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Whole-genome genotyping and
resequencing reveal the association of a
deletion in the complex interferon alpha
gene cluster with hypothyroidism in dogs
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Abstract

Background: Hypothyroidism is a common complex endocrinopathy that typically has an autoimmune etiology,
and it affects both humans and dogs. Genetic and environmental factors are both known to play important roles in
the disease development. In this study, we sought to identify the genetic risk factors potentially involved in the
susceptibility to the disease in the high-risk Giant Schnauzer dog breed.

Results: By employing genome-wide association followed by fine-mapping (top variant p-value = 5.7 × 10− 6),
integrated with whole-genome resequencing and copy number variation analysis, we detected a ~ 8.9 kbp deletion
strongly associated (p-value = 0.0001) with protection against development of hypothyroidism. The deletion is located
between two predicted Interferon alpha (IFNA) genes and it may eliminate functional elements potentially involved in
the transcriptional regulation of these genes. Remarkably, type I IFNs have been extensively associated to human
autoimmune hypothyroidism and general autoimmunity. Nonetheless, the extreme genomic complexity of the
associated region on CFA11 warrants further long-read sequencing and annotation efforts in order to ascribe functions
to the identified deletion and to characterize the canine IFNA gene cluster in more detail.

Conclusions: Our results expand the current knowledge on genetic determinants of canine hypothyroidism by
revealing a significant link with the human counterpart disease, potentially translating into better diagnostic tools
across species, and may contribute to improved canine breeding strategies.
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Background
The domestic dog has proven to be an effective animal
model to identify genetic risk factors underlying phenotypic
traits and diseases shared with humans, as demonstrated by
several successful studies in recent years [1–4]. Dogs spon-
taneously develop a wide range of immune-mediated, endo-
crine and cardiovascular disorders, as well as cancers and
nervous system diseases [5, 6]. One of the most common
endocrinopathies affecting both dogs and humans is
hypothyroidism [7, 8]. In both species, symptoms are typic-
ally non-specific and include weight gain, tiredness, alopecia
and impaired hair quality, as well as intolerance to cold.
This demonstrates that thyroid hormones are master regu-
lators of metabolism, highlighting their importance in steer-
ing vital body functions [9, 10].
Excluding rare congenital hypothyroidism and other spor-

adic thyroid-related disorders, autoimmune hypothyroidism
accounts for most cases in which this gland fails to produce
sufficient amount of its specific hormones, i.e. thyroxine
(T4) and triiodothyronine (T3) [11, 12]. In the western
countries, where the daily intake of iodine is sufficient, auto-
immune Hashimoto’s thyroiditis (HT) represents the major
cause of human hypothyroidism [13]. The canine equivalent
of HT is called canine lymphocytic thyroiditis (CLT) and it
is characterized by a progressive degeneration of the thyroid
gland and its function, with presence of circulating autoanti-
bodies against thyroglobulin (TgAA) and infiltration of B
and T lymphocytes into the thyroid [14–17].
The Beagle, Boxer, Dobermann Pinscher, English Setter,

Gordon Setter, Giant Schnauzer, Hovawart, Old English
Sheepdog and the Rhodesian Ridgeback are among the dog
breeds showing increased risk of developing
hypothyroidism [14, 18–22]. Moreover, the disease shows
clear clustering within pedigrees in these breeds [23]. Over-
all, this clearly suggests the presence of heritable genetic
components increasing the risk of developing the disease.
According to a Swedish epidemiological survey regarding
hypothyroidism susceptibility in different dog breeds, Giant
Schnauzer appeared as a high-risk breed, with a six-fold in-
creased risk compared to the general dog population [19].
This was confirmed by another study that estimated the
prevalence of hypothyroidism in the Swedish population of
Giant Schnauzer dogs to as high as ~ 16% [24].
Determining the genetic etiology of hypothyroidism is

of major interest due to the high prevalence and the im-
pact of the disease in both humans and dogs. In previous
genetic studies aimed at mapping this disease in high-risk
dog breeds, Kennedy and colleagues [25], as well as Wilbe
and colleagues [26], employed a candidate gene approach
and found associations with dog leukocyte antigen (DLA)
class II alleles. More recently, by using an integrated three
high-risk breed genome-wide association and meta-
analysis approach our group detected a risk locus, shared
by multiple breeds, in a region of CFA12 not harboring

the DLA [1]. However, neither the entire underlying risk
in specific breeds nor the genetic susceptibility shared
among dog breeds can be fully explained by the hitherto
identified disease-associated alleles. This suggests the ex-
istence of additional genetic risk factors, thus confirming
the proposed complex etiology of canine hypothyroidism.
Here we sought to identify additional genetic loci po-

tentially involved in disease susceptibility in dogs. To
tackle this challenge, we employed genome-wide associ-
ation (GWA) analysis followed by a fine-mapping ap-
proach using breed-specific variants detected by whole-
genome resequencing, as well as copy number variation
(CNV) analysis in a high-risk Giant Schnauzer breed. In
this study we expand the current knowledge about ca-
nine hypothyroidism and its genetic determinants by de-
scribing a novel locus associated with the development
of this disease. The identification of this locus implicates
a noteworthy link with the human counterpart of the
disease, thus confirming the validity of employing the
domestic dog as a disease animal model.

Results
GWA analysis identifies a 8.9 Mbp protective haplotype
on CFA11
We genotyped 115 Giant Schnauzer dogs (ncases = 73,
ncontrols = 42) using ~ 170,000 markers (Illumina 170 K
CanineHD BeadChip), and subsequently performed a
GWA analysis of hypothyroidism using the markers and
individuals passing through the data quality control
(QC) and filtering steps (ncases = 71, ncontrols = 36). The
multidimensional scaling (MDS) plot generated in the
individual-based QC step highlighted the presence of six
outlier individuals, which were subsequently discarded
(Fig. S1a). A thorough examination of the phenotypic
data revealed that five of the outlying samples had a dif-
ferent coat colour compared with the rest of the dogs,
resulting in a separate cluster. Moreover, two additional
samples showed sex discrepancies between phenotypic
and genetic data. Out of the ~ 170,000 single nucleotide
polymorphisms (SNPs) genotyped, 112,683 passed the
marker-based QC. Furthermore, our study cohort did
not show any sex bias between the two phenotypic
groups (p-value = 0.2, phi coefficient = 0.1).
Case and control dogs did not form separate clusters

