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Odd-frequency superconductivity is an exotic phase of matter in which Cooper pairing between electrons is
entirely dynamical in nature. Majorana zero modes exhibit pure odd-frequency superconducting correlations due
to their specific properties. Thus, by tunnel-coupling an array of Majorana zero modes to a spin-polarized wire,
it is in principle possible to engineer a bulk one-dimensional odd-frequency spinless s-wave superconductor.
We point out here that each tunnel coupling element, being dependent on a large number of material-specific
parameters, is generically complex with sample variability in both its magnitude and phase. Using this, we
demonstrate that, upon averaging over phase disorder, the induced superconducting, including odd-frequency,
correlations in the spin-polarized wire are significantly suppressed. We perform both a rigorous analytical
evaluation of the disorder-averaged 7' matrix in the wire, as well as numerical calculations based on a tight-
binding model, and find that the anomalous, i.e., superconducting, part of the 7" matrix is highly suppressed with
phase disorder. We also demonstrate that this suppression is concurrent with the filling of the single-particle
excitation gap by smearing the near-zero-frequency peaks, due to formation of bound states that satisfy
phase-matching conditions between spatially separated Majorana zero modes. Our results convey important
constraints on the parameter control needed in practical realizations of Majorana zero mode structures and
suggest that the achievement of a bulk one-dimensional odd-w superconductivity from Majorana zero modes

demand full control of the system parameters.
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I. INTRODUCTION

As was originally demonstrated by Berezinskii [1], the su-
perconducting pair amplitude of fermions may also be odd un-
der exchange of time coordinates, or, equivalently, frequency
w, which extends the usual classification of superconducting
(SC) pair symmetries at equal times [2,3]. Part of the impor-
tance of odd-frequency (odd-w) pairing is based on it allowing
for highly unconventional SC dynamical correlations, even
suggested to be an instance of hidden order [4]. Examples of
odd-frequency pairing include the long-range proximity effect
in superconductor-ferromagnet junctions [5,6], the paramag-
netic Meissner effect [7,8], and Majorana zero modes (MZMs)
in topological SCs [9,10].

MZMs are their own antiparticles and emerge isolated as
end states in certain topological SCs [11]. They currently hold
particular relevance for potential applications in topological
quantum computation [11-14]. Remarkably, MZMs are also a
clear example of states that carry pure odd-w spin-polarized
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correlations. This is due to their intrinsic nature of being
their own antiparticle, which implies that their particle-hole
propagator is at the same time a particle-particle propagator,
which for a zero-energy state automatically acquires an odd-w
dependence [9,10,15,16].

A promising experimentally feasible platform for topolog-
ical SCs, and therefore for MZMs, is based on combining
nanowires (NWs) with Rashba spin-orbit coupling, a strong
magnetic field, and proximity-induced s-wave SC [17-20].
Other proposals for MZMs include magnetic atoms on spin-
orbit-coupled SCs [21,22], and proximity-coupled SCs on
metallic edge states of topological insulators [23,24]. These
physical realizations have motivated an enormous interest
since the initial experiments [25-29].

Due to the vast experimental progress on MZMs, a promis-
ing direction to realize odd-w SCs is using MZMs. In
fact, it was recently proposed how to engineer a bulk one-
dimensional (1D) odd-w spinless s-wave SC by coupling an
array of MZMs to a spin-polarized wire (SPW) [30]. The
setup was also shown to exhibit the paramagnetic Meissner
effect, whereby an applied magnetic flux is enhanced rather
than screened by the induced supercurrent. Additionally, the
induced pure odd-w SC state was demonstrated to be robust
against disorder in the coupling coefficients, which, nonethe-
less, were assumed to be real. However, under more realistic
conditions any couplings to MZMs can easily become com-
plex [31-34]. In fact, in an array of MZMs, it is very unlikely
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to have equal or even real-valued couplings due to the large
amount of parameters possible to tune in topological SC wires
[25-29]. This then implies that it is crucial to analyze the ro-
bustness of the induced odd-w pairing also under complex and
different couplings and, in particular, disorder with respect to
the complex phase of the coupling terms.

In this work, we consider an array of MZMs coupled to
a SPW through generalized complex couplings. In particular,
we focus on the role of disorder in the phases of the complex
couplings. We find that, apart from local odd-w pairing, there
generically also exist nonlocal odd- and even-w correlations.
All these amplitudes correspond to the equal-spin triplet (spin-
polarized) symmetry as they arise as an induced effect due to
MZMs. Most importantly, based on both analytical and nu-
merical approaches, we demonstrate that even moderate phase
disorder in the couplings drastically suppresses the induced
SC in the SPW, in stark contrast to the effect of real disorder
where even large variations of the couplings have been shown
to only produce very small changes [30]. Furthermore, we
show that the suppression of the induced pair correlations is
accompanied by the filling of the energy gap in the density of
states (DOS) due to formation of bound states in the SPW. As
a consequence, our work shows that experimental realizations
of a 1D odd-w superconductor from an array of MZMs must
have full control of the phases of the couplings.

The remainder of this article is organized as follows: In
Sec. II we present the model, introduce the distribution of
complex couplings, and discuss the Green’s function approach
for the pair correlations as well as a numerical tight-binding
setup. In Sec. III we analytically calculate the pair amplitudes
for one and two MZMs coupled to the SPW and also perform
a perturbative analysis for an array of MZMs. Complementary
to this, in Sec. IV we carry out a tight-binding numerical
study in order to support our analytical findings. Finally, we
summarize our work in Sec. V. For completeness, we also
provide additional supporting details in four Appendixes.

II. MODEL AND METHOD

To create a 1D odd-w superconductor we consider an SPW
that is tunnel coupled to an array of MZMs. The MZMs are
modeled as end modes of semiconducting NWs that are in a
topologically nontrivial state, similar to Ref. [31]. Each NW
carries one MZM at each of its two ends, but only one of
them is coupled to the SPW, as illustrated in Fig. 1. The
Hamiltonian H of the whole system is therefore composed
of three parts, H = H,, + Hr + Hs, where

Hy = f dxciE (e, (1)

describes the SPW with cfc (cy) creating (destroying) a spin-
polarized fermion in the SPW and E(x) = —(W*) 2m)8§ — Uy
is a ordinary parabolic dispersion relation, with (., being the
chemical potential that determines the filling of the SPW.

The tunnel coupling of the SPW with MZMs at the topo-
logical NW endpoints is described by a tunneling Hamiltonian
(31]

i
Hr =5 Z/dxa(x — jb)(Tfyjce +Tiyieh), ()
J

M-1

Spin Polarized Wire

FIG. 1. Sketch of the system where MZMs at one end (filled
red circles) of 1D topological SC NWs form an M-site long array
coupled through I' terms to a SPW. MZMs at the other end (empty
red circles) are not coupled to the SPW. For finite-length topological
SCs, a finite-energy splitting § exists between two MZMs on each
topological SC NW. The separation between each wire in the array
is b.

where I'; represents the coupling strength between the MZM
y; and the fermionic mode in the SPW c¢, at position x; = jb,
where b is the separation between two neighboring MZMs.
The MZM y; = f; + f] =y is one of the two MZMs

formed from a zero-energy Bogoliubov excitation f ]T of the
topological NW. For topological NWs of finite length, the two
MZMs split from zero energy due to hybridization [35-38],
which is commonly described by [11]

1
Hy =5 D 8l = £if]) 3)
J

where §; is the energy splitting in the jth NW.!

