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Abstract

Formulation of Model Problem for Chirality Induced
Spin Selectivity Effect

Henrik Bruce

Spin dependent electron transport in chiral molecules, the so-called 
chirality induced spin selectivity (CISS) effect, have attracted much 
attention over the past few years. Experimentally the spin polarization 
has been detected, and there is a theoretical consensus on the 
necessity of both spin-orbit coupling and geometrical helicity in order 
to get a non-vanishing spin polarization. Several model Hamiltonians 
has been proposed to describe the CISSS effect, and while they can 
yield spin polarization agreeing with the experimentally observed 
magnitudes, they are relying on unrealistic values of the spin orbit 
interaction parameters. In recent years the importance of electron 
correlation has been emphasized.  Thus, this thesis presents the 
general theory on how to treat the CISS effect as a many body problem, 
taking electron correlation into account. The Hamiltonian modelling is 
described and one approach on how to treat the helical structure of the 
molecule and the spin-orbit coupling is presented. Building on this 
thesis, further studies will hopefully lead to a first principle 
understanding of the CISS effect.

ISSN: 1401-5757, MAT-VET-F 20012
Examinator: Martin Sjödin
Ämnesgranskare: Chao Xu
Handledare: Jonas Fransson



Populärvetenskaplig sammanfattning

CISS, kort för chirality induced spin selectivity, är ett fenomen som uppst̊ar
när elektroner transporteras genom s̊a kallade kirala molekyler, t.ex. en helix.
Elektroner har en inneboende egenskap, spin, som kan vara riktad antingen
upp eller ner i n̊agon riktning. I vanliga fall prioriteras ingen av riktningarna
över den andra när elektroner transporteras genom n̊agot medium, men i fal-
let med kirala molekyler har man uppmätt att den ena av spinnriktningarna
prioriteras över den andra.

D̊a detta fenomen relativt nyligen upptäcktes har man ännu ingen fulländad
förklaring till varför det sker. Forskare världen över är överens om vissa
kriterier, s̊a som helicitet och spinn-bankoppling, som måste vara närvarande
för att f̊a en spinn-polariserad ström. Ett sätt man tror ska leda till en
bättre förklaring är genom att modellera molekylen med en flerkroppsmodell
där man tar hänsyn till växelförh̊allanden mellan flera elektroner samtidigt.
Detta är nödvändigt d̊a den ömsesidig p̊averkan mellan elektroner förändrar
elektronernas möjliga energiniv̊aer.

Den här rapporten behandlar CISS fenomenet som ett flerkroppsproblem.
Den grundläggande kvantmekaniska teorin för att först̊a fenomenet tas upp
och ett sätt att modellera molekylen beskrivs. Den här rapporten är inte
n̊agot färdigt arbete i den mening att fenomenet förklaras till fullo, utan ska
snarare betraktas som ett inledande steg i riktningen mot en fullständig teori.
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1 Introduction

1.1 Background

The capability of chiral molecules to spin-polarize electrons has been named
chirality induced spin selectivity (CISS). When electrons are transported
through chiral molecules, one spin direction is preferred above the other.
Which spin direction that is preferred depends on the chirality of the molecule
and on the direction of motion. There is a general understanding of what
causes the spin polarization, e.g. the necessity of chirality and so-called
spin orbit coupling. However, the CISS effect still lacks a first principle
understanding.

A chiral molecule is a molecule that can be distinguished from its mirror
image. Thus, chiral molecules come in pairs. The only thing separating the
two molecules from each other is the three dimensional spatial arrangement
of the atoms. One example of a chiral object outside the molecular world is
the human hand. One of the hands can never be made to coincide with its
own mirror image with translations and rotations alone. But many organic
molecules are also chiral, making the CISS effect relevant for many biophys-
ical processes such as electron conduction through helical proteins. Helices
can be either left handed or right handed, with the handedness being deter-
mined by the right hand rule. Helices are also chiral, with the convention
in this thesis being positive (negative) chirality corresponding to right (left)
handed helicity.

