

In [97] and [60], flat limit results are presented for RBFs of finite smooth-
ness. The RBF interpolants studied are shown to converge to polyharmonic
spline interpolants in the limit. In [61] a more detailed result is proved,
which states that the RBF interpolant converges to a polynomial interpolant
in the flat limit when the RBF has a specified finite smoothness related to
the number of given centres. If failing to fulfil this smoothness condition the
RBF interpolant converges to a polyharmonic spline interpolant.

5.2 The flat RBF limit for PDEs

In Paper II we investigate the flat RBF limit for PDE problems and present
a theorem for the limit behaviour along with corresponding conditions on
the RBFs and node sets. The results build on the work in [57].

We define

NK,d =

(
K + d
K

)
, (5.1)

which is the dimension of the space of polynomials of degree K in Rd. If
N = NK,d, and the node set is unisolvent, then the (infinitely smooth) flat
limit RBF interpolant reproduces the multivariate polynomial interpolant
of degree K on these nodes. When we solve a PDE using the non-symmetric
RBF collocation method, the RBF approximant has the same general form
as the interpolant (1.2), and we can derive corresponding results for the
PDE limit.

In order to express the conditions for the different limit results, we need
to define two matrices, P and Q, from which we can determine polynomial
unisolvency and unisolvency of the discrete PDE problem.
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Let {pj(x)}Nj=1 be N linearly independent monomials of minimal de-
gree in d dimensions. For example, for N = 7 and d = 2, we can choose
{1, x, y, x2, xy, y2, x3}. If NK−1,d < N ≤ NK,d, the degree of pN (x) is K.
As mentioned in Definition 2.2.3, the set of node points {xi}Ni=1 is polyno-
mially unisolvent if there, for any given data at the node points, exists a
unique linear combination

∑N
j=1 βjpj(x) that interpolates the data. This is

equivalent to non-singularity of the matrix

P =




p1(x1) p2(x1) · · · pN (x1)
p1(x2) p2(x2) · · · pN (x2)

...
...

...
p1(xN ) p2(xN ) · · · pN (xN )


 . (5.2)

In cases where P is singular, we instead construct a minimal non-degenerate
basis [57]. Such a basis can be constructed by choosing N monomials of
smallest possible degree under the constraint that they give linearly inde-
pendent columns in the matrix P . The highest selected monomial degree
M is then also the degree of pN (x).

Similarly, the set of node points {xi}Ni=1 satisfies unisolvency of the dis-
crete PDE problem with respect to {pj(x)}Nj=1 if there is a unique linear

combination
∑N

j=1 βjpj(x) that satisfies the collocation conditions

N∑

j=1

βjLkpj(xki ) = fk(xki ), i = 1, . . . , Nk, k = 1, . . . , Nop,

where Nop is the number of different operators (equations) in the PDE. This
is equivalent to non-singularity of the matrix

Q =




L1p1(x1
1) · · · L1pN (x1

1)
...

...

LNopp1(x
Nop

NNop
) · · · LNoppN (x

Nop

NNop
)


 . (5.3)

We need the RBFs to fulfil three conditions in order to get the results in
the theorem given below. We list these conditions and briefly discuss their
validity here, but for a full explanation see [57].

(I) The RBF φ(r) can be Taylor expanded as φ(r) =
∑∞

j=0 ajr
2j .

(II) The RBF collocation matrix is non-singular in the interval 0 < ε ≤ R,
for some R > 0.

(III) Certain matrices Ap,J , built from the coefficients aj in the Taylor ex-
pansion of φ(r), are non-singular for 0 ≤ p ≤ d and 0 ≤ J ≤ K.
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Condition (I) is true for all infinitely smooth RBFs that are commonly
used. Condition (II) is likely to hold for some value of R, but the results
in Section 3.1 shows that the collocation matrix can become singular at
any ε, given a specific combination of PDE problem and node points. As
mentioned before, condition (III) is shown to hold for these RBFs in [62].

The following theorem gives the different possibilities for the limiting
RBF approximant as the shape parameter ε→ 0.

Theorem 2. Assume that the RBF φ(r) fulfils conditions (I)–(III) and that
the number of node points satisfies NK−1,d < N ≤ NK,d. The degree of a
minimal non-degenerate basis for the point set is either K for a unisolvent
set or M for a non-unisolvent set. If

(i) P and Q are non-singular, the limit exists and is a polynomial of deg
K. If N = NK,d it is the unique degree K polynomial solution to the
discrete PDE problem, otherwise the final polynomial depends on the
choice of RBF.

(ii) P is singular, but Q is non-singular, the limit exists and is an RBF-
dependent polynomial of degree M .

(iii) P is non-singular, but Q is singular, divergence will occur unless the
right hand side f of system (3.4) happens to be in the range of Q.
If there is just a single null-space polynomial n(x) of degree K, the
divergent term is proportional to ε−2n(x).

(iv) P has a nullspace of dimension m > 0 and Q has a nullspace of di-
mension p > 0, then if m ≥ p the limit is likely, but not certain to
exist. If it exists it is of degree M . If m < p divergence is likely, but
not certain.

The proof builds on the results for RBF interpolation in [57]. More details
can be found in the appendix of Paper II.

Below, we give an example of type (iii) degeneracy, i.e., a node set is that
is not PDE-unisolvent, for the two-dimensional Helmholtz problem given
by (1.6), (1.8) and (1.9) with m = 1.

0 1

1

0
The N = 10 points are (0, 0), (1/2, 0), (1, 0), (0, 1),
(1/4, 1), (1, 1), (1/6, (2545 − 23

√
9233)/3936), (1/4, 1/4),

(3/4, 1/4), and (3/4, 969/1804). For κ = 4
√

246/9 the
matrix Q has a nullspace defined by q(x) = − 5

32x2(x2 +
1) + x1

16 (8− 24x1 + 3x2 + 16x2
1 + 4x1x2 − 7x2

2).

In this case, we get divergence of order ε−2 as ε→ 0 for all RBFs that obey
conditions (I)–(III). This can be observed not only in exact arithmetic, but
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also in for example a double precision numerical simulation. However, if
we move just one of the points or change κ slightly, there is no longer a
nullspace. This kind of degeneracy is very rare, since it requires very special
combinations of wavenumber and node points.

If we use node sets that are not unisolvent, e.g., Cartesian nodes, both
PDE approximation and interpolation are expected to behave poorly for
small shape parameter values. The condition number of the linear system
is larger than in the unisolvent case, and the result contains a term that
diverges as ε→ 0.

5.3 Stable solution methods for small ε values

The methods that have been developed for RBF approximation in the flat
limit range so far fall into two categories. These are rational approximation
methods, which build on contour integration in the complex shape parameter
plane, and methods where a well-conditioned basis is formed spanning the
same space as the ill-conditioned near-flat RBFs. Brief descriptions of some
methods that are stable in the small shape parameter range are given in the
remainder of this section. There are also other methods involving a change
of basis for a general stabilization of the problem, see for example [75, 77,
11, 12].

5.3.1 The Contour–Padé method

The Contour–Padé method, or RBF–CP, [34] was the first method that made
it possible to numerically explore the behaviour of RBF approximation in
the limit of flat RBFs. It allows stable computation of RBF approximants
for all values of ε including the limit where ε = 0 and the basis functions
are perfectly flat. This made it possible to numerically show that there are
true optimal shape parameter values that are hidden by the ill-conditioning
when computing the approximant directly. Furthermore these optimal shape
parameter values can lead to errors that are orders of magnitude smaller
than what is possible to achieve within the shape parameter interval that
has acceptable conditioning for the direct method.

The key idea of the algorithm is to view the approximant, not as a
function of a real valued shape parameter, but as an analytic function of a
complex valued shape parameter. It is then written as a sum of a rational
function in ε and a power series in ε, the coefficients of which are determined
numerically in a stable way. This is done by first evaluating the approxi-
mant by solving the approximation problem using RBF–Direct around some
circle in the complex ε-plane where the conditioning is not too high. The
approximant values are then used when determining the coefficients of the
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previously mentioned rational function and power series. This is done by
taking the inverse FFT of the approximant values around the circle and
adding some extra steps to handle any poles inside the circle. Working with
finite and not infinite expansions leads to some extra requirements, e.g.,
regarding the sampling density of the approximant on the circle and the
placement of the circle. The computations have to be done for each eval-
uation point in the computational domain, but some of the computational
work can be recycled when evaluating the approximant at new points thus
decreasing the cost. The method has a large initial cost, but evaluating for
many shape parameter values is almost free and the computational cost of
the algorithm does not increase as ε → 0. The Contour-Padé method is
limited to relatively small node sets (N slightly less than a hundred in two
dimensions, more in three dimensions) and is mainly meant to be a tool
to investigate properties of RBF approximations and not to solve problems
involving large data sets.

5.3.2 The RBF–RA method

In [103] the authors present a method, called RBF–RA, that similarly to
the Contour–Padé is based on rational approximation. The interpolant is
viewed as a vector-valued function of the shape parameter in the complex
plain, the components of which are the interpolant values at the different
evaluation points in the computational domain. The interpolant is then
approximated by a vector-valued rational function, where the denomina-
tor coefficients, representing the poles, are common for all components and
the numerator coefficients are specific for each component. A circle in the
complex shape parameter plane is chosen, where the interpolant can be eval-
uated in a stable way using RBF–Direct. These values are then used when
finding the coefficients of the rational approximant. For each of the inter-
polant components, the enforcement of the interpolation conditions results
in a coupled linear system of equations for the coefficients of the rational
approximant. After some manipulations of the complete system, a decou-
pled overdetermined system for the denominator coefficients can be solved
using least squares. The remaining systems for the component specific nu-
merator coefficients can then be solved using the denominator coefficients
The rational approximant can then be used for evaluation of the interpolant
for arbitrarily small shape parameter values.

The RBF–RA method has several advantages over the RBF–CP method.
It has significantly higher accuracy for the same computational cost and the
code is simpler involving fewer parameters and less use of complex floating
point arithmetic. The algorithm for computing the poles of the rational
approximation is also more robust. Like the RBF–CP method, the RBF–



36 Chapter 5. The flat RBF limit

RA method is limited to a relatively low number of node points (hundreds)
and so its main benefits are for applications that involve relatively small
node sets, such as for example RBF–FD formulas, the RBF–PUM method
and domain decomposition. The method is flexible and applies to any type
of smooth RBF, to any dimension and to more generalized interpolation
techniques such as Hermite interpolation and appending polynomials to the
basis.

5.3.3 The RBF–QR method

The RBF–QR method was first presented for computations using node dis-
tributions on the surface of a sphere [32]. The idea is to write the basis
function as a series expansion in powers of the shape parameter. This is
done using spherical harmonics and it results in a matrix product of a co-
efficient matrix C, a diagonal matrix E and a column vector consisting of
spherical harmonics, i.e. φ = CEY . The ill-conditioning due to the scaling
of the RBFs has now been confined to the diagonal matrix E which consists
of powers of the shape parameter. It is possible to multiply this expression
from the left with any non-singular matrix to obtain new basis functions
without changing the space that is spanned by them. If this matrix is wisely
chosen, it is thus possible to create a new well-conditioned basis in the same
space. In this case this is achieved by first splitting the coefficient matrix
C into a QR factorization, where Q is unitary and R is upper triangular,
and then multiplying the basis function expression from the left by E−1

N Q∗,
where N is the number of node points (basis function centres), EN is the
first N × N part of E, and Q∗ is the Hermitian transpose of Q. The ex-
pression for the new well-conditioned basis is Ψ = E−1

N REY . The number
of independent functions associated with each shape parameter power in
the expansion used determines the rate by which the powers enter in the
diagonal of the E-matrix and this sequence happens to perfectly match the
sequence of eigenvalue sizes for the matrix of the direct RBF method for the
sphere, expressed in terms of shape parameter powers. Thus the RBF–QR
method improves the conditioning at the same rate as it would otherwise
have deteriorated and the method remains stable for small shape parame-
ter values. More details on the eigenvalue patterns for the standard RBF
interpolation matrix can be found in [36].

In [28] the authors present an RBF–QR method for node sets in general
computational domains in one, two and three dimensions. The method re-
quires different versions depending on the dimension of the computational
domain and it can handle thousands of node points in two and three dimen-
sions. Here the GA RBF is factorized and Taylor expanded in such a way
that the number of functions, in this case monomials, corresponding to each
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shape parameter power again matches the number of eigenvalues of that
size of the RBF–Direct method. The effect will again be that the condition-
ing improvement matches the deterioration related to the direct method.
Since many of the monomials used in this version of the method become
nearly linearly dependent as their degrees increase, the authors convert the
expansion to polar coordinates. Because high powers of r also tend to be
nearly linearly dependent the authors then convert some of the powers of r
to Chebyshev polynomials in such a way that the improvement rate of the
method still matches the deterioration rate of the direct method. Apart from
the increased condition number the authors also mention another reason why
errors in typical RBF implementations eventually grow with the number of
nodes, namely an intrinsic ill-conditioning of spectrally accurate methods on
quasi-uniform node sets leading to large errors near boundaries [83]. They
therefore state that nodes must be clustered towards the boundaries in order
to counteract this problem. In [58] this version of the RBF–QR method is
extended to the computation of differentiation matrices and stencil weights
for the solving of PDEs. An expression that reduces the computational cost
of computing hyperviscosity for stencils is also presented.

In [19] a different version of RBF–QR is presented following the ap-
proach in [32] but using an eigenfunction expansion of the GA RBF instead
of spherical harmonics. This strategy has some limitations for larger num-
bers of nodes due to the computational cost of the algorithm. In order to
compensate for this, a new approach was devised involving a projection onto
a reduced set of basis functions. This eliminates high-order eigenfunctions
which contribute greatly to the cost but minimally to the solution.

In [54] the authors suggest a new stabilization algorithm, called Her-
miteGF–QR, for multivariate interpolation with isotropic or anisotropic
Gaussians. This method applies to problems of any number of dimensions
and builds on an expansion of isotropic or anisotropic Gaussian functions,
derived from the generating function of the Hermite polynomials. A new
analytic cutoff criterion for the generating function expansion is also de-
rived and analysed. This criterion allows for adjusting the number of basis
functions based on the desired accuracy in the basis.

5.3.4 The RBF–GA method

The RBF–GA method [31] is based on the Gaussian RBFs and the idea is
again, as for the RBF–QR method, to find a numerically well-conditioned
basis function set in the function space spanned by the ill-conditioned near-
flat Gaussian RBFs. This is done by factorizing, scaling and Taylor ex-
panding the Gaussian RBFs. Since the exact remainder term is available
in closed form for any truncation of the Taylor expansion of the exponen-
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tial function, any use of truncated infinite expansions can be avoided. The
dominant leading Taylor terms however feature a very strong linear depen-
dence between different node values. A new basis is therefore formed by
constructing suitable linear combinations of the Taylor expanded functions.
This is done is such a way that the leading Taylor coefficients are cancelled
out analytically, thus allowing these terms to be omitted rather than being
cancelled numerically which would lead to a loss of significant digits.

For small shape parameter values the condition number stays favourable
and changes very little as the shape parameter value decreases. Moving from
moderate to large shape parameter values, the condition number increases
rapidly. The reason for this has to do with the behaviour of the remainder
term in the Taylor expansion which for large shape parameter values leads
to a degradation of the basis function independence.

The RBF–GA and the RBF–QR methods both have the disadvantage
of being limited to Gaussian-type RBFs. The RBF–GA method is easier to
implement and computationally faster, but less robust than the RBF–QR
method.

5.3.5 The Hilbert–Schmidt SVD method

The so called Hilbert–Schmidt SVD method is presented in [8] for gen-
eral positive definite kernels (including RBFs). The authors point out that
kernel-based interpolation, approximation and PDE problems can be solved
without ever forming the kernel matrix. In addition to that, a closed form
of the kernel does not even have to be known. It is enough to have a series
representation of it. The authors use a Hilbert–Schmidt series expansion of
the kernel to find a decomposition, the so called Hilbert–Schmidt SVD, of
the kernel matrix without actually forming this matrix. For N data points
this results in a new basis consisting of the N first eigenfunctions from the
Hilbert–Schmidt expansion plus a correction in the form of a linear combi-
nation of all of the infinitely many eigenfunctions with index greater than
N . This correction is guaranteed to make a finite contribution because
the original series is uniformly convergent, and for practical purposes the
correction is truncated at a suitable point. The resulting basis is better
conditioned than the original one, since it consists of small corrections to
the N first eigenfunctions which are orthogonal with respect to the L2(Ω, ρ)
inner product. The authors also introduce the family of univariate, iter-
ated Brownian bridge kernels, which generalize the Brownian bridge kernel
which plays an important role in many statistics and finance applications.
Similarly to the Matérn functions, the iterated Brownian bridge kernels are
defined using two parameters that determine the kernel smoothness and
flatness respectively. The smoothness and flatness of these kernels only af-
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fect the Hilbert–Schmidt eigenvalues, while the eigenfunctions are the same
for all the kernels in this family. These kernels result in an impressively
short Matlab code, consisting of just a few lines, for the entire interpola-
tion problem. The authors state that the Hilbert-Schmidt SVD method can
be used to perform accurate and stable interpolation with positive definite
kernels even in their flat limit and they demonstrate this for the iterated
Brownian bridge kernels, whose flat limits are piecewise polynomial splines.





Chapter 6

Convergence properties and
error estimates

Different theoretical error estimates for RBF interpolation have been de-
rived and presented in the literature. These estimates sometimes require
the interpolated function to belong to the native space of the RBF, which
is defined as

Nφε(Rd) =

{
f ∈ C(Rd) ∩ L2(Rd) : ‖f‖Nφε :=

∫

Rd

|f̂(ω)|2
|φ̂ε(ω)|

dω <∞
}
,

(6.1)
where f̂ and φ̂ε are the Fourier transforms of f and φε, respectively. This
means that in order for a function to belong to the native space, the square
of the Fourier transform of the function must decay faster than the Fourier
transform of the RBF. The native space depends on the shape parameter
and for all the infinitely smooth RBFs, smaller shape parameter values lead
to a faster decay of their respective Fourier transforms and thus to a smaller
native space. Moreover, the Fourier transforms of the infinitely smooth ba-
sis functions decay exponentially which means that many analytic functions
are excluded from the native space [80]. However, the differences in the
theoretical error estimates between functions inside and outside the native
space do not necessarily lead to a dramatic difference in the interpolation
error. In [80] the author states that even if a function f does not belong
to the native space, RBF interpolants may still converge to f under certain
assumptions on the node distribution. The author also proves that under
mild conditions, IQ RBF interpolants of one-dimensional functions that are
analytic inside the strip |Im(z)| < (1/2ε), converge exponentially. In [53]
the authors test the convergence of a GA Galerkin–RBF approximation of
the one-dimensional harmonic oscillator for shape parameter values around

41
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the breaking point where the solution goes from being included in, to being
excluded from the native space of the GA RBF. The convergence is expo-
nential and no significant changes can be seen in the error curves except
for the ill-conditioning which is as usual worse for smaller shape parameter
values.

In Paper II we derive error bounds and approximations of the error for
non-symmetric RBF collocation for the Helmholtz problems (1.6)–(1.11) in
1D and 2D. We also investigate the validity of our results through numerical
experiments. Our findings are summarized in the remainder of this section.