We consider a general situation in which the coupling
strengths I"; are allowed to be all different from each other and
also complex quantities, which describe a realistic situation
for an array of MZMs coupled to a SPW [31-33]. Here,
the SC phases in the topological NWs can easily be one
of the sources for the complex I". Moreover, under realistic
conditions, complex couplings I" might also appear just due to
different parameters in the topological NWs. For example, re-
cent studies in systems with spin-orbit coupling and magnetic
field have demonstrated that the coupling between a MZM
and normal systems (quantum dots) gives rise to a tunneling
element that is both spin dependent and complex [34]. Thus,
since the couplings depend on the parameters of each NW and
it is very hard to the imagine the NWs in an array all having
exactly the same parameters, the couplings will generically
be complex and vary randomly. We are therefore interested in
analyzing the robustness of the induced SC correlations into
the SPW against disorder in the couplings, and particularly
phase disorder, not previously considered. For real and equal
', Eq. (2) reduces to the model used in Ref. [30], where real
disorder was also studied.

More specifically, we model the complex couplings I'; =
| j|e"9.f as random variables with the logarithm of the

'MZMs always appear in pairs, one at each end of a topological SC
wire. If the length of this wire is less than twice the Majorana local-
ization length, then the Majorana wave functions overlap, leading to
a finite-energy splitting §. Here, we couple only one these MZMs to
the SPW but still consider finite §.
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magnitude In(|I";|/T¢) being uniformly distributed and the
scaled phase 0;/m being independently distributed according
to a weighted uniform distribution around O with weight
(1 4 0)/2 and around 1 and —1 with weight (1 — ¢)/4, with
in total the width Dy of the 27 phase interval covered. We thus
characterize phase disorder by Dy, where Dy = 1 means full
phase disorder. Physically, a finite value of Dy indicates the
lack of control over the phases in the complex couplings, an
issue impossible to avoid experimentally. We also introduce
a sign bias, i.e., the weight of positive values minus the
weight of negative values, equal to o, —1 < o < 1. There is
nothing fundamental in this choice of distribution, and, in fact,
other distributions that model phase disorder would produce
similar conclusions. However, this choice has the advantage
of allowing the moments ((|T"|*> — (|T"|?))?) and (I'%) to be
expressed analytically, exhibiting also a high suppression with
increase in the power ¢ and width of the phase distribution Dy.
In particular, the expectation value

. -0 (2 2-D Dy
(e"’0>=Ta{D_SinC(Q)_ %“‘C["(l‘ 2¢>“
¢
l+o . (qDy
— i 4
_|_ 2 SIHC( 2 ) ()

where sinc(x) = %’;X) Another advantage of this distribution
is that the case of real coupling strengths is achieved as a con-
tinuous limit by simply taking Dy — 0. In that case, Eq. (4)
reduces to [(1 + o)+ (1 — o) cos(rq)]/2, as expected for a
distribution of real numbers with a sign bias o. More details
on the parameters of the distribution are given in Appendix A.

A. Dyson’s equation for the spin-polarized wire

The focus of this work is on the pair correlations induced
in the SPW, and thus it is convenient to work with a Nambu-
Gor’kov Green’s function in imaginary time:

G, ;7,7 = — (T (x, 1) @ Y (x', 7)), §))

where ¥(x) = (cy,c})", and the imaginary-time Heisen-
berg operators are ¥/ (x, 7) = e" " (x)e " and ¥ (¥, 7)) =
"Myt (x')e~"™. With only the relative time t — 7’ being
relevant we perform a Fourier series expansion with respect
to the relative time into Matsubara frequencies w, = (2n +
1)z T. A shorthand notation for a frequency-dependent corre-
lator is used:

T '
(A[B))o = /0 AT ADBO) .

In this way, the Green’s function is a 2 x 2 matrix in particle-
hole space:

Gee(x, X5 iwy)

Glx. X iwy) = ( Gen(x, X ;i“’”)>. 6)

Ghe(x, x'5iw,)  Gun(x, X5 iwy)

The equation of motion for G(x, x'; iw,) requires the eval-
uation of the commutator of H = H,, + Hr + Hs, given by
Egs. (1)—(3), with ¢, (and ci). When this is evaluated, terms
proportional to ¢, (or ¢l) and y; = f; + f; are obtained.
Thus, the equation of motion for G contains the correlators

{File) ws ((Filex)) o, ((f;lcmw, and ((f,-TICx)M- To eliminate
these cross-correlators, another set of commutators of H with

filor f ]T) is used, which generates terms proportional to f; (or
f;) and %S(x — jb)[I‘jci + F}‘cx]. In this way, eliminating the
cross-correlators while using the Green’s function for isolated
NW modes,

(G514 (iw,) = <<<j3) ® (f] fk)>>
7 w

— 8 za),,—Bj ,

Lk( 0 iw,,lJrsz>

where §;; is a Kronecker delta in the NW position, we
finally arrive at the Green’s function for a SPW coupled to
an array of MZMs, dependent on two spatial coordinates and
the Matsubara frequency and satisfying the Dyson equation:

G(x, X iw,) = Go(x — X' iwy)

+ Y Golx — jbiiw,)
J

x Vi(ioy) - G(jb, X'; iw,). (7)

Here all the effects of the jth topological NW are contained
within the vertex:

9 o) i, T, T3 ®
ilwy) = —————— .
! 2(w2 + )\ I,P

In Eq. (7) Gy is the propagator in the SPW given by

ge(x — x'; iwy) 0
0 gn(x — x'siwy) )’ ®

where the first diagonal element corresponds to the free-
electron propagator in the SPW given by g.(x — x';iw,) =
—isgn(w,)(m/ky)e’ e @1 with ko = /2m(iiy + iwy)
and the second term to the hole propagator in the SPW
gn(x — X5 iw,) = —g. (X' — x; —iw,).

An equation for \7] - G(jb, x') is obtained by multiplying
Eq. (7) by V,i from the left, and setting x = jb. The solution of
this equation is then expressed as

Golx — x5 iw,) = <

Vi(ion) - G(jb, xX';iw,)

=Y Tjiliw,) - Go(lb — x'; iew,), (10)
1

where the matrix f”j,l(iwn) plays the role of a kernel of the
equation:

D 1851 = Viiwn) - @) T mliwn) = Vi(i,)8m.
1

an

Here we introduce the shorthand notation (o), (iw,), which
is the Green’s function for a bare SPW evaluated at the
discrete subset of positions of the MZMs, i.e.,

(80)j.1(iwy) = (80) j—1(iwy),
(80),(iwy) = Go(jib;iwy). (12)
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Finally, the solution of Eq. (7), given Egs. (10) and (11),
may be written as

G(x, x5 iwy) = Go(x — x5 iwy)

+)_ Golx = jbiiw,)
7l
xT;i(iw,) - Go(lb — X'y iw,),  (13)

making it clear that 7A"j,1(ia)n) plays the role of a T matrix for
the SPW with respect to the effect of the MZM array. The
Green’s function given by Eq. (13) allows the calculation of
the induced pair correlations in the SPW and is used for the
analytical calculations in Sec. III.

B. Numerical tight-binding setup

Beyond studying the MZM array using Green’s functions
we also adopt a tight-binding version of the model described
by Egs. (1)-(3) to facilitate numerical results going beyond
the perturbative analytical treatment. Here we place M MZMs
on a ring with z — 1 lattice sites of the SPW in between two
MZMs and one SPW site at each MZM site, with the periodic
boundary conditions ¢4,y = ¢, for the SPW modes and
fi+m = f; for the Bogoliubov modes in the jth NW through
which the MZM is expressed. The tight-binding version of
Eq. (1) is then given by

M —1 M—1
HyP ==t ) {chemp +He) - Mchm (14)
m=0

For the clean, nondisordered system we can further impose
periodic boundary conditions with period z, corresponding to
a lattice constant equal to the MZM distance b. This leads
to folding of the original SPW dispersion relation £(p) =
—2t cos(p/z) — u, z times as p goes over from —zm to zmw
onto the new unit cell with the Brillouin zone (BZ) from —x
to 7. Thus, specifying the band index / (0 < [ < z — 1) of the
conduction band cut by the chemical potential, as well as
the (dimensionless) Fermi wave vector —7 < pp < 7, fixes
the chemical potential u to

2
d15ap = i (py) = —2t cos (M) (15a)
Z
[ =2r

— r’
MENon 1=2r—1.

