DISSERTATIO
DE
TEMPORE OSCILLATIONIS PENDULI SIMPLICIS,
EX MOTU PER CHORDAS TANGENTESQUE
DERIVANDO.

QUAM,
APPROB. AMPH. ORD. PHIL. UPS.
PRAE SIDE
MAG. ZACH. NORDMARK,
EQUITE REG. ORD. DE STELLA POLARI,
PHYSIC. PROFESSORE REG. ET ORD.,
REG. SOCIET. SCIENT. UPS., REG. ACAD. HOLM.,
NEC NON REG. ACAD. SCIENT. MILIT. HOLM. MEMERO,

PRO GRADU PHILOSOPHICO
PUBLICO EXAMINIE PROPOSIT
JOH. PETRUS LUNDBORG,
STIP. LIDÉN. OSTRO- GOTHUS.

IN AUDIT. GUSTAVIANO D. XIX APRIL. MDCCCIX.
H. A. M. C.

UPSALIÆ
TYPIS EDMANNIANIS
CAROLO
VON
ROSENSTEIN.

EPISCOPO LINCOLIENSIS,

SACRUM.
Simplicissime aique Celeberrime Domine
Prope
Famus urrato de Stellae Velati Madreone Exemplaris

Prodearississe Domine Sacrest

in hac Academia Docens Delectandum
Amice Tactor Oblumatisine!

Hui Rober et ds triplex circa pelew quem non constateret melius, ex igno-

rantia oriundus. Unde judicari potest quanta praeerater hospitabme, ieiun
ad partes oppositus allegaver. Dext
enim offici, quo mores sum funerum, an
ardeam qoddam... verum etiam aliquid ulele et dulce quod non
nubirem tandem suggestir.

Hic supplicis ad alias toles fecus. Madimi filicet interst, leavm

pelere et ubellari indulgentiam, qui
si adnues grato et nullus debites
mihi adnues pertinsum oro.

Predearississe Domino Respondens,
Amice Dilectissime!

Ab amico mella pelere nefas es. Si

igilus, mihi amicitias et observationem
maximum desideros attentand et equum;
data petitus sufficiente. Salve!

Matrim A hucis Acad. desc.
R. D. M. P

Hae in carnis eor non repetiti. ib
nulgentiamque exspectes et ardent
altis inspirandi. Tua invia laudes
alissimus jam aperitu campus. Q
tua laudes praeestae prohibe jubet
celebrare scientias et virtutes quae
in te honoravit traditionem tibi bon.
— Alium vero adire iuvat. Eas inv
vales, audae, breves variet, exércere
immortalem exopto atque peto. Ill
emin a fonte benigne sapientia po
stitueque haeribis, ita munere a
vidies accipiam coram, a quibus
pape. — Inter clientes amicos
me numeros oro atque obbligor.
Vale:

P. D. A. H. D.

Gratulare libi ipsi post, quod offi
tio tam bene et fecundum manus es.
Donas suas artes enumerant nolo, nec
pasa. Laudent enim alii ingenii
lus dotes; laudent cognitiones. Laudent
virtutes, eum est deum eritem
amicitiam, quae insculta semper
conovi, et cogniteram serles fam.

Vale i.
Amplissime alque Celeberrime Dominse Equestri
Eques aurato ex Hellenis liberam faciliationem.

Pius et meus non reddes, quibus oppendorum cognitum
El enim in illis aliquid urbicum superficialis, vixi mense
Postel aliquus sibi et deligeri pariter rem ire, et faci
Diu Infirnum et Speculatissimi, qui indicent bis,
imperitis, quasque et remittat non faciendo signe
Maximi intentis, quos pri Dom. Prof. pescare, ut
obstante, le mansam. Neque quidem iniquum adae
non credite, utam nunc adeo humilitatem oris

Gladiante sse Candidato Christo et Ispulteria expulsa.

Ne malum nec magnum liceImpend., amicum. Hic
vulnus nus mihi attendam das animus et aquam, de
petito sufficiat,

et a C. D.

Arcippe quod prisci, praepeti, oplavi, quondam se.

etiam indulgentiam, qua cii astro sunt divinum

Ne nec spe nec volent fecerentur. Obstantes quinque

qui, nesciis, wo adhiber non dedicanda e cognitione

bus egamnus nunciam sibi. De hic empirico quid est dicere

vita, sintetabur. Neque non spongine vites.

Fora incipiant, audare, oplavi indulgentiis

in posternum apostolo pateflo. Ut omnis in fonte bene

procurare et quasdam, quasdam.