The ability of chiral molecules to spin-polarize electrons was first reported
in 1999 [1]. Since then, numerous experimental studies have been conducted
and many theories with model Hamiltonians have been proposed. However,
there is not a theoretical consensus on how to explain the phenomenon yet.
Although theories based on model Hamiltonians are able to explain the spin
polarization qualitatively, they rely on unrealistic values of the spin-orbit
interaction parameters. Considering the importance of electron correlations
has been suggested as a way to address this problem.

1.2 Project Description

This project aims to study the CISS effect as a many-body problem tak-
ing electron correlation into account. One approach on how to model the
molecule and the Hamiltonian describing the different interactions is pre-

1



sented. By doing this a model Hamiltonian for the CISS effect is formulated,
from which the equations of motion are calculated. This thesis thus presents
a first step towards what eventually is a theoretical first principle under-
standing of the CISS effect.

The thesis is structured as follows: (i) first, the fundamental theory of
quantum physics, as relevant to this paper, is derived and described. (ii) the
theory is demonstrated on a simplified Hamiltonian consisting of only two
sites. It is important to note that this Hamiltonian is not relevant for the
CISS phenomenon since it neither accounts for the chirality nor the spin-
orbit interactions. However, it serves a purpose as an illustrative example
of how to interpret the model and what it means to solve the system. This
is followed up by (iii), a more rigorous description and derivation of the
CISS Hamiltonian in the second quantization formalism. Lastly, (iv), the
CISS Hamiltonian is expanded in terms of Hubbard operators and and the
Heisenberg equation of motion is calculated.

2 Theory

2.1 Postulates of quantum mechanics

In classical mechanics, the total energy of system can be determined by the
sum of all kinetic energies p2

2m
plus all potential energies V (r). If these values

are known for every part of the system at all times, one knows how the system
will evolve in time. In quantum mechanics on the other hand, the Heisenberg
uncertainty principle tells us that both the position and momentum of a
particle cannot be determined with certainty at the same time. This forces
us to deal with probabilities, and to not consider a particle as a geometric
point, but rather as an entity spread out in space. All quantum systems
are represented by a wave function, denoted ψ, from which all measurable
information about the system can be obtained. The mathematical framework
of quantum mechanics is then built around the concept of operators. To get
information about a system, so-called operators are used, working on the
wave function. The quantum analogue of the classical way of determining
the energy of a system is the Hamiltonian operator, Ĥ

Ĥ = − ~2

2m
∇2 + V (r, t) (2.1)
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where −~
2

2m
∇2 is the kinetic energy and V (r, t) can be any potential. In the

Dirac formalism of quantum mechanics, the Hamiltonian is an operator in
Hilbert space, a complex vector space spanned by the eigenkets, |φ〉, of the
Hamiltonian. The spectrum of allowed energy levels of the system is given
by the set of eigenvalues, Ei, solving the equation,

Ĥ |φi〉 = Ei |φi〉 (2.2)

One of the postulates of quantum mechanics is that any observable, e.g. any
quantity that can be observed in a physical experiment, can be represented by
a self-adjoint linear (Hermitian) operator. Hermitian operators always have
real eigenvalues, in accordance with them being operators corresponding to
observables. Before a measurement has been made, the system is described
by its wave function which can be expanded in terms of its eigenstates,

|ψ〉 =
∑
i

ci |φi〉 (2.3)

An operator acting on the wave function, initially a superposition of eigen-
states, causes the wave function to collapse into one of its eigenstates. Since
the eigenstates are orthonormal, i.e., 〈φi|φj〉 = δi,j, the coefficients ci = 〈φi|ψ〉
can be found. Hence equation 2.3 can be rewritten,

|ψ〉 =
∑
i

〈φi|ψ〉 |φi〉 =
∑
i

|φi〉〈φi| |ψ〉 (2.4)

from which one can conclude that,∑
i

|φi〉〈φi| = 1 (2.5)

This is known as the completeness relation, implying that a wave function
representing any physical system can be expressed as a linear combination of
the eigenkets of any observable of the system. The completeness relation can
be used to derive matrix representations of any operator. By inserting the
completeness twice, for an arbitrary operator Ô, the operator can be written
as,

Ô =
∑
i,j

|φi〉〈φi| Ô |φj〉〈φj| (2.6)
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Altogether, there are N2 numbers of form 〈φi|Ô|φj〉 where N is the dimen-
sionality of the ket space. By arranging these numbers in a square matrix,
with row indices corresponding to i and column indices corresponding to j,
the operator Ô can be represented by the matrix

Ô
.
=

〈φ1|Ô|φ1〉 〈φ1|Ô|φ2〉 . . .