The meaning of Egs. (15) is sketched in Fig. 2.
The tight-binding version of the tunnel Hamiltonian (2)
becomes

(15b)

M-1

HIP = f Z{F vicj +Tviel), (16)

where the factor 1/,/z is necessary if we require |T'| to be the
energy gap in the single-particle excitation spectrum in case
of a periodic nondisordered MZM array I'; = I', just as in the
continuum case.

We can now define a large 2M (z + 1)-dimensional Nambu
spinor ¥ = (¢, czl| fis f ;)T, such that the tight-binding
Hamiltonian may be written as a bilinear form %, +
Hr +Hs = %\IlT - Hgqg - ¥, where the matrix Hggg is the

2F P
L /’/ N l: 3
7 N,
L '/' \~
< l: 0
1 | \‘\\ "'0
U \ R
= 0 I \s //
~ —
W /)\\
L VAN
L / \
4 \
L // \
\
| / =1
// A
-1F y; \\
L/ ~
/ \
2k l Pr
-1 -0.5 0 0.5 1
pla

FIG. 2. A sketch of a folded band dispersion with z = 4 bands.
The chemical potential p is chosen to cut the / = 2 conduction band
(green line) with the (dimensionless) Fermi wave vector equal to
pe = 0.57.

Bogoliubov-de Gennes (BdG) Hamiltonian. Diagonalizing
this matrix generates the eigenvalues Ey and eigenvectors
u™, and all single-particle correlators are then in princi-
ple calculable. In particular, the tight-binding version of
Eq. (6) is the upper left zM x zM block of the inverse matrix
Gpagliv,) = (ia),li — Hgas)~ !, which using the eigenvalues
and eigenvectors can be calculated as

(Gaaclasion) = 3 (@) ——.  am

~ iw, — Eyx

From this we can directly extract the even- and odd-w anoma-
lous components GE};O as well as the local density of states
(LDOS) N;(¢) by using

« E
[G]ej:h]i,j(iw") = — Z ul(N)[uyi)zM] WNE[%, (18a)
N n
[G?fl]i,j(iwn) == Z“,(N)[uﬂ)m]*ﬁ (18b)
N n
. — T, (N)T* Ui
Nite) =y u™[u™)] e Er e (189

N

where 7 is a small positive smearing factor of a Dirac ¢
function.

III. ANALYTICAL RESULTS

In this part we demonstrate that disorder in the phases
of the complex couplings are detrimental for the induced
pair amplitudes. Moreover, we show that, when there is a
finite relative phase between the couplings of at least two
MZMs, bound states are induced in the SPW. To show these
arguments, we consider three simple, yet useful, cases that
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provide a clear visualization of the role of complex couplings
on the pair amplitudes.

A. Spin-polarized wire coupled to a single Majorana zero mode

We start by considering the simplest case, a single MZM
coupled to the SPW. In this case the system of equations
(11) is actually a single equation involving 2 x 2 matrices in
Nambu space, which is readily solved:

Fliwy = —en (1012 T2 (19)
T 2D \(r*)?  r)R)
where
D — wi +52—‘r iwn[ge(O; lwn)+gh(0’ lwn)]“_,'z

2
is an even function of frequency w,. The only difference
between Eq. (19) and Eq. (8) is thus the substitution of the
denominator D. This clarifies the meaning of the 7' matrix as
involving a series of coherent events between the MZM and
the SPW of scattering as an electron and back-scattering as
a hole. Then, by using Eq. (13), the Green’s function for the
SPW is easily obtained, with the entries specified in Eq. (6)
given by

Gee(x, X, iw,) = gelx — X, iwy)
+8e(x, 0, iw,)Teeg. (0, X', iw,),

Gon(x, X', i) = go(x, 0, i) T8 (0, X', iy), 20)
Ghe(x, x/’ iw,) = gh()Q 0, ia)n)Thege(O’ X/, iwp),

Gn(x, ', iwy) = gn(x — X', iwy)
+gn(x, 0, i) Thngn(0, X', iwy),

where the elements of the 7 matrix are given by Eq. (19).

The diagonal (normal) elements of the Green’s function
allow the calculation of the LDOS, while from the off-
diagonal (anomalous) terms we extract information about the
pair correlations induced in the SPW. Since we are interested
in the induced pair correlations, we now discuss G,j,, which
written out is

2
m_m‘eisgn(wn)[ko\x‘_kgM], 2

ko>
where we have used the expressions for the free particle prop-
agators in the SPW given in Eq. (9), T, = —(ia),,/D)Fz, and
ko is the electron wave vector defined after Eq. (9). The pair
amplitude G,;, thus exhibits translational invariance breaking
through the exponent ko|x| — kg|x’|, which mixes electron (ko)
and hole (k}) wave vectors with different spatial coordinates.
This is similar to the breaking of spatial parity in other

J

Geh(x’ X/, la)n) = -

2
O .
Geh (x, x/’ iw,) =

ko2

superconducting junctions [39—41]. To visualize this point it is
useful to write the wave vector kg, defined after Eq. (9), in the
limit |w,| < ©, where kg & kg + ik. Rearranging the expo-
nent of Eq. (21) results in k(x| — |x'|) + ik (|x| + |x|) with
k = (wpkp)/(210) and kg = /2m u (we choose a system of
units in which 7 = 1). Plugging this expression into Eq. (21),
leads to an exponential decay term with decay length given by
the inverse of k and an oscillatory term governed by the Fermi
wave vector. This oscillatory term can further be written in
terms of cosines and sines, which are even and odd functions
in space, respectively, and thus leads to the coexistence of
even- and odd-w components of the pair amplitude [40,41].
Interestingly, locally in space, i.e., x = x', G, is purely odd
in frequency, an induced effect that comes directly from the
MZM. The odd-w dependence is here captured in the element
T, since its denominator D is an even function of w,. We
therefore conclude that the induced local pairing due to a
single MZM is odd in frequency, in agreement with the
previously reported odd-w nature of Majorana pair amplitudes
[9,15,30,40,42-45].

Furthermore, from Egs. (20) we observe that the anoma-
lous elements are proportional to I'?. This stems from
Eq. (19), where the diagonal elements T, ;;, are proportional
to ||, while the off-diagonal T,; is proportional to I'2. This
is in notable contrast with the findings of Ref. [30], where
the pair amplitude was assumed to always be proportional to
real couplings. If I is real, it does not present any issues for
the pair amplitudes; however, it does when I" is complex. In
fact, by performing a disorder average over the phase of I,
the expression for G,, might give zero or be exponentially
suppressed, depending on the disorder distribution. Of course,
there is no physical meaning of performing disorder average
over the phase of I' when only a single MZM is coupled to the
SPW. However, this simple example still clearly shows the
potentially detrimental effect of disorder averaging over
the phases of I' on the pairing amplitudes. As we will see
in the following sections, this seemingly innocent effect at
this level has profound consequences when considering more
MZMs coupled to the SPW.