De taurorum peste corda pur incolanti fact. Nunc restet

posse piae hab erant event.

C. D. O. Amico delicesme!

Iaudabunt eis angiens sui dicere: Scandor cognitio

et virtutes. Celoris est, quorum dies ad illo ipso

merito alieno quidcunque aut velut non cognitum, antecela

vel deletabat. Nunc est amicitia et colendum,
unum et in me

de quorum laudem animus et humanissimae. Latin lingua

dicta sunt loquentiur. Inter amicos me numerum (ap

iteruisse) opto.
am contradixer, Reflexionem luminis non fueri in ipsa, sive
(s)corporis reflectentibus, solutae in duas abire opiniunc,
(om) quad Lumen reflectendas non superficie, vel quad reflect
(om) ante illam.

si requir, ut Lumen vel cantu, cum sepe habet, substrate
(s)corporis et postea regrediuntur. Si enim, quam luminosi
(reflexa)um generat, et decedere recedit, vel reflectentes, ait ut
(s)corporis penetre, et ut in corporisque pallacitis, absit Lumen a qua
(reflexa)um in ipsa, (om) adhuc non posint, et nos requir in opus ex corpoe
(s)pectum. Inde-Luce spectum (lumen) non solum, reflectore non superfici
om. Lumen reflector primus gaudebat sagacitatem corporis atti
et phoenomenon illud Reflectitio Christi appellatur, non phoen.
verum aberrationem vel aliud. Sed nomen hi qua nickel
(om) aesse, res ipso considerari debet,

do reflexio in ipsa, superficiei non sit, (om) quod observe
mos ignar obstruendum. Si objectum aliquod, ante specular
eum nequeat, et huc specular, e (om) nequaquam, (om) obstruendum.
(om) uel alia, nequimione, et iste duo reflexa pru
(om) iterum, si quoniam hace superficie quantum a se incipere de
(om) duos, quorum ipsis, inde coeis. Si hacti in sequi
(om) nova, nova reflexans. Quoniam ubi reflectantur? vel ques
(om) aut partibus, (om) quae causae reflectionis corum.

In superficies non reflexi, et hanc reflecterent si de lamina
ca parte posterior, demens, distans, superficie ita restituerit, vel si superficies
om. am partem luminis penetrasse media pallacitas, (om) crepita non
(c) non construendo. Quam pedo luminis per necillum in
mnia cadit densus ac illud se eosquidem vehiculam
quasque corporta solutio atractione a terra recta in propa-
gans, (ante quam, medium, hagio, densitas atractione ad eius
dangentem, infra. Hoc coherere, videtur, quod medium
it de- lemvin, se vehementer frature necellum, quos omnes hic

ricere. Quam ipse, quominum (corpora) opus, et affini com
(idem) cum, necellum.
DE

TEMPORE OSCILLATIONIS PENDULI SIMPLICIS,

EX MOTU PER CHORDAS TANGENTESQUE

DERIVANDO.

§. I.

Addibo in subsidium calculo Fluxionali, nihil nobis facesit negotii inventio temporis, quo datum Pendulum simplex datum arcum circularem oscillando descriptit. Sed etiam sine ope laudati jam calculi ad idem appropinquari posse concludendum est, si inter tempora descendentum per latera Polygonorum, inscripti circumscriptique, medium sumatur: quam methodum cum huc usque persequutus sit nemo, viam cō, quantum natura rei patitur, expedite ducentem hic aperieus. Elicietur hoc modo idem Oscillationis Minimae tempus, quod ex perexigui arcus circuli Osculatoris cum arcu Cycloidis congruentia sequitur, seu \(t = \pi \sqrt{\frac{1}{2g}} \); ubi \(t \) est tempus Oscillationis Minimae integræ per arcum \(KBk \), \(\pi = 3.14159 \) &c. seu Semi-peripheria circuli radio existente \(= 1 \), \(l \) longitudo Penduli, \& \(g \) spatium vi Gravitatis tempore minuti secundi lapsu libero confectum. A vero hoc valore differt erroneus ille, qui ponit tempus descensus per arcum \(KB \) æquale temporis per ipsius chordam, h. e. temporis lapsus per Diametrum \(AB \) seu duplum Penduli longitudinem; quod tempus bis sustum daret totum Oscillationis Minimae integræ tempus \(= 2 \sqrt{\frac{2l}{g}} = 2 \sqrt{\frac{4l}{2g}} = 4 \sqrt{\frac{l}{2g}} \), justo majus in ratione \(4: \pi \).
§ II.