6.1 General error estimates using Green’s func-
tions

Consider the following general PDE problem

Liu(x) = f i(x), x ∈ Ωi, i = 1, . . . , Nop, (6.2)

where Li is a linear operator, u is the solution function, f i is a given function,
x = (x1, . . . , xd) ∈ Rd, and Ωi ⊆ Ω̄ is a region in the computational domain
or a boundary segment.

We define the error function as the difference between the RBF approx-
imant and the exact solution to the PDE problem (6.2)

e(x) = s(x)− u(x). (6.3)

For interpolation, the error and the residual are the same, and the error
can be explicitly computed if the function u(x) is known. For PDEs we
can compute the residual for each operator and the error is governed by the
same type of PDE as the solution

Lie(x) = Lis(x)− f i(x) ≡ ri(x), x ∈ Ωi, i = 1, . . . , Nop, (6.4)

where ri are residuals. The error could be computed by solving this PDE,
but the residuals are zero at the collocation points and thus highly oscil-
latory which means that error approximation via the PDE (6.4) is more
computationally expensive than solving the original PDE. We therefore in-
stead formulate a posteriori error estimates in terms of the residual, by using
Green’s functions that satisfy the boundary conditions.

For the one-dimensional Helmholtz problem (1.6) with boundary condi-
tions (1.7), the Green’s function is given by

G(x, ξ) =
i

2κ
eiκ|x−ξ|, (6.5)
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and this results in the estimate

‖e‖∞ ≤
∫ 1

0
|G(x, ξ)||r(x)| dx =

1

2κ

∫ 1

0
|r(x)|dx ≤ 1

2κ
‖r‖∞. (6.6)

For the two-dimensional Helmholtz problem (1.6) in a rectangular do-
main with boundary conditions (1.8)–(1.9), the Green’s function is

G(x, ξ) =
∞∑

m=1

i

2βm
eiβm|x2−ξ2|ψm(x1)ψm(ξ1), (6.7)

and we get the following error estimate

‖e‖∞ ≤
µ0∑

m=1

1√
2βm

∫ 1

0
|rm(x2)| dx2

+
∞∑

m=µ0+1

√
2

|βm|2
(1− e− 1

2
|βm|)

∫ 1

0
|rm(x2)| dx2

≤
µ0∑

m=1

1√
2βm
‖rm‖∞ +

∞∑

m=µ0+1

√
2

|βm|2
(1− e− 1

2
|βm|)‖rm‖∞.(6.8)

For the two-dimensional Helmholtz problem given by (1.6) and (1.10)–
(1.11) in a domain with curved boundaries, we cannot provide an explicit
Green’s function. However, if we view the curved domain as a sequence of
narrow almost rectangular domains, we can modify the previous estimate to
get the following heuristic approximation of the error

‖e‖∞ ≈
∞∑

m=1

∫

<e(βm)>0

|rm(x2)|√
2βm

dx2

+

∞∑

m=1

∫

=m(βm)>0

√
2

|βm|2
(1− e− 1

2
|βm|)|rm(x2)| dx2. (6.9)

We evaluate the performance of this error approximation in Section 6.5, and
we use it as an aid in the choice of shape parameter values in Section 7.1.3.

6.2 Convergence properties for small ε

As discussed in Section 5, we approach the polynomial limit, s(x) = p(x),
as ε → 0. In Paper II we follow the steps for the proof of the polynomial
interpolation error [41, pp. 43–44], and get the following estimate for the
polynomial residual.
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Theorem 3. For a one-dimensional linear PDE problem




L1u(x) = f1(x), x1 < x < xN ,
L2u(x) = f2(x), x = x1,
L3u(x) = f3(x), x = xN ,

with a polynomial solution p(x) determined through collocation at the nodes
xi, i = 1, . . . , N the residual r(x) = L1p(x)− f(x) has the form

r(x) =

∏N−1
j=2 (x− xj)
(N − 2)!

r(N−2)(ξ),

where ξ ∈ (x1, xN ). For equispaced points, xj+1 − xj = h, this can be
estimated by

|r(x)| ≤ hN−2

N − 2
max

ξ∈(x1,xN )
|r(N−2)(ξ)|.

By inserting this residual estimate in the error estimate (6.6) for the one-
dimensional Helmholtz problem (1.6)–(1.7), we get

‖e‖∞ ≤
1

2κ

hN−2

N − 2
‖r(N−2)‖∞. (6.10)

In the flat limit, the residual is r(x) = −p′′(x) − κ2p(x), where p(x) is
the limit polynomial of degree N − 1. Then r(N−2)(x) = −κ2p(N−2)(x).
Under the assumption that p(x) ≈ u(x) = exp(iκx), we get |p(N−2)| ≈
|dN−2 exp(iκx)

dxN−2 | = κN−2. We use this to get an approximate expression for the
error in the limit

‖e‖∞ ≈
1

2κ

hN−2

N − 2
κ2κN−2 =

κ(κh)N−2

2(N − 2)
≈ 1

2
(κh)N−1. (6.11)

Note that the quantity κh is small only if the problem is adequately resolved.
For the two-dimensional Helmholtz problem given by (1.6) and (1.8)–

(1.9) in a rectangular domain, the limit polynomial is zero at the interior
node points. To get an estimate for the residual in terms of its derivatives,
we can therefore try using a sampling inequality such as [69, Theorem 3.5],
which says that for all h ≤ h0,

‖r‖∞ ≤ Ckhk
∑

|σ|=k
‖Dσr‖∞, (6.12)

where h0 depends on the geometry of Ω. The condition h ≤ h0 is too
restrictive for our case, but from practical experience the result holds also
for larger h, and we will therefore use (6.12) to approximate the residual.
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Figure 6.1: The computed errors using the Gaussian RBF and the RBF–QR
method for ε = 0.5 (�), ε = 0.25 (+), and ε = 0.01 (◦) for κ = π, 2π, 4π, 6π,
from left to right, together with the approximation ‖e‖∞ ≈ 1

2(κh)N−1 for
the one-dimensional problem (left), and for κ = 1.2π, 2.4π, 4.8π, 7.2π, from
left to right, together with the approximation ‖e‖∞ ≈ (κh)K for the two-
dimensional problem (right) (dashed curves). For κ = 4.8π and 7.2π in the
two-dimensional case, we also show the error approximation using C = 1/40
and C = 1/800, respectively (dotted lines).

In this case, using that r(x) = −∆p(x) − κ2p(x), and, for |σ| = K − 1,
Dσr(x) = −κ2Dσp(x) ≈ −κ2Dσu(x), we get

‖r‖∞ ≤ CK−1h
K−1κ2

∑

|σ|=K−1

βσ21 ασ11 ≤ CK−1κ
2K(κh)K−1. (6.13)

Combining the approximate expression for the residual with the error esti-
mate (6.8) restricted to the first mode (scaled by 1/

√
2) gives

‖e‖∞ ≈
1

2|β1|
CK−1κ

2K(κh)K−1. (6.14)

Numerical experiments show that KCK−1 = C/(K−1) provides the appro-
priate behaviour with respect to N . (Both K and h are coupled with N).
This leads to

‖e‖∞ ≈
Cκ2(κh)K−1

2|β1|(K − 1)
≈ C̃(κh)K . (6.15)

From our numerical investigations, we can see that the behaviour of the com-
puted errors for the one-dimensional and two-dimensional problems agree
well with the derived error approximations, see Figure 6.1.
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6.3 Convergence properties for larger ε

The convergence of a PDE approximation can be expressed in terms of
the approximation properties of the interpolant (consistency error) and a
stability term [91, 93, 59]. The consistency error of the PDE operator can
be expressed as

EL = L(Ih(u)− u),

where Ih(u) interpolates u on a node set with fill distance h, where the fill
distance is defined as

h = hX ,Ω = sup
x∈Ω

min
xj∈X

‖x− xj‖2. (6.16)

Several authors have derived exponential convergence results for RBF
interpolation [84, 71, 68, 4, 105, 85]. The first papers describe estimates
for interpolation errors, while [85] also provides estimates for derivatives of
functions with many zeros, such as the interpolation error.

Based on the results in [85] we assume that the error has the form

‖e‖∞ = AM exp(−CMf(h)), (6.17)

with CM > 0. The native space norm has been absorbed into the constant
AM and the form of f(h) depends on the type of domain and the PDE
operator in question. If this assumption is correct, a plot of the logarithm
of the error against f(h) should result in a straight line. From Figure 6.2,
it is clear that f(h) = 1/h is a better fit compared with f(h) = 1/

√
h.

The dashed lines correspond to a fit of the model with f(h) = 1/h to the
actual errors, where the results suffering from ill-conditioning effects have
been ignored.

6.4 Convergence as a function of the shape param-
eter

The results in Section 6.3 hold for a fixed value of ε. However, using a shape
parameter ε0 6= 1 for an interpolation problem in the domain Ω with fill
distance h is equivalent to using a shape parameter ε1 = 1 for a problem
in the scaled domain ε0Ω with fill distance ε0h. This can be understood
by noting that φ(ε0‖xi − xj‖) = φ(1 · ‖ε0xi − ε0xj‖). This means that the
native space norm is the same in both cases, and so are the errors.

Letting the constants AM and CM in the error estimate for a specific
domain Ω and shape parameter ε be denoted by AM (Ω, ε) and CM (Ω, ε),
we have

AM (Ω, ε)e−CM (Ω,ε)/h = AM (εΩ, 1)e−CM (εΩ,1)/(εh). (6.18)
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Figure 6.2: The error in the one-dimensional Helmholtz solution when mul-
tiquadric RBFs are used as a function of 1/h (left) and 1/

√
h (right) for

shape parameters ε = 10−2+ 4
9
q, q = 1, . . . , 9 (left to right). The dashed

black lines/curves correspond to a fit of ‖e‖∞ = AM exp(−CM/h) to the
error data (in both cases).

Hence, the convergence rate for a fixed value of ε increases for smaller shape
parameter values outside the small shape parameter range.

Figures 6.3 and 6.4 show the error as a function of ε for two one-
dimensional problems, and one two-dimensional problem, respectively. The
error curves are typical for smooth solution functions. Starting from a large
shape parameter and moving towards smaller values, the error first decreases
rapidly then reaches an optimal region, and finally levels out at the polyno-
mial approximation error.

The convergence curves for different shape parameter choices given by
ε = Chβ and different exponents β are shown as dashed lines in Fig-
ures 6.3 and 6.4. As expected, the stationary choice, β = −1 levels out
as N increases. For β > −1 we get convergence along different paths.
Choosing β = 0 corresponds to the exponential convergence case for fixed
shape parameter values. For these particular Helmholtz problems, the curve
with ε = Ch3/2 corresponds well with the optimal shape parameter val-
ues. For other problems the relation would be different. For the two-
dimensional problem, several terms in the error interact, leading to more
irregular curves [57]. The overall results of the different shape parameter
choices are still very similar to the results of the one-dimensional case.

If we assume that −CM (εΩ, 1) in (6.18) does not vary a lot with ε, which
we have verified through experiments, we can provide a convergence rate for
the scaled ε convergence case. If we have exponential convergence as 1/εh
and ε = Chβ we get

‖e‖∞ = AεMe
−CεM/hβ+1

, −1 < β ≤ 0, (6.19)
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Figure 6.3: The maximum error as a function of ε for κ = 2π (left)
and κ = 4π (right) using multiquadric RBFs for the Helmholtz prob-
lem in 1D. The number of node points is from top to bottom N =
6, 7, . . . , 21, 30, 40, . . . , 100, 200, 300, 400 in the left subfigure, and N =
10, 11, . . . , 20, 30, . . . , 100, 200, 300, 400 in the right subfigure. The dashed
lines show how the error curves are traversed if the shape parameter is chosen
as ε = Chβ, with β = 3

2 ,
1
2 , 0,−1

2 ,−3
4 ,−1,−3

2 from left to right.

where CεM > 0 and the superscript indicates the potential ε-dependence.
The validity of this is expression is confirmed numerically in Section 6.5.

6.5 Numerical validation of our error formulas

In this section we validate our error formulas for the two-dimensional Helmholtz
problem with curved boundaries (1.6), (1.10), (1.11), using shape parameter
values given by ε = C/

√
h. With this choice of shape parameter scaling, the

error should according to equation (6.19) be of the form

‖e‖∞ = AM exp(−CM/
√
h). (6.20)

Figure 6.5 shows the relative error and the relative error estimate based
on (6.9) against 1/

√
h. Lines describing the error formula (6.20) have been

fitted to the data and the slopes CM are 0.78 for the error and 0.75 for
the error estimate. This means that the relative error estimate is a good
fit for the trend in the relative error, even if the constant is not precise.
The constant AM is 3.0 times larger for the error estimate than for the
error. Based on experiments we expect AM to be problem and/or parameter
dependent.

We also used the error estimate (6.9) for the two-dimensional Helmholtz
problem with curved boundaries for larger wavenumbers. We did this by
solving the problem for three node sets of different sizes. We computed the
relative errors of the coarser solutions with respect to the finest solution and
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Figure 6.4: The maximum error as a function of ε for κ = 2.2π for the two-
dimensional Helmholtz problem on a rectangle, using multiquadric RBFs.
The number of node points is from top to bottom N ≈ n2, for n = 3, . . . , 25.
The dashed lines show how the error curves are traversed if the shape pa-
rameter is chosen as ε = Chβ, with β = 3
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Figure 6.5: The relative error estimate (6.9) (×) and the relative error
against the reference solution as a function of 1/

√
h. The dashed lines

represent the error formula (6.20) fitted to the data points.

then compared the errors with the error estimates to find the approximate
ratio between the estimates and the real errors. Finally we used this ratio
to obtain an improved error estimate for the finest solution.





Chapter 7

Global RBF collocation in
practice

We begin this section with some general guidelines on global RBF colloca-
tion. The first choices to consider are which collocation method and RBF
type to use. A general recommendation is to use the non-symmetric collo-
cation method for time dependent problems with explicit time-stepping and
the symmetric collocation method for time-independent PDEs and possibly
also for time-dependent PDEs with implicit time-stepping [18]. In practice
though many researchers prefer to use the more flexible and more easily im-
plemented non-symmetric method even when the collocation matrix needs
to be inverted. This usually causes no problems as the cases that lead to
singularity seem to be rare [46]. As mentioned in Section 2 when it comes
to the RBF type, the infinitely smooth RBFs have the highest potential
for fast convergence for smooth data. On the other hand they often lead
to ill-conditioned problems, especially for the shape parameter values that
tend to yield the highest accuracy. The piecewise smooth RBFs lead to less
ill-conditioned problems, but they only yield algebraic convergence. These
RBFs are especially relevant for interpolation and statistics applications but
maybe less so for PDEs [23]. For interpolation problems there is most likely
little point in using RBFs that are much smoother than the given data, see
for example Guideline 7.6. in [94]. This guideline states that the smooth-
ness of the interpolated function determines the attainable approximation
rate for non-stationary interpolation. However, the situation can be dif-
ferent when it comes to PDEs [33]. Regarding the shape optimization of
the infinitely smooth RBFs, the smaller shape parameter range tends to
result in higher accuracy provided that the problem does not become too
ill-conditioned and that the solution does not have large local gradients. An
intuitive reason why solutions with large local gradients require larger shape
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parameter values is that it is difficult to achieve local peaks by combining
very flat global functions. The shape of some RBFs can also be optimized
through a second parameter. For the generalized MQ RBFs, it is shown in
[102] that it is more important to optimize the MQ exponent (β in Table 2.2)
than to optimize the shape parameter ε in order to accelerate convergence.
The optimal value of the exponent increases as a function of the number of
node points. Finally, when using RBF methods to solve larger systems it
is, just as for other methods, a good idea to consider additional approaches
such as domain decomposition and iterative methods.

7.1 How to choose an appropriate shape parame-
ter value

What strategy to use when choosing the shape parameter depends on the
task to be performed and the available data. If the idea is to theoretically
study the accuracy of the RBF solution and the exact solution is known, a
trial and error approach can be used. A shape parameter interval is then
chosen and the problem is solved repeatedly for different shape parameter
values using either the direct method or when necessary one of the stable
methods described in Section 5.3. This is of course computationally costly
and as the optimal shape parameter depends on the specific problem to
be solved it is not possible to reuse a particular optimal value for other
problems and motivating the high cost that way. However, if the idea is to
actually study the behaviour of a particular RBF method for different shape
parameter values and finding an optimal value as a result of this, trial and
error is of course the most natural approach. For all other purposes than
studying the method itself, approximating a solution is quite pointless if
the exact solution is already known. A shape parameter can still be chosen
by trial and error even when the exact solution is not known but then the
method becomes rather subjective since there is no definite way to decide
what the best shape parameter value is. Since it is generally known that the
direct method becomes increasingly ill-conditioned as the shape parameter
value decreases, one approach suggested in [18] for solution in Matlab is to
use the smallest shape parameter value for which there is no near-singular
warning. Despite the ambiguities and high cost the trial and error approach
is widely used, mainly because of its simplicity.

7.1.1 Leave-one-out cross validation (LOOCV)

A shape parameter strategy that requires no known exact solution is the
cross validation method. This technique is suggested in [40] in the con-
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text of solution of elliptic PDEs with the dual reciprocity method based on
RBF interpolation. In [86] a version called leave-one-out cross validation
(LOOCV) that is frequently used in statistics is described and applied to
RBF interpolation. The idea is to compare the given data at each node point
with the value of the interpolant based on all other node points, excluding
the comparison node. The result is a vector with an approximate inter-
polation error from which an error norm can be computed. The strategy
is repeated for different shape parameter values and the shape parameter
that minimizes the norm of the approximate error is chosen. We have the
following RBF interpolant to the given data (f1, . . . , fk−1, fk+1, . . . , fN ):

sk(x, ε) =
N∑

j=1,j 6=k
λkjΦ(‖x− xj‖, ε), (7.1)

satisfying

sk(xi) = fi, i = 1, . . . , k − 1, k + 1, . . . N. (7.2)

The so called cost vector, here based on the approximate interpolation error
at each left out node point, is given by

Ek = fk − sk(xk), k = 1, . . . , N. (7.3)

Naively implemented the LOOCV strategy is computationally expensive
as it involves the solution of N systems with N − 1 unknowns requiring
O(N4) operations for each shape parameter value. In [86] however it is
shown that the error vector (7.3) can alternatively be computed by

Ek =
λk

A−1
kk

, (7.4)

where the coefficients λk and matrix A correspond to the full interpolation
problem including all data points. This means that only one system needs
to be solved for each shape parameter value, reducing the cost to O(N3).
Using (7.4) thus results in the same cost for the LOOCV strategy as for the
trial and error approach.

For PDE problems the cost vector needs to be modified as there is no way
to directly compare the approximant with an exact solution or given data.
Using the residual to predict the error behaviour for different shape parame-
ter values when solving PDE problems through collocation was suggested in
[9]. Basing the cost vector on the residual is also the most straightforward
way to modify LOOCV to fit the PDE framework [22]. The cost vector
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formulas corresponding to (7.3) and (7.4) for non-symmetric collocation ap-
plied to the PDE (3.1), with NI interior points and a total of N node points
are then given by

Ek =

{
fk − Lsk(xk), k = 1, . . . , NI ,
gk − LBsk(xk), k = NI + 1, . . . , N,

(7.5)

and

Ek =
λk

K−1
kk

, (7.6)

where

K =

(
L

B

)
(7.7)

is the non-symmetric collocation matrix in (3.4).

A different cost vector based on comparisons with the PDE operator
applied to each basis function was defined for the RBF–PS method in [20].
This version however does not take the dependence of the approximation on
the given data into account which is a disadvantage.