B. Spin-polarized wire coupled to two Majorana zero modes

The simplest system where the relative phase of the cou-
pling strengths I' has a physical manifestation is a SPW
coupled to two MZMs with distance b and complex couplings
I’y 2. Then, Eq. (11) is a 4 x 4 matrix in site and Nambu
spaces, but still analytically solvable. Following the same
method as for a single MZM we obtain the even- and odd-w
pair amplitudes:

m ’ ,
— (2T ycos[ske (x| — [ )] FHED 2Ty scos[ske(x — bl — b — x'|)]e~*(x-bHH1b=xD

e rbIHYD [T, | giske(bl—l¥) | piske(x—bl—l )]

oS =BT, giske (= =bl) o piske(l= =By

2

TE

(22a)

(24T} 1sin[skg(|x| — |x'|)]e < FFD

+ 20Ty ysin[skg(|x — b| — |b — x'|)]e” < x=bI+b=D
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e KbV, | iske(—bl=l) o piske(x—bi—l )]

oSl =B [T, piske(l = =b) | piske(lxl =/ =bD)y (22b)
where s = sign(w,), k = (w.kp)/2p), kg = /2mu, and T; ; = ij‘ /D, where the numerator are the ek components:
eh iC!),,Fl . . . >
Ny (iw,) = — > [I"184(0; iwn)Da(iwy) + Tagn(b; iwn)K (iwy)], (23a)
eh iwnrl . . . S~ .
Ny5(iw,) = — > [T1g1(=Db; iw,)D;(iwy) + T'2g5(0; i, )K (iwy)], (23b)
eh s iw,I . . . .
Ny (iw,) = — > [T'181(0; iwn)K (i) + T2gn(b; i) Dy (iwy)], (23¢)
eh -+ iwnFZ . . . .
Ny5(iw,) = — > [T18n(=b;iw,)K (iwy) + 28 (0; iwn) Dy (iwp)], (23d)

where g, and g, correspond to the free electron and hole
propagators in the SPW defined in Eq. (9). Moreover,
the denominator D is given by D(iw,) = D (iw,)D>(iw,) —
K (iwy)K (iw,), where D;(iw,) corresponds to the denominator
of the expression in Eq. (19) but for each MZM separately (i =
1,2), and K(iwy) = =5 [T1T3ge(b: iwn) + TiT2g(bs i),
R(iw,) = —4[T'\T3g(~b: iw,) + TTage(—bs iw,)].
Based on these results we first conclude from Egs. (22)
that both even- and odd-w pair correlations are induced in the
SPW due to its coupling to MZMs. Both pair amplitudes also
acquire a dependence on the phases of the complex couplings
I'1 2, as evident in Egs. (23). Moreover, since these ampli-
tudes correspond to equal-spin spin-triplet pairing, the even-
frequency component is finite nonlocally but vanishes locally,
which is similar to the even-w pairing discussed for the single
MZM in the previous section. On the other hand, we find
that odd-w pairing exists both locally and nonlocally. Both
even-w and odd-w pair amplitudes exponentially decay from
the position of the MZMs with a decay length determined by
the inverse of «, specified in the previous section. Second, we
conclude that the pair amplitudes given by Eqs. (22) emerge
proportional to F%(z) or I';T"; through the numerator of the

T, Nf?, given by Egs. (23). This, therefore, implies that any
average over the complex phases of I'; , leads to a suppression
of the induced pair correlations in the SPW, demonstrating a
detrimental role of complex couplings.

Before concluding this part, we explicitly demonstrate the
effect of a finite relative phase 8 between the couplings of
the two MZMs I';,. This is illustrated in Fig. 3, where
we plot the LDOS in the SPW as a function of frequency
for nine values of the phase 6 uniformly distributed on the
segment [0, 2]. We calculate the LDOS from the standard
expression LDOS(x, w) = (—1/7)ImG,.(x, x; ® + in), with
o being the real frequency, n an infinitesimal positive num-
ber, and G,, the electron-electron Green’s function obtained
after solving Eq. (13). The system is symmetric with respect
to the midpoint x = b/2 between the two MZMs and we
therefore plot the LDOS at three representative points on the
side closer to the first MZM, where we measure the MZM
distance b in units of the Fermi wavelength Ar = 27 /kg in the
SPW.

The most prominent feature in Fig. 3 is the presence of
resonance-like peaks at +§, corresponding to the leaking of

(

the MZM states into the SPW. The weight of these peaks
is highly dependent on position, having the highest weight
(antinode) at b/4, while the lowest weight (node) is directly
under the MZM and also in the middle between the two
MZMs at b/2. These correspond to delocalized states in the
SPW with a half-wavelength (node-to-node distance) b/2, i.e.,
a wavelength equal to b. Since in this plot we have chosen
b = Ag, it is not clear from these results which of these
length scales determines the wavelength of the bound-state-
like feature. We therefore investigate other MZM separations
in Appendix B and find that the wavelength is determined by
Ar. In addition, it is clear that the spectrum is symmetric in
0 relative to & = . The peaks are sharpest for § = 0, &, and
27, and have the largest smearing for 6 = 7 /2, 37 /2. The
smearing, associated with a finite lifetime of these resonance
states, is highly phase dependent, which is reminiscent of the
conditions for constructive and destructive interference. To
summarize, these results suggest that delocalized bound states
appear naturally in systems with multiple MZMs due to the
complex couplings, but that their behavior is also naturally
expected to be less controllable as the number of Majorana
NWs increases.

&

(b) (c)

o o
(o)) o]
IIIIIIIII
é

I

no
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e
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r 6 =0
_IIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIII
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w/T,

o

FIG. 3. LDOS (in arbitrary units) in the SPW for two MZMs as
a function of energy. Each curve is shifted vertically for illustrative
purposes and corresponds to an equidistant value of the relative phase
6 [denoted only for & = 0, 7, and 27 in panel (a) for orientation] of
the coupling to two MZMs between 0 and 27 and obtained under
(a) the first MZM, (b) at 1/4, and (c) at 1/2 of the MZM distance b
from the first MZM. Here, coupling strength for both MZMs is I'y =
0.4eg, b = Ag, and the hybridization § = 0.4T"y for both MZMs. The
smearing factor is set to n = 0.5 x 107*T.
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C. Spin-polarized wire coupled to a Majorana zero mode array

Having studied one and two MZMs coupled to the SPW,
we finally turn to the case of an infinite array of MZMs and for
this system calculate the induced pair amplitudes in the SPW
using disorder-averaging to capture the intrinsic variability in
the complex phases of the MZM couplings.

For an infinite array, it is convenient to express Eq. (11) in
terms of the Fourier series coefficients:

o0
T(p, piiv)) = Y Tjiliw)e W=D,

(24a)
Jjl=—00
Vipiio) = Y Viliw)e ™, (24b)
j=—00
o0
Zo(priwn) = Y (@odnliwn)e ™, (24c)

j=—00

where p, p’ are continuous variables on the interval (—, ].
The functions defined in Egs. (24) are all periodic in each p
with a period 27r. With this Eq. (11) acquires the form:

. N T dp »

& s, > s P A 2

P(p. p'sion) = V(p — plricon) + / L= p'sien)
x Bo(p"siwn) - TP, Psiwon). (25)

This is an integral equation for T(p, pP;iw,) as a function
of continuous variables, which reflects the now infinite di-
mension of the matrix equation (11). Nevertheless, it is a
convenient formulation for three reasons.