on the MDS plot generated using the pruned dataset,
thus suggesting absence of population stratification in
our cohort (Fig. S1b). The association analysis performed
using a mixed model, correcting for population structure
and cryptic relatedness, consistently showed no inflation
(λ = 0.93), as displayed in the quantile-quantile (QQ)
plot (Fig. S2a). However, the genomic inflation factor λ
showed some degrees of deflation. The QQ plot also de-
picts the statistical significance levels (see Methods, sec-
tion “Genome-wide association analysis”).
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Based on the 95% empirical SNP distribution confi-
dence intervals (CI95), we found a suggestive genetic as-
sociation to a region on CFA11. The top SNP was
located at CanFam3.1 genomic coordinate CFA11: 40,
777,312 (p-valueraw = 9.9 × 10− 6; odds ratio (OR) = 0.15,
CIOR = 0.05–0.39) (Fig. S2b). The minor allele frequency
(MAF) of the top SNP was 0.12 across all samples,
whereas 0.05 in cases and 0.26 in controls. The odds ra-
tio (OR) of the top SNP suggests that the associated
locus is protective in this breed. The candidate locus
was defined as spanning 8.9 Mbp (33,834,431 – 42,717,
190 bp) (Fig. 1), based on pairwise linkage disequilibrium
(LD) estimates (r2 ≥ 0.8) of the top SNP to the rest of the
SNPs on CFA11. Conditional analysis confirmed the in-
dependence of the association signal (Fig. S3). The asso-
ciated region includes more than 30 genes according to
the improved canine genome annotation [27] and the
canine RefSeq annotation [28]. Among these genes there
are many obvious candidates with potential roles in im-
mune response and immune system regulation.

Fine-mapping narrows down the candidate region to 4.18
Mbp
We selected two case and one control samples for high
coverage (HC) Illumina short-read whole-genome rese-
quencing (WGS). For these samples we generated an
average of 46X genome coverage (SD = 2.9). Moreover,
the genomes of 10 case and 10 control samples were

sequenced at low coverage (LC) with the same technol-
ogy, generating an average of 6.8X genome coverage per
individual (SD = 1.0). More than 92% (SD = 0.4) of the
reads aligned to the dog reference genome in both
groups of resequenced samples (Table S1).
In the HC samples we identified 18,470 SNPs in the ex-

tended associated interval (33,000,000 - 43,000,000 bp) on
CFA11. In the first pruning step we removed 5264 vari-
ants with identical genotypes between the two HC cases
and the HC control. The remaining 13,206 SNPs were
screened in order to identify a subset of SNPs with func-
tional potential covering the whole region of association.
The selection of SNPs with functional potential (n = 740)
was genotyped using Sequenom MassARRAY in 96 dogs
out of the initial GWA analysis cohort of 107 individuals,
leaving out 11 individuals due to poor quality or lack of
DNA specimen. Genotyping success rate was 95.5% (33
out of 740 SNPs failed due to technical reasons), leaving
707 polymorphisms for further analyses (Table S2).
Among the 707 successfully regenotyped SNPs, we

first discarded 69 monomorphic variants (MAF < 0.001)
that likely represented false variant calls in the HC indi-
viduals. The remaining 638 SNPs were subsequently
combined with the SNPchip variants covering the ex-
tended region of association, while discarding one of the
duplicated control SNPs (i.e. those included in both the
Ilumina SNPChip and the Sequenom MassARRAY ex-
periments) (Table S2) based on lower variant call rate.

Fig. 1 LD Manhattan plot showing a zoom to the candidate region on CFA11. The plot indicates r2 values of each SNP in respect to the GWA
analysis top SNP
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Thereby we generated a reference set composed of 1110
SNPs that was used for imputation in the 11 excluded
samples. Out of the total 7293 imputed genotypes, 4876
were retained for further analyses (67%) after the appli-
cation of the imputation likelihood-based filters.
The association test performed on the final and

complete dataset, obtained by merging the filtered im-
puted data with the whole SNPChip and the regenotyp-
ing data, showed no inflation (λ = 0.97). Despite showing
a slight degree of deflation, the inclusion of additional
SNPs to the original genotypic data significantly im-
proved the ratio between the observed and the theoret-
ical SNPs p-value distribution (Fig. S4a). The statistical
significance of the test largely exceeded the empirical
CI95 levels, and was additionally suggestive towards the
empirical genome-wide threshold calculated after 1000
permutations (p-value = 5.4 × 10− 6) (Fig. S4a). We could
therefore confirm the detection of a statistically signifi-
cant association to the same region of CFA11 with a
new top SNP (fine-mapping top SNP) located at position
42,382,440 (p-valueraw = 5.7 × 10− 6; OR = 0.07, CIOR =
0.01–0.28) (Fig. S4b). The MAF of the fine-mapping top
SNP was 0.09 in the whole sample set, with 0.02 and
0.22 in cases and controls, respectively. This SNP lies in
a conserved element with a SiPhy-omega LOD-score
equal to 7.4, and a SiPhy-pi LOD-score equal to 7.1; the
corresponding conserved regions span 48 bp and 113 bp,
respectively. This conserved element overlaps with nei-
ther a protein-coding gene sequence nor any predicted
regulatory element, but it is located approximately 121
kbp downstream of the ELAVL2 gene and within a pre-
dicted long non-coding RNA according to the Broad Im-
proved Canine Annotation v1 [27]. The new fine-
mapped candidate locus with a protective effect against
disease development was defined based on pairwise LD
estimates (r2 ≥ 0.8) of the fine-mapping top SNP to SNPs
on CFA11. The previously identified 8.9 Mbp region was
narrowed down to a 4.18 Mbp region (38,538,785 – 42,
717,190) (Fig. 2a) and was confirmed as driven by one
independent signal by the conditional analysis performed
on the fine-mapped region (Fig. S5). The new fine-
mapped candidate locus harbors 23 protein-coding
genes according to the improved canine genome annota-
tion [27]. As reported by the canine RefSeq annotation
[28], it also includes 5 type I Interferon genes, potentially
attractive candidates (Fig. 2b).