The LOOCV approach is still rather expensive even when using formula
(7.6). In [106] a variation of the LOOCV approach referred to as a dou-
bly stochastic radial basis function method (DSRBF) is introduced which
decreases the overhead cost associated with the LOOCV shape parameter
selection from O(N3) to O(N2) operations. The idea is to work with an
overdetermined system with data given in N points and to perform a num-
ber of observation experiments using different randomly selected subsets of
N collocation points. For each subset of data points the coefficients and col-
location matrix inverse in (7.6) are then approximated rather than computed
by solution of the corresponding system of equations. By keeping the num-
ber of observation experiments limited it is possible to keep the cost down to
the O(N2) operations of the approximate solution process. Each observation
experiment results in an estimated optimal shape parameter and the mean
of these estimated values is then used to compute N randomly distributed
shape parameter values, each corresponding to one specific basis function.
The full problem is then solved using these shape parameter values.

7.1.2 Variable shape parameter values

Using variable shape parameters, i.e., allowing different shape parameter
values for different basis functions, can improve the conditioning of the
problem as well as the accuracy of the solution [36, 102, 88] and it can
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also decrease effects of the Gibbs phenomenon associated with the approx-
imation of discontinuous functions [88]. There is less theoretical knowledge
in the case of variable shape parameters, but sufficient conditions for the
non-singularity of the interpolation matrix A in (1.5) are provided in [3].
One way of choosing the variable shape parameters is through the DSRBF
described in Section 7.1.1, but they can also be chosen through greedy al-
gorithms [88]. Another strategy is to choose a shape parameter and scale
it with the inverse distance to the nearest node point in order to achieve
appropriate variable shape parameter values [36].

7.1.3 Some shape parameter strategies from our research

In Paper I we vary the shape parameter as ε = 1 + N/20, when solving
the 1D Black–Scholes equation, see Figures 7.1 and 7.5. This formula works
reasonably well for a limited range of problem sizes. However for other
values of N other choices are better, see Figure 7.2. For the 2D Black–
Scholes equation in Paper I, we use shape parameter values that have been
optimized locally in a small interval close to the ill-conditioned zone for each
experiment.
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Figure 7.1: The financial error norm as function of ε for the 1D Black–
Scholes equation with N ∈ [20, 60]. The stars show ε = 1+N/20. Note that
the ill-conditioning hides the true optimal shape parameter values.

For the Helmholtz equation in Paper II, the results of different shape
parameter choices can be seen in Figures 6.3 and 6.4. We also use the
residual-based error estimate (6.9) to aid us in finding appropriate shape
parameter values. As shown in Section 6.4, a practical way to achieve con-
vergence in spite of the ill-conditioning is to choose the shape parameter
as ε = Chβ, with β > −1. We use β = −1/2, for a trade-off between
convergence rate and conditioning, but we also need to know the value of
C.
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Figure 7.2: Different shape parameter choices for the 1D Black–Scholes equa-
tion. Left: Financial error norm for the choice ε = 1 +N/20. Right: Finan-
cial error norm for ε = 1 +N/20 (o), ε = a+ bN3/4 (+) and ε = c+ dN1/2

(�), where a, b, c, and d are constants.

Compared with the full solution, solving a much less resolved problem a
few times for different shape parameter values is computationally affordable.
We use the error estimate (6.9) to find the best shape parameter values for
this smaller problem, and from there the C to use. Figure 7.3 shows the
relative error estimate as well as the relative `2-norm of the residual together
with the actual error against the reference solution. In the first example,
both the error estimate and the residual norm are good indicators of the
true optimum. In the second example, the minimum for the error estimate
is a bit higher than the true value.
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Figure 7.3: The error estimate (6.9) (×), the `2-norm of the residual (dotted
line) and the error against a highly resolved reference solution (◦) for the
10 × 12 (left) and 40 × 50 (right) node sets. The minima are indicated by
black squares. Computed C-values corresponding to the average of the two
estimates were C = 1.5 (left) and C = 1.7 (right).
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We also tried to use residual-based LOOCV on the Helmholtz problems
in this paper, but the preliminary results suggested that our error approx-
imation strategy was more successful in finding relatively optimal shape
parameter values in this case.

7.2 How to distribute the node points

As mentioned already in the introduction, one of the advantages of RBF
methods is their meshless nature. This feature not only makes these meth-
ods more flexible in terms of the geometry of the computational domain but
it also offers a potential for accuracy improvement by adapting the node
distribution to the computational problem at hand. Typical regions where
one might want a denser node placement are boundaries, where the errors
of RBF methods tends to be the largest, and any region where the interpo-
lated function or approximated solution of a PDE might have finer features
that need more nodes to be properly resolved. The change in node density
between different regions should be smooth and gradual in order to avoid
artificial effects in the solution [24].

In terms of node distributions in 2D in general without any local refine-
ment, a hexagonal or approximately hexagonal node placement has been
found to be optimal [47, 48, 27]. So called Halton points often perform rel-
atively well. Halton node distributions are quasi-random sets with points
from the Halton sequence. They tend to fill up the computational domain in
a uniform manner, provided that the number of node points is large enough
relative to the dimension of the domain [18]. Distributions for which the
coordinates have been calculated from independent uniformly distributed
random numbers are, however, not recommended. The reason for this is
that they tend to result in quite severe local node clusterings in a way that
does not reflect PDE or data behaviour, while other areas can lack nodes,
which leads to large errors and condition numbers. When using a constant
shape parameter, placing nodes extremely close to each other is of course not
a good idea in general because it leads to severe ill-conditioning. Cartesian
node distributions sometimes perform reasonably well, but they can often
be worse than Halton points. One reason for this is that the approximation
quality of Cartesian node layouts is different in different spatial directions
[27]. Cartesian node distributions are also non-unisolvent in the flat RBF
limit, leading to higher degree limit polynomials and worsened conditioning,
see Section 5. It is also proved in [83] that no method can be simultaneously
stable and exponentially convergent on equispaced nodes. Often though the
difference in accuracy between different (reasonable) node distributions is
not that dramatic.
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7.2.1 How to mitigate or bypass the Runge phenomenon

The Runge phenomenon is a well known problem in polynomial interpola-
tion. Basically it is the divergence of the interpolant at the boundaries of
the computational domain as the number of node points goes to infinity.
This happens if the approximated function has singularities within a cer-
tain domain in the complex plane called the Runge zone or Runge region.
These regions depend on the particular basis and computational grid. In
[80], Runge regions very similar to those for polynomials are demonstrated
for RBF interpolation in 1D, showing that the RBF method is also vulnera-
ble to the Runge phenomenon. As RBF interpolation with infinitely smooth
basis functions approaches polynomial interpolation in the flat limit this is
perhaps not surprising, and the Runge phenomenon explains why the er-
ror after decreasing with decreasing shape parameter values, at some point
starts to increase again and level out in the flat limit.

For polynomial interpolation the usual way to mitigate the Runge phe-
nomenon is by using Chebyshev points instead of equidistant points. In [81]
the authors show that, for RBF interpolation in 1D with the GA RBF, a
distribution approaching the Chebyshev points is suitable for small shape
parameter values while an equidistant distribution works better for larger
shape parameter values. In [80] the author uses a family of node distributions
depending on a parameter varying between zero and one. The distribution
approaches the Chebyshev points as the parameter approaches zero and as
the parameter approaches one the distribution becomes equidistant. The
parameter is then optimized in order to minimize the so called Lebesgue
constant, which is a constant influencing the interpolation accuracy. In [2],
three different strategies for 1D GA RBF interpolation are suggested. One
strategy is to vary the shape parameter as O(N3/4). The results for this
shape parameter choice for the 1D Helmholtz equation can be seen in Fig-
ure 6.3. The second suggested strategy is a three layer method in which
the boundary layers and the centre layer are treated differently and the
third strategy is to use a GA RBF extension. In this extension strategy
the data on the computational interval is approximated using a basis of GA
cardinal functions with centres placed evenly on a slightly extended inter-
val. Another extension strategy based on Fourier extensions and frames is
presented in [79]. A Fourier extension method is based on making the pe-
riod of the Fourier modes larger than the computational domain and then
approximating the function to be interpolated by a Fourier series with this
larger period. Frames are bases that have been augmented with redundant
elements which results in flexibility and robustness. The author shows that
Fourier series are a special case of RBF expansions in the flat limit when
the RBF centres are placed around the unit circle. This is then used for
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the construction of an RBF extension method where the centres are placed
around the unit circle but with the collocation data given only at a portion
of the circle. The author also suggests choosing the shape parameter based
on the rank of the RBF collocation matrix. The method is shown to be
both stable and accurate with a superalgebraic convergence even for nodes
scattered on the domain, i.e., without node clustering near the boundaries.
This is in some sense the best result one can hope for since it is proved in [83]
that no method can be simultaneously stable and exponentially convergent
on equispaced nodes.

In [25] a few different strategies for decreasing the errors in the boundary
regions are suggested. The first one is adding low order polynomial terms
and corresponding constraints typically stating that the sum of the RBF
coefficients multiplied by the different polynomial terms equals zero which
leads to a minimization of the far field values of the RBF approximant.
Another strategy is to simply cluster nodes near the boundaries. A third
method is to move the outermost or the two outermost RBF centre layers
outside the domain. These versions of the same technique are referred to
as the Not-a-Knot and the Super Not-a-Knot method respectively. The
authors state that the Super Not-a-Knot strategy is the most successful of
their suggested methods.

Local refinement can also lead to a Runge phenomenon in the areas
where the nodes are sparser and the solution thus less pinned down. This
can be controlled by letting the shape parameter vary with the node density
with higher shape parameter values in areas with a higher node density. A
suggested strategy is to choose a shape parameter and scale it with the in-
verse distance to the nearest node point. This essentially means that if the
node space is stretched to make the nodes equidistant, all basis functions
would have the same shape [36]. This strategy is used in [24], where rota-
tional transport equations are solved on a sphere modelling moving vortex
roll-up in atmospheric dynamics, e.g., hurricanes. A common near-uniform
node distribution on a sphere is the minimum energy (ME) distribution. As
the name implies ME nodes minimize the potential energy for electrostatic
repulsion of point charges scattered on the surface of the sphere. The au-
thors of [24] describe a local node refinement scheme simulating electrostatic
repulsion on the surface of the sphere to a low order, keeping it computa-
tionally cheap. By assigning the same charge to all the nodes the result
will be an approximate ME set. Instead different charges are assigned to
different nodes, based on the angular wind velocity so that nodes in areas
where more resolution is needed are assigned lower charges resulting in a
higher node density. Nodes are allowed to move until force equilibrium is
reached with respect to a given tolerance and this results in a node distri-
bution that both reflects the physics of the PDE and that varies smoothly
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over the computational domain.

7.2.2 Adaptive node placement

Here we briefly describe some strategies for adaptive node placement, of
which almost all fall into the category of greedy methods, i.e., basically
node methods that search for the maximum of some quantity chosen to
describe the distribution quality in some sense and adding nodes based on
this.

In [14] two strategies for choosing near-optimal data independent node
distributions are described. Convergence proofs are provided and the au-
thors also show that good interpolation points are always uniformly dis-
tributed in a certain sense. The first strategy is based on the so called
power function which is a function that depends on the specific RBF and
the node set, and that limits the data independent part of the approximation
error. The idea is to start with an arbitrary node point in the computational
domain, Ω, and then evaluate the power function of the previous node set
over some very large point set X ∈ Ω. The point where the power func-
tion attains its maximum is then added to the node set and the procedure
is repeated until the power function value falls under some given tolerance
level. The second strategy is geometric and independent of the RBF. For
bounded domains in Rd this method constructs asymptotically uniformly
distributed node sets that cover the domain in an asymptotically optimal
way. Here the point that has the largest distance to its nearest neighbour
in the previous node set is added at each step. According to the authors,
practical examples show that the power function based strategy tends to fill
the currently largest hole in the node distribution by placing a node close
to the centre of this hole. The geometric strategy instead tends to find node
sets for which the largest hole in the node distribution is similar in size to
the minimum separation distance between the node points.

In [64] the authors prove non-singularity of the non-symmetric colloca-
tion method provided that the functions resulting from applying the PDE
operators to the basis functions are continuous and the trial centres are
properly chosen. The test and trial centres are hence separated. A data-
dependent greedy method is described, where a new test and trial centre pair
is added at each iteration. The selection of the test centres is based on the
maximum residual value over a large set of points and the trial centre points
are chosen based on the determinant of the current system matrix to main-
tain reasonable conditioning. The inverse of the system matrix is built up
gradually which decreases the cost of the method to O(K3 +K2M +K2N)
operations where M is the number of test centre candidates, N is the num-
ber of trial centre candidates and K is the number of iterations and also
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the size of the final system, which is typically small compared with M and
N . The final step of the method is to solve the collocation problem using
the last system matrix, which is square. This algorithm prefers centres out-
side the computational domain for small shape parameter values. In [65]
another adaptive greedy algorithm is constructed from theoretical results
for convergence by combining the method just described with linear opti-
mization. This method uses the overdetermined system consisting of the
selected trial centres and all the test functionals thus minimizing the maxi-
mum error in many points. In [66] an improved version of the algorithm in
[64] is presented, where the best test and trial centres are selected based on
the maximum primal and dual residual corresponding to the minimization
problem associated with the underdetermined system. A fast block-greedy
algorithm for quasi-optimal meshless trial subspace selection is introduced
in [63]. This method is also based on the primal/dual residual criterion but
it adds several test and trial centres at once decreasing the cost to at most
O(NK2), where N is the number of trial centre candidates, K is the number
of selected trial centres and the number of test centre candidates is smaller
than or equal to the number of trial centre candidates.

In [16] the authors describe a method they call residual subsampling.
Here nodes are added or removed adaptively based on the value of the in-
terpolation error or the PDE residual between the current centre points.
The shape parameter value is here chosen in such a way that the product
of the shape parameter value and the local node spacing is kept constant,
i.e., when the node spacing is halved the shape parameter value is doubled.
The authors also note that a smaller starting shape parameter value leads
to refinement less obviously connected to the data, while a larger starting
value leads to nodes clustering in a more intuitive way.

7.2.3 Examples of node distributions from our research

For the Black–Scholes equation in Paper I we use node distributions where
the nodes are clustered in the most interesting region, i.e., around the strike
price. Example distributions in 1D and 2D can be seen in Figure 7.4.

In one dimension, the node points are placed in the following way. If
N = 3p+ 2, for some integer p, we distribute p+ 1 points uniformly in each
of the intervals [0, K̄ − δ] and [K̄ + δ, 2K̄]. Then we place the remaining p
points in the last part of the computational domain. The small distance, δ,
from K̄ is chosen as δ = 1/(N − 1) and the symmetric placement around
K̄ is motivated by numerical experiments showing that errors are reduced
by this choice. In two dimensions a similar distribution is chosen in the
diagonal direction.

Figure 7.5 shows a comparison between the errors using a uniform and
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Figure 7.4: Non-uniform node distributions for the Black–Scholes equation
in 1D (left) and 2D (right).

non-uniform distribution in one dimension. Figure 7.6 also shows an exam-
ple of the error for the two distributions. A comparison of the errors for
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Figure 7.5: Financial error norms for uniform (dashed) and non-uniform
(solid) node distributions for the Black–Scholes equation in 1D with ε = 4
(left) and ε = 1 +N/20 (right).

the two types of distributions in two dimensions is shown in Figure 7.7. As
can be seen from the results, the errors are smaller for the non-uniform dis-
tributions. It should be noted, however, that the non-uniform distributions
also worsen the condition numbers of the system matrices.

For the Helmholtz problem the most interesting node distribution is for
the problem with curved boundaries, see Figure 7.8. Here we use quasi-
uniform nodes that are constructed from the input parameters n1 and n2,
that specify the number of nodes along the left boundary and the number
of nodes in the horizontal direction, respectively. We define the step sizes
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Figure 7.6: The absolute value of the error E(x) for N = 20 and ε = 2 for
uniform (dashed) and non-uniform (solid) node distributions for the Black–
Scholes in 1D.
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Figure 7.7: Financial error norms for uniform (dashed) and non-uniform
(solid) distributions for the Black–Scholes equation in 2D with ε = 1.

h1 = L1/(n1 − 1) and h2 = L2/(n2 − 1), where L1 and L2 are the lengths
of the domain in each dimension. Based on these step sizes, the nodes are
then placed uniformly along vertical lines with as similar node distance as
possible. The nodes at the top and bottom boundaries are placed uniformly
with respect to the arc length. Finally, we add a random perturbation to
each node in order to avoid too regular node patterns, which could cause
non-unisolvency and high conditioning.
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Figure 7.8: Examples of node distributions for the Helmholtz problem.



Chapter 8

Sammanfattning p̊a svenska

Numeriska metoder för lösning av partiella differentialekvationer (PDE:er)
kräver ofta ett beräkningsnät, det vill säga en fördelning av beräkningsnoder
med n̊agon form av mönster eller koppling mellan de olika nodpunkterna.
Finita differensmetoder och pseudospektrala metoder till exempel, kräver
mycket regelbundna nodmönster vilket gör dessa metoder mindre flexibla
med avseende p̊a beräkningsomr̊adets geometri. Finita elementmetoder är
istället geometriskt flexibla, men nätgenereringen för dessa metoder är ofta
beräkningstung. Radiella basfunktionsmetoder (RBF-metoder) är, till skill-
nad fr̊an de tidigare uppräknade metoderna, nätfria. Den enda geometriska
egenskap de använder sig av är parvisa avst̊and mellan olika nodpunkter.
Dessa metoder är därför mycket flexibla och kan användas för beräkningar
p̊a geometriskt komplicerade omr̊aden och de är dessutom lätta att imple-
mentera även för problem i högre dimensioner. Grundidén är att man kon-
struerar en approximant som en linjärkombination av translaterade radiella
basfunktioner (RBF:er), det vill säga funktioner vars värde endast beror av
avst̊andet till funktionens centrumpunkt. Därefter utför man s̊a kallad kol-
lokation, det vill säga man sätter in approximanten i PDE:n och med hjälp
av givna data i vissa nodpunkter bygger man sedan upp ett linjärt ekva-
tionssystem vars lösning utgörs av approximantens koefficienter. De RBF:er
som är oändligt deriverbara brukar resultera i exponentiell konvergens för
data genererade av en tillräckligt glatt funktion. Detta kan jämföras med fi-
nita elementmetoder och finita differensmetoder som bara kan ge algebraisk
noggrannhet. De oändligt deriverbara RBF:erna har ocks̊a en formparame-
ter som bestämmer hur platta eller spetsiga de är och denna formparameter
kan användas för att förbättra metodens noggrannhet.

I denna avhandling fokuserar vi p̊a s̊a kallade globala kollokationsmeto-
der med RBF:er, det vill säga metoder där man konstruerar approximanten
över hela beräkningsomr̊adet direkt, till skillnad fr̊an lokaliserade metoder

65
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där approximanten byggs upp genom flera lokala approximationer. En nack-
del med de globala metoderna är att de resulterar i fyllda matriser som
dessutom tenderar att vara illa-konditionerade i det formparameter-intervall
som annars kanske hade varit optimalt. Trenden g̊ar därför mot en ökad
användning av överbestämda system och minsta-kvadrat-approximationer
eftersom detta förbättrar s̊aväl stabilitet som noggrannhet och man g̊ar
ocks̊a alltmer över till lokaliserade metoder, vilka ger glesa matriser men
fortsatt hög noggrannhet. Globala kollokationsmetoder utgör dock, tillsam-
mans med interpolationsmetoder med RBF:er, grunden även för de lokali-
serade metoderna. Det är därför fortfarande viktigt att studera och först̊a
beteendet hos, samt olika praktiska aspekter av, globala kollokationsmeto-
der. I denna avhandling presenteras en översikt av global RBF-kollokation,
med fokus p̊a olika kollokationsvarianter och metodegenskaper. Vi berör
till exempel fel- och konvergensbeteende samt approximationsbeteende för
sm̊a formparametervärden, liksom olika praktiska aspekter som hur man bör
välja nodfördelning och formparametervärden. V̊ara egna forskningsresultat
illustrerar olika egenskaper hos global RBF-kollokation med hjälp av Helm-
holtz ekvation samt Black–Scholes ekvation för prissättning av europeiska
korgköpoptioner.