First, the periodicity with a lattice constant b imposed on
the continuum wire by the MZM array is reflected in the
folded §0(p; ia),,).A Expressing it in terms of the continuum

Green'’s function Go(k, iw,), the following relation holds:

o0

A 1 2 2
go(p;iwy) = 3 Z Go(ﬁ%;iwn). (26)

m=—0o0

In fact, due to the simple parabolic dispersion relation, the
sum over m in Eq. (26) may be performed analytically with
the result:

- ( . ) m cot p— kob cot p+ kob
e\Dlwy) = ——— -
getp 2% 2 2

arg(p + kob)i| }

(27a)
|

2iFl
—+ 21 00r|: o

7 eh ) _
T e i) = 3 iom)

_ Bigi (o) {A1[Zo(ps iwn) + 8n(ps i) — ¢1(i0,) (AT — |B1*)Ze(p3 i0,)Zn(ps iwn) |

B . m p—kyb p+kyb
Jlwy) = ——ycot — cot
&n(p;iw,) 2% {CO ( 3 ) co < 5

arg(p + kgb)] }

- (27b)

+ 2iFloor|:

where kj is the electron wave vector defined after Eq. (9).

Second, the Fourier-transformed vertex coefficients \7( p—
p'; iw,) become approximately normally distributed when dis-
order is taken into account, regardless of the exact distribution
of the real-space V,(iwy) according to the central limit theo-
rem. This allows us to apply Wick’s theorem for an average of
a product of several such terms in an expansion.

Third, after disorder averaging, the 7 matrix recovers
invariance under translations by a lattice constant b, i.e.,
(T);1(iwy) = (T) jsx.14x(i®,). This implies that the Fourier
transform (T')(p, p'; iw,) defined by Eq. (24) becomes diag-
onal in p, p':

(TY(p, plyiwy) = 278(p — PUT) (priwy).  (28)

Using the Fourier series formulation we can now, from
Egs. (13), (24a), (24c), and (28), express the disorder-
averaged Green’s function for the SPW as

. © dk » o Tdp v
(G)(x, X5 iwy) = / — Go(k; iwy)e™ ) 4 / &P jipst
oo 2T _p 2T

x Bo(prian) - (T)(psiwy) - &olpsiwy). (29)

Here we note that the second term incorporates the effects of
BZ folding through the matrices go(p; iw,), with integration
over p only in the interval from —m to m. As a direct
consequence, the effects of disorder averaging are now com-
pletely encompassed within the disorder-averaged (7T matrix.
Finding a general expression for the disorder-averaged (T')
matrix is straightforward but lengthy and we therefore provide
the details in Appendix C.

We are here primarily interested in the induced anomalous
correlations in the SPW, characterized by the electron-hole
component of the Green’s function. To obtain them, according
to Eq. (29) and the fact that both Go(k;iw,) and §0(p; iwy,)
are diagonal in Nambu space, only the electron-hole compo-
nent of the disorder-averaged (Tfh) is needed. The detailed

derivation of expressions for (T) within the second Born
approximation [i.e., keeping only the n = 1 term in Eq. (C8),
which is of second order in V] are provided in Appendix D,
and here we produce schematic but, nevertheless, sufficiently
detailed expressions to draw the most important conclusions.
In particular, for the electron-hole component we obtain

(¢1(iwn)B1 + i) A28 (iwy) + Cogié (iwn) + B[ g5 (iwy) + & (iwn)]} — F)

1= ()AL B (ps iwn) + 8 (ps ion)] + 7 (iw,) (AT — |B112)Ze(ps in)8n(ps iwn)”

where g, and g, are given by Egs. (27). The denomina-
tor Dy is here an even function of w,, but its explicit

(30)

(

form is not necessary for our discussion. Similarly, the
exact form of ¢;(iw,), given by Eq. (D2b), and g;(iw,),
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given by Egs. (C4b) and (D3) is not important for our
discussion.

Although the expression for the disorder-averaged pair
amplitude (G¢") that follows from combining Eqgs. (29) and
(30) is not simple, some conclusions can be drawn already
from analyzing the components of (7). For example, we
obtain that A, = (|T'|*), B, = (|I'|*T"?), and C, = (I'*), while
Ay = (IT')?) and B; = (I'?); see Appendix D for details on
their evaluation. In the generic situation, we expect Dy to be
close to 1. Phase disorder-averaging thus forces C; < By <
A,. This directly results in the A, term being the dominant
term in the square brackets expression in Eq. (30). However,
this term also contains a factor of (g‘ih) that, according to
Egs. (C4b) and (D2), is also proportional to B;. Thus, even
this dominating term is in fact highly suppressed after phase-
disorder averaging, because B; << A;. As a consequence, the
disorder-averaged pair amplitude in Eq. (30) is small, and
we can conclude that both the even- and odd-w induced pair
correlations is highly suppressed in a MZM array.

Additionally, we have verified that the formation of bound
states due to the coupling between the SPW and the array of
MZMs follows the case discussed in the previous section for
two MZMs. In fact, we find bound states emerging at energies
around the Majorana splittings §,,. However, unlike the case of
two MZMs, where the two isolated modes are not able to open
a gap in the continuum of the SPW spectrum, in the case of an
array such a gap is opened, and the in-gap states also do not
acquire smearing, but are shifted in energy instead. We briefly
discuss this feature in the following section.

We conclude this analytical part of our work by sum-
marizing our findings: A MZM coupled to a SPW induces
even- and odd-w correlations in the SPW, whose amplitude
is proportional to I'?. Locally in space only odd-w pairing
exists. When two MZMs are coupled to the SPW with dif-
ferent complex couplings, delocalized bound states emerge in
the SPW between the two MZMs, and both pair amplitudes
become dependent on the phase difference and proportional
to Flz(z) or I'iT';. This already on the level of two MZMs
indicates a suppression of the induced pairing in the presence
of phase disorder in couplings I';. Finally, for an infinite array,
we verify that the induced pair amplitudes in the SPW are
necessarily considerably suppressed under disorder-averaging
over the phases of the complex couplings.

IV. NUMERICAL RESULTS

To demonstrate the effects of phase-disorder, without re-
lying on the approximations that were essential in obtain-
ing closed-form expressions in the analytical approach in
Sec. IIIC, such as the Born approximation for the infinite
array, and also going beyond a qualitative interpretation of
disorder effects, we next perform a numerical diagonalization
of the tight-binding model described in Sec. IIB and add
disorder explicitly.

We choose a ring of M = 40 MZMs, with z = 10 atomic
sites between two neighboring MZMs. Since the folded bands
alternate from electron-like to hole-like around momentum
p = 0, we center the chemical potential to cut the third band
(I = 2), because it is the first higher electron-like band, and
choose a pp = 0.27. We then also scan six equidistant values

of the chemical potential, ranging from the third to the fifth
band with the same pp, whose numerical values are given in
Fig. 4(d). This assures that our results are not fine tuned but
can be interpreted as general. As the band index increases,
the bandwidth also increases (see, e.g., Fig. 2). We therefore
choose I'y to be equal to 0.4 of the smaller of the distances
from the Fermi level to the band edge for the lowest scanned
band, which turns out to be I'g = 0.0815¢. Since the effects
of disorder in the coupling coefficients are investigated, we
fix the energy splitting in each NW to a small finite value
8 =0.1T.

First of all, we verify that keeping the disorder real (Dy =
0) reproduces the robustness of the induced SC correlations,
as also found in Ref. [30], and that regardless of the value of
o (the sign bias of the disorder), and also for relatively large
magnitude disorder, up to D, = 1. Then, with the value of I
fixed, we generate 20 different random disorder configurations
according to the distribution described in the introduction of
Sec. II, using the parameters o =1, D, =0, and with Dy
ranging through the values listed in Fig. 4. Here D, is a
dimensionless measure of the disorder in the coupling given
by the relative error of |I"|?> (see Appendix A). The results of
these calculations are summarized in Figs. 4 and 5.