〈φ2|Ô|φ1〉 〈φ2|Ô|φ2〉 . . .
...

...
. . .

 (2.7)

2.2 Spin and classification of particles

The electron has three intrinsic properties, mass, charge and spin. These
properties can be seen as internal states of the electron that does not depend
on the position or motion in space. Unlike the scalars mass and charge,
spin has a direction. When measuring the spin of an electron in any spatial
direction, one always obtain one of two values, ~

2
or −~

2
. These values are the

eigenvalues of the spin operator Ŝ = ~
2
σ where σ is the Pauli matrices σx, σy

and σz defined as,

σx =

(
0 1
1 0

)
, σy =

(
0 -i
i 0

)
, σz =

(
1 0
0 −1

)
(2.8)

The above matrices are only valid for spin 1
2
-particles.

All fundamental particles in nature can be divided into one of two cat-
egories, fermions and bosons. Fermions are particles with half integer spin
(1
2
, 3
2
...) and bosons are particles with integer spin (1, 2...). Thus, electrons,

the particle of interest in this study can thus be categorized into the group
of fermions. Fermions and bosons behave completely different in many sit-
uations. One example being the Pauli exclusion principle which applies to
fermions but not to bosons. It states that, in any quantum system, two
fermions cannot occupy the same quantum state.

2.3 Identical Particles

Another fundamental property that distinguishes fermions from bosons can
be seen when studying systems of many identical particles. In classical
physics it is possible to keep track of individual particles even tough they
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may look alike. In quantum physics, all the elementary particles, are indis-
tinguishable, meaning they can not even in principle be distinguished from
each other. As a consequence of this, for a two electron system where the
electrons are restricted to only occupy one of two states, it is impossible to
tell if electron 1 is in state |φi〉 and electron 2 in state |φj〉 or vice versa. By
measurements one can only find out that there is one electron in each state.
If the two cases are equally probable, the wave function for the two electrons
can be written as,

ψ =
1√
2

(|φi〉 |φj〉 − |φj〉 |φi〉) (2.9)

from which one can see that if the states |φi〉 and |φ2〉 are equal, the wave
function is zero. This is the Pauli exclusion principle once again, forcing
the negative sign to be present in equation 2.9. This can be understood by
the following argument. Suppose that the state of the electrons initially is
measured to be electron 1 in state |φi〉 and electron 2 in state |φj〉, having
the wave function ψij = |φi〉 |φj〉. At a later measurement, the two electrons
states interchange, resulting in a new wave function ψji = |φj〉 |φi〉. Because
the two electrons are indistinguishable, wave functions for the two different
possible measurements must be equal, meaning ψij = −ψji. This holds for
any fermionic wave function, also for more than two particle systems. All
fermionic wave functions must be antisymmetric under the exchange of any
two fermions. For bosons on the other, the wave functions are symmetric
under such a exchange of identical particles.

2.4 Schrödinger vs Heisenberg picture

The first representation of quantum physics most people learn when first en-
countering the subject is the Schrödinger picture. In the Schrödinger picture
quantum systems evolve in time by time dependence of the state vectors,
while operators remain unchanged. Recall the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 (2.10)

with the solutions

|ψ(t)〉 = exp

{
−iH

~
(t− t0)

}
|ψ(t0)〉 (2.11)
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From the solution above, the factor in front of the ket on the right hand side
is called the time evolution operator, denoted U . It is an unitary operator,
meaning

UU † = U †U = 1 (2.12)

The expectation value of an arbitrary operator ÂS in the Schrödinger picture
can be written as