För Black–Scholes ekvation föresl̊ar vi problemanpassade nodfördelningar
i 1D och 2D och visar att dessa nodfördelningar resulterar i högre noggrann-
het än motsvarande likformigt fördelade nodmängder. Vi föresl̊ar ocks̊a en
formel för formparametervalet för detta specifika problem i 1D. Denna formel
resulterar i detta specifika fall i en lösningsnoggrannhet som ligger kring den
högsta n̊abara utanför det illa-konditionerade formparameter-intervallet. Vi
visar att metoden uppn̊ar den förväntade konvergenshastigheten i rum och
tid och vi gör en effektivitetsjämförelse mellan global RBF-kollokation och en
adaptiv finit differensmetod. Denna jämförelse visar att den globala RBF-
metoden är snabbare i b̊ade 1D och 2D. Metoderna kräver ocks̊a ungefär
samma minnesutrymme i 2D. Detta visar allts̊a sammantaget att den globala
RBF-kollokationsmetoden kan vara mer effektiv än finita differensmetoder,
trots att den resulterar i fyllda matriser.

För Helmholtz ekvation beskriver vi b̊ade icke-symmetrisk och symmet-
risk kollokation. En nackdel med den icke-symmetriska metoden är att den
inte garanterar en icke-singular systemmatris, men d̊a den är lättare att im-
plementera och kräver lägre deriverbarhet hos basfunktionerna än den sym-
metriska metoden, föredras den änd̊a ofta. I praktiken är matrisen i de flesta
fall icke-singulär. Situationen är dock lite speciell för de PDE:er som har en
parameter, som till exempel v̊agtalet i fallet Helmholtz ekvation. Vi visar för
det endimensionella problemet att det för vilken given nodfördelning som
helst (med distinkta noder) existerar v̊agtal som resulterar i en singulär ma-
tris. Vi visar dock även numeriskt att systemmatrisen för det endimensio-
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nella problemet är icke-singular för väl upplösta problem med reella v̊agtal.
Vi studerar ocks̊a beteendet hos RBF-lösningen till Helmholtz ekvation i
gränsen där formparametern g̊ar mot noll, det vill säga där basfunktionerna
g̊ar mot att bli helt platta. RBF-metoden beter sig här som polynominter-
polation och det specifika beteendet är nära knutet till fr̊agan om entydig
lösbarhet för polynominterpolationen, samt för PDE-problemet applicerat
p̊a polynom, p̊a den givna nodmängden. Vi presenterar ett teorem som be-
skriver de olika gränsfallen samt respektive villkor och vi ger ocks̊a exempel
p̊a nodmängder som motsvarar de olika villkoren för ett tv̊adimensionellt
Helmholtz-problem. Vi studerar ocks̊a konvergensbeteendet hos felet som
funktion av antalet nodpunkter s̊aväl för mindre som för större formparame-
tervärden. Vi härleder teoretiska feluppskattningar och visar att de stämmer
väl överens med numeriska resultat. Olika formler för formparametern har
föreslagits i litteraturen och vi visar numeriskt vilken effekt olika val har p̊a
konvergensen. Vi tittar ocks̊a teoretiskt p̊a konvergensen som funktion av
formparametern.
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Abstract

In this paper, we have derived a radial basis function (RBF) based method for the pricing of financial contracts by solving the
Black–Scholes partial differential equation. As an example of a financial contract that can be priced with this method we have
chosen the multi-dimensional European basket call option. We have shown numerically that our scheme is second-order accurate
in time and spectrally accurate in space for constant shape parameter. For other non-optimal choices of shape parameter values, the
resulting convergence rate is algebraic. We propose an adapted node point placement that improves the accuracy compared with a
uniform distribution. Compared with an adaptive finite difference method, the RBF method is 20–40 times faster in one and two
space dimensions and has approximately the same memory requirements.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The financial markets are becoming more and more complex, with trading not only of stocks, but also of numerous
types of financial derivatives. The market requires updated information about the values of these derivatives every
second of the day. This leads to a huge demand for fast and accurate computer simulations.

In this study we consider the problem of pricing financial contracts on several underlying assets. These contracts
are receiving more and more interest as the demand for complex derivatives from the customers and the speed of
computers have increased over the years. We have chosen to use a European basket option as an example. This is a
rather simple contract but works well as an indicator of the usefulness of our method.

One way of pricing financial contracts is to solve the Black–Scholes equation [1], a partial differential equation
(PDE) in which the number of spatial dimensions is determined by the number of underlying assets. When the number
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of dimensions grows, this becomes computationally very demanding. Thus, it is necessary to use fast and memory
efficient algorithms.

Other methods to price high-dimensional contracts are, e.g., Monte Carlo methods, “sparse grids”, and finite
difference methods. Monte Carlo methods have the advantage of scaling linearly with the number of dimensions, but
have the drawback of converging very slowly. There are several ways of speeding-up the convergence, e.g., different
variance reduction and quasi-random sequence techniques. A good reference for Monte Carlo algorithms and theory
is [2]. Sparse grids is an approximation technique rediscovered in the 1990s. By combining several grids with different
step sizes, a small number of grid points can be used to achieve an accurate approximation and keep the memory
requirements low. Reference [3] gives an introduction to sparse grids with applications. Finite difference methods are
generally well known, but for details about the method we have used here for comparisons, we refer to Section 5.

Here, we consider RBF approximation as a potentially effective approach for solving the multi-dimensional
Black–Scholes equation. A typical RBF approximant has the form

u(Ex) =

N∑
j=1

λ jφ(ε‖Ex − Ex j‖),

where φ(r) is the RBF, Ex j , j = 1, . . . , N are center points, and ε is a shape parameter. A small value of ε leads to
flatter RBFs. The shape parameter is an important method parameter, with a significant effect on the accuracy of the
method. With infinitely smooth RBFs the method can be spectrally accurate [4,5], meaning that the required number
of node points for a certain desired accuracy is potentially very small. Since the method only needs pairwise distances
between points, it is meshfree. Therefore, it is easy to use in higher dimensions and it also allows for problem adapted
node placement.

Option pricing using RBFs has been explored in one dimension for European and American options by Hon et al.
[6,7] and in both one and two dimensions by Fasshauer et al. [8] and Marcozzi et al. [9] with promising results. Hon
has also applied a quasi-radial basis function method to option pricing in one dimension [10].

The contribution of this paper is a thorough numerical study of the effects of the method parameters on the accuracy
and performance of the method, providing some insights regarding the possibilities and limitations of RBF methods.
We look at sample problems in one and two dimensions and we also compare the results of the RBF method with those
of an adaptive finite difference scheme [11]. Furthermore, we discuss boundary conditions both from a theoretical and
an implementational viewpoint.

The outline of the paper is as follows. In Section 2, we present the sample problems and boundary conditions. Then,
in Section 3, we derive the space approximation and time discretization of the problem. Section 4 contains numerical
experiments for the RBF method and Section 5 shows the results of the comparison with the adaptive finite difference
method. Finally, Section 6 gives some conclusions.

2. The multi-dimensional Black–Scholes problem

2.1. The Black–Scholes equation

The Black–Scholes equation is a time-dependent linear PDE, in its original formulation posed as a final value
problem. Here we use a transformed version of the PDE. Time is reversed to make standard texts on time-integration
for PDEs applicable, and all variables have been scaled to be dimensionless. The details of the transformation can be
found in [11]. The transformed problem reads

∂

∂ t̂
P(t̂, Ex) = LP(t̂, Ex), t̂ ∈ R+, Ex ∈ Rd

+,

P(0, Ex) = Φ(Ex), Ex ∈ Rd
+,

(1)

where

LP = 2r̄
d∑

i=1

xi
∂ P
∂xi

+

d∑
i, j=1

[σ̄ σ̄T
]i j xi x j

∂2 P
∂xi∂x j

− 2r̄ P, (2)
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where P(t̂, Ex) is the value of the option at time t̂ when the underlying assets have the values given by Ex . Furthermore,
the coefficient r̄ is the scaled short interest rate, σ̄ is the scaled volatility and d denotes the number of underlying
assets and thus the number of spatial dimensions of the problem. An example of a contract function for a European
basket call option is the average option

Φ(Ex) = max

(
1
d

d∑
i=1

xi − K̄ , 0

)
, (3)

where the scaled strike price in our case is K̄ = 1. The weights could also be different from 1/d, but that would just
be another scaling of the variables. This type of contract function is considered in [12].

2.2. Boundary conditions for the finite difference method

As mentioned previously, we use the adaptive finite difference method derived in [11] for reference solutions and
for comparisons. For a finite difference discretization of the Black–Scholes problem, (numerical) boundary conditions
are needed at all parts of the boundary. This implementation employs

∂2 P(Ex, t̂ )

∂n2 = 0, (4)

where ∂/∂n indicates differentiation in the direction normal to the boundary. This is an approximation discussed and
used in [12]. It has also been successfully used in [11,13]. There are of course other possible boundary conditions,
but this choice has proven to work very well for this problem. Condition (4) is approximated by a second-order
discretization of the second derivative and can be considered as a linear extrapolation of the solution up to the
boundary. For all interior grid points a second-order discretization of the PDE is used.

2.3. Boundary conditions for the RBF method

Condition (4) does not work well with an RBF approximation method. One reason is that it does not imply linearity
in a region near the boundary, since the condition is enforced only at the boundary and the infinitely smooth RBFs
that we use are not in themselves linear.

In [14], Janson and Tysk show that the problem we consider here is actually well posed without boundary conditions
as long as the growth at infinity is restricted. Therefore, we only use near- and far-field boundary conditions. This
means that no boundary conditions are employed at boundaries of the type Γi = {Ex | Ex ∈ Rd

+, Ex 6= E0, xi = 0},
i = 1, . . . , d .

The near-field boundary can be seen as the single point Ex = E0, and there we enforce

P(t̂, E0) = 0. (5)

At the far-field boundary, which we have not yet defined, we use the asymptotic solution

P(t̂, Ex) →
1
d

d∑
i=1

xi − K̄ e−2r̄ t̂ , ‖Ex‖ → ∞. (6)

A different approach to boundary conditions for the RBF method was used in [8]. There (d −1)-dimensional problems
are solved at the parts of the boundary where we do not enforce any boundary conditions at all. Our arguments are (i)
errors in the computations in the lower dimensions are transferred to and possibly enlarged in the higher dimensions,
(ii) with the need to recursively solve PDEs in all dimensions up to d, it becomes more difficult to implement the
algorithm, and (iii) since the PDE at the boundaries collapses into lower-dimensional versions, time-stepping the
boundary points along with the rest should automatically provide the correct behavior.

2.4. Computational domain

The problem is defined on Rd
+, but for computational reasons we need to restrict the problem to a finite domain. For

the finite difference method the domain is [0, a1]×[0, a2]×· · ·×[0, ad ], in order to easily construct the structured grid
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(a) The contract function and Ωi . (b) The weight function (dashed) and |E(x)| (solid).

Fig. 1. Illustrations of the error norms in one dimension.

that is needed. However, the RBF method is meshfree, which gives us the opportunity to choose the artificial far-field
boundary as we like. With the contract function (3), it makes sense to use a boundary surface of the type

∑d
i=1 xi = C ,

where the constant C is chosen to bring the surface far enough from the origin for the far-field solution (6) to be an
accurate approximation.

2.5. Measuring the error

When measuring the error in the approximate solutions it is important to remember the real-life background of the
problems we are solving. Firstly, when we solve the Black–Scholes equation, we want to know the price (t̂ = T ) of
an option today with exercise time T years from today. That is, the error function is given by

E(Ex) = P(T, Ex) − u(T, Ex). (7)

Secondly, in option trading, the region of most interest is when the mean of the stock prices is close to the strike price.
Typically, the probability for a stock to default or to be very far from the strike price is small. Based on actual trading
data from the Stockholm stock exchange, we define the region of interest Ωi to be all Ex for which

1
d

d∑
i=1

xi ∈

[
K̄
3

,
5K̄
3

]
holds, and propose a financial error norm given by

E f = max
Ex∈Ωi

|E(Ex)|. (8)

The region of interest Ωi is depicted in Fig. 1(a) for a one-dimensional problem and in Fig. 2(a) for a two-dimensional
problem.

We have also used a weighted integral norm defined as

Ew =

∫
Ω

w(Ex)|E(Ex)|dEx, (9)

where Ω is the whole computational domain. The weight function is chosen as a product of d Gaussian functions,
centered in the region of interest and with

∫
Ω w(Ex)dEx = 1. In one dimension, we use w(Ex) ∝ exp(−5(x − K̄ )2) and

in two dimensions, we use w(Ex) ∝ exp(−4(x1 + x2 − 2K̄ )2) exp(−(x1 − x2)
2). The weight functions in one and two

dimensions are shown in Figs. 1(b) and 2(b), respectively. The idea can be extended to several dimensions and other
contract functions by changing the function w(Ex) accordingly. The main reason for using this norm is that it was the
output of one of the adaptive finite difference codes that we wanted to compare with. However, it also makes sense
to remove the influence of the larger errors at the boundary, where one stock is defaulted, since this case is of limited
interest.
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(a) The region Ωi . (b) Contours of w(Ex).

Fig. 2. Illustrations concerning the error norms in two dimensions. The line s1 + s2 = 2 in both the subfigures is where the contract function has a
discontinuous first derivative.

3. RBF approximation and time-stepping

We approximate the solution of (1) with a time-dependent linear combination of RBFs centered at the node points
Exk , k = 1, . . . , N ,

u(t̂, Ex) =

N∑
k=1

λk(t̂ )φ(ε‖Ex − Exk‖) =

N∑
k=1

λk(t̂ )φk(Ex), (10)

where φ(r) is the radial basis function, ε is the shape parameter, and λk(t̂ ) are coefficients to be determined.
Our method of determining these coefficients is collocation at the node points. For interior node points Exk ,

k = 1, . . . , Ni we use Eq. (1) and for node points at the near or far field boundaries, Exk , k = Ni + 1, . . . , N , we
enforce (5) or (6), respectively. Let Eui (t̂ ) = (u(t̂, Ex1), . . . , u(t̂, ExNi ))

T and Eub(t̂ ) = (u(t̂, ExNi +1), . . . , u(t̂, ExN ))T.
Then from (10)(

Eui (t̂ )

Eub(t̂ )

)
=

(
Ai i Aib
Abi Abb

)(
Eλi (t̂ )
Eλb(t̂ )

)
, (11)

where the total coefficient matrix A has elements a jk = φ(ε‖Ex j − Exk‖) and the indicated block structure is due
to the decomposition of interior and boundary node points. Furthermore, A is non-singular for standard choices of
RBFs [15], and

LEui (t̂ ) =
(
Bi i Bib

) (Eλi (t̂ )
Eλb(t̂ )

)
=
(
Bi i Bib

)
A−1

(
Eui (t̂ )

Eub(t̂ )

)
≡
(
Ci i Cib

) ( Eui (t̂ )

Eub(t̂ )

)
, (12)

where the matrix elements of B are b jk = Lφ(ε‖Ex j − Exk‖), for j = 1, . . . , Ni and k = 1, . . . , N .
The eigenvalues of Ci i determine the stability limits for the time-steps of different time advancing methods. For the

problems we consider here, the range of size of the eigenvalues is quite large, but there are no eigenvalues with positive
real part. Therefore, we have chosen to use the unconditionally stable BDF2 method [16] for the time evolution of the
problem. We use a constant time-step k. Let t̂ n

= kn and let Eun
i ≈ Eui (t̂ n). The time-stepping scheme applied to (1)

yields

Eun
i + β1 Eun−1

i + β2 Eun−2
i = kβ0LEun

i , (13)

where β0 = 1, β1 = −1, and β2 = 0 for the first time-step and β0 =
2
3 , β1 = −

4
3 , and β2 =

1
3 for subsequent steps.
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The boundary conditions are enforced at each new time level through

Eun
b = Egn

b , (14)

where Egn
b = (g(t̂ n, ExNi +1), . . . , g(t̂ n, ExN ))T, and

g(t̂, Ex) =


0, Ex = E0

d−1
d∑

i=1

xi − K̄ e−2r̄ t̂ , ‖Ex‖1 = C.
(15)

Combining (12)–(14) gives the overall scheme for advancing all unknowns one step in time,(
I − kβ0Ci i −kβ0Cib

0 I

)(
Eun

i
Eun

b

)
=

(
−β1 Eun−1

i − β2 Eun−2
i

Egn
b

)
. (16)

The initial condition from (1) in discrete form is

Eu0
i = Efi = (Φ(Ex1), . . . ,Φ(ExNi ))

T. (17)

Due to the change in β0 between the first and second time-step, we need to factorize the matrix block I − kβ0Ci i
twice. However, this can be avoided by choosing the time-step in a special way [17].

In, e.g., [6], the authors claim that the time-stepping is the major source of numerical errors. However, we suspect
that this is related to how the boundary conditions are implemented. In our scheme (16) the boundary conditions are
incorporated in a correct way, and we show in Section 4.4 that we get the expected second-order convergence in time.
If instead the boundary unknowns are adjusted separately after each time-step, an error is introduced in the whole
domain through the global coupling of the unknowns and time continuity is lost.

4. Numerical experiments

We have used multi-quadric RBFs in all the experiments, i.e., φ(r) =
√

1 + r2. The far-field boundary surface was
given by all Ex for which 1

d
∑d

i=1 xi = 4K̄ . The problem parameters were set to r̄ = 5/9, corresponding to r = 0.05,
and σ̄ = 1, corresponding to σ = 0.3, in one dimension. For the two-dimensional problem we used

σ̄ =

(
1 1/6
1/6 1

)
, corresponding to σ =

(
0.30 0.05
0.05 0.30

)
.

The number of time-steps M is in most cases chosen as the smallest M such that using M + 1 steps does not lead to
a significant improvement of the accuracy. In cases where we are not looking at performance, M is just chosen large
enough not to influence the accuracy. The exercise time used was T = 0.045, corresponding to 1 year.

The accuracy of the RBF method naturally depends on the number of node points N . However, the accuracy is also
very much influenced by the choice of shape parameter and to a lesser degree by the distribution of the node points. In
the following subsections, we first discuss how to make these choices, and then we look at space and time accuracy.

4.1. Node distribution

Since we are concerned with making the error small in the region of interest, we can adapt the node point
distribution to reduce the financial error norms, while allowing a larger error in the far-field region.