Disquisitioni autem nostræ sequens ex doctrinâ descentius obliqui Theorema postulamus a). Si descendent corpus per plura plana contigua diverse inclinata, quorum ordine summarum longitūdines sint k, l, m, n, p, q &c., & altitudines respectivas verticallis earum longitūdines sint s, t, u, v, x, y, &c., nihilque velocitatis igitur amittatur; designante litteræ Tp tempus, adeo ut ex. gr. Tp. m denotet temporibus inter descendendum percurrit, erit totum tempus descentius, h. e. Tp. (k + l + m + n + p + q + &c.) =

\[
\begin{align*}
T_p.k &= \left(\sqrt{s} - 0\right) \\
+ T_p.l &= \left(\sqrt{s + t} - \sqrt{t}\right) \\
+ T_p.m &= \left(\sqrt{s + t + u} - \sqrt{u}\right) \\
+ T_p.n &= \left(\sqrt{s + t + u + v} - \sqrt{v}\right) \\
+ T_p.p &= \left(\sqrt{s + t + u + v + x} - \sqrt{x}\right) \\
+ T_p.q &= \left(\sqrt{s + t + u + v + x + y} - \sqrt{y}\right) \\
(\text{&c.}) &= (\text{&c.})
\end{align*}
\]

§ III.

Sit jam Pendulum CB = 1, & angulus DCB seu arcus DB = 2α, adeo ut hujus divisionis in sex ex. gr. partes aequales det arcum DE = EF = FG = GH = HK = KB

uerus dictum et eumeni animo docet quod ex lumen reflexum
esse et in eum corpus aliquod. Necessitudo vero lumen est
subtilissimae corporis particulae in medium tremulum
esse et hunc ipsum corpus ipsum. Eadem res non sunt simulacra multae particulanarum, de color
siderum postulat specter. Ille ergo reflexum est reflexum illorum
sine quod reflexus (radior helium) reflexus, in
e quod particulae rectitae in medium inductae lumen emittat
ipsi. Et sic in colori et specie
obiecti.

omodo descolorationes intelliganda fi contendentes lumen
coloris ad colorum offendendum? Obiit |

his decident colorum vel hinc et hinc (crescit aliquis), colorum
in quorum habetur de color objectum, in lumen abscondit
et dicendum de translatione simulacri colorati.

sed dixit magis, simula, quae non in speculume quia

corpora sunt et lumen; illas reflexos nesciree. Nunc
eum est in hinc habito lumen nisi quod objectum sit in
tum, hoc quod lumen esse reflexum et illud quod in

cela reflexitur quaeritur quae illud lumen sequitur trahit
mum et colorum corporia reflexivit.

\[k = DL = T \cdot 2a; \]
\[l = LM = 2T \cdot 2a; \]
\[m = MN = 2T \cdot 2a; \]
\[n = MN = 2T \cdot 2a; \]
\[\beta B : 2T \cdot 2a : u; \]
\[u = 2T \cdot 2a, S. 4a. \]

Antequam autem hi valores adhibentur, præsto esse debet tempus illud ultimo addendum, quo recta Horizontalis NB percurritur velocitate altitudinis DO vel UB debitâ. Eit autem \[1:S. 12a::DQ::DO::T. 6a::DO; \]
ergo \[DO seu UB = T. 6a. S. 12a, & velocitas in \]
\[N = V(4gT. 6a. S. 12a); \]
atque tempus per \[NB = \sqrt{(4gT. 6a. S. 12a)} \]

§ IV.

Suffecit is jam hisce valoribus in Formula § 3., additique tempore jam invento, habetur totum tempus descensus seu \[T. (DL + LM + MN + NB) = \]
\[T. 2a \]
\[T. 2a. S. 12a \]
\[T. 2a. S. 12a \]
\[T. 2a. S. 12a \]
Ut autem separatim poni posset factor \(\frac{1}{\sqrt{2g}} \), multiplicetur tota hæc Summa per \(\frac{\sqrt{2}}{\sqrt{2}} \); \& ut simul habeatur totum tempus \(t \) descendit a \(D \) ad \(B \) et ascendit a \(B \) ad \(d \) elapsum, multiplicentur omnes termini per \(2 \); h. e. ut ambæ operationes simul fiament, ducantur omnes termini in \(\frac{2}{\sqrt{2}} \), atque habebitur totum tempus memoratum \(t = \)

\[
\left[\frac{\sqrt{(2T.2a.S.12a)}}{S.12a} \right] \left[\frac{\sqrt{(2T.2a.S.8a)}}{S.8a} \right] \left[\frac{\sqrt{(2T.2a.S.4a)}}{S.4a} \right] \left[\frac{2T.2a}{\sqrt{(2T.6a.S.12a)}} \right]
\]

\(Hoc \) tempus, in casu \(a = \frac{1}{\infty} \), et \(S.2a = T.2a = 2a &c. \), fit =
Ad Thes. V. Jan.