〈ψ(t) | ÂS |ψ(t)〉 (2.13)

which according to equation 2.11 and with the definition of U is the same as

〈ψ(0) | U †ÂS U |ψ(0)〉 (2.14)

where t0 = 0 has been set. The above equation describes the expectation
value of an operator, in a representation where the wave function is sta-
tionary. Hence, the Heisenberg operator can be defined, in terms of the
corresponding Schrödinger operator as

ÂH = U †ÂS U (2.15)

This is a new representation, the Heisenberg picture, where the time depen-
dence is included in the operators. This picture exists solely thanks to the
Schrödinger picture, and does thus not provide any new information. It is
simply a new way of thinking about dynamical systems, that often turns out
to be quite effective. In both pictures, the eigenvalues are preserved. Using
the product rule, one can by differentiating 2.15 and by using the definition
of the time evolution operator, derive the Heisenberg equation of motion

i~
dÂH
dt

=
[
ÂH , H

]
+ i~

(
∂ÂS
∂t

)
H

(2.16)

If the Schrödinger operator has no explicit time dependence, the Heisenberg
equation of motion simplifies to

i~
dÂH
dt

=
[
ÂH , H

]
(2.17)

which simply states that the time derivative of any Heisenberg operator is the
commutator of that operator with the Hamiltonian. Operators commuting
with the Hamiltonian, can thus be said to represent constants of motion.
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3 Simplified model

Before beginning to describe the simplified Hamiltonian, it is once again
important to emphasise that it is not relevant for the CISS phenomenon.
It does only consist of two sites and it does not take helicity or SOC into
account. The reason it is included is for illustrative purposes alone.

3.1 Hubbard operators

The Hamiltonian is expressed in terms of Hubbard operators. These opera-
tors are defined in terms of Dirac bra-ket notation operations in the space of
eigenstates of the tight binding Hamiltonian.

Xp,q
m,n = |mp〉〈nq| (3.1)

They are in fact transition operators, with initial state |n, q〉 and final state
|m, p〉. In this thesis, the subscript m,n are the site indices while the su-
perscript p,q specifies the quantum state. Because the Hubbard operators
are made of basis states of the Hamiltonian, the Hubbard operators obey
orthogonality conditions,

Xp,q
m,nX

r,s
i,j = δn,iδq,rX

p,s
m,j (3.2)

3.2 Eigenenergies and transition energies

The simplified Hamiltonian can then be expressed as,

Hs =
∑
m=1,2
p=1,2

EmpX
pp
mm +

∑
m=1,2

D
(
X12
mm +X21

mm

)
+
∑
p=1,2

t (Xpp
12 +Xpp

21 ) (3.3)

where the first sum assigns the energy Emp to electrons in state |mp〉. The
second sum changes the spin state of the electron, while the last sum is the
hopping terms, describing tunneling processes occurring with energy t. Using
the Heisenberg equation of motion, for an operator Â with no explicit time
dependence, in natural units where ~ = 1,

i
∂Â

∂t
=
[
Â, Ĥ

]
(3.4)
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one can calculate the time evolution for the set of Hubbard operators Xpq
mn.

By defining the vectors,

Xmn =


X11
mn

X12
mn

X21
mn

X22
mn

 m,n = 1, 2 (3.5)

The resulting expressions can be written as,

i∂tX11 =M11X11 + t (X12 −X21)

i∂tX12 =M12X12 + t (X11 −X22)

i∂tX21 =M21X21 + t (X22 −X11)

i∂tX22 =M22X22 + t (X21 −X12)

(3.6)

where Mmn are the 4× 4 matrices,

M11 =


0 D −D 0
D ∆1 0 −D
−D 0 −∆1 D

0 −D D 0

 M12 =


∆3 D −D 0
D ∆4 0 −D
−D 0 ∆5 D

0 −D D ∆6



M21 =


−∆3 D −D 0
D −∆5 0 −D
−D 0 −∆4 D

0 −D D −∆6

 M22 =


0 D −D 0
D ∆2 0 −D
−D 0 −∆2 D

0 −D D 0


(3.7)

and ∆1 = E12 − E11, ∆2 = E22 − E21, ∆3 = E21 − E11,
∆4 = E22 − E11, ∆5 = E21 − E12 and ∆6 = E22 − E12.