We have not tried to optimize the node distribution, but we have tried some different approaches and found one that
gives a clear improvement compared with a uniform distribution. Examples are shown in Fig. 3. In one dimension, the
node points are placed in the following way. If N = 3p + 2, for some integer p, we distribute p + 1 points uniformly
in the intervals [0, K̄ − δ] and [K̄ + δ, 2K̄ ]. Then we place the remaining p points in the last part of the computational
domain. The small distance, δ, from K̄ is chosen as δ = 1/(N − 1). The symmetric placement around K̄ is motivated
by numerical experiments showing that errors are reduced by this choice. In two dimensions a similar distribution is
chosen in the diagonal direction. Fig. 4 shows the difference between using a uniform and non-uniform distribution in
one dimension. Fig. 5 also shows an example of the error E(x) for the two distributions. A comparison of the errors
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Fig. 3. Non-uniform node distributions in one dimension (left) and two dimensions (right).

Fig. 4. Financial error norms for uniform (dashed) and non-uniform (solid) node distributions in one dimension with ε = 4 (left) and ε = 1+ N/20
(right).

Fig. 5. The absolute value of the error E(x) for N = 20 and ε = 2 for uniform (dashed) and non-uniform (solid) node distributions in one
dimension.

for the two types of distributions in two dimensions is shown in Fig. 6. To compute these errors we used a reference
solution computed by the finite difference method on a very fine grid. It should be noted that the price for the smaller
errors with the non-uniform distribution is that the conditioning of the matrix A in (11) becomes worse.
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Fig. 6. Financial error norms for uniform (dashed) and non-uniform (solid) distributions in two dimensions with ε = 1.

Fig. 7. The financial error norm as a function of ε for N ∈ [20, 60]. The stars show ε = 1 + N/20.

4.2. Choosing the shape parameter value

The best choice of shape parameter is problem dependent [18] and there is (currently) no easy way to determine it
a priori. Furthermore, the RBF matrices become increasingly ill-conditioned when ε decreases, making it impossible
to compute the approximation at small optimal shape parameters using standard methods. However, there are methods
to get around this for moderate numbers of node points [19,20].

The best shape parameter value, for N ranging from 20 to 60 in the one-dimensional problem, can be reasonably
well approximated by ε = 1+ N/20 for our particular choice of node point distribution. The difference between using
a constant ε and the formula above is illustrated in Fig. 4. As can be seen in Fig. 7 the optima are not always well
defined and we are very close to the ill-conditioned zone.

It is easy to believe that the formula that works well for small N is also a suitable choice for larger N . However, the
asymptotic convergence rate can be very different from the initial behavior [21]. This is illustrated in the left part of
Fig. 8, where the error is plotted for a larger range of N . The error is computed with the non-uniform distribution and
plotted against the corresponding uniform step size h = 4K̄/(N −1). The fitted slopes are 1.3 and 4.4 and indicate an
algebraic rate of convergence in both regions. The right part of the figure shows that by letting ε grow slower with N ,
we improve the asymptotic rate of convergence. The slopes are 1.5, 1.9 and 2.4 respectively. The convergence rates
could be improved even more by taking smaller ε, but the ill-conditioning prevents us from doing this.

4.3. Accuracy in space

One of the main advantages of the RBF method is that it can provide spectral accuracy. However, the experiments
in the previous section only showed algebraic convergence. The reason is that ε was increased with N . The spectral
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Fig. 8. Left: Financial error norm for the choice ε = 1 + N/20. Right: Financial error norm for ε = 1 + N/20 (©), ε = a + bN 3/4 (+) and
ε = c + d N 1/2 (�), where a, b, c, and d are constants.

Fig. 9. The financial error norm as a function of N for constant ε = 6 (solid), ε = 8 (dashed), and ε = 10 (dash–dot).

accuracy holds for fixed ε and in Fig. 9 the spectral convergence rate can be observed. That is,

E f = C exp(−αN ).

Also here the asymptotic rate of convergence is different from that for small N . The value of α is approximately 0.2
for all three values in the small N region and in the large N part, α ≈ 0.032, 0.026, and 0.021. As can be seen, the
spectral rate is higher for smaller ε. This was also observed in [21].

4.4. Accuracy in time

The accuracy in time, for the one-dimensional problem, was studied by fixing the spatial part of the approximation
to N = 98 RBFs with shape parameter ε = 1 + 98/20 = 5.9, and then varying the number of time-steps from M = 2
to M = 104. The results are displayed in Fig. 10.

The different curves correspond to different ways of measuring. For all errors we see that the expected order of
accuracy 2 is realized. However, measuring the maximum error over the whole interval (+) includes large errors at
the boundary that increasing M cannot remove. We can draw this conclusion since when measuring the maximum
error in the interior of the domain, with the financial norm (solid line), it is possible to get smaller values of the
error without increasing N or changing any other parameter. Using the weighted integral norm (©) it is possible to
reduce the error even further. Studying the error locally at the strike price shows that we can get errors as low as 10−8

with 98 basis functions. For the last three ways of measuring the error it is very clear when the error from the space
approximation takes over and starts to dominate. When this happens and on what level depends on where and how the
error is measured.
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Fig. 10. The error E as a function of the number of time-steps M . Maximum error over the whole region (+), financial norm (solid), weighted
integral norm (©) and error at x = K̄ (�).

5. Efficiency of the RBF method compared with the finite difference method

In order to investigate the efficiency of the RBF method, we measured the execution time for the one-dimensional
problem and the execution time and memory requirements for the two-dimensional problem, and compared the results
with those of the finite difference method presented in [11]. Both implementations are in MATLAB and none of the
codes are optimized. A brief description of the finite difference method and the results of the comparisons are given
below.

5.1. Adaptive finite differences

The generalized Black–Scholes equation (1) can be solved by approximating the derivatives in space and time
by finite difference, see e.g. [12]. In [11] centered second-order finite differences on a structured but not equidistant
grid are used in space, and the second-order implicit, unconditionally stable BDF2 scheme [16] is used for the time
discretization.

The adaptive algorithm in space automatically adjusts the discretization to achieve a predefined truncation error.
This allows the user to choose the error level instead of the number of grid points as is standard in non-adaptive
finite difference implementations. The adaptive method can alternatively be used to minimize the memory usage by
restricting the number of grid points used in each dimension.

Time adaptivity is implemented through a variable step size BDF2 version combined with an explicit multi-step
method used for estimating the local truncation error at each time-step. The time-step is then chosen so that the error
is controlled.

The adaptive method has been successfully used for European basket options in [11] where the local truncation
error is controlled and in [13] where a functional of the global error is estimated and controlled using a similar
technique.

Since the time-stepping algorithm is implicit and the approximation of space derivatives is local, the solution of
large, but very sparse, systems of equations is necessary. For this purpose, the iterative restarted GMRES method [22]
has been used, together with a preconditioner (incomplete LU factorization) to speed-up the computations.

5.2. Results of the efficiency tests

The results of the tests can be seen in Figs. 11 and 12. In Fig. 11 the effect of the shape parameter choice can again
be observed. The formula ε = 1 + N/20 was used, and the two different convergence rates are reflected by the time
consumption of the RBF method. With a lower convergence rate, N must increase more to get to a desired tolerance,
and hence the computational time grows faster. This illustrates that another choice of shape parameter values should
preferably be made for larger N , i.e., when extremely high accuracy is desired.

For the two-dimensional experiments the choice of ε was not made in a rigorous way. The shape parameter value
was optimized locally in a small interval, typically around ε = [0.5, 3.5], close to the ill-conditioned zone for each
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Fig. 11. Time efficiency comparison between the RBF method (circles) and the second-order accurate adaptive finite difference method (squares)
for the one-dimensional problem.

Fig. 12. Time and memory efficiency comparison between the RBF method (circles) and the second-order accurate adaptive finite difference
method (squares) for the two-dimensional problem.

experiment. Again the results in Fig. 12 suggest that these choices of shape parameters are not optimal for larger N ,
corresponding with the left part of the figure.

Measured on the right-hand parts of the two figures, i.e., where the choices of ε are relatively good, the RBF
method is approximately 20–40 times faster than the finite difference method. Although the speed-up is lower in two
dimensions than in one dimension, it is still good enough in two dimensions to suggest that the RBF method can be
more efficient than the finite difference method for (even) higher-dimensional problems. The memory requirements
are rather similar for the two methods in two dimensions, which is a positive result considering that the RBF method
works with dense matrices, whereas the finite difference method uses sparse matrices. There are also possibilities to
improve the performance of the RBF methods further both with respect to memory and time usage [17].

6. Conclusions

In this work we have derived a streamlined RBF method for option pricing in several dimensions, including
boundary conditions. We have shown that it is second order in time (due to the second-order time-stepping scheme)
and spectrally accurate in space. We have also shown that it can be difficult to take full advantage of the spectral
property due to the ill-conditioning of the RBF matrices for small shape parameter values.

Furthermore, we have shown how an adapted placement of the node points, instead of a standard uniform choice,
can increase the accuracy by up to an order of magnitude. We believe that even better node distribution strategies can
be found for problems in two or more dimensions. By exploiting the meshfree nature of RBF approximation, we can
also reduce the size of the computational domain by d! in d dimensions.
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We have investigated how the convergence rate in space is affected by the choice of shape parameter and found that
if the shape parameter is held constant the convergence rate is spectral. However, if the shape parameter is increased
according to some formula ε ∝ N q , q > 0, the resulting convergence rate becomes algebraic and grows worse with
increasing q . Unless special algorithms for small ε are employed [19], a general recommendation must be to use the
smallest ε for which stable computation is possible.

The new RBF method has been compared with an existing second-order adaptive finite difference method and
the experiments show that the RBF method is 20–40 times faster than the finite difference method in the low to
intermediate accuracy range. The slower convergence rate in the region of high accuracy is an interesting phenomenon
that we would like to study further. However, for this application, very high accuracy is not of practical interest, since
the model itself is not that accurate. The memory requirements of the two methods are comparable for the problems
considered here.

We conclude that overall, the RBF method performs well. There are further improvements to be made and we
expect that RBF methods for option pricing will be competitive in higher dimensions also.
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AN INVESTIGATION OF GLOBAL RADIAL BASIS FUNCTION
COLLOCATION METHODS APPLIED TO HELMHOLTZ PROBLEMS∗

ELISABETH LARSSON∗∗AND ULRIKA SUNDIN∗∗

Abstract. Global radial basis function (RBF) collocation methods with inifintely smooth basis
functions for partial differential equations (PDEs) work in general geometries, and can have expo-
nential convergence properties for smooth solution functions. At the same time, the linear systems
that arise are dense and severly ill-conditioned for large numbers of unknowns and small values of
the shape parameter that determines how flat the basis functions are. We use Helmholtz equation
as an application problem for the theoretical analysis and numerical experiments. We analyse and
characterise the convergence properties as a function of the number of unknowns and for different
shape parameter ranges. We provide theoretical results for the flat limit of the PDE solutions and
investigate when the non-symmetric collocation matrices become singular. We also provide practical
strategies for choosing the method parameters and evaluate the results on Helmholtz problems in a
curved waveguide geometry.

Key words. Radial basis function, Helmholtz equation, shape parameter, flat limit, error
estimate
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1. Introduction. We started writing this paper in 2004. Some of the results
can be found in the MSc thesis of the second author [30]. At that time, the first
paper on the flat radial basis function (RBF) interpolation limit [5] had just been
published, and most of the work on the paper about multivariate flat RBF limits [20]
was done, but the paper was not published yet. The focus of research in RBF-based
methods for partial differential equations (PDEs) was on global collocation methods,
and we were interested in the limit behavior for RBF approximations to PDEs. Then
the manuscript ended up ’in a drawer’ due to various circumstances, and we came to
pick it up again 15 years later. The current research focus has shifted to localized
RBF-methods such as RBF-generated finite difference methods (RBF-FD) [10] and
RBF partition of unity methods (RBF-PUM) [22]. However, we think that the results
in this paper, even though they are on global RBF methods, provide insights that are
generally useful also today. The objectives of the work are

• to investigate the approximation errors theoretically and numerically to gain
understanding both about the flat limit, the convergence properties, and the
dependence on the shape parameter,

• to identify the gaps between theoretical results and numerical behavior,
• to provide practically useful strategies for choosing the method parameters

and assessing the results.
The outline of the paper is as follows: In Section 2, we define three different Helmholtz
test problems that are used throughout the paper. In Section 3 we derive the systems
of equations for non-symmetric and symmetric collocation. Section 4 is devoted to
cases where the non-symmetric collocation matrix is singular, and in Section 5, we
discuss the limit properties. How to prove these properties is sketched in Appendix A.
Section 6 contains a combination of theoretical error estimates, and more heuristic

∗The first author was supported by a grant from The Swedish Research Council. The second
author was funded by the graduate school in Mathematics and Scientific Computing.
∗∗Scientific Computing, Department of Information Technology, Uppsala University, Box 337,

SE-751 05 Uppsala, Sweden (elisabeth.larsson@it.uu.se, ulrika.sundin@it.uu.se).
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error approximations. Then in Section 7, we provide numerical results as well as
practical strategies for method parameter selection. The paper ends with a discussion
of the results in Section 8.

2. Generic and specific model problems. Throughout the paper, we con-
sider time-independent, linear, partial differential equations (PDEs). We assume that
the PDE equation(s), together with the different boundary equations can be summa-
rized as

Liu(x) = f i(x), x ∈ Ωi, i = 1, . . . , Nop, (2.1)

where Li is a linear operator, u is the solution function, f i is a given function, x =
(x1, . . . , xd) ∈ Rd, and Ωi ⊆ Ω̄ is a region in the computational domain or a boundary
segment.

To give examples and illustrate specific properties, we use a series of Helmholtz
problems of increasing complexity. The Helmholtz equation models time-harmonic
wave propagation, and in all cases, we consider wave guide problems with a wave
originating from a source at the left boundary and propagating to the right. We allow
reflected waves from the interior of the domain to propagate back to the left and out
through the left boundary, but no waves may enter from outside the right boundary.
The main reasons for our choice of model problems are the following:

• There is one problem parameter, the wavenumber κ, that can be varied to
study its relation to the RBF method parameters.

• A Helmholtz problem is generally more difficult to solve than a Laplace or
Poisson problem, especially for large wavenumbers, due to the indefiniteness
of the operator, the wave nature of the solution, and the typically more
complicated boundary conditions.

The Helmholtz PDE is in all examples given by

L1u(x) = −∆u(x)− κ2u(x) = 0, x ∈ Ω1 = Ω. (2.2)

The first and simplest model problem is one-dimensional, with Ω = (0, 1). The
non-reflecting (or radiation) boundary conditions are given by

L2u(x) = −du
dx

(x)− iκu(x) = −2iκ, x = 0, (2.3)

L3u(x) =
du

dx
(x)− iκu(x) = 0, x = 1, (2.4)

and the analytical solution is u(x) = exp(iκx), if κ is constant.
The second problem is two-dimensional with a rectangular domain Ω = (0, L1)×

(0, 1). At the top and bottom boundaries, we use the Dirichlet boundary condition

L4u(x) = u(x) = 0, x = (0, x2) or x = (L1, x2), (2.5)

indicating that we consider a waveguide type of problem. The conditions at the left
and right boundaries are

L2u(x) = − ∂u

∂x2
(x)− iβmu(x) = −2iβm sin(αmx1), x = (x1, 0), (2.6)

L3u(x) =
∂u

∂x2
(x)− iβmu(x) = 0, x = (x1, 1), (2.7)
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where αm = mπ
L1

, βm =
√
κ2 − α2

m, and m ≥ 1 is an integer. These conditions
allow for just one propagating mode in the solution, which is given by u(x) =
exp(iβmx2) sin(αmx1), assuming a constant κ. It should be noted that if κ and
m are chosen such that βm = 0, the problem is not well-defined, and we avoid such
combinations in the experiments.

The third and final problem is also two-dimensional, but the domain Ω is now
enclosed between two curves γ1(x2) < x1 < γ2(x2), x2 ∈ (0, 1), see Figure 2.1. The
Dirichlet condition (2.5) is modified to hold at γ1 and γ2.

L4u(x) = u(x) = 0, x = (γj(x2), x2), j = 1, 2. (2.8)

At the left and right boundary, we use so called Dirichlet–to–Neumann map (DtN)
radiation boundary conditions [18]

L2u(x) = − ∂u

∂x2
− i

∞∑

m=1

βm〈u(·, 0), ψ0
m〉ψ0

m(x1)

= −2i

∞∑

m=1

Amβmψ
0
m(x1), x2 = 0,

L3u(x) =
∂u

∂x2
− i

∞∑

m=1

βm〈u(·, 1), ψ1
m〉ψ1

m(x1) = 0, x2 = 1,

(2.9)

where, for a fixed x2, the modes ψx2
m =

√
2 sin(αm(x1−γ1(x2)), with αm = mπ

γ2(x2)−γ1(x2) .

The inner product is given by

〈u(·, x2), ψx2
m 〉 =

∫ γ2(x2)

γ1(x2)

u(x1, x2)ψx2
m (x1) dx1, (2.10)

and the amplitudes Am = ψ0
m(xs), where xs is the position of the source in the

vertical coordinate. The amplitudes are chosen to emulate a point source. The DtN
conditions allow for any combination of modes to move transparently through the
vertical boundaries. For practical and computational reasons, the infinite sum is

truncated at µx2
= bκ(γ2(x2)−γ1(x2))

π c. For a discussion of the assumptions behind this
truncation and these particular DtN conditions, see [29].
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Fig. 2.1. Wave propagation in an M-shaped duct. The source position is indicated by the marker
at the left boundary and the wave number is κ = 6π. The real part of the solution is displayed.
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3. The RBF approximations. In this section, we first describe Kansa’s non-
symmetric collocation method [17] for our model problems. The main advantage of
the non-symmetric collocation method is its simplicity. This is also why we use this
method for both numerical and theoretical studies throughout this paper. However,
an argument against using non-symmetric collocation is that the RBF approximation
matrix, in rare cases [16], can become singular. This is discussed further in Section 4.
To avoid singularity, symmetric collocation [43, 6, 14] can instead be employed. This is
slightly more involved, especially with non-trivial operators, which is why we include
an example of how to do this for the one-dimensional model problem.

3.1. Non-symmetric collocation. When we use non-symmetric collocation to
discretize the problem (2.1), the RBF approximant is given by

s(x) =
N∑

j=1

λjφ(ε‖x− xj‖) =
N∑

j=1

λjφj(x), (3.1)

where xj , j = 1, . . . , N are the RBF center points and ε is the shape parameter. The

collocation conditions are imposed at the N center points. Let xkj , j = 1, . . . , Nk be

the subset of center points that belong to the region or section Ωk. The corresponding
operator is used for collocation, and we get the equations

Lks(xki ) =
N∑

j=1

λjLkφj(xki ) = fk(xki ), i = 1, . . . , Nk, k = 1, . . . , Nop.

If the points are ordered according to the set affiliation, we get a system of equations,
Mλ = f , with the following general block structure




L1φ
...

LNopφ





 λ


 =




f1

...

fNop


 , (3.2)

where the block Lkφ is of size (Nk ×N).
Applying the operators in the specific model problems to the RBFs is straight-

forward, except for the DtN operators in (2.9). The left boundary condition applied
to one of the RBFs and evaluated at the point x = (x1, 0) takes the form

L2φj(x) = −∂φj
∂x2

(x)− i
µ0∑

m=1

βm〈φj(·, 0), ψ0
m〉ψ0

m(x1).

To form the whole block L2φ, we need to evaluate µ0 ·N inner products. This cannot
in general be done analytically for infinitely smooth RBFs such as multiquadrics,
inverse quadratics, or Gaussians.