In Fig. 4 we plot the magnitude of the on-site, and
thus dominating, odd-w component of the sample-averaged
anomalous Green’s function [G?h],-,,‘(iwn) as a function of Mat-
subara frequency w,, site location i, and Dy. The overall w,
dependence exhibits a drastic suppression with phase-disorder
strength Dy, as evident in the log-scale plot in Fig. 4(a). We
stress that this behavior is thus very different for the effect
of real disorder, where the pair amplitudes are robust [30].
The data in Fig. 4(a) are the odd-w component directly under
one of the MZMs. In Figs. 4(b) and 4(c), we plot the site
dependence over 6 out of the 40 periods for both the lowest
positive and a high-frequency component. For low frequencies
we see very little site variations. This can be understood from
our analytical results for the single MZM, Eq. (21), where the
decay length is ~1/w, [30,46]. At higher frequencies, here
represented by Fig. 4(c) evaluated at half the bulk gap I'y/2,
we find more variations with position. The anomalous Green’s
function [GY];;(iT"9/2) actually has peaks (approximately) at
a quarter distance from a MZM with dips both under a MZM,
as well as at a midpoint between them.”

Finally, in Fig. 4(d) we show how the low-frequency
on-site component is suppressed with disorder for several
different values of the chemical potential. Despite the doping
dependence of the DOS, we find a very similar monotonic
suppression with phase-disorder strength, which shows that
our results are not sensitive to the specifics of the model
situation. Beyond the dominant on-site odd-w contribution to
the anomalous Green’s function plotted in Fig. 4, there are
also subdominant nonlocal contributions, in analogy to the
analytical results in Sec. III B, which have both even-» and
odd-w dependence and are peaked at different positions along

2According to the sampling theorem, the shortest wavelength that
may be reproduced by a discrete set of values a distance b/z apart is
2b/z, which, for z = 10, is equal to 1/5 of the MZM distance.

094506-8



SUPPRESSION OF ODD-FREQUENCY PAIRING BY PHASE ...

PHYSICAL REVIEW B 101, 094506 (2020)

C (a)
3
= f
3 C = N
Z 01— e sl T
F—  D;=0.00 -~ 0.20 - 0.50
g 0.10 - 0.30 -- 0.75
10’ 1 1 1
-1 0 1
wn!/T
4
i — u/t=-154 (d)
K - -1.33
— 3
=R - 2112
3 [
<
=t
© r
0_ 1 1 1 | 1 1 1 | 1 1 1 | 1 1
0 0.2 0.4 0.6

(b)

w
T

N o e o N e TN e TN TN N e e T i e i e st e e o e e

\S]
T

wl i (1 wy) |

(0}

e
/
S
/
i
.
4

N

.......................

|G

________________________

site

FIG. 4. Dependence of the magnitude of the on-site [G?h ;.i(iwy,) on various physical parameters for a 40-unit chain of MZMs. (a) Phase
disorder D, dependence as a function of Matsubara frequency w, for the pair amplitude under a MZM. (b), (c) Phase disorder D, dependence
as a function of site index i for site locations covering 6 out of the 40 periods in the chain for the (b) lowest Matsubara frequency and (c) finite
Matsubara frequency w, = I'y/2. (d) Chemical potential ; dependence as a function of phase disorder D,. In panels (a)-(c), u/t = —1.54,
while the disorder averaging procedure and common parameters are given in the main text.

the chain depending on the particular choice of model pa-
rameters. However, they are equivalently suppressed with the
dominant on-site contribution as the phase disorder increases.

In Fig. 5 we focus on the DOS in the SPW and plot the
site-averaged DOS for several values of the phase disorder Dy,
for the same parameters as in Figs. 4(a)-4(c). With increasing
disorder, we see that the near-zero-energy peaks (split off
zero energy because of a finite §) are diminishing, but most
notable is the filling of the energy gap at finite energies. A
crucial difference here compared with conventional effects of
pair-breaking disorder is that the gap gets filled by smearing
of the near-zero-energy peaks and by states near the gap
edge. Thus the in-gap states are naturally associated with the
MZMs, and we interpret their shift in energy as the formation
of nonlocal bound states corresponding to phase-matching
conditions, similarly to the simplest example of two MZMs
considered in Sec. III B.

Another feature that is prominent in Fig. 5 is the large
peak that occurs near —I'¢, which corresponds to the single-
particle energy gap, characteristic of a fully gapped even-w
SC. Note here that we plot the electron DOS and thus it is
not necessarily symmetric around zero energy. The missing
DOS for creating a symmetric spectrum consists of hole-like

quasiparticles. The height and width of this peak are affected
by disorder D, in the magnitude |I'| of the coupling coeffi-
cients, as demonstrated in the case of purely real disorder in
Ref. [30]. In Fig. 5 we demonstrate that the peak is instead
robust to phase disorder. Interestingly, the fact that the odd-w
SC correlations are robust to real, but not phase, disorder,
while this peak has the opposite disorder dependence, can
be taken as further evidence that odd-w SC is not related to
this peak. By carefully inspecting the site-resolved LDOS, we
identify this peak as coming from sites that are at a quarter of
the MZM distance from a particular MZM. Under a MZM,
and at the midpoint between two MZMs, this peak has its
smallest weight.

V. CONCLUSIONS

In this work we have investigated the robustness of the su-
perconducting pair correlations induced into a spin-polarized
wire (SPW) from an array of Majorana zero modes (MZMs)
when the couplings between these two systems are complex
and acquire different phases. This corresponds to a realistic
situation, because complex couplings generically appear for
varying system parameters, and disorder in the phases of the
complex couplings is experimentally unavoidable.
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FIG. 5. DOS in the SPW and its dependence on the phase dis-
order Dy for pu/t = —1.54 for a 40-unit chain of MZMs. Disorder-
averaging procedure and other parameters are given in the main text.

First, we have demonstrated that, in general, the pair
correlations induced into the SPW exhibit both even- and
odd-frequency (w) dependence, which exponentially decay
from the position of the MZMs. We have shown this effect for
a single MZM, a pair of MZMs, and for an array of MZMs.
Interestingly, we find that the phases of the complex couplings
get transferred to the pair amplitudes.

Second, we have shown that the induced pair correla-
tions, including the odd-w component, suffer a considerable
suppression due to phase-disorder averaging, exactly as a
consequence of the transferred complex phases. This is in
stark contrast with the effect of real disorder where the pair
amplitudes remain robust [30]. We have found this strong
disorder dependence both by analytically evaluating the T
matrix within the second Born approximation and performing
numerical tight-binding calculations for an array of MZMs.

Third, we find that the suppression of the pair correla-
tions in the SPW occurs concurrently with the filling of
the energy gap by in-gap bound states appearing between
spatially separated MZMs. Carefully analyzing the situation
of a pair of MZMs coupled to a SPW, we have found bound
states between the two MZMs that are highly sensitive to the
relative complex phase between the two couplings. We can
thus conclude that it is the complex phases and their disorder
that is also causing the filling of the energy gap.