The expressions in equation 3.6 together with the vectors in 3.5 can be rewrit-
ten to a 16× 16 matrix equation.i∂t −


M11 t −t 0

t M12 0 −t
−t 0 M21 t
0 −t t M22




X11

X12

X21

X22

 = 0 (3.8)
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where the bold t = t14×4 and the bold 0:s are the 4× 4 matrix of zeros. The
above equation is close to an eigenvalue equation. Performing the Fourier
transform i∂t ⇐⇒ Z, with Z ∈ C obtains get the eigenvalue determinant.
In Matlab, these eigenvalues are easily calculated, and they correspond to the
energies for transitions between eigenstates. The eigenstate energies them-
selves are calculated by letting the Hamiltonian in equation 3.3 act on the
general state consisting of a linear combination of the basis states. In accor-
dance with equation 2.2, the eigenstates are the states which correspond to
the same state, multiplied with a constant.

Ĥ (α1 |11〉+ α2 |12〉+ α3 |21〉+ α4 |22〉) =

ε (α1 |11〉+ α2 |12〉+ α3 |21〉+ α4 |22〉)
(3.9)

Computing the state generated by letting the Hamiltonian work on the state
above, enables us to write the determinant for determining the eigenenergies,∣∣∣∣∣∣∣∣

E11 − ε D t 0
D E12 − ε 0 t
t 0 E21 − ε D
0 t D E22 − ε

∣∣∣∣∣∣∣∣ = 0 (3.10)

Calculating the transition energies 3.8 and the eigenenergies 3.10, by using
Matlab verifies that the matrices are indeed correct. The eigenenergies are
split by the exact values of the calculated transition energies. The splitting
of the ground state energies Emp is visualized in the energy level diagram
below.
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Figure 1: Illustrative spectrum for the simplified model Hamiltonian. The
arrows demonstrate the transitions between the eigenstates. The two left-
and rightmost energies are the unperturbed energy levels.

The parameter values used for the above figure 1 are in this case chosen such
that the unperturbed energies corresponding to the same spin are degenerate.
In addition, the unperturbed energies corresponding to different spins are
chosen to be centered around zero. This does not necessarily have to be
the case. Any set of parameter values, representing any physically possible
situation, would result in correct energy calculations.

4 Model Hamiltonian

4.1 Tight Binding model

The molecule is modeled with a helical tight binding model, meaning that the
electrons are restricted to fixed sites in a helical geometry. Each site can be
represented by a wave function similar to the orbitals of an electron orbiting
an atom. For a single isolated atom, the eigenvalues of the Hamiltonian are
the atomic orbitals. When the atom is placed in a chain, together with other
similar atoms the individual wave functions overlap, leading to coupling of
the states. It is sufficient to make the assumption that only one atomic orbital
is allowed per electron, and to label the atomic orbital for the electron sitting
on atom m as |m〉. Further, the orbitals are assumed to be orthogonal to
each other, e.g. 〈n|m〉 = δnm. This allows us to use these states as basis
states for the many-body wave function as well.
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The electrons can be scattered by tunneling processes. Since the wave
function of an electron stretches over multiple sites, there is a non-zeros
probability to find the electron at neighbouring sites. This is allowed for by
allowing an electron to tunnel from one orbital of one atom to another orbital
of another atom. The energies t which governs this hopping is determined by
the overlap of the two wave functions on the pair of atoms. Usually, one only
allows hopping between adjacent sites, t = 〈φi|V |φi±1〉, since in the tight
binding limit, the strength of these hopping integrals die off exponentially in
space. Because all ionic sites in the molecule are equidistant, the magnitude
of t is the same for all pairs of nearest neighbouring sites.

In addition to the hopping energies, there is on-site energy contribution ε
for every electron and U if one site is doubly occupied. These two energies are
analogue to the kinetic energy and Coulomb repulsion of electrons orbiting
an atom. There are also next-nearest neighbours couplings due to the SOC.