One of our aims with choosing the Helmholtz model problems was to see if using
RBFs would make it difficult to implement non-trivial boundary conditions. There are
no fundamental issues preventing implementation of boundary conditions involving
linear functionals applied to the basis functions. A practical issue is that the compu-
tational cost for the quadrature is quite large, although linear in N . In Section 7, we
investigate how accurately we need to compute the inner products to not destroy the
overall accuracy of the solution. The experiments show that we need to compute the
inner products more accurately than the overall error tolerance, which increases the
cost further.
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3.2. Symmetric collocation. Non-singularity of the RBF approximation ma-
trix can be ensured through symmetric collocation [43, 6, 14]. The idea is to view
the RBF φ(ε‖x − ξ‖) as a function of two variables ψ(x, ξ). Then in the ansatz for
the RBF approximation, for each basis function, the operator corresponding to its
center location is applied to the second argument of the basis function. Since we
consider complex operators, we also need to conjugate the operators in order to get a
Hermitian matrix in the end. The approximation then takes the form

s(x) =

Nop∑

k=1

Nk∑

j=1

λkjLkξψ(x, xkj ).

For the one-dimensional Helmholtz problem, collocation with this ansatz leads to a
system of equations with the following structure



L1
xL1

ξψ L1
xL2

ξψ L1
xL3

ξψ

L2
xL1

ξψ L2
xL2

ξψ L2
xL3

ξψ

L3
xL1

ξψ L3
xL2

ξψ L3
xL3

ξψ







λ1

λ2

λ3


 =




0
−2iκ

0


 ,

where the block LjxLkξψ is of size (Nj × Nk). To see that the coefficient matrix M
really is Hermitian, we can use the following differentiation rules for the RBFs

∂n

∂ξn
ψ(xj , xk) = (−1)n

∂n

∂xn
ψ(xj , xk), (3.3)

∂n

∂xn
ψ(xk, xj) = (−1)n

∂n

∂xn
ψ(xj , xk). (3.4)

We can then show for the different blocks in the matrix that the matrix elements
satisfy mjk = mkj . As an example, for elements in the first two off-diagonal blocks
we get

L1
xL2

ξψ(xj , xk) = (− ∂2

∂x2
− κ2)(− ∂

∂ξ
+ iκ̄)ψ(xj , xk) = (− ∂2

∂x2
− κ2)(

∂

∂x
+ iκ̄)ψ(xj , xk),

L2
xL1

ξψ(xk, xj) = (− ∂

∂x
+ iκ̄)(− ∂2

∂ξ2
− κ2)ψ(xk, xj) = (

∂

∂x
+ iκ̄)(− ∂2

∂x2
− κ2)ψ(xj , xk).

Apart from the important non-singularity property, limited numerical experi-
ments also show that the conditioning is slightly better (one order of magnitude)
than for the non-symmetric method. However, the error curves, as functions of both
x and ε, are close to identical.

It would be complicated to implement the symmetric collocation method for the
two-dimensional problem with DtN boundary conditions. It would also be even more
costly than for the non-symmetric case, because of the increased number of integrals to
compute. As mentioned for example in [16], when using non-symmetric collocation,
singular matrices are hardly ever observed. Due to its simplicity, non-symmetric
collocation is more widely used than symmetric collocation. In the following, we
choose to study the properties of the non-symmetric collocation method.

4. Singularity of the RBF collocation matrix. As already stated, the RBF
collocation matrix may become singular with the non-symmetric collocation approach.
This becomes particularly clear for problems with a parameter that can be varied
freely as for our Helmholtz examples. For the one-dimensional Helmholtz model
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problem, we can in fact show that for any given node distribution (with distinct
nodes) there are always wavenumbers κ that lead to a singular collocation matrix.

To get the equations in an appropriate form for eigenvalue analysis, we multiply
the PDE (2.2) with −1 and the boundary conditions (2.3) and (2.4) with iκ. After
collocation with the PDE at the interior points x1

j , and the boundary conditions at
the boundary points, we get a collocation matrix M with elements

mjk =





κ2φk(x1
j ) + φ′′k(x1

j ), j = 1, . . . , N − 2, k = 1, . . . , N,
κ2φk(0) − iκφ′k(0) , j = N − 1, k = 1, . . . , N,
κ2φk(1) + iκφ′k(1) , j = N, k = 1, . . . , N.

We can express M as a matrix polynomial in κ,

M = κ2A+ κiB + C,

where A, B, and C are real matrices. Furthermore, A is the usual RBF interpolation
matrix. The question of singularity of M can be posed as a quadratic eigenproblem

(κ2A+ κiB + C)v = 0. (4.1)

For standard RBFs and distinct points, A is non-singular. By introducing w = κv we
can then reformulate (4.1) as a standard eigenvalue problem

(
0 I

−A−1C −iA−1B

)(
v
w

)
= κ

(
v
w

)
.

Solving this problem leads to 2N eigenvalues. That is, values of κ for which the
collocation matrix M is singular. Two of the eigenvalues have to be κ = 0 because of
the scaling of the boundary conditions. By conjugating equation (4.1), we get

(κ̄2A− κ̄iB + C)v̄ = ((−κ̄)2A+ (−κ̄)iB + C)v̄ = 0.

That is, if (κ, v) is an eigenvalue–eigenvector pair, then (−κ̄, v̄) also is. Hence, all
eigenvalues with Re(κ) 6= 0 must come in pairs (κ, −κ̄). Then, there may also be
a number of eigenvalues on the imaginary axis. The κ that are of interest in the
Helmholtz problem are such that Re(κ) > 0. We are then left with a maximum of
N − 1 potentially interesting wavenumbers that lead to a singular problem.

In Figure 4.1, the eigenvalues that lead to a singular system are computed for dif-
ferent problem sizes using multiquadric and Gaussian RBFs. For multiquadrics, there
are no eigenvalues in the region of interest, that is, real wavenumbers with solutions
that are well resolved. The eigenvalues with the largest real part are closest to the
real axis. These problems are resolved to 2πN/κ ≈ 2 points per wavelength, which
is the theoretical lowest possible resolution to use for a wave propagation problem.
The Gaussian approximation produces eigenvalues that are closer to the real axis, but
also here the eigenvalues with large real part correspond to badly resolved problems.
It should be noted that complex wavenumbers, typically with a significantly smaller
imaginary part than real part, are used in practical applications to model damping
within the media that the waves propagate through.

5. The flat RBF limit for PDE problems. The limits of multivariate RBF
interpolants as the shape parameter ε goes to zero were analyzed in [20, 37, 25, 39, 24].
The same type of limits for finitely smooth RBFs where also studied in [42, 23]. It
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Fig. 4.1. The wavenumbers that lead to a singular system for the one-dimensional problem
using N = 6, 8, . . . , 30 from bottom to top, for multiquadric RBFs with ε = 5 (left) and Gaussian
RBFs with ε = 10 (right).

was shown that the limit behavior is closely related to polynomial unisolvency [2] on
the set of node points. We define

NK,d =

(
K + d
K

)
, (5.1)

which is the dimension of the space of polynomials of degree K in Rd. If N = NK,d,
and the node set is unisolvent, then the (infinitely smooth) flat limit RBF interpolant
reproduces the multivariate polynomial interpolant of degree K on these nodes.

When we apply the non-symmetric collocation method to a PDE problem, the
RBF approximant has the same general form (3.1), and we can derive corresponding
results for the limit.

In order to express the conditions for different limit results, we need to define
two matrices, P and Q, from which we can determine polynomial unisolvency and
unisolvency of the discrete PDE problem. Let {pj(x)}Nj=1 be N linearly independent
monomials of minimal degree in d dimensions. For example, for N = 7 and d = 2,
we can choose {1, x, y, x2, xy, y2, x3}. If NK−1,d < N ≤ NK,d, then the degree of
pN (x) is K.

The set of node points {xi}Ni=1 satisfies polynomial unisolvency if there, for any

given data at the node points, is a unique linear combination
∑N
j=1 βjpj(x) that

interpolates the data. This is equivalent to non-singularity of the matrix

P =




p1(x1) p2(x1) · · · pN (x1)
p1(x2) p2(x2) · · · pN (x2)

...
...

...
p1(xN ) p2(xN ) · · · pN (xN )


 . (5.2)

In cases where P is singular, we instead construct a minimal non-degenerate basis [20].
Such a basis can be constructed by choosing N monomials of smallest possible degree
under the constraint that they give linearly independent columns in the matrix P . The
highest selected monomial degree M is then also the degree of pN (x). As an example,
for N = 5 node points all located on the line x = y, a minimial non-degenerate basis
is {1, x, x2, x3, x4} and M = 4.

Unisolvency of the discrete PDE problem on the set of node points {xi}Ni=1 with

respect to {pj(x)}Nj=1 requires a unique linear combination
∑N
j=1 βjpj(x) that satisfy



8 ELISABETH LARSSON AND ULRIKA SUNDIN

the collocation conditions

N∑

j=1

βjLkpj(xki ) = fk(xki ), i = 1, . . . , Nk, k = 1, . . . , Nop.

This is equivalent to non-singularity of the matrix

Q =




L1p1(x1
1) · · · L1pN (x1

1)
...

...

LNopp1(x
Nop

NNop
) · · · LNoppN (x

Nop

NNop
)


 . (5.3)

As in [20], we need the RBFs to fulfill three conditions in order to get the results
in the theorem given below. We repeat the conditions and discuss their validity briefly
here, but for a full explanation, we refer the reader to [20].

(I) The RBF φ(r) can be Taylor expanded as φ(r) =
∑∞
j=0 ajr

2j .
(II) The PDE collocation matrix M in system (3.2) is non-singular in the interval

0 < ε ≤ R, for some R > 0.
(III) Certain matrices Ap,J , built from the coefficents aj in the Taylor expansion

of φ(r), are non-singular for 0 ≤ p ≤ d and 0 ≤ J ≤ K.

Condition (I) is true for all infinitely smooth RBFs that are commonly used. Condition
(II) is likely to hold for some value of R, but the previous section shows that M can
become singular at any ε, given a specific combination of PDE problem and node
points. Condition (III) was shown to hold for these RBFs in [25].

The following theorem gives the different possibilities for the limiting RBF ap-
proximant as the shape parameter ε → 0.

Theorem 5.1. Assume that the RBF φ(r) fulfills conditions (I)–(III) and that
the number of node points satisfy NK−1,d < N ≤ NK,d. The degree of a minimal
non-degenerate basis for the point set is either K for a unisolvent set or M for a
non-unisolvent set. If

(i) P and Q are non-singular, the limit exists and is a polynomial of deg K. If
N = NK,d it is the unique degree K polynomial solution to the discrete PDE
problem, otherwise the final polynomial depends on the choice of RBF.

(ii) P is singular, but Q is non-singular, the limit exists and is an RBF-dependent
polynomial of degree M .

(iii) P is non-singular, but Q is singular, divergence will occur unless the right
hand side f of system (3.2) happens to be in the range of Q. If there is
just a single null-space polynomial n(x) of degree K, the divergent term is
proportional to ε−2n(x).

(iv) P has a nullspace of dimension m > 0 and Q has a nullspace of dimension
p > 0, then if m ≥ p the limit is likely, but not certain to exist. If it exists it
is of degree M . If m < p divergence is likely, but not certain.

The proof builds on the results for RBF interpolation in [20]. The key arguments
and differences are pointed out in Appendix A.

The uncomplicated case (i) is of course the most common and the other types are
deviations stemming from degenerate node point configurations or specific combina-
tions of PDE problem parameters and node points that lead to degeneracy. Below,
we give an example of each type of degeneracy for the two-dimensional Helmholtz
problem given by (2.2) and (2.5)–(2.7) with m = 1.
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Example (ii): The node set is not polynomially unisolvent.

0 1

1

0

The N = 10 points are (1/2, 1/2), (1, 1/2), and (k/4, 0), (k/4, 1),
k = 0, . . . , 3. The matrix P has a nullspace defined by
n(x) = x2(x2 − 1

2 )(x2 − 1). A non-degenerate basis is given by
{1, x1, x2, x

2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

4
1} with M = 4. The limit

is hence a polynomial of degree four whose coefficients depend on
the choice of RBF. To illustrate what this dependence can look like,
we give the general form of the limit polynomial p(x).

p(x) = β0 + β1x2 + β2x1 + β3x
2
2 + β4x2x1 + β5x

2
1

+ β6

[
−12a3(x3

2 + 3x2x
2
1) +

8a2
2

a1
(x3

2 + x2x
2
1)

]

+ β7

[
−12a3(x3

1 + 3x2
2x1) +

8a2
2

a1
(x3

1 + x2
2x1)

]

+ β8

[
−4a3(5x3

1 + 3x2
2x1) +

8a2
2

a1
(x3

1 + x2
2x1)

]

+ β9

[
− 4a4(9x3

2 + 36x2
2x1 + 45x2x

2
1 + 20x3

1 − 24x3
2x1 − 40x2x

3
1)

+
6a2a3

a1
(3x3

2 + 4x2
2x1 + 3x2x

2
1 + 4x3

1)− 72a2
3

a2
(x3

2x1 + x2x
3
1)

]
,

where aj are the Taylor expansion coefficients of the RBF, and βj are the ten unknown
coefficients that are determined by the ten discrete PDE collocation conditions. The
result is κ-dependent as well as RBF-dependent.

Example (iii): The node set is not PDE-unisolvent.
0 1

1

0
The N = 10 points are (0, 0), (1/2, 0), (1, 0), (0, 1), (1/4, 1),
(1, 1), (1/6, (2545 − 23

√
9233)/3936), (1/4, 1/4), (3/4, 1/4), and

(3/4, 969/1804). For κ = 4
√

246/9 the matrix Q has a nullspace de-
fined by q(x) = − 5

32x2(x2+1)+x1

16 (8−24x1+3x2+16x2
1+4x1x2−7x2

2).

In this case, we get divergence of order ε−2 as ε → 0 for all RBFs that obey conditions
(I)–(III). This can be observed not only in exact arithmetic, but also in for example
a double precision numerical simulation. However, if we move just one of the points
or change κ slightly, there is no longer a nullspace. This kind of degeneracy is very
rare, since it requires very special combinations of wavenumber and node points.

Example (iv): Both P and Q have a nullspace.
0 1

1

0 The N = 10 points are (0, 0), (0, 1), (1, 0), (1, 1) and (1/2, k/5),
k = 0, . . . , 5. The matrices P and Q have a common nullspace of
dimension two defined by q1(x) = x1(x1 − 1

2 )(x1 − 1) and q2(x) =
x2(x1− 1

2 )(x2−1). The limit exists and is an RBF- and κ-dependent
polynomial of degree M = 5.

A practical implication of this result is that if we use node sets that are not unisol-
vent, e.g, Cartesian nodes, both PDE approximation and interpolation are expected
to behave poorly in the small shape parameter regime. The condition number of the
linear system is larger than in the unisolvent case, and the result contains a term that
diverges as ε → 0.
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An important property of interpolation with Gaussian RBFs is that it never
diverges [37]. In the PDE case, this property also holds as long as Q is non-singular.
However, it can still be difficult to compute the limit numerically using a stable
evaluation method. The RBF-QR method derived in [13, 11], and further explored
for solving PDEs [21] uses pivoting to handle non-unisolvent cases. This means that
a limit can always be computed, but it may be different from the Gaussian limit.
The RBF-GA method [12] always reproduces the correct Gaussian limit, but instead
cannot handle large values of N .

6. Convergence properties and error estimates. In this section, we investi-
gate errors and convergence properties from different perspectives, as well as quantify
how the choice of shape parameter affects the results. We start by formulating general
residual-based error estimates in the following subsection.

6.1. General error estimates using Green’s functions. We define the error
function as the difference between the RBF approximant and the exact solution to
the PDE problem (2.1)

e(x) = s(x)− u(x). (6.1)

In the interpolation case, the error and the residual are the same, and if the function
u(x) is known at a point, the corresponding error can be explicitly computed. In the
PDE case, we can compute the residual for each operator, while the error is governed
by the same type of PDE as the solution

Lie(x) = Lis(x)− f i(x) ≡ ri(x), x ∈ Ωi, i = 1, . . . , Nop, (6.2)

where ri are residuals. One way to find the error is to solve the above PDE problem.
However, because the residuals are zero at the collocation points, they are highly
oscillatory and more node points are required to approximate the error than to solve
the original PDE.

Instead of solving the error equation, we can formulate a posteriori error estimates
in terms of the residual. Writing out the error PDE for the one-dimensional problem
we get




−∆e(x)− κ2e(x) = r(x),
−e′(0)− iκe(0) = 0,
e′(1)− iκe(1) = 0.

(6.3)

A Green’s function satisfying the boundary conditions is given by

G(x, ξ) =
i

2κ
eiκ|x−ξ|, (6.4)

with

∂G

∂ξ
=

{
1
2e
iκ|x−ξ|, x ≥ ξ,

− 1
2e
iκ|x−ξ|, x < ξ,

and ∆ξG = − iκ
2
eiκ|x−ξ| − δ(x), (6.5)

such that −∆ξG− κ2G = δ(x), which allows us express the error as

e(ξ) =

∫ 1

0

G(x, ξ)r(x) dx. (6.6)
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We can use this form of the error to formulate an error estimate as

‖e‖∞ ≤
∫ 1

0

|G(x, ξ)||r(x)| dx =
1

2κ

∫ 1

0

|r(x)|dx ≤ 1

2κ
‖r‖∞. (6.7)

For the two-dimensional Helmholtz problem in a rectangular domain, the correspond-
ing Green’s function satisfying the boundary conditions is given by

G(x, ξ) =
∞∑

m=1

i

2βm
eiβm|x2−ξ2|ψm(x1)ψm(ξ1), (6.8)

with −∆ξG−κ2G = δ(x2)
∑∞
m=1 ψm(x1)ψm(ξ1). Similarly as for the one-dimensional

problem we define the error as

e(ξ) =

∫ 1

0

∫ L1

0

G(x, ξ)r(x) dx1 dx2. (6.9)

To see how this works, we note that the vertical eigenfunctions form an orthonormal
basis, and we can express the residual as

r(x1, x2) =
∞∑

m=1

〈r(·, x2), ψx2
m 〉ψx2

m ≡
∞∑

m=1

rm(x2)ψm(x1). (6.10)

This allows us to simplify the error expression

e(ξ) =

∞∑

m=1

i

2βm

∫ 1

0

eiβm|x2−ξ2|
∫ L1

0

ψm(x1)ψm(ξ1)
∞∑

n=1

rn(x2)ψn(x1) dx1 dx2

=
∞∑

m=1

i

2βm
ψm(ξ1)

∫ 1

0

eiβm|x2−ξ2|rm(x2) dx2 (6.11)

To convert this into error estimate, we first note that for m ≤ µ0 = bκL1/πc, the
horizontal wavenumber βm is real, and |eiβm|x2−ξ2|| = 1, while for m > µ0, βm is

purely imaginary and |
∫ 1

0
eiβm|x2−ξ2| dx2| ≤ |

∫ 1

0
eiβm|x2− 1

2 | dx2| = 2
|βm| (1 − e

− 1
2 |βm|).