Structural variation analysis identifies an association
signature within the type I interferon gene cluster
In the samples that were resequenced at high coverage,
CNVnator [29] predicted a total of 114 CNVs located in
the fine-mapped 4.18 Mbp associated region (Table S3).
After applying the stringent filtering criteria described in
the Methods (section “Copy number variation (CNV)

analysis”), only three CNVs were retained as being con-
sidered reliable (Table 1).
In order to confirm the predicted CNVs, LC cases and

controls were screened for differences in read depth
(RD) in a total of 74,216 windows on CFA11, whereas
634 windows were subsequently removed due to the low
coverage. A Bonferroni corrected statistically significant
(p-value = 1.8 × 10− 7) difference in coverage between the
LC case and control groups was overlapping with a CNV
detected by CNVnator (Del3) (CFA11: 40,858,901 - 40,
862,600 bp, estimated size: ~ 3.7 kbp) (Fig. 2c). The
coverage of the two groups statistically significantly devi-
ated in a window with coordinates CFA11: 40,861,094 -
40,862,094. Nevertheless, 88 windows had a nominal p-
value ranging from 6.8 × 10− 7 and 0.001, with 11 of
them being located in the fine-mapped associated re-
gion. Moreover, out of these 11 windows, 3 were con-
secutive and overlapping with the CNV predicted by
CNVnator (Del3). Figure 2d shows the fold coverage dif-
ferences between the LC case and control groups based
on M-values (see Methods, section “Copy number vari-
ation (CNV) analysis”) in the CNV-overlapping win-
dows. It is worth noting that, according to M-values, the
CNV might start upstream of the predicted Del3. How-
ever, in this upstream region CNVnator predicted the
presence of potential CNVs that were discarded either
because of overlap with a gap or repetitive sequences,
which leads to zero mapping quality reads (Table S3).
The predicted Del3 is present in two copies only in the

HC control, which is homozygous for the protective haplo-
type previously defined through GWA analysis and shows
zero coverage in the region of the predicted deletion. All
but one LC control samples are heterozygous for the fine-
mapped protective locus and have RD consistently reduced
by approximately 50% compared with LC cases in the win-
dows overlapping Del3 (Fig. 2). We therefore concluded
that the CNV is associated with the identified protective
haplotype, thus representing a potential functional variant
that confers protection against hypothyroidism in this dog
breed. Moreover, it is striking that Del3 consistently segre-
gates with the fine-mapping top SNP genotypes in all the
whole-genome resequenced samples, despite being located
~ 1.5 Mbp upstream (Table S4). The putative CNV maps
to the type I Interferon (IFN) gene family cluster and, ac-
cording to the canine RefSeq annotation [28], overlaps with
the potential promoter, 5′ UTR and first protein coding co-
dons of the IFNA7 gene.

The deletion overlapping two predicted interferon alpha
genes emerges as a plausible functional candidate
Considering the indications that the predicted Del3 may
start further upstream of the estimated start, we subse-
quently defined the deletion coordinates by aligning the
HC case and control sequences to the wolf genome [30].

Bianchi et al. BMC Genomics          (2020) 21:307 Page 4 of 16



Fig. 2 (See legend on next page.)
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In the wolf genome, we identified the scaffold 885 (scaf-
fold_885) as the one including the Del3 region and pre-
dicted the deletion to be significantly longer (~ 8.2 kbp),
with potential start in the gap (CFA11: 40,853,967 - 40,
855,084) and end within the IFNA7 gene (CFA11: 40,
862,587 - 40,863,150) annotated in the canine genome
(Fig. 3). By combining long-range PCR and Oxford
Nanopore MinION sequencing of the PCR products
from an individual heterozygous for the deletion, we de-
termined the exact size of the deletion to 8875 bp
(CFA11: 40,854,701 - 40,863,575), including three gen-
omic gaps in the CanFam3.1 genome assembly (Fig. 4a).
Scanning for coding regions from alleles with and with-
out the deletion indicated the presence of single exon
genes with high sequence similarities to Interferon alpha
(IFNA) genes. The deletion breakpoints were located in-
side two neighboring predicted IFNA genes (5′ break-
point in an unannotated IFNA and 3′ breakpoint in the
RefSeq annotated IFNA7) with high sequence similarity,
creating a fusion gene encoding a protein identical to
the one encoded by the IFNA7 located around the dele-
tion end (Fig. 4b-d). However, the fusion IFNA is miss-
ing its potential regulatory upstream elements and
instead gains the putative regulatory elements from the
unannotated IFNA gene located at the beginning of the
deletion. The IFNA located around the deletion start is
biologically missing from the individuals with the dele-
tion. Therefore, the deletion emerges as a plausible func-
tional candidate eliminating one IFNA gene and
potential regulatory elements of another IFNA gene.
Screening for the presence of the deletion in the Giant

Schnauzer study cohort identified a statistically signifi-
cant enrichment of the deletion allele in the control

group compared to the case group (p-value = 0.0001,
OR = 0.17, CIOR = 0.06–0.46). However, the deletion
does not appear to perfectly co-segregate with either the
fine-mapping top SNP (CFA11: 42,382,440) or the
GWAS top SNP (CFA11: 40,777,312), as confirmed by
its less significant p-value (Table S5). The discrepancies
in allelic loads and the corresponding power of associa-
tions shown in Table S5 might be due to technical dis-
similarities during genotyping experiments caused by the
extreme complexity of the target region’s genomic land-
scape, the variable number of imputed genotypes charac-
terizing the examined variants and their final
corresponding accuracy, as well as to differences in the
models used for the individual statistical analyses, re-
spectively. We also screened wolves from four different
countries ((Sweden (n = 2), Estonia (n = 2), Croatia (n =
1) and USA (n = 3)) and representatives for 17 additional
dog breeds (n = 76) (Table S6) for the deletion. As ex-
pected, none of the wolves and the majority of the add-
itional dog breeds did not show the deletion. However,
out of seven Leonberger individuals, we identified four
individuals heterozygous and two homozygous for the
deletion. Unfortunately, we did not have any information
on thyroid status in these dogs and can thereby only
postulate the potential protective effect of the variant in
the breed where hypothyroidism does occur [32].