4.2 Necessary conditions for CISS

There are two necessary conditions in order to get a spin polarized current,
i.e for the CISS effect to occur. The electrons must be transported through a
helical structure, and there must be a spin-orbit coupling (SOC). SOC can be
seen as a magnetic field felt by the electrons, changing the energy eigenstates.
This interaction can be understood qualitatively by considering the valence
electron orbiting a hydrogen-like atom. The electron experiences a screened
electric field due to the Coulomb interaction with the nucleus and the inner
shell electrons. But whenever a moving charge is subjected to a electric field,
it feels an effective magnetic field. This magnetic field is consequently an
effect of the relative motion of the nucleus and the orbiting electron. In
the rest frame of the electron, the nucleus creates a positive current loop,
generating a magnetic field. Due to this magnetic field, the spin magnetic
dipole moment of the electron experiences a torque, tending to orient it along
the direction of the magnetic field. This changes the energy of the electron.
[2] The SOC potential is of the form:

VSOC =
~

4m2
0c

2
σ · (p×∇V ) (4.1)

where σ is the spin operator and V (r) is a helical potential experienced
by the electrons. The quantum momentum operator is p̂ = −i~∇. The
energy of an electron in such a potential is eVSOC , which in this thesis will
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be modelled by the Hamiltonian HSOC = λiV σ where λ is the spin orbit
interaction parameter. Though the effect of the SOC is small, it is non-
negligible in many situations. Especially for the CISS effect, it has proven
to play a crucial role. Without the SOC potential, there would be no spin
polarized transport [3].

The exact values of the parameters E, U , t and λ, can be complicated to
calculate. Usually, they are taken to be free parameters, such that one can
adjust them to make them experimentally feasible.

4.3 Second quantization

One can consider a system with the Hamiltonian,

Ĥ0 =
N∑
i=1

ĥ(ri), ĥ(ri) = − ~2

2m
∇2
i + U(ri) (4.2)

This Hamiltonian consists of terms that each only involves the coordinates
of one particle. Thus, the Hamiltonian Ĥ0 does not describe any interactions
between particles, and is called a single-particle operator. This Hamiltonian
could for example describe N electrons bound to atoms far apart from each
other, such that they don’t interact. If placing the atoms closer to each
other causing them to interact, these interactions must be incorporated in
the Hamiltonian. For example by including the many particle Hamiltonian,
ĤI , in equation 4.2

Ĥ = Ĥ0 + ĤI (4.3)

where ĤI is a Hamiltonian depending on more than the coordinates to only
one particle and thus describes interactions. It is convenient to work with
a basis in which the basis many-particle wave functions are eigenfunctions
of the non-interacting Hamiltonian, Ĥ0. In this thesis, the molecule is mod-
eled with a tight binding model in a helical geometry with the single particle
eigenfunctions being the atomic orbitals. The eigenfunctions and the asso-
ciated eigenvalues for ĥ for every site in the molecule can then be written
as

ĥφi = εiφi (4.4)

This provides us with an orthonormal and complete set of eigenvalues and
eigenfunctions that can be used to expand the single particle wave functions
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and construct many particle wave functions. An advantageous way to do this
is to use the formalism of second quantization, or the occupation number
formalism.

As mentioned in section 2.3, a many body fermionic wave function must
bu antisymmetric under the exchange of any two fermions. In second quan-
tization, this is taken care of by introducing the fermionic annihilation and
creation operators, ĉ†λ and ĉλ, where λ are the set of all the single particle
quantum numbers specifying the state. They are defined in such a way that
they can add (ĉ†λ) or remove (ĉλ) an electron from the many body system.
These operators follow the anti-commutator relations:

{ĉ†λ, ĉ
†
ν} = {ĉλ, ĉν} = 0, {ĉλ, ĉ†ν} = δλ,ν (4.5)

from which one can see the Pauli exclusion principle in, {ĉ†λ, ĉ
†
λ} = 2ĉ†λĉ

†
λ = 0.