In summary, our work demonstrates that the conditions
favorable for practical realization of a bulk 1D odd-w super-
conductivity from MZMs requires full control of the system
parameters.
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APPENDIX A: DISTRIBUTION
OF COUPLING COEFFICIENTS

In this Appendix we give more details on the distribution
used to generate the random coupling strengths. We treat
the magnitude and phase of I'" as independent. As for |I'|,
being a non-negative quantity, it is convenient to use the
(natural) logarithm In(|T"|/Ty), which spans the whole real
line. We choose the distribution of the logarithm to be uniform
U (fmin, fmax ), With the bounds fin and fimax chosen such that:

(IT?) = T3, (Ala)
(T 1=D,20
S —1=D, >0, (Alb)
«IT1%))
which leads to the following expressions:
7 1 I ¥ —1 (A22)
min = — 5 1N y a
2 2x
1 1 —e
Smax = ) In (T) (A2b)
xcoth(x) = 1 + D2. (A2c)

Here, I'y is to be considered as a constant effective coupling
that would reproduce the same T matrix in Egs. (8) and (11),
D, is a dimensionless measure of the disorder in the coupling
given by the relative error of |I"|2. In the case of real couplings,
the signs of I" do not enter Eq. (8) and, thus, play no effect on
the SPW. Nevertheless, we model a sign bias by a parameter
o, —1 < o < 1, being the difference in the weight of positive
and negative signs.

For creating a distribution of complex couplings I' =
IT'|e®, we choose, strictly by convenience, that the phase
follows a weighted uniform distribution around 0 with weight
(1 + 0)/2, and symmetrically around 7 and —m with weight

(1—0)/4:

l1+o0 20 -0 4 (0
P©) = W( )+ . {w[m(;_l)ﬂ]
+W[4 i —1“
1)7(; ) ’

2 b D¢
where W (x) = (1/2)®(1 — |x]) is a window function from
—1 to 1 with unit weight. Here Dy is the total fraction of
the 27 phase interval that is covered. We use the distribution
P(6) to numerically model phase disorder in the couplings in
Sec. IV of the main text.

(A3)
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FIG. 6. Everything is the same as in Fig. 3, except b = Ag/2.

APPENDIX B: BOUND STATES FOR TWO
MAJORANA ZERO MODES

In this Appendix we present complementary information
for the delocalized bound states in the case of two MZMs
coupled to a SPW, originally discussed in Fig. 3. In Figs. 6
and 7 we present the same spectrum as in Fig. 3, but now for
b = 0.5Ar and b = 2Ag. Clearly, the relative position of the
nodes and antinodes changes with this change of MZM-MZM
distance. In Fig. 6, the nodes occur at x = 0 (and x = b), while
there are peaks or antinodes both at x = b/2 and at x = b/4
(and x = 3b/4), but clearly highest at x = b/2. This suggests
that the wavelength of the standing wave, Ay, is A;/2 = b, or
As = 2b. Because b = Ag/2 in this case, A; = Ag. On the other
hand, in Fig. 7 there are nodes on all panels x = 0, x = b/4,
x = b/2 (and, by symmetry at x = 3b/4 and x = b as well).
This implies 2A; = b, or A; = b/2. Because b = 2Ap in this
case, Ay = Ap. This shows how the periodicity is set by the
Fermi wavelength as stated in the main text.

APPENDIX C: DERIVATION OF THE
DISORDER-AVERAGED T MATRIX

In this Appendix, we derive a working expression for
(T)(p; iw,), the disordered average of the matrix T acting as
an impurity 7 matrix. The starting point is Eq. (25) in the main

text, which acquires the shorthand form:
[1-V.-gl-T=V. (CDH

Here, every symbol is a matrix in Nambu and momentum
space, and matrix multiplication involves an integration over a
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FIG. 7. Everything is the same as in Fig. 3, except b = 2Ag.

dummy momentum variable ( f fn ‘;—’7’:), and the 1 is an identity
matrix in both Nambu and momentum space, with the Dirac
delta in momentum space containing an extra factor of 2w
[1 — 278(p — p")1]. With this, all the rules of matrix algebra
are readily applicable to Eq. (C1). In particular, Eq. (C1) can
be rewritten in an expanded form:

T=V4+V.gyT.

Expressing both 7 and V' as their expectation values plus a
deviation from the expectation value, we get

(T)+ 6T = (V) + 6V
+(V)-go-(T) + 38V - go(T)
+<V)'g()-5T+5V-g0'8T.

Then, taking the expectation value, and keeping in mind that
(6V) = (6T) = 0 by definition, we arrive at the following
equation for the expectation value:

(T)=(V)+ (V) -go-(T)+ {8V - go-0T).

Subtracting this equation from the full equation, we arrive at
the equation for the deviations:

8T =8V + 8V - go{T) + (V) - go- 6T
+8V -go- 06T — (8V - go - 6T).

(€2)

(€3

We see here that to find (7') we need to evaluate the higher
moment (8V - go - 8T) in Eq. (C2). To calculate that average,
we reformulate Eq. (C3) in a more convenient form in terms
of go - 6T as

80 8T =g -[6V +38V -go-(T)
18V g0 8T — (8V - go - 8T)],
gl =g — (V).

(C4a)
(C4b)

The newly introduced matrix g; incorporates the averaged-out
effects of the MZM array and is diagonal in momentum space.
By using Eq. (C4b), Eq. (C2) may be rewritten as

go-(T)=g1-[(V)+(8V - go-8T)].

Now, by multiplying Eq. (C4a) by §V from the left and taking
an average, we see that (§V - go - 8T') is expressed in terms of
the new averages (8V - g; - 6V), and ((6V - g1) -8V - go - 6T):

(8V -go-0T) = (8V - g1 -8V)
+(8V - g1-8V) - go-(T)
+((8V - g1)-8V - go - 8T).

(C5)

Repeating the same procedure by multiplying Eq. (C4a) by
(8V - g1) - 8V and taking an average, we see that the average
((8V - g1) -8V - go-8T) is expressed in terms of the new
average ((8V - g1)? -8V - go - 8T):

((8V - g1) -8V - go - 8T)
=((8V - g1)* -8V - go - 8T)
—(8V - g1-8V) - g1 - {8V - go - 8T).

As a consequence, it means that the following recursive
relation for the averages X, = ((8V -g1)*" -8V -go-8T),
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involving the expectation values IT% = ((§V - g;)*"~!.8V),
holds:

Xn _Xn+1 = HZ+1 + H:+] : (gO . <T> — &1 'XO)v
= H:J,—] + H:+1 : gl : (V>’ n 2 07 (C6)
where we have also used Eq. (C5). Summing from n =0
to oo in Eq. (C6), and defining IT* = Y 2| IT*, we get the
following equation for Xo:
Xo = (8V - go-0T)
=IT" 411" - g, - (V).
Plugging this equation into Eq. (C5), and keeping in mind that
g1 - (V) equals g; ‘851 — 1 according to Eq. (C4b), we have
go-(T) =g &' —1+g II*
+g1-M* g gy' — g1 - TT7,
(@=81+g& -M"-g1=g +g (T) 8. (C7)

Equation (C7) simultaneously defines a “dirty” discrete
Green’s function (g) for the SPW, incorporating the effects
of any disorder in the matrices V,, on top of an averaged-out
homogeneous coupling (V'), as well as an implicit equation
for the “dirty” discrete T matrix (7).

At this point it is customary to introduce the one-particle-
irreducible self-energies:

M= {6V -g)™ "8V, (C8)

n=1

where with the Wick contractions we retain only those that
cannot be disconnected by “cutting” a g; line. It is obvious
that this self-energy satisfies

M =T+1-g I (C9)

which implies a Dyson equation for (g):

@=g+g -M-(g& @ "'=¢'—M  (Cl0)
By using Egs. (C4b) and (C10) we may write
@ '=g'-%. T=()+m, (C11)

which defines the self-energy. Then, using the second equality
in Eq. (C7) for (T'), after some algebra, we obtain

Ty '=2""-g. (C12)

If this equation is compared with an alternative form of
Eq. (C1), namely T-l=v-! — go, we see that the role of
V! after averaging over disorder is played by X!, or equiv-
alently, the inverse of the self-energy is the inverse of V.