Discussion
In this study we identified a locus on CFA11 associated
with protection against development of canine
hypothyroidism in a Swedish cohort of Giant Schnauzer
dogs. After performing a GWA analysis using a mixed
model approach, we detected an associated locus (top

(See figure on previous page.)
Fig. 2 a LD Manhattan plot showing a zoom to the candidate region on CFA11. The plot indicates r2 values of each SNP in respect to the new
GWA analysis top SNP. The fine-mapped region of association is highlighted with a grey shadow. b UCSC genome browser-based panel showing
genomic location (bp), highly linked SNPs (r2 > 0.8) in the fine-mapped region colored according to their r2 (darker colors indicating higher LD) in
respect to the fine-mapping top SNP, location of genomic gaps, and location of RefSeq protein coding genes. c Plot showing the –log10(p-value)
of the difference in coverage between the LC case and control groups in the fine-mapped region. The green boxes represent the three CNVs
(Del1, Del2 and Del3) predicted by CNVnator in the HC individuals. d Heatmaps showing fold coverage differences (M-value) between the LC
case and control groups for the windows overlapping with Del1, Del2 and Del3, +/− 10 Kbs. The potential CNVs in the upstream region of Del3
were also predicted by CNVnator, but were discarded either because of overlap with a gap or repetitive sequences

Table 1 CNVs predicted by CNVnator that passed the stringent filtering criteria. The CNV Del2 is shared between the HC control
and HC case1, whereas two CNVs (Del1 and Del3) are private in HC case1 and the HC control respectively. No CNVs passed the
filtering in HC case2. P-value: p-value of the mean normalized read depth value difference from genomic average; q0: fraction of
reads mapped with mapping quality equal to zero

CNV ID Sample Type of CNV CFA11 coordinates P-value q0

Del1 HC case1 deletion 38,625,401 - 38,626,900 4.8 × 10−4 0

Del2 HC control deletion 40,202,601 - 40,204,100 7.5 × 10−5 0

Del2 HC case1 deletion 40,202,301 - 40,204,100 9.0 × 10−6 0

Del3 HC control deletion 40,858,901 - 40,862,600 4.3 × 10−11 0
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SNP p-value = 9.9 × 10− 6) spanning 8.9 Mbp and confer-
ring protection against the disease. The small sample
size of our GWA analysis is likely to have hampered the
statistical power of our study, as reflected by the magni-
tude of the association. However, the stringent phenotypic
inclusion criteria used in this study may counterbalance
the small sample size, the resulting level of association
and its reliability, similarly to previous studies mapping
canine complex traits [4, 33]. Moreover, the small sample
size of our study population may have contributed to the
unexpectedly long associated locus reported here. Accord-
ing to Lindblad-Toh and colleagues [34], the average

haplotype length within a dog breed was predicted to be
approximately 1 Mbp. Unexpectedly long haplotypes, such
as the hypothyroidism protective locus identified in this
study, could be explained by the putative causative muta-
tion being positively selected for together with an add-
itional desirable variant, a mechanism called hitchhiking.
An alternative potential explanation could be that the pu-
tative protective haplotype appeared recently in the Giant
Schnauzer breed, and has not yet undergone sufficient re-
combination events causing LD decay. Even though such
high levels of LD allow the initial genetic mapping of a
disease trait using a limited number of markers and

Fig. 3 The upper panel shows the alignments of a single HC individual case (NoDel/NoDel) and the HC control (Del/Del) to CanFam3.1, including
the corresponding RefSeq annotation (RefSeq), genomic gaps (Gaps) and a measure of evolutionary conservation in dog, human, mouse and rat,
based on a phylogenetic hidden Markov model (phastCons) (Cons) [31]. The red dashed lines indicate the predicted deletion, with its potential
start in a gap (CFA11: 40,853,967 - 40,855,084) and its end in the IFNA7 gene (CFA11: 40,862,587 - 40,863,150), based on CanFam3.1 annotation.
The prediction of the deletion location is based on the alignments of the same HC individuals (NoDel/NoDel and Del/Del) to the wolf genome,
as shown in the bottom panel. The deletion is located in correspondence of a region in the scaffold_885, and more specifically between two
regions with increased coverage, which are likely to be IFNA genes sequences
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individuals [34, 35], this genomic feature might eventually
constrain the identification of the causative variant(s).
We previously described a susceptibility locus on

CFA12 associated with canine hypothyroidism in three
different high-risk dog breeds, the Gordon Setter, Hova-
wart and the Rhodesian Ridgeback [1]. The top SNP
(CFA11: 40,777,312), tagging the protective locus identi-
fied in our current GWA study, is segregating in the
three high-risk breeds described above and overall does
not show differences in allele frequency between case
and control dogs. Furthermore, based on the fixation of
the hypothyroidism (non-protective) allele in the wolf
population studied by Axelsson and colleagues, we pos-
tulate that this allele (allele C) represents the ancestral
allele (http://genome.ucsc.edu, public track hub: Broad
Improved Canine Annotation v1, track: Axelsson SNPs)
[27, 36]. It is therefore plausible that this variant
(CFA11: 40,777,312) appeared at a time point after do-
mestication and before current breed creation events,
considering the lack of evidences indicating gene flow
between the above-mentioned breeds. Conversely, the
multi-breed risk tagging variant (CFA12: 5,039,806)

previously reported in three breeds [1], does not only seg-
regate, but also shows a higher MAF in Giant Schnauzer
controls compared to cases (MAF cases = 0.15; MAF con-
trols = 0.29). This could either reflect recombination
events between this risk tagging variant and the actual
causative allele in the Giant Schnauzer dogs, or the ab-
sence of the causative risk allele in this breed.
Since the protective locus on CFA11 identified in this

study could hide the effect of this causative risk allele, we
calculated the tagging variant MAF after removing all the
dogs with the protective allele on CFA11 (14 controls and
3 cases). The MAF of the tagging risk variant did not sig-
nificantly change in either cases or in controls, suggesting
that this locus does not contribute to hypothyroidism sus-
ceptibility in the Giant Schnauzer, thus implicating alter-
native disease risk loci yet to be discovered. Hence, we
strengthen the hypothesis of a complex etiology under-
lying this disease in the existing domestic dog population,
whereas there may be a few loci contributing to disease
susceptibility within each breed.
By genotyping a large number of selected SNPs detected