Elatisitas aeris, abdenatione ipsius et a calore dep.
Aer condensatus aequil Mercurium in tubulo Paracelsi.
Aer externalius est Mercurius in tubulo caldo.
Si aer est rarefactus, inde orunda elastiuitas Mercurium per
intellatum debet, sed quoniam aer rarefactus est, non
pus cadere debet. Ergo cadet et evehilum final, quod ab
- Mercurius cum aeri calore, condensatus sibi fit elasti-
- qua hostis Mercurium, probabilissimum est quod calor in
- tallo. Nam sine calore illa Mercurii cadere, non
- fers erat ineptum in Paracelsium indicet elastiuitas
- in calore, ergo minimus accurate.
Si cadit Mercurius dum aer calore est rarefactus sed el-
- ab cadens causas orientur clusa contra, quibus
- cedent, Mercurius cadens in tubulo et claps
het evehilum indicat aequum.

-
Y'VAJ.'

/.'■i«s
[e^/ar.
((.>,·Λ·<</'ί·ζ·*/'»™·"jfråwie

~W
rVrftff
'><*
VceA
ṭef**,
a/*'An*
eAr'/sAs-se*
/jfrer-J
^y-f
ft

/tzs*yéfSfff

s-.-fe.
fζ/ζ'
,.*£?
s£?ys^t-
sr

■&"J

■pf^XxJ
,s#·7
s#·7
yu?-r/
ss,
/e?zar?
ryrfrry,

■
?tc
rr+<f/?-**/£yrzrc/£''f
4&rtj£ce<*0
r^/sr^A1^
y/'/L)
rr^6*<Å.
étjZfft/ttsrt*
&0/

ZZJ%
Ay/^f
dStA-S*
'f(cA<
er
rt
*-**■*
0rZ'/r,tfM'.?
&S*
t/
&rcf
z^Sx£*/a&/**
U
A^tr^*VW^/v^«
rra^

z/^<
6+f
yccer^ue
;·'
-
'
/C%

Tuli' horum saltuum communicationem esse magis
sent indubitablem et demonstrabilem. Veritas in hac
De rigiter quodque atenda.
\[
\frac{1}{\sqrt{2g}} \left(\frac{\frac{2}{3} \sqrt{3} - \sqrt{7}}{6 - 2\sqrt{7}} \right) = \frac{1}{\sqrt{2g}} \left(\frac{\frac{19}{3} - \frac{1}{3} \sqrt{3} - \sqrt{7}}{\sqrt{2g}} \right)
\]

\[
\frac{1}{\sqrt{2g}} \times (6.333333 - 0.5773501 - 2.6457512) = \frac{1}{\sqrt{2g}} \times 3.1102320.
\]

§ V.

Considerando jam motum per chordas, sequentes obtinentur valóres quantitatum in §. 2. adhibitarum.

\(k = DE = 2S.a; s = UT = CT - CU = C.10a - C.12a. \)
\(l = EF = 2S.a; t = TV = CV - CT = C.8a - C.10a. \)
\(m = FG = 2S.a; u = VX = CX - CV = C.6a - C.8a. \)
\(n = GH = 2S.a; v = XT = CT - CX = C.4a - C.6a. \)
\(p = HK = 2S.a; x = TZ = CZ - CT = C.2a - C.4a. \)
\(q = KB = 2S.a; y = ZB = CB - CZ = C.0a - C.2a. \)

Quibus in Formula §. 2. substitutis, habetur totum tempus per chordas, seu \(T(DE + EF + FG + GH + HK + KB) = \)

\[
\frac{2S.a}{C.10a - C.12a} \sqrt{C.10a - C.12a} + \frac{C.8a - C.10a}{2S.a} \sqrt{C.8a - C.12a} - \frac{C.6a - C.12a}{g} \sqrt{C.6a - C.12a} + \frac{C.4a - C.6a}{2S.a} \sqrt{C.4a - C.12a} - \frac{C.2a - C.4a}{2S.a} \sqrt{C.2a - C.12a} + \frac{C.0a - C.2a}{g} \sqrt{C.0a - C.12a}.
\]
Si jam hic etiam, ut in §. ant., omnes termini multiplicentur per \(\frac{2\sqrt{2}}{\sqrt{2}} \), habetur totum tempus descendens et ascensus descriptum, seu \(t = \)