Then we get

‖e‖∞ ≤
µ0∑

m=1

1√
2βm

∫ 1

0

|rm(x2)| dx2 +

∞∑

m=µ0+1

√
2

|βm|2
(1− e− 1

2 |βm|)
∫ 1

0

|rm(x2)| dx2

≤
µ0∑

m=1

1√
2βm
‖rm‖∞ +

∞∑

m=µ0+1

√
2

|βm|2
(1− e− 1

2 |βm|)‖rm‖∞. (6.12)

For the two-dimensional problem in a domain with curved boundaries, we cannot
provide an explicit Green’s function. If we think about the curved domain as a
sequence of thin almost rectangular domains, we can modify the previous estimate to
get a heuristic approximation of the error

‖e‖∞ ≈
∞∑

m=1

∫

<e(βm)>0

|rm(x2)|√
2βm

dx2

+

∞∑

m=1

∫

=m(βm)>0

√
2

|βm|2
(1− e− 1

2 |βm|)|rm(x2)| dx2. (6.13)

We evaluate this error approximation numerically in Section 7 and find that we get
surprisingly good results.
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6.2. Convergence properties for small ε. As discussed in the previous sec-
tion, we approach the polynomial limit, s(x) = p(x), as ε → 0. For polynomial
interpolation in one dimension, the interpolation error eI(x) takes the form

eI(x) = u(x)− p(x) =

∏N
j=1(x− xj)

N !
u(N)(ξ),

where ξ ∈ (x1, xN ). For equispaced points, xj+1 − xj = h, this can be estimated by

|eI(x)| ≤ hN

N
max

ξ∈(x1,xN )
|u(N)(ξ)|,

see [15, pp. 39–40]. In the PDE case, the residual plays the role of the error. By
following the steps for the proof of the polynomial error [15, pp. 43–44], we can get a
similar estimate for the residual.

Theorem 6.1. For a one-dimensional linear PDE problem



L1u(x) = f1(x), x1 < x < xN ,
L2u(x) = f2(x), x = x1,
L3u(x) = f3(x), x = xN ,

with a polynomial solution p(x) determined through collocation at the nodes xi, i =
1, . . . , N the residual r(x) = L1p(x)− f(x) has the form

r(x) =

∏N−1
j=2 (x− xj)
(N − 2)!

r(N−2)(ξ),

where ξ ∈ (x1, xN ). For equispaced points, xj+1 − xj = h, this can be estimated by

|r(x)| ≤ hN−2

N − 2
max

ξ∈(x1,xN )
|r(N−2)(ξ)|.

Proof. Let Ψ(s) = r(s)− r(x)
χ(x)χ(s), where χ(x) =

∏N−2
j=2 (x− xj). Then Ψ(x) = 0

and Ψ(xj) = 0, j = 2, . . . , N − 2, since r(xj) = 0 at all interior node points where
the equation is enforced. This means that Ψ(s) has at least N − 1 zeros. By repeated
application of Rolle’s theorem, we find that Ψ(N−2)(s) has at least one zero. That is,

0 = Ψ(N−2)(ξ) = r(N−2)(ξ)− r(x)

χ(x)
(N − 2)!.

Rearranging gives the expression for r(x).
To see how this can help us in understanding the behavior of the error for small

ε, we insert the residual estimate in the error estimate (6.7) for the one-dimensional
Helmholtz problem to get

‖e‖∞ ≤
1

2κ

hN−2

N − 2
‖r(N−2)‖∞. (6.14)

In the flat limit, the residual is r(x) = −p′′(x) − κ2p(x), where p(x) is the limit
polynomial of degree N − 1. Then r(N−2)(x) = −κ2p(N−2)(x). We know that p(x) ≈
u(x) = exp(iκx), but even if p(x) is a very good approximation of u(x), p(N−2)(x)
(which is a line) is a rather poor approximation of u(N−2)(x). However, numerical
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tests indicate that the order of magnitude is right. That is, |p(N−2)| ≈ |d
N−2 exp(iκx)
dxN−2 | =

κN−2. We cannot use this as a bound, but we get an approximate expression for the
error in the limit

‖e‖∞ ≈
1

2κ

hN−2

N − 2
κ2κN−2 =

κ(κh)N−2

2(N − 2)
≈ 1

2
(κh)N−1. (6.15)

Note that the quantity κh is small only if the problem is adequately resolved.
For the two-dimensional problem, the limit polynomial has degree K if NK−1,d <

N ≤ NK,d and it is zero at the interior node points. To get an estimate for the residual
in terms of its derivatives, we could potentially use a sampling inequality such as [27,
Theorem 3.5], which says that for all h ≤ h0

‖r‖∞ ≤ Ckhk
∑

|σ|=k
‖Dσr‖∞, (6.16)

where h0 depends on the geometry of Ω. For the unit square, which we are using
here, h0 = 1

2kc2
with c2 = 12. In the discretizations that we use h = 1/(

√
N − 1).

Requiring h ≤ h0 leads to the following condition k ≤ (
√
N − 1)/24. We want to

use the theorem for k = K − 1, where inverting the expression for NK,d yields that

K = b
√

2
√
N + 1/8 − 1.5c. That is, the theorem does not hold in this case. From

practical experience, the result holds also for larger k (larger h), and we will therefore
use it to approximate the residual.

In this case, using that r(x) = −∆p(x)− κ2p(x), and, for |σ| = K − 1, Dσr(x) =
−κ2Dσp(x) ≈ −κ2Dσu(x), we get

‖r‖∞ ≤ CK−1h
K−1κ2

∑

|σ|=K−1

βσ2
1 ασ1

1 ≤ CK−1κ
2K(κh)K−1,

Combining the approximate expression for the residual with the error estimate (6.12)
restricted to the first mode (scaled by 1/

√
2) gives

‖e‖∞ ≈
1

2|β1|
CK−1κ

2K(κh)K−1

Numerical experiments show that KCK−1 = C/(K − 1), provides the appropriate
behavior with respect to N (both K and h are coupled with N). This leads to

‖e‖∞ ≈
Cκ2(κh)K−1

2|β1|(K − 1)
≈ C̃(κh)K ,

where the final expression is just to show that the dimension is similar to that of the
one-dimensional error approximation.

Figure 6.1 shows the computed errors of the one-dimensional and two-dimensional
problems for small values of the shape parameter. The error behavior agrees well with
the derived error approximations. For the two-dimensional problem, we also show that
the error expression can be multiplied by a constant to get a very good fit to the actual
error. This means that we can use ‖e‖∞ ≈ C(κh)K a priori with C = 1 to determine
the necessary resolution for a given tolerance. Given at least two numerical solutions,
we can also estimate the constant C. The error approximation is most likely to be
valid for problems that are almost rectangular or with mildly varying coefficients, but
only for small shape parameter values.
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Fig. 6.1. The computed errors using the Gaussian RBF and the RBF-QR method for
ε = 0.5 (�), ε = 0.25 (+), and ε = 0.01 (◦) for κ = π, 2π, 4π, 6π, from left to right, to-
gether with the approximation ‖e‖∞ ≈ 1

2
(κh)N−1 for the one-dimensional problem (left), and for

κ = 1.2π, 2.4π, 4.8π, 7.2π, from left to right, together with the approximation ‖e‖∞ ≈ (κh)K for
the two-dimensional problem (right) (dashed curves). For κ = 4.8π and 7.2π in the two-dimensional
case, we also show the error approximation using C = 1/40 and C = 1/800, respectively (dotted
lines).

6.3. Convergence properties for larger ε. As shown in [38, 40, 22], the
convergence of a PDE approximation can be expressed in terms of the approximation
properties of the interpolant (consistency error) and a stability term. The consistency
error of the PDE operator can for example be expressed as

EL = L(Ih(u)− u),

where Ih(u) interpolates u using a node set with fill distance h. Several authors have
derived exponentially converging error results for RBF interpolation [33, 28, 26, 3,
44, 34]. The first papers are focused on interpolation errors, while [34] also provides
estimates for derivatives of functions with many zeros, such as the interpolation error.
We use the optimality property of RBF interpolants in the native space (reproducing
kernel Hilbert space) [7]

‖Ih(u)‖N (Ω) ≤ ‖u‖N (Ω),

to replace the interpolation error norm with the function norm, since ‖Ih(u)−u‖N (Ω) =
‖EI‖N (Ω) ≤ 2‖u‖N (Ω). We get the following estimates for RBF interpolants in com-
pact cube domains using [34, Corollary 5.1] for Gaussians

‖EI‖∞ ≤ eCG log(h)/h‖EI‖NG(Ω) ≤ 2eCG log(h)/h‖u‖NG(Ω),

where CG > 0, and for inverse multiquadrics

‖EI‖∞ ≤ e−CQ/h‖EI‖NQ(Ω) ≤ 2e−CQ/h‖u‖NQ(Ω),

when h ≤ h0, and with CQ > 0. This is the same h0 as in the sampling inequal-
ity (6.16), which means that the condition is restrictive. The constants CG and CQ
depend on the number of dimensions d and properties of the domain Ω.

The results for derivatives of the interpolation error are given for Lipschitz do-
mains, which are more general than compact cubes, but the results are instead weaker
in terms of the convergence rate. From [34, Theorem 3.5], we get

‖EL‖∞ ≤ 2eC̃G log(h)/
√
h‖u‖NG(Ω),
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‖EL‖∞ ≤ 2e−C̃Q/
√
h‖u‖NQ(Ω),

for Gaussians and inverse multiquadrics respectively. The higher rate of Gaussian
RBFs is related to the behavior of embedding constants for the native space in relation
to Sobolev spaces of increasing order. The constants C̃G and C̃Q depend on properties

of the domain Ω, and C̃Q also depends on L and d. In [35], it is shown that the better
convergence rates are obtained also for derivatives of the interpolation error if the
nodes are clustered in a layer close to the boundary.

In order to investigate numerically what the actual behavior of the error is for
the Helmholtz problem, we solve the one-dimensional problem for a range of shape
parameter values and different numbers of node points. In this test, we have used
multiquadric RBFs. We assume that the error for multiquadric RBFs has the form

‖e‖∞ = AM exp(−CMf(h)),

where CM > 0, f(h) = 1/h or f(h) = 1/
√
h, and the native space norm has been

absorbed into the constant. Then a plot of the logarithm of the error against f(h)
should result in a straight line. From Figure 6.2, it is clear that f(h) = 1/h is a better
fit. The dashed lines correspond to a fit of the model with f(h) = 1/h to the actual
errors, where the results suffering from ill-conditioning effects have been ignored.
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10
-10
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Fig. 6.2. The error in the one-dimensional Helmholtz solution when multiquadric RBFs are

used as a function of 1/h (left) and 1/
√
h (right) for shape parameters ε = 10−2+ 4

9
q, q = 1, . . . , 9

(left to right). The dashed black lines/curves correspond to a fit of ‖e‖∞ = AM exp(−CM/h) to the
error data (in both cases).

Figure 6.3 shows the fitted model parameters AM and CM for different shape
parameter values. The different curves correspond to different wavenumbers, and
it should be noted that the exponential rate CM becomes independent of the wave
number when ε ' 0.5. The rate also decreases with increasing shape parameter
values. The optimal rate is attained for a small positive shape parameter value, and
for even smaller shape parameters, the asymptotic (polynomial) rate is dominating.
The coefficient AM instead seems to be largest where the rate is optimal, and smallest
where the rate is lowest, which makes it harder to determine the best shape parameter
value. We discuss this further in the following subsection.

6.4. Convergence as a function of the shape parameter. Dependence on
the shape parameter is not discussed in [34], and the results reported in the previous
subsection hold for a fixed value of ε. However, using a shape parameter ε0 6= 1 for an
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Fig. 6.3. The result of fitting the model parameters AM and CM to the computed errors for
the one-dimensional Helmholtz problem using multiquadric RBFs and different values of the shape
parameter ε, and for κ = π (solid line), κ = 2π (dashed line), κ = 4π (dash-dot line), and κ = 6π
(dotted line).

interpolation problem defined in the domain Ω with fill distance h is equivalent to using
a shape parameter ε1 = 1 for a problem in the scaled domain ε0Ω with fill distance
ε0h. This can be understood by noting that φ(ε0‖xi − xj‖) = φ(1 · ‖ε0xi − ε0xj‖).
Hence, the native space norm is the same in both cases, and the errors are the same
in both cases.

If we let the constants AM and CM in the error estimate for a specific domain Ω
and shape parameter ε be denoted by AM (Ω, ε) and CM (Ω, ε), this means that

AM (Ω, ε)e−CM (Ω,ε)/h = AM (εΩ, 1)e−CM (εΩ,1)/(εh). (6.17)

That is, the convergence rate for a fixed value of ε is increasing for smaller values
of ε. This can also be seen in Figure 6.3, where the slope in the logarithmic plot of
CM against ε is approximately equal to −1. It should be stressed that this does not
hold in the flat limit regime, only for ε ' 0.5 (in our case). This also corresponds to
the theoretical result given in [26], where an explicit constraint on the smallest shape
parameter for which the results hold is given as ε ≥ 1/D, where for a cube domain,
D is the side. This coincides well with the numerical results. However, there is also
an upper bound ε ≤ 1, which is harder to reconciliate with what we observe.

Figures 6.4 and 6.5 show the error as a function of ε for two one-dimensional
problems, and one two-dimensional problem, respectively. The error curves repre-
sent a common behavior for smooth solution functions. Starting from a large shape
parameter and moving towards smaller values, the error first decreases rapidly then
reaches an optimal region, and finally levels out at the polynomial approximation
error, see [20] for a more detailed discussion about the error curve and the optimal
shape parameter.

Due to the conditioning problems for decreasing values of ε and increasing values
of N , a common approach in the literature is to scale the shape parameter such that,
e.g., εh = C, which is called stationary interpolation. A problem is that stationary
interpolation does not converge as h goes to zero. This can be understood by again
looking at analogous problems. I we start from a problem on the domain Ω with
shape parameter ε and fill distance h, and we refine to get fill distance h/q and
shape parameter qε, then the equivalent problem is (qΩ, ε, h). That is, the refinement
corresponds to stretching out the domain, while keeping the fill distance and shape
parameter constant. This makes the apparent solution function become increasingly
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smooth, and approaching a constant. Since constants are only reproduced for ε = 0
for the commonly used infinitely smooth RBFs, there is no convergence for a fixed non-
zero ε. By augmenting the RBF approximation with polynomial terms, convergence
corresponding to the polynomial order can be recovered also in the stationary case [9].

The convergence curves when choosing the shape parameter as ε = Chβ for
different exponents β are also shown as dashed lines in Figures 6.4 and 6.5. As
expected, the stationary choice, β = −1 levels out as N increases. For β > −1 we get
convergence along different paths. The choice β = 0 corresponds to the exponential
convergence case for fixed shape parameter values. For these Helmholtz problems, the
curve with ε = Ch3/2 captures the optimal shape parameter values well. For other
types of problems, the relation would look different.
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Fig. 6.4. The maximum error as a function of ε for κ = 2π (left) and
κ = 4π (right) using multiquadric RBFs. The number of node points is from top
to bottom N = 6, 7, . . . , 21, 30, 40, . . . , 100, 200, 300, 400 in the left subfigure, and N =
10, 11, . . . , 20, 30, . . . , 100, 200, 300, 400 in the right subfigure. The dashed lines show how the error
curves are traversed if the shape parameter is chosen as ε = Chβ , with β = 3
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For the two-dimensional problem, the curves are more irregular due to several
interacting terms in the error [20]. However, the overall behavior for the different
ways to choose the shape parameter is very similar to the one-dimensional case.

Assuming that CM (εΩ, 1) in (6.17) does not vary strongly with ε, something that
can be verified by noting that the slope the line in Figure 6.3 for CM is approximately
equal to −1, we can finally provide a convergence rate for the scaled ε convergence
case. If we have exponential convergence as 1/εh and ε = Chβ we end up with

‖e‖∞ = AεMe
−CεM/hβ+1

, −1 < β ≤ 0, (6.18)

where CεM > 0 and the superscript indicates the potential ε-dependence. If β > 0,
the convergence curves may enter the polynomial region, and we cannot in general
get increasing convergence rates for increasing β. The validity of this is expression is
further investigated numerically in Section 7.

7. Numerical experiments. In this section, we focus on the third test prob-
lem with curved boundaries, see Figure 2.1. We look at how to choose the method
parameters and how we can use the theoretical estimates to interpret the results. Un-
less otherwise mentioned, the problem parameters are given by wavenumber κ = 6π,
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Fig. 6.5. The maximum error as a function of ε for κ = 2.2π for the two-dimensional problem
using multiquadric RBFs. The number of node points is from top to bottom N ≈ n2, for n =
3, . . . , 25. The dashed lines show how the error curves are traversed if the shape parameter is chosen
as ε = Chβ , with β = 3
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source location xs = 0.3, and boundary curves

γ1 = 0.3 exp(−20(x2 − 0.5)2),

γ2 = 0.8− 0.3
(
exp(−80(x2 − 0.3)2) + exp(−80(x2 − 0.7)2)

)
.

For global RBF approximations and shape parameters that are not in the flat
limit a uniform node spacing is in general recommended [31]. However, when the
problem size is large enough, there can instead be problems at the boundaries unless
the nodes are clustered towards the boundaries [32, 11]. In our experiments, we do
not reach the regime where this is an issue. Therefore, we use quasi uniform nodes.
The nodes are constructed from the input parameters n1 and n2, that specify the
number of nodes in the vertical direction at the left boundary, and the number of
nodes in the horizontal direction. We define the step sizes h1 = 0.8/(n1 − 1) and
h2 = 1/(n2−1). Based on these step sizes, the nodes are then placed uniformly along
vertical lines with as similar node distance as possible. The nodes at the top and
bottom boundaries are placed with uniform arc length. If the nodes are too regular,
they are not unisolvent, and the conditioning gets higher at least for shape parameters
that are small [20]. Therefore, we add a random perturbation to each node. In all
experiments performed here, the size of the random perturbation is 0.25(h1, h2) for
the interior nodes, while boundary nodes are only perturbed along the boundary. The
solution, residual, and errors are evaluated on a grid. An example of both nodes and
evaluation grid is given in Figure 7.1. The resulting numbers of node points for the
grids we have used in the experiments are shown in Table 7.1.

Errors are measured against a reference solution computed using the largest node
set with n1×n2 = 100× 125. This is the largest problem size that fits in the memory
of the Dell Latitude E6230 laptop with an i5-3360 dual core CPU running at 2.8
GHz that was used for the experiments. When we refer to the maximum norm of
the numerical errors or the solution, we evaluate them on the 60 × 60 evaluation
grid, except for the solutions with higher wavenumbers, where we use 100× 100 grid
points. We use multiquadric RBFs in all numerical experiments. The MATLAB
implementations of the solvers that were used in the experiments are available at the
first authors software page.
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Fig. 7.1. Node points with n1 = 20 and n2 = 25 (left) and the evaluation grid with 60 × 60
points used for the convergence experiments (right).

Table 7.1
The size N of the different node sets that are used in the experiments. The parameters n1 and

n2 are chosen to make h1 and h2 as equal as possible.

n1 × n2 10× 12 11× 14 12× 15 13× 16 14× 17 15× 19 16× 20

N 104 131 152 174 194 235 261

n1 × n2 17× 21 18× 22 19× 24 20× 25 22× 27 24× 30 26× 32

N 287 317 362 396 462 563 639

n1 × n2 28× 35 30× 37 32× 40 34× 42 36× 45 38× 47 40× 50

N 747 844 971 1079 1219 1341 1493

n1 × n2 50× 62 60× 75 70× 87 80× 100 90× 112 100× 125

N 2294 3306 4434 5813 7300 9029

7.1. Selecting a tolerance for constructing the DtN boundary condi-
tions. As mentioned in Section 3.1, we need to compute N inner products with each
vertical eigenmode ψm present in the problem at the two vertical boundaries. Accu-
rate numerical computation of these integrals is a significant computational cost, e.g,
up to nf = 1700 function evaluations per integral are needed for tolerance 1e − 15.
The question is which tolerance to choose.