by WGS we narrowed down the associated protective

Fig. 4 a The genomic organization and sequence surrounding the deletion. A comparison of canine genome assembly (CanFam3.1), the allele
without the deletion (NoDel) and with deletion (Del). The deletion (chr11: 40,854,701 - 40,863,575) is indicated as a grey area and starts in a
genomic gap (NNN1, location chr11: 40,853,967 - 40,855,084) and ends around a region of IFNA7 (RefSeq annotation, location chr11: 40,862,587 -
40,863,150) and another genomic gap (NNN3, location chr11: 40,863,280 - 40,863,289). The correct location of IFNA7 was determined based on
alignment of human IFNA7 gene to the improved canine sequence produced using Oxford Nanopore MinION sequencing. The grey dashed lines
between NoDel and Del alleles indicate high sequence similarities in the deletion 5’and 3′ breakpoints. The deletion creates a fusion gene
between an unannotated IFNA gene (IFNA?) and IFNA7, with an intact coding sequence encoding a protein identical to IFNA7 and being
regulated by regulatory elements upstream IFNA?. The arrows indicate the transcriptional direction of the genes. b, c Multiple sequence
alignments of 5′ and 3′ deletion breakpoints for the CanFam3.1 genome assembly and alleles with deletion (Del) and without deletion (NoDel).
The 5′ deletion breakpoint is located in the gap on CanFam3.1 assembly, indicated with ‘n’s. d Protein alignments of IFNA?, IFNA7 and IFNA?/
IFNA7 fusion proteins
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candidate locus to a ~ 4 Mbp region. The prioritized vari-
ants were breed-specific and potentially causative, thus be-
ing instrumental in our fine-mapping approach, as neither
the Giant Schnauzer nor any other Schnauzer breed was
included in the design of the 170 K Illumina SNPChip.
Such high-throughput regenotyping of selected relevant
variants has previously been proven as an efficient ap-
proach for fine-mapping of genome-wide loci of associ-
ation [3, 37], even though the detection of the actual
causative variant(s) has been challenging. The studies that
succeeded in identifying causative mutation(s) could em-
ploy an additional dog breed sharing the same candidate
locus in order to pinpoint the shared minimal haplotype
[38]. However, this is not an option in our study at the
present time.
The CNV analysis detected a putative structural event

(Del3, CFA11: 40,858,901 - 40,862,600) segregating with
the genotype of the fine-mapping top SNP (CFA11: 42,
382,440) in all the resequenced samples. After conclu-
sively refining its genomic location (CFA11: 40,854,
701 - 40,863,575), this deletion was found to be co-
segregating with the fine-mapping top SNP in 95% (102
of 107) of the Giant Schnauzers used for the association
study (94% in cases (67 of 71) and 97% in controls (35 of
36)). Moreover, it was detected in the Leonberger breed,
which is prone to develop hypothyroidism. Therefore, al-
though we could not a priori exclude the possibility of
the fine-mapping top SNP being the putative causative
mutation, the hypothesis of the identified CNV as the
causative variant would certainly be plausible, given that
conditioning for its genotype eliminates the association
on CFA11 due to the strong LD. Moreover, the hypoth-
esis of a CNV as the causative variant would be very at-
tractive, especially considering the structural variants’
ability to reshape the gene/genomic landscape, as well as
to potentially modulate gene expression. Furthermore, it
is well established that CNVs contribute to phenotypic
variation and disease susceptibility both in domestic ani-
mals [39–42] and humans [43–45].
According to RefSeq annotation [28], the most plaus-

ible causative variant bioinformatically identified in this
study (Del3) overlaps with the region spanning both the
potential promoter, 5′ UTR and first protein coding co-
dons of the IFNA7 gene, coding for the IFNA7 cytokine.
However, we could identify the breakpoints of the dele-
tion as located in two different IFNA genes, namely an
unannotated IFNA (IFNA?) and the RefSeq annotated
IFNA7. The deletion creates an IFNA?/IFNA7 intact in-
frame fusion gene with the coding sequence identical to
the RefSeq annotated IFNA7, but the potential regula-
tory elements acquired from the IFNA?.
IFN-α proteins belong to type I IFNs, which are cyto-

kines playing a major role in protecting the body from
viral infections and in regulating the activity of effector

immune cells [46]. In humans, this gene family has been
associated with autoimmune hypothyroidism and in-
creased serum type I IFN activity has been detected in
patients with autoimmune thyroid disease [47]. More-
over, type I IFNs, particularly IFN-α, have also recently
emerged as key molecules in the etiology of systemic
lupus erythematosus (SLE), which is regarded as the
prototype systemic autoimmune disease [48–52], thus
confirming type I IFNs’ involvement in general auto-
immunity. A number of studies have shown a high inci-
dence of hypothyroidism in IFN-α-treated patients with
either breast cancer [53] or hepatitis C virus infection
[54]. Similarly, pre-existing thyroid autoimmunity has
been shown to exacerbate in response to IFN-α treat-
ment [55]. On top of that, the molecular mechanisms by
which IFN-α triggers thyroid autoimmunity have been
suggested to involve a series of complex and integrated
cellular events eventually leading to the disruption of
thyrocytes [56–58]. Based on the above-mentioned evi-
dences and the hypothesis that type I IFNs can boost
autoimmunity by altering the function of the immune
system effector cells [59], the deletion characterized in
this study emerges as a plausible candidate for protec-
tion against canine hypothyroidism. Such deletion could
either remove or recruit regulatory elements that might
alter the time- and tissue-specific expression of IFNA,
thus possibly causing the protected phenotype.
Type I IFNA genes are organized in a cluster of paralo-

gous genes and characterized by high levels of sequence
identity, which notably complicates their assembly and an-
notation. The intronless nature of these genes has further
contributed to overlapping and non-conclusive assign-
ment of canine IFNA orthologous genes according to
RefSeq annotation, and potential reference genome as-
sembly issues. Moreover, the recent improved canine gen-
ome annotation (CanFam3.1) failed to annotate the IFNA
gene cluster and left many gaps open in the associated
locus [27] (http://genome.ucsc.edu, public track hub:
Broad Improved Canine Annotation v1). In our Illumina
short-read resequencing data, many reads with a reduced
or zero mapping quality aligned to the genomic region
surrounding IFNA7, thus suggesting ambiguous align-
ments and confirming the repetitive nature of this gene
cluster. Moreover, we could not find paired-reads align-
ments with insert size greater than expected (indicative of
a deletion), suggesting additional rearrangements or refer-
ence assembly complications.
Due to high genomic complexity in the region, high se-

quence similarity between single exon genes (IFNA) and
presence of numerous gaps in the reference sequence, we
were unable to determine the exact annotation of the IFNA
genes located at the deletion breakpoints. As a conse-
quence, we were not able to perform in silico comparative
analyses of the regulatory elements presumably abolished
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by the deletion. Exploring valuable publicly available data
(e.g. ENCODE, Epigenomics RoadMap) for the corre-
sponding associated region in the human genome would
have likely provided us with potential mechanistic interpre-
tations of our study results [60, 61]. Undoubtedly, rese-
quencing approaches using short-read sequencing
technologies of regions with high complexity such as the
IFNA gene cluster are unable to resolve their genomic
complexities. Thus, the use of alternative long-read se-
quencing approaches is advisable, especially in conjunction
with the improvement of the assembly and the annotation
of the corresponding reference genome. Resequencing bac-
terial artificial chromosome (BAC) clones, WGS using
long-read technology, as well as genome optical mapping
would thus be desirable follow-up studies to resolve these
issues [62].