No state λ can be occupied by more than one fermion.
In the second quantization formalism, the many particle state vector is

defined as, |nλ1 , nλ2 , ..., nλi , ...〉, where nλi specify the number of particles in
the state described by the quantum numbers λi. Thus, nλi is called the
number operator, and is defined as

nλi = ĉ†λi ĉλi (4.6)

For fermions, each nλ can because of the Pauli exclusion principle only take
on the values 0 or 1. The state vectors are members of the Fock space F . Any
state vector in F can be constructed by letting the creation and annihilation
operators work on the vacuum state, |0〉, defined as |0〉 = |0, 0, ...0, 0〉. One
has to pay attention to the order of operations, since operating in different
orders may cause the resulting state vector to differ by a minus sign. For
example,

ĉ†λ1 ĉ
†
λ2
|0〉 = ĉ†λ1 |0, 1, 0, ...0〉 = |1, 1, 0, ..., 0〉 (4.7)

while

ĉ†λ2 ĉ
†
λ1
|0〉 = ĉ†λ2 |1, 0, ...0〉 = − |1, 1, 0, ..., 0〉 (4.8)

because of the anticommutator relation in equation 4.5.
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4.4 Field operators

Having defined the creation and annihilation operators, enables for convert-
ing operators from the first quantized notation to second quantization. This
is done by introducing field operators, the analogue of the creation and anni-
hilation operators previously described, but this time in real space. These are
operators that can be interpreted as representing a fermionic field, hence the
name field operators. For the single particle Hamiltonian with eigenfunctions
φi as in equation 4.4 the field operators are,

ψσ =
∑
i

ĉi,σφi |σ〉

ψ†σ =
∑
i

ĉ†i,σ 〈σ|φ∗i
(4.9)

These are operators that creates or annihilates electrons with either spin up
or spin down at well defined points in space. The field operators contain all
eigenvalues and eigenfunctions from the single particle Hamiltonian, allowing
us to rewrite the Hamiltonian in terms of these field operators.

Ĥ =
∑
σ, σ′

∫
ψ†σ(x)ĥψσ′(x)dx =

∑
i,j,σ, σ′

ĉ†i,σ ĉj,σ′

∫
φ∗i (x)ĥφj(x)dx 〈σ|σ′〉 (4.10)

where i,j are the site indices. From equation 4.4 one can see that ĥφj = εjφj.
Also, 〈σ|σ′〉 = δσ,σ′ allow us to do further simplifications.

H =
∑
i,j,σ

εj ĉ
†
i,σ ĉj,σ

∫
φ∗i (x)φj(x)dx (4.11)

Assuming properly normalized eigenfunctions φi and φj the final expression
for the single particle Hamiltonian in second quantization is

H =
∑
i,σ

εiĉ
†
i,σ ĉi,σ (4.12)

This is the on site kinetic energy of the electrons in the final Hamiltonian for
the CISS problem. In the next section the other parts of the Hamiltonian will
be discussed. They will later be given in the second quantization notation,
but the derivation from first to second quantization is done by a similar
procedure to the one described above.
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5 CISS model

5.1 CISS Hamiltonian

The CISS effect has been detected in chiral helical molecules. In this the-
sis, the generic molecular geometry is allowed for by ionic sites in a helical
structure, in accordance with previous work [4].

Figure 2: Sketch of the ionic sites in a helical molecule. With the convention
used in this study, this molecule has negative chirality (left handed helicity).

The spatial vectors denoting the sites are defined by the following set of
cylindrical coordinates,

rm = (a cosϕm, a sinϕm, (m− 1)c/(MN − 1)) ,

ϕm = (m− 1)2π/N, m = 1, ...,MN
(5.1)

where a is the radius and c is the length of the helix. M is the total number
of laps, whereas N is the number of sites per lap, such that M = MN is the
total number of sites. For every site, a pair of unit vectors can be defined,
d̂m+s = (rm − rm+s) /|rm− rm+s|, for s = ±1. The vector d̂ is then a vector
of length one pointing from the site m + s, to the site m. To define the
chirality of the molecules, the vector v

(±)
m = d̂m+s × d̂m+2s is introduced,

where the superscript ± is determined by the chirality of the molecule, and
tells what sign to assign s. This vector is used, together with the vector σ
of Pauli matrices, in the SOC part of the CISS Hamiltonian to describe how
the helicity influences the spin-orbit coupling in equation 4.1.