APPENDIX D: EVALUATION OF THE T-MATRIX

In this Appendix we evaluate the disorder-averaged T
matrix. The necessary steps for evaluating (T') are as follows:

(1) Calculate (V) from Egs. (24b) and (8). This already
involves evaluating the first moment, so retaining only this
expectation value amounts to the first Born approximation.

(2) Calculate g; from Eq. (C4b) and from the obtained
result for (V).

(3) Calculate IT by truncating the sum in Eq.(C8) and
from the obtained result for g;. Retaining only the first term
involves calculating the second moment, so it amounts to the
second Born approximation.

(4) Calculate X, to within the same approximation from
Eq. (C11) and using IT; and (V).

(5) Finally, use Eq. (C12) to calculate (7;) within the
same approximation.

We now go ahead and follow each of the above steps, but
also reinstate the explicit p and w, dependence and the matrix
structure in Nambu space.

The first moment (V') is

(V)(p. s iwn) = (V(p — p's ion)
=Y e Y, (iwy)

= 278(p — PV ) (iwy), (D1)
with

S\ e _ . A1 31

<V><zwn>—¢1<zwn><3,f A ) (D2a)
oy lwy

o1 (iw,) = <—2 (@21 5) >,{ (D2b)
Ay = (T P)r, (D2c)
By = (I')r, (D2d)

where the subscript in the averages denotes over which dis-
ordered variable (the coupling coefficients I'" or the energy
splitting § in the NW) the average is taken.

We notice that the electron-hole (and hole-electron) matrix
elements are proportional to an average B that is significantly
suppressed under phase averaging because it carries a phase
factor ¢*? as opposed to the average A, which is phase
independent. Furthermore, if any off-diagonal matrix element
is still nonzero after averaging, it is odd in frequency because
the average (D2b) is odd in frequency.

Next, we evaluate g;. Since both gy and (V) are pro-
portional to 27 8(p — p’), it follows that 2((p, p’;iw,) =
81(p;iw,)278(p — p'), where

L [y g (priwn)
§1psien) = (g’fe(P; io,)  g"(p: iwn))’ (B3
geig(p; la),,) — 8e(P§ la)n)[l - ¢l(i{1)n)Algh(p; lwn)] ’ (D3b)
Dy (p;iw,)
& (psicon) = 8e(p;iwy)gn(p; l.wn)d)l(lwn)Bl ’ (D3c)
Di(p;iw,)
& (i) = 8e(psiw,)gn(p; zfun)¢1 (iw,)B} ’ (D3d)
D1 (p;iw,)
M (pricon) = gn(psiw,)[l — ¢>1(ifon)A1ge(p; iwn)]’ (D3e)
Dy (p;iw,)

Di(p;iw,) = 1 — ¢1(iw,)A1[8.(p; iw,) + gn(p; iw,)]
+ ¢7 (i) (AT — |B1I?)ge (s iwn)gn(p; iwon).
(D3f)
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Then, in order to evaluate I1;, we use an expectation value of the form:

8V - X - 8V)(p, Plsiwy) = (V- X -V)(p, plsiwy) — (V) - X - (V)(p, p's iwy)

dpldpz 5 . 5 . 5
2n)? [V (p = prsiwy) - X(p1, p2iiwy) - V(P2 — piiwy))

—27)*8(p — p1)8(p2 — PV (iwy) - X (p1, pasiwy) - V (iwy)]

dpid ind . L N N L N
/ / (l; )];2 f’”"”‘*”‘” " WV(iwn) - X (p1. pazian) - Valion)) — (V) - X(p. p) - (V)
T

= f 2]; (V(iwy) - X(p", p' = p+ pliw,) - V(iwy)) = (V) (iw,) - X (p, p'siwy) - (V)(iw,), (D4)

where X (p, Piiw,) = X (p+2m, piw,) = X (p, P + 2m;iw,) is a general matrix in Nambu and momentum space.
If the matrix is diagonal in momentum, such as the case for the matrix &, the expression simplifies. Thus, the second Born
approximation for the disorder-averaged self-energy is I, (p, p'; iw,) = I1;(p; iw,)278(p — p') with

I (psiw,) = / f—nmiwn) S81(psiwy) - V(iwy)) — (V) (iwy) - g1(psiwy) - (V) (iw,). (D5)

The first term in Eq. (D5) has the form

T dp” ~ N ). s _ . Zee(iwy)  Zen(iowy)
/_7-[ 27_’: (V(lwn) : gl(p »lwn) : V(lwn)> - ¢2(lwn)<Zhe(ia)n) Zhh(iwn)>’ (D6)

where

Zee(iwn) = Znn(ion) = As[(g5) (i) + (¢} )(iwn)]

+ Ba(gl*)iwn) + Bj(g}")(iwn). (D7a)

Zen = A8} )(iwn) + Ba[ (85 )iwn) + (g1 )(iwn) ] + Cofg}*)(iwon), (D7b)

Zhe = Ao(gi)iwn) + B3[ (8 )iwn) + (¢} )iwn)] + C3 (g )iewon). (D7c)
pa(iw,) = —<ﬁ>s = po(—iwy), (D7d)
Ay = (IT1)r., (D7e)

By = (IT’T)r, (D7)

Cy = (Mr, (D7g)

where we used the shorthand notation:
1/

. Tdp
(gl)(lwn):/ o 81(p" s iwy).

The second term in Eq. (D5), using Egs. (D2), (D3) is

V) Giwon) - 21 (i) - (V) (i) = % (;EZ zz; ;;EZ iZ;) (D8)
where
P(piiw,) = ATge(piiw,) + |Bi*gn(ps i) — ¢1(iwn)Ar (AT — |B1[*)ge(ps icon)gn(ps i), (D9a)
P (psiwy,) = By {Ai[g1(p: iwn) + gn(p:iwn)] — ¢1(iwn) (AT — |B11%)ge(ps iwon)gn(ps i)}, (D9b)
P"(p;iwy) = Bi{Ai[g1(p:iwn) + gn(p: iwn)] — @1 (iwn) (AT — 1B11*)ge(ps iwn)gn(ps icon) }
P (psiwn) = Ajgn(p:iwy) + |B1°ge(ps iwn) — 1 (iwn)A1 (AT = [B11%)ge(ps iwn)gn(ps iwn). (D9c)

All the terms in Eq. (C11) are in given by Egs. (D1), (D5), (D6), and (D8). After some algebraic manipulation, we can show
that Eq. (C12) has the solution

(D10)

N 1 NE&e ,la)n Neh ,la)n
(Th)(psicwn) = < ri(piion)  Nri(p ))

Dr(piiwy) \Np§(psiowy)  Npi(psio,))
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where

Dr(p;iwy) = 1 — go(p;iw,) Z5(ps i) — gn(ps i) M (psiwn) + 8e(ps i@n)gn(ps iwy )det(E1)(p; iy,
NS (piwn) = E(psion) — gn(ps io,)det(£1)(p; i),
N (prion) = B¢ (prion). NS (prion) = Ti(piio),
N (priwy) = " (piion) — gn(ps iwn)det(E1)(p; iwy),
det(E1)(ps iwn) = B (psiw) Z1" (piiwn) — = (ps iwn) 21 (ps iwn).

(D11a)
(D11b)
(D11c)
(D11d)
(D1le)

Finally, to get Eq. (30), we use the expression for N¢! from Eq. (D11c), which tells us that we need the electron-hole element

of Eq. (D2a), as well as Egs. (D7b) and (D9b).
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