Conclusions
Using an integrative approach of methodologies ranging
from genome-wide association analysis to long-read se-
quencing, we detected a structural variant overlapping
the IFNA gene cluster and associated with a decreased
risk of developing hypothyroidism in a high-risk dog
breed. However, we were neither able to assign a specific
function nor a definitive annotation to our candidate
variant due to the extremely high complexity of the as-
sociated genomic region.
We also detected an association of an evolutionarily

conserved SNP with protection against development of
hypothyroidism and its high linkage to the candidate
structural variant, which makes it extremely arduous to
bridge the gap between genetic association and the reve-
lation of the actual causative functional variation(s).
Nevertheless, the knowledge gained in this study might

contribute to the development of breeding strategies, via
the adoption of a marker-assisted selection eventually in-
creasing the frequency of the candidate protective allele(s)
in the population. Furthermore, our results corroborate
the important role of type I IFN genes as candidates in
autoimmunity and present the dog as a suitable animal
model for the corresponding human diseases.

Methods
Study samples and phenotyping
Blood and serum samples from privately owned Giant
Schnauzer dogs were collected using EDTA (1,8mg
EDTA/ml) and serum vacutainer tubes in collaboration
with licensed veterinarians throughout Sweden after
obtaining owners’ written approval. Samples were col-
lected according to local ethical standards (Swedish Ani-
mal Ethical Committee No. C139/9 and C2/12 and
Swedish Animal Welfare Agency No. 31–4714/09 and
31–998/12). Genomic DNA (gDNA) was extracted and
serum obtained as described previously [1]. gDNA

concentration was measured by NanoDrop ND-1000
Spectrophotometer and Qubit 2.0 Fluorometer (Thermo-
Fisher Waltham, MA, USA). The proportion of fragmen-
ted gDNA was assessed by 1% agarose gel electrophoresis
using 100 ng of gDNA.
For all samples used in this study we determined sero-

logical concentrations of thyroid stimulating hormone
(TSH) and free thyroxine (fT4), as well as the autoanti-
body against thyroglobulin (TgAA). TSH and fT4 con-
centrations were detected using Siemens IMMULITE
Immunoassay System [24, 25], whereas TgAA assay was
carried out by an enzyme-linked immunosorbent assay
(ELISA) [21, 63].
Dogs were classified as cases or controls based on pre-

determined diagnostic criteria (Table 2) in accordance
with previous studies conducted by our group [24, 26].
Moreover, we excluded cases as well as controls with
additional immune-related conditions based on a follow-
up examination of clinical records and/or questionnaires
answered by dog owners.

Genotyping and quality control
A sample set comprising of 115 individuals (73 cases and
42 controls) was genotyped using the Illumina 170 K
CanineHD BeadChip (Illumina, San Diego, CA, USA).
Chromosomal positions of SNPs are based on the dog
CanFam3.1 genome assembly [27]. R v3.0.2 [64] and Gen-
ABEL v1.8–0 [65] were used in all QC steps described
below. Outliers identified in an MDS plot, as well as dupli-
cated samples and samples with sex discrepancies, were
removed in a first individual-based QC step. The MDS
plot can be used to show individual genetic distances de-
riving from a genomic kinship matrix weighted by allele
frequencies and computed by using all pruned autosomal
markers. In a second, marker-based QC, the total set of
SNPs was in fact pruned according to MAF threshold (<
0.05), SNP and individual call rates (< 95%), p-values (<
1 × 10− 3) and false discovery rate for Hardy-Weinberg
equilibrium (HWE) (< 0.2 only in controls). Furthermore,
the dataset was checked for correlation between disease
status and sex distribution [66, 67].

Genome-wide association analysis
We performed a GWA analysis on the pruned dataset
resulting from the individual- and marker-based QC
procedures using R v3.0.2 [64] and GenABEL v1.8–0

Table 2 Diagnostic criteria used to classify case and control
dogs. TgAA, autoantibody against thyroglobulin; TSH, thyroid
stimulating hormone; fT4, free thyroxine

Phenotype Diagnostic criteria

Case TgAA POS and/or TSH≥ 40 mU/l

Control TgAA NEG, TSH≤ 25 mU/l, fT4 ≥ 5 pmol/l, age≥ 7 years
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[65]. We calculated a new genomic kinship matrix
weighted by allele frequency by employing all pruned
autosomal markers. Such genomic kinship matrix was
also used to perform MDS in order to project and
visualize the genetic distances among the pruned set of
individuals in two dimensions. To identify differences in
allele frequencies between cases and controls, we used a
standard linear mixed model (mmscore function) that
was fitted using the polygenic_hglm function from the
hglm package ver 2.0–8 [68]. Considering that cases and
controls shared the same geographical origin, as well as
appeared as a homogenous population and uniformly in-
terspersed in the MDS two-dimensional space after the
removal of the outliers, we used a linear mixed model
including genomic kinship as random effect, without the
inclusion of any population-defining vector as fixed ef-
fect. We consequently used the mixed model to account
for the cryptic relatedness between the individuals and
their inherent population structure [69].
The statistical significance of the obtained results from

the GWA analysis was evaluated as described previously
[1]. Briefly, the association was defined as statistically
significant if it exceeded 95% empirical SNP distribu-
tions confidence intervals (CI95) or an empirical
genome-wide significance threshold calculated after
1000 permutations [70].
A QQ plot was constructed using R v3.0.2 [64] and a

Manhattan plot generated using the R package qqman
[71]. The candidate locus was defined based on pairwise
LD estimates (r2 ≥ 0.8) of the most significantly associ-
ated SNP (top SNP) to the rest of the SNPs on the
chromosome. The independence of the association sig-
nal was tested by a conditional analysis in which the
genotype of the top SNP was included as a covariate in
the statistical model. Conditional analysis determines the
independence of additional association signals from the
leading top SNP and the variants in LD with it com-
pared to the remaining variants in the candidate locus.