\[
\begin{align*}
\frac{1}{\sqrt{2}g} \times \left[\begin{array}{c}
4 S. a \\
C. 10a - C. 12a \\
4 S. a \\
C. 8a - C. 10a \\
4 S. a \\
C. 6a - C. 8a \\
4 S. a \\
C. 4a - C. 6a \\
4 S. a \\
C. 2a - C. 4a \\
4 S. a \\
C. 0a - C. 2a
\end{array} \right] \sqrt{(2C.10a - 2C.12a)} \\
\sqrt{(2C.8a - 2C.12a)} - \sqrt{(2C.10a - 2C.12a)} \\
\sqrt{(2C.6a - 2C.12a)} - \sqrt{(2C.8a - 2C.12a)} \\
\sqrt{(2C.4a - 2C.12a)} - \sqrt{(2C.6a - 2C.12a)} \\
\sqrt{(2C.2a - 2C.12a)} - \sqrt{(2C.4a - 2C.12a)} \\
\sqrt{(2C.0a - 2C.12a)} - \sqrt{(2C.2a - 2C.12a)}.
\end{align*}
\]

Sed \(\cos = \sqrt{1 - \sin^2} = 1 - \frac{\sin^2}{2} - \frac{\sin^4}{8} - \&c. = \)

\(\frac{\sin^2}{2} \), qu. pr., quando \(a \) est valde parvus; ergo tandem \(t = \)
\[
\begin{align*}
\sqrt{2g} \times \left\{ \frac{1}{8S.a} \sqrt{(S.12a - S.10a)^2} \right\} \\
\frac{8S.a}{S.12a - S.10a} \sqrt{(S.12a - S.8a)^2} - \sqrt{(S.12a - S.10a)^2}) \\
\frac{8S.a}{S.10a - S.8a} \sqrt{(S.12a - S.6a)^2} - \sqrt{(S.12a - S.8a)^2} \\
\frac{8S.a}{S.8a - S.6a} \sqrt{(S.12a - S.4a)^2} - \sqrt{(S.12a - S.6a)^2} \\
\frac{8S.a}{S.6a - S.4a} \sqrt{(S.12a - S.2a)^2} - \sqrt{(S.12a - S.4a)^2} \\
\frac{8S.a}{S.4a - S.2a} \sqrt{(S.12a - S.0a)^2} - \sqrt{(S.12a - S.2a)^2} \\
\frac{8S.a}{S.2a - S.0a} \\
\end{align*}
\]

Hoc tempus, in casu \(a = \frac{1}{\infty} \) adeoque \(S. a = T. a = a \) et \(S. 2a = T. 2a = 2a \) &c., fit \(t = \)

\[
\frac{1}{\sqrt{2g}} \times \left\{ \frac{1}{8S.a} \sqrt{(S.12a - S.10a)^2} \right\} = \frac{1}{V^{2g}} \left(24 - \frac{13}{15} V2 - \frac{24}{33} V3 - \frac{16}{30} V5 - \frac{8}{99} V11 \right) \\
\]

\[
\frac{1}{\sqrt{2g}} \times (24,00000000 - 3,0169889 - 1,1876918 - 0,5678904 \\
- 0,2680101 - 15,7762110) = \frac{1}{V^{2g}} \times 3,1832078. \text{ Sed} \\
\text{Idem tempus per tangentes erat} = \frac{1}{V^{2g}} \times 3,1102320; \ \text{ergo}
\]
go, sumendo medium, sit tempus Oscillationis integræ per arcum, seu \(t = \frac{1}{\sqrt{2g}} \times 3.1467199 = \frac{1}{\sqrt{2g}} \times \pi \) quam proxime.

§. VI.

Quando longitudo Penduli est \(l \), observandum est, in Figurarum similibus arcubus similibus tempora descensus ad/cehuumque esse, ut sunt radices quadratae linearum homologarum. Ergo tempus \(t \) oscillationis per-exigua Penduli \(l \) habetur per Analogiam \(\sqrt{1} : \sqrt{l} : \frac{\pi}{\sqrt{2g}} = \pi \sqrt{\frac{l}{2g}} \), Q. E. D.

THESSES

I.

Causa congelationis non est sola imminutio caloris.

II.

Reflexio luminis non sit in ipfa superficie corporis reflectentis.

III.

Pigmentis et objectis, quæ colorata vocant, color proprie non inest.

IV.

Thermometrum non nisi Temperaturæ differentias comparative indicat.

V.

Barometro autem accurate indicatur Elasticitas aeris.

VI.

Fontes ex aqua marina non oriuntur.