The sensitivity of the problem (ill-conditioning) depends strongly on the shape
parameter ε with an exponentially increasing condition number as the shape param-
eter goes to zero. By using a stable evaluation method such as RBF-QR for Gaussian
RBFs, the sensitivity is removed and the tolerance for the integrals does not need
to be smaller than the desired error in the solution. However, for the test problem
considered here, too small values of ε, leading to a global polynomial approximation
is not an appropriate choice, and we are not able to use RBF-QR.

Table 7.2 shows the average number of function evaluations needed by MATLAB’s
quadl to approximate one integral to a prescribed absolute tolerance for different
values of the shape parameter ε for a node set with n1 × n2 = 30 × 38. The bold
faced entries in the table show the largest tolerance that can be used before the
approximation changes significantly. The tolerance is much smaller than the absolute
error in the solution, which is about 0.5 compared with the reference solution. The
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condition numbers computed by MATLAB are between 1 · 1017 for ε = 5 and 1 · 1011

for ε = 12. For larger N , the ill-conditioning also increases, so we expect that even
smaller tolerances are needed in this case.

Table 7.2
The average number of function evaluations for approximating one integral of the type in (2.9)

using quadl for multiquadric RBFs. Bold faced numbers show the largest tolerance that does not
significantly alter the result. The relative error against the reference solution is also given. A ×
indicates that the approximation had an error of the same order as the size of the solution.

Tolerance 1e−4 1e−6 1e−8 1e−10
ε = 5 33 × 52 × 97 × 164 2.5e−1
ε = 6 34 × 54 × 102 1.4e−1 168 1.4e−1
ε = 7 35 × 56 6.3e−1 106 6.1e−2 173 5.9e−2
ε = 8 36 × 58 6.6e−2 109 5.2e−2 180 5.2e−2
ε = 9 36 × 59 6.0e−2 112 5.0e−2 187 5.0e−2
ε = 10 36 × 60 5.0e−2 114 5.0e−2 193 5.0e−2
ε = 11 37 3.5e−1 62 5.1e−2 115 5.1e−2 198 5.1e−2
ε = 12 37 7.9e−2 63 5.2e−2 117 5.2e−2 202 5.2e−2

7.2. Choosing the starting value for the shape parameter. To solve a
large scale problem efficiently it pays off to choose the shape parameter carefully,
since it does not affect the cost, only the accuracy. As was discussed in Section 6.4,
a practical way to achieve convergence in spite of the ill-conditioning is to choose the
shape parameter as ε = Chβ , with β > −1. We are going to use β = −1/2, which
provides a trade-off between convergence rate and conditioning problems. Then we
need to decide which C to use.

Compared with the full solution, it is not so expensive to solve a much less resolved
problem a few times for different shape parameters. We want to test if the residual-
based error estimate (6.13) can help us find the best shape parameter value for such a
problem, and from there the C to use. We also try the `2-norm of the residual as an
indicator, since the residual should be small when the error is small. The maximum
norm of the residual was also tested, but did not correlate strongly with the error.
Figure 7.2 shows the relative error estimate as well as the relative `2-norm of the
residual together with the actual error against the reference solution. In the first
example, the shape parameter values corresponding to the smallest error estimate,
εest, and the smallest residual norm, εres, are both close to the actual minimum ε∗.
In the second example, the minimum for the error estimate is a bit higher than the
true value.

Table 7.3 gives the minimal shape parameter values for ten different (small to
medium) problem sizes. In most of the cases the error estimate, the residual estimate,
or both are close to the true value. We have also computed the C-values corresponding
to the average of the two estimates. If we had solved only the first problem, we would
have chosen C = 1.5. This is what we have used for the convergence experiments in
the following subsection. We also tried C = 1, but then the ill-conditioning prevented
us from solving the largest problems.

An alternative method to find a good shape parameter value is to use the leave-
one-out cross validation method. It was first introduced for RBF interpolation meth-
ods [36], and a cost effective version of the method was derived in [45]. It was suggested
to use LOOCV for PDE problems using the residual as error indicator in [4], and this
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Fig. 7.2. The error estimate (6.13) (×), the `2-norm of the residual (dotted line) and the error
against a highly resolved reference solution (◦) for the 10×12 (left) and 40×50 (right) node sets.The
minima are indicated by black squares.

Table 7.3
The optimal shape parameter for the error against the reference solution ε∗, the error estimate

εest, and the `2-norm of the residual εres and the constant C̃ implied by the average of the two
estimates for different problem sizes.

n1 × n2 10 × 12 11 × 14 12 × 15 13 × 16 14 × 17
ε∗ 4.8 4.6 5.7 4.6 7.0
εest 5.1 6.7 8.7 6.7 3.2
εres 4.8 5.4 7.4 5.4 3.7

C̃ 1.5 1.7 2.2 1.6 0.9
n1 × n2 15 × 19 16 × 20 20 × 25 30 × 37 40 × 50
ε∗ 7.4 4.8 9.7 9.2 9.7
εest 7.8 6.0 9.2 13.3 13.3
εres 6.3 5.4 7.0 9.7 10.2

C̃ 1.7 1.3 1.7 1.9 1.7

was implemented in [8]. We tried to use residual-based LOOCV on the Helmholtz
problems in this paper, but the preliminary results were not close enough to the
optimal values, and we therefore decided to use the error approximation instead.

7.3. Convergence experiments. Here, we use the relation ε = C/
√
h =

1.5/
√
h to run a convergence experiment. We solve the test problem for different

problem sizes and compute the error estimate and the error against the reference so-
lution. According to equation (6.18), with this choice of shape parameter scaling, the
error should be of the form

‖e‖∞ = AM exp(−CM/
√
h).

In Figure 7.3, we plot the relative error and the relative error estimate (6.13) against
1/
√
h. A line has been fitted to the data set, and it is clear from the picture that it

is a good fit of the convergence trend. The slopes CM are 0.78 for the error and 0.75
for the error estimate, which means that the error estimate gives very good results
for the ratio of errors at different resolutions, even if the constant is not precise. The
constant AM is 3.0 times larger for the error estimate than for the error. Based on
the curves in Figure 7.2, we expect AM to be problem and/or parameter dependent.
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If we compare the error reduction from the smallest to the largest problem size
with what we would get with an algebraically converging method where the error is
O(hp), a reduction in error with a factor 242 for a step size reduction of 10 corre-
sponds to p = 2.4. That is, even if we have exponential convergence, the overall error
reduction is not that impressive. However, the small numbers of points we can use,
while still getting reasonable results are impressive. The smallest problem has 12
points in the horizontal direction, which corresponds to 4 points per wavelength. A
rule of thumb for a finite difference method is that at least 15 points per wavelength,
that is 45 for this problem, are needed for geometric resolution. For the largest prob-
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Fig. 7.3. The relative error estimate (6.13) (×) and the error against the reference solution as

a function of 1/
√
h are shown in the left subfigure. The `2-norm of the residual is shown together

with the same error curve in the right subfigure. The black squares are the results for the optimal
shape parameter values. The dashed lines represent lines fitted to the data points.

lems, the tolerance for the quadrature had to be lowered. The small perturbations
introduced by the inexact quadrature with tolerance 1 · 10−10 are enough to prevent
the convergence curve from following the straight line, and the convergence rate then
seems to decrease. These experiments were run using tolerance 1 · 10−14.

In the right subfigure of Figure 7.3, the `2-norm of the residual is plotted together
with the same relative error results. Even though the residual norm gives reasonable
estimates for the optimal shape parameter, it is clear that we cannot use it to follow
the error trend.

7.4. Experiments with larger wave numbers. We have also solved problems
with larger wavenumbers as this usually is a challenge for wave propagation problems.
For these problems κ = 12π and 24π, corresponding to 6 and 12 wavelengths along
the duct. The solution functions are shown in Figure 7.4.

These solutions have 9 and 19 propagating modes at the left boundary, respec-
tively. A problem here was to compute the inner products with the eigenmodes to
high enough accuracy. The accuracy of the boundary conditions is crucial to get the
correct wave pattern. We were not able to run the simulations for κ = 24π for a larger
problem size than 50× 62 (with good results). The same shape parameter scheme as
for the convergence experiment was used.

For each problem, we ran three different problem sizes in order to get an estimate
of the errors in the solutions. Then we computed the relative errors of the coarser
solutions with respect to the finest solution. The computed errors are compared
with the error estimate (6.13) to find the approximate ratio between real errors and
estimate. Then we use the worst case ratio to project an error estimate also for
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Fig. 7.4. The solution function for κ = 12π (left) and κ = 24π (right). The solution is
computed using nodes with n1×n2 = 50×62. The source is located at the left boundary at xs = 0.3.

Table 7.4
The relative error in relation to the finest solution, the relative error estimate, the ratio, the

adjusted error estimate, and the local slope for the problem with κ = 12π.

n1 × n2 ‖e‖∞/‖u‖∞ ‖ẽ‖∞/‖u‖∞ ‖ẽ‖∞/‖e‖∞ ‖ẽ‖∞
‖u‖∞ /min ‖ẽ‖∞‖e‖∞ CM

40 × 50 0.0435 0.3083 7.1 0.0435 −
50 × 62 0.0240 0.1781 7.4 0.0251 0.66
60 × 75 − 0.0699 − 0.0099 1.2

the finest solution. The results are shown in Tables 7.4 and 7.5, indicating around
1% error for κ = 12π and around 12% error for κ = 24π. The numbers of points per
wavelength are 75/6=12.5 and 62/12 ≈ 5.2, respectively. For the problem with κ = 6π
and the same two node sets, we had 0.6–0.7% error and 21–25 points per wavelength.
If we look at the error for 5 points per wavelength for κ = 6π, it is around 20%. That
is, it seems that we do not need to resolve more with increasing frequency. For finite
difference and finite element methods the error in a waveguide Helmholtz problem is
typically proportional to hpκp+1 [1, 29, 19]. This effect diminishes as the order of the
method increases, and for a spectral method it disappears. This is consistent with the
results for small ε in Section 6.2, where the error approximations are proportional to
(κh)K .

8. Discussion. The main benefits with using global RBF methods for solving
Helmholtz-type problems are that very few points per wavelength are needed to obtain
a qualitatively correct solution, and that the number of points per wavelength does not
need to increase with κ (the number of wavelengths). It is also relevant that non-trivial
waveguide geometries can be managed easily, since there is no need for an orthogonal
or even a structured grid. In [29, 19], we used orthogonal grids, which limits how much
the boundaries can vary. It should be mentioned that the DtN boundary conditions
assume a smooth continuation with horizontal boundaries outside of the domain.
In our example, the derivative of the boundary curves is non-zero at x2 = 0, 1,
which introduces an error. However, since we got optimal convergence rates in the
experiments, these errors are not large enough to influence the results at the level of
errors that we could reach.

The main challenge of using a global RBF method for a PDE problem is the com-
putational cost. In Helmholtz applications it is of interest to solve problems that are



24 ELISABETH LARSSON AND ULRIKA SUNDIN

Table 7.5
The relative error in relation to the finest solution, the relative error estimate, the ratio, the

adjusted error estimate, and the local slope for the problem with κ = 24π.

n1 × n2 ‖e‖∞/‖u‖∞ ‖ẽ‖∞/‖u‖∞ ‖ẽ‖∞/‖e‖∞ ‖ẽ‖∞
‖u‖∞ /min ‖ẽ‖∞‖e‖∞ CM

30 × 37 0.3842 1.4909 3.9 0.3842 −
40 × 50 0.1292 0.7941 6.1 0.2047 0.64
50 × 62 − 0.4756 − 0.1226 0.62

large in terms of wavelengths, and therefore require a certain resolution. With a dense
linear system, both the storage requirements and the computational cost for a direct
solver quickly become difficult to manage at least without using distributed comput-
ing. On top of that, the severe ill-conditioning of the linear systems makes them
sensitive to numerical errors in the quadrature employed in DtN conditions as well as
to rounding errors. An attractive alternative to using global RBF collocation methods
is to use localized methods such as RBF-generated finite differences (RBF-FD) [10]
and RBF partition of unity methods (RBF-PUM) [22]. In [41] it was shown that for
an option pricing application, there was no significant difference in accuracy between
the global method and RBF-PUM for a given problem size, while the computational
cost is significantly lower for RBF-PUM due to sparsity of the linear systems.

We compared the non-symmetric and symmetric collocation approaches and found
that the symmetric method, even though elegant, becomes cumbersome especially for
non-trivial operators. The main benefit of the symmetric collocation is the guaranteed
non-singularity of the interpolation matrix. However, for the non-symmetric method,
singularity only occurred for wavenumbers that were physically uninteresting or for
problems that were numerically unresolved. It seems reasonable that if the continuous
problem is well-posed and the discrete problem is resolved enough to be close to the
continuous problem, singularity is unlikely, see also [16, 40].

We have also investigated the error behavior as a function of N and ε from
different perspectives. Some of this can be explained by the limit behavior. We
studied this for interpolation in [20], but here we looked at what is different for PDE
problems. If the node set is unisolvent and PDE unisolvent, the RBF approximant
has the form s(x) = PK(x) + ε2PK+2(x) + . . ., where PK(x) is the unique polynomial
solution of degree K to the PDE problem, and PK+2j have zero PDE residual at the
node points. When ε is small, PK(x) − u(x) dominates the error. This is the flat
region in the error as a function of ε, see Figures 6.4 and 6.5. Then as ε starts to
grow, there may be an optimal ε-range where the additional terms improve on the
polynomial error, but eventually, the ε-terms dominate the error, and the exponential
convergence rate depends mainly on ε and not on the problem, see Figure 6.3.

A contribution that we think is novel and of practical interest is the discussion
about convergence for scaled shape parameters. We provide arguments for why ε =

Chβ should lead to a convergence rate of the form eCM/h
β+1

, and show that this is
what we also get numerically for β = −1/2.

Another practical contribution is that we have shown that given a reasonable
error estimate, we can decide on a good choice for the shape parameter based on a
small test problem. Then using a converging shape parameter strategy, we can solve
the real problem, and also based on a comparison of error estimates and errors against
the finest solution, we can get an improved error estimate for the solution of the most
resolved problem.
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Even though global collocation methods are not really practical for large scale
problems, many of the things we have learned can be transferred also to localized
methods, as these are based on ’local global collocation’.

Appendix A. Proof sketches. In order to save space and not repeat already
published material, we do not give the full proof for Theorem 5.1 here, instead we
give instructions how to carry out the proof using the machinery laid down in [20, pp.
122–127]. Because the RBF approximant in the PDE case has exactly the same form
as the usual RBF interpolant, we get the exact same expansion [20, Eq. (28)] of the
solution for small ε

s(x, ε) = ε−2K(ε−2qP−q(x) + · · ·+ ε2KPK(x) + · · · ). (A.1)

What differs from the interpolation case is the conditions that the polynomials must
fulfill. In the PDE case we have that

PK satisfies the inhomogeneous PDE and
boundary conditions at the N node points,

Pj , j 6= K satisfy the homogeneous PDE and
boundary conditions at the N node points.

(A.2)

The proof of part (i) is completely analogous to the proofs of Theorems 4.1 and 4.2
in [20]. For part (iii), we follow the steps in the proof of Theorem 4.1. For simplicity,
we first assume that the nullspace n(x) of the matrix Q defined in (5.3) is of degree
K. The steps are identical until the point were we are considering the conditions for
P−q+K . There are three possibilities

• If q = 0, then the polynomial is PK and must satisfy the PDE. However, since
the matrix Q is singular, this can only happen in the (unlikely) case that the
right hand side f is in the range of Q.

• If q > 0 and P−q+K is identically zero, then the moment vector σ−q is zero,
leading to λ−q, because of the non-singularity of P . This means that we could
have omitted the −q term in the expansion and we must have q = 0. This is
in conflict with the previous case.

• Then we must have q > 0 and P−q+K must contain a nullspace component
αn(x). This means that we have at least one divergent term in the expansion
of the solution.

If there is just a single nullspace component of degree K, and extending Q with an
appropriate monomial of degree K + 1 leads to rank(Q) = N , then at the next step
looking at P−q+1+K we get the two possibilities α = 0, which has been ruled out, or
P−q+1+K = PK . Hence, we must have q = 1 and divergence of order ε2.

If the nullspace is of lower degree than K, we will also get divergence, but the
negative power of ε could be higher.

The argument behind part (ii) is that we need to go to the polynomial P−q+M
before we have enough degrees of freedom to satisfy the discrete PDE problem. There-
fore, the limit must have degree M . However, because Q is non-singular, all previous
polynomials must be identically zero and accordingly there can be no divergence.
Compare with the proofs of Theorems 4.2 and 4.3.

For part (iv) of the proof, we follow the proof of Theorem 4.3. The important
difference is that the relation between the moments is determined by the nullspace of
P , but the possible nullspace parts in the polynomials P−q+J is determined by the
nullspace of Q. In [20], we arrive at an equation CTB−1Cα = 0. The corresponding
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equation here becomes

CTB−1Dα = 0, (A.3)

where C is of size n ×m and D has dimensions n × p. To be precise, at step J of
the proof, m is the dimension of the J-degree part of the nullspace of P and p is the
corresponding dimension for Q.

If m = p, the system (A.3) is square, but non-singularity cannot be guaranteed
when C and D are different. If m > p, the system is over-determined and it is
likely that the only solution is α = 0. If on the other hand, m < p the system
is under-determined, allowing for non-zero nullspace components in the expansion
polynomials.

If n(x) defines a nullspace component for P , then p(x)n(x) defines a higher degree
nullspace component using any polynomial p(x). Therefore, the dimension m typically
grows with J . However, there is no similar mechanism for the nullspace of Q (since
Ln(x) = 0 does not generally imply L(p(x)n(x)) = 0). Accordingly, the dimension p
is likely to stay the same or decrease with J .

These facts taken together lead to the statements in part (iv). We use the formu-
lation likely, since it should be theoretically possible to construct counter examples in
both the convergent and the divergent case.

REFERENCES

[1] A. Bayliss, C. Goldstein, and E. Turkel, The numerical solution of the Helmholtz equation
for wave propagation problems in underwater acoustics, Comput. Math. Applic., 11 (1985),
pp. 655–665. Special Issue Computational Ocean Acoustics.

[2] L. Bos, On certain configurations of points in Rn which are unisolvent for polynomial inter-
polation, Journal of approximation theory, 64 (1991), pp. 271–280.

[3] M. Buhmann and N. Dyn, Spectral convergence of multiquadric interpolation, Proc. Edinburgh
Math. Soc. (2), 36 (1993), pp. 319–333.

[4] A. H.-D. Cheng, M. A. Golberg, E. J. Kansa, and G. Zammito, Exponential convergence
and h-c multiquadric collocation method for partial differential equations, Numer. Methods
Partial Differential Equations, 19 (2003), pp. 571–594.

[5] T. A. Driscoll and B. Fornberg, Interpolation in the limit of increasingly flat radial basis
functions, Comput. Math. Appl., 43 (2002), pp. 413–422. Radial basis functions and partial
differential equations.

[6] G. Fasshauer, Solving partial differential equations by collocation with radial basis functions,
in Surface Fitting and Multiresolution Methods, Volume 2 of the Proceedings of the 3rd
International Conference on Curves and Surfaces, Chamonix-Mont-Blanc, A. LeMéhauté,
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