Whole-genome resequencing
We performed WGS for individuals representing the key
haplotypes as detected by the GWA analysis. One con-
trol individual homozygous for the protective allele (con-
trol) and two cases homozygous for the non-protective
allele (case1 and case2) were sequenced at high coverage
(> 40X). Additionally, 10 controls heterozygous for the
protective allele and 10 cases homozygous for the non-
protective allele were sequenced at low coverage (<
10X). Sequencing libraries were sequenced as paired-end
reads (2 × 101 bp) with HiSeq2500 (Illumina, San Diego,
CA, USA) by using the services of the National Genom-
ics Infrastructure at Science for Life Laboratory,
Stockholm, Sweden.

The resulting reads were mapped to the dog genome as-
sembly CanFam 3.1 using the Burrows-Wheeler aligner
(BWA) v0.6.2-r126 [72]. The software Picard v1.64 was
utilized for marking PCR duplicates and for evaluating
alignment quality (http://broadinstitute.github.io/picard).
Base quality recalibration and local realignment were per-
formed using the Genome Analysis Toolkit (GATK) v1.5–
11-g5c5d8e7 [73]. Variant calling was performed within
the GATK framework using UnifiedGenotyper, and the
identified polymorphisms were hard-filtered according to
standard parameters [74].
For the following analyses, only SNPs with differing ge-

notypes between the HC control and the HC cases were
included. The SNPs were annotated using SnpEFF [75]
and their effect also predicted using the Variant Effect
Predictor (VEP) webtool (http://www.ensembl.org/vep). In
order to target potential causative mutations and to re-
strict the number of SNPs suitable for subsequent geno-
typing and fine-mapping, we sought to categorize the
SNPs according to different criteria. We prioritized SNPs
based on the determined annotation and the predicted ef-
fect, as well as their overlap with either conserved ele-
ments according to 29 mammals conservation scores [76]
or regions of promoters, protein coding and antisense se-
quences according to the public track hub Broad Im-
proved Canine Annotation v1 (http://genome.ucsc.edu)
[27]. Moreover, we used Integrative Genome Viewer
(IGV) [77] to confirm the calling reliability of the resulting
set of prioritized SNPs.

SNP genotyping, imputation and fine-mapping
Sequenom MassARRAY technology (http://www.
sequenom.com/iplex) was employed to regenotype the
selected subset of SNPs in the majority of samples
previously included in the GWA analysis (n = 96). The
regenotyped SNPs were subsequently phased and im-
puted in the few missing samples (ncases = 8, ncontrols =
3) using Beagle v3.0 [78, 79], as well as employing a
reference dataset comprising of the Illumina SNPChip
(see Methods, section “Genotyping and quality con-
trol”) and Sequenom MassARRAY regenotyped SNPs,
in which variants were pruned based on MAF < 0.001.
We subsequently performed a two-step filtering re-
moving SNPs with imputation likelihood lower than
empirically defined thresholds. Firstly, SNPs with an
allelic squared correlation (R2) value lower than 0.75
were discarded. Secondly, genotypes with imputation
probability values lower than 0.8 were labeled as
missing. The filtered imputed data were merged with
the Illumina SNPChip and regenotyping data pro-
duced in previous steps, in order to obtain a compre-
hensive dataset including all the study samples and all
genotyped SNPs. We then performed fine-mapping of
the determined genome-wide associated region using
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GenABEL [65] with the quality control steps, statis-
tical model, conditional analysis and LD estimation
procedures described above.

Copy number variation (CNV) analysis
In order to detect additional potentially causative var-
iants, we employed the software CNVnator (ver 0.3)
[29] to scan the whole chromosome of interest for
potential CNVs. By using default options and a 100
bp bin size, we sought to detect read depth (RD) dif-
ferences between the HC cases and the HC control.
CNVnator predicts genomic structural variations (de-
letions/duplications) based on RD, while correcting
for GC-content. We filtered CNV calls in the fine-
mapped region of association by the mean RD value
difference from genomic average (p-value < 0.001) and
the length of the CNV (> 1000 bp). Moreover, we only
retained CNV calls without any reads with zero map-
ping quality (q0 filter). Finally, we discarded all CNV
calls overlapping with gaps in the reference genome.
The CNVs predicted in the samples sequenced at
high coverage were examined in the 10 LC cases and
10 LC controls.
It has previously been shown that, despite yielding over-

all accurate results, CNVnator might fail to detect CNVs
in low coverage samples [29]. For this reason, we
employed an alternative approach to examine the LC
cases and controls. Firstly, we included only reads with
mapping quality ≥15 and extracted the RD for every pos-
ition on the chromosome of interest using the GATK
function DepthOfCoverage [73]. Secondly, we calculated
normalized RD in 1 kbp non-overlapping windows by
using in-house perl scripts. All samples were normal-
ized by applying a correction factor based on the
sample showing the highest average coverage (LC
case1, see Table S1) to each window. Windows with
the coverage lower than 2X in every sample were ex-
cluded from the following analysis. We then per-
formed a t-test to detect statistically significant depth
differences between the case and the control groups
for each defined window. The Bonferroni corrected
threshold (p-value < 6.8 × 10− 7, corrected for the
number of tests) was used to define statistically sig-
nificant coverage differences between the two groups
of samples. In addition, we computed M-values as
following:

M ¼ log2
window depth

case group window mean depth

� �

M-values represent the fold-coverage differences be-
tween the LC case and control groups. M-values were
calculated in each sample for every window overlap-
ping with the CNV regions shared between all

resequenced samples. RD and M-values were plotted
and visualized by using R v3.0.2, and the correspond-
ing deviating genomic regions examined in IGV [77]
and UCSC genome browser [80].

CNV definition and genotyping
The detected CNV (deletion) with functional potential
was further defined by alignment of HC cases and HC
control to the wolf genome [30], using the mem algo-
rithm of BWA v0.7.12 [72]. The wolf scaffold corre-
sponding to the canine region of interest was identified
by mapping relevant canine anchor sequences to the
wolf genome using blast [81] and the alignments visual-
ized using IGV [77].
For amplification across the region of interest, long-

range PCR primers (Table S7) were designed using
Primer3 v.0.4.0 [82, 83], PCR performed using Pri-
meSTAR GXL DNA Polymerase (TaKaRa Bio, Osaka,
Japan) and long-fragment DNA prepared using
MagAttract HMW DNA Kit (Qiagen AB, Sollentuna,
Sweden), following manufacturer’s instructions. Long-
range PCR products (estimated size ~ 14 and 6 kbp)
were sequenced with an Oxford Nanopore MinION
sequencer using a R9.4.1 pore flow cell, with a bar-
coded library generated using the LSK108 kit and the
native barcoding kit according to the manufacturer’s
instructions (Oxford Nanopore Technologies, UK).
The deletion coordinates were determined from align-
ments of MinION sequencing data to the CanFam 3.1
genome assembly using multiple sequence alignment
(MAFFT v.7) [84]. The potential coding regions were
predicted from both alleles using GENSCAN [85].
In the individuals with available DNA (n = 101),

genotyping of the deletion was performed using a
three-primer approach (Fig. S6, Table S7), with
primers designed as above and PCR performed using
AmpliTaq Gold DNA Polymerase (Thermo Fisher
Scientific, Waltham, MA, USA) following the manu-
facturer’s instructions and using the elongation time
optimal for ~ 1 kbp. The PCR products (NoDel =
906 bp, Del = 1038 bp) were size-separated using 2.5%
agarose gel. In the remaining individuals lacking
DNA specimen (n = 6), the deletion genotype was
imputed with the same method as described earlier
(see Methods, section “SNP genotyping, imputation
and fine-mapping”). The reference dataset for this
imputation comprised of the PCR-typed deletion ge-
notypes, along with the Illumina SNPChip and
Sequenom MassARRAY regenotyped SNPs covering
the extended region of association. Fisher’s exact test
was used to determine whether the deletion allele
frequency was statistically significantly (p-value <
0.05) different between the Giant Schnauzer case
and control dogs.
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6700-3.

Additional file 1: Figure S1. (a) MDS plot showing the sample set
before quality control (QC). The red circle highlights the outlier samples
(n = 6). The black arrow indicates the outlier sample (n = 1) with the
standard coat color. (b) MDS plot showing the sample set after quality
control (QC).

Additional file 2: Figure S2. (a) QQ plot showing the observed versus
expected SNPs p-value distribution. After the mixed model approach, the
inflation factor λ is equal to 0.93. The QQ plot also shows the empirical
genome-wide significance threshold (indicated by a red line and its cor-
responding –log10 value equal to 5.14) and empirical 95% confidence in-
tervals (CI95) (indicated by solid grey lines). (b) Manhattan plot showing a
peak of association on CFA11 (p-valueraw = 9.9 × 10− 6).

Additional file 3: Figure S3. Manhattan plot after conditioning the
GWA analysis for the top SNP genotype.

Additional file 4: Figure S4. (a) QQ plot showing the observed versus
expected SNPs p-value distribution of the final complete dataset
including both GWA and fine-mapping SNPs. After the mixed model ap-
proach, the inflation factor λ is equal to 0.97. The QQ plot also shows the
empirical genome-wide significance threshold, p-value = 5.4 × 10− 6 (indi-
cated by a red line and its corresponding –log10 value equal to 5.27),
and empirical 95% confidence intervals (CI95) (indicated by solid grey
lines). (b) Manhattan plot confirming the detection of a peak of associ-
ation on CFA11 (p-valueraw = 5.7 × 10− 6) during the fine-mapping
experiment.

Additional file 5: Figure S5. Manhattan plot after conditioning the
GWA analysis for the fine-mapping top SNP genotype.

Additional file 6: Figure S6. The 3-primer design for deletion genotyp-
ing. Primers NF11 and NR12 give a PCR product (906 bp) from only the
allele without the deletion. Primers NF3 and NR12 give PCR products
from both alleles without the deletion (~ 11,000 bp) and with the dele-
tion (1038 bp). However, using the PCR elongation optimal for amplifying
up to 1 kbp produced only the two shorter fragments (906 and 1038 bp),
enabling the genotype determination during the subsequent separation
on the agarose gel.

Additional file 7: Table S1. Table showing the genotypes of the GWA
analysis top SNP (CFA11: 40,777,312), average coverage and proportions
of reads mapping to Canfam3.1 for the sequenced HC and LC case
(highlighted in dark and light red) and HC and LC control (highlighted in
dark and light blue) samples. HC: high coverage; LC: low coverage.

Additional file 8: Table S2. Number of SNPs that were successfully
pooled for high-throughput re-genotyping in all the samples (Pooled Var-
iants), number of SNPs that were subsequently genotyped with success
(Successfully genotyped variants), and criteria for variant selection (Func-
tional Category): Conserved elements (SNPs overlapping conserved ele-
ments with SiPhy LOD-score higher than 7 based on 29 mammals
conservation scores), VEP (SNPs predicted to have an effect on the amino
acid sequence according to the Variant Effect Predictor webtool analysis),
Antisense/Protein coding transcripts (SNPs overlapping predicted anti-
sense and protein coding transcripts), Promoter (SNPs overlapping pre-
dicted promoters of genes located in the associated genomic region), AF
difference (SNPs with high allele frequency differences between LC cases
and LC controls), SNPChip (control SNPs included in the Illumina SNPChip
for the genotype concordance check between the two experiments), Fill
the gaps (SNPs located in the regions of low coverage in the extended
region of association).

Additional file 9 Table S3. Table showing all CNVs detected in the
fine-mapped region of association by CNVnator. For every CNV the fol-
lowing information is displayed: sample showing the CNV (Sample); type
of CNV (Event); genomic coordinates (Chr:start-stop); length of the CNV
(Event Length); CNV normalized read depth (Normalized RD); p-value of
the mean normalized read depth value difference from genomic average
(p-val1); p-value from probability of read depth values within the region
to be in the tails of Gaussian distribution describing frequencies of read

depth values in bins (p-val2); same as p-val1, but for the middle of the
CNV (p-val3); same as p-val2, but for the middle of the CNV (p-val4); frac-
tion of reads mapped with mapping quality equal to zero (q0).

Additional file 10: Table S4. Table showing the genotypes of the GWA
study top SNP (CFA11: 40,777,312), the predicted CNV (Del3) inferred
genotypes (CFA11: 40,858,901 - 40,862,600) and genotypes of the fine-
mapping top SNP (CFA11: 42,382,440) of the sequenced HC and LC case
(highlighted in dark and light red) and HC and LC control (highlighted in
dark and light blue) samples. HC: high coverage; LC: low coverage.

Additional file 11: Table S5. Association P-value, number of imputed
genotypes, number of detected protective and risk alleles both in cases
(n = 71) and controls (n = 36) for the GWAS top SNP, fine mapping top
SNP and the deletion associated with protection to hypothyroidism
(DELETION).

Additional file 12: Table S6. Overview of all individuals genotyped for
the deletion.

Additional file 13: Table S7. Primer sequences, used annealing
temperatures and times and predicted PCR product lengths used in the
study.
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