The Hamiltonian is defined in terms of the creation and annihilation
spinors.
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Ψm =

(
ĉm,↑
ĉm,↓

)
, Ψ†m =

(
ĉ†m,↑ ĉ†m,↓

)
(5.2)

A molecule with positive chirality comprising M sites can thus be modeled
by the Hamiltonian

H =
M∑

m=1

(
ε0Ψ

†
mΨm + Un̂m↑n̂m↓

)
− t

M−1∑
m=1

(
Ψ†mΨm+1 + H.c.

)
+λi

M−2∑
m=1

(
Ψ†mv

(+)
m · σΨm+2 + H.c

) (5.3)

The first sum describes the on-site energies. The ε0-term is the kinetic energy
of the individual electrons at each site, and the energy U , due to Coulomb
interaction between electrons, is added if the site is doubly occupied. Re-
mark, nm,σ is the number operator, counting the number of electrons in each
state. The second sum describes the electron hopping, with energy t, between
nearest neighbouring sites. The term H.c stands for the Hermitian conju-
gate, and enables hopping to occur in both directions in the molecule. The
final sum is the spin orbit coupling, that is picked up between next nearest
neighbouring sites.

The dot product v
(+)
m ·σ is to be interpreted as, dropping the superscript

(+) and the subscript m,

v(+)
m · σ = vxσx + vyσy + vzσz =

(
vz vx − ivy

vx + ivy −vz

)
(5.4)

where vx,y,z are the x,y and z components of the vector defining the chirality
and σx,y,z are the Pauli spin matrices as in equation 2.8. Denoting vx ± ivy
as v± in conformity with the definition of the ladder operators results in,

Ṽ =

(
vz v−

v+ −vz

)
(5.5)

This matrix displays the coupling between spin states, breaking the spin
symmetry. The spin ↑ and spin ↓ states are coupled by the non-diagonal
elements v+ and v−. To further analyze this model, reformulation of the
Hamiltonian to get a conform way to treat the quantum states is needed.

16



5.2 Reformulation of Hamiltonian

Using the completeness relation,∑
p

Xpp = 1

any operator, Q̂, in the Hilbert space can be defined in terms of Hubbard
operators,

Q̂ =
∑
p,q

|p〉〈p| Q̂ |q〉〈q| = 〈p| Q̂ |q〉Xpq (5.6)

where 〈p| Q̂ |q〉 are matrix elements for transitions from state q to state p. At
each site in the molecule, the only four possible states are |0〉 , |↑〉 , |↓〉 or |2〉.
By using a linear combination of these states as ket state |q〉 one can write
the annihilation operator ĉ↑ matrix elements as:

〈p| ĉ↑ |q〉 = 〈p| ĉ↑ (|0〉+ |↑〉+ |↓〉+ |2〉) = 〈p|0〉+ 〈p| ↓〉 (5.7)

where two terms has been cut, ĉ↑ |0〉 = ĉ↑ |↓〉 = 0 because of there being no
↑-electron to annihilate. Thus, only the matrix elements of ĉ↑ corresponding
to the transitions |↑〉 → |0〉 and |2〉 → |↓〉 are non-zero. By similar means
the non-zero matrix elements of ĉ↓ can be calculated. The Hubbard operator
representation of the creation and annihilation operators is then

ĉ↑ = X0↑ +X↓2 =⇒ ĉ†↑ = X↑0 +X2↓

ĉ↓ = X0↓ −X↑2 =⇒ ĉ†↓ = X↓0 −X2↑ (5.8)

where the minus sign assures the antisymmetry of the wave function. Con-
sequently, the model can be rewritten in terms of Hubbard operators by
expanding the Hamiltonian in 5.3. There are altogether four Hubbard oper-
ators of Fermi type in 5.8, and their Hermitian conjugates, making this an
expansion to a four dimensional Hilbert space. A new basis for the Hilbert
space is defined as,

Xm =


X0↑
m

X0↓
m

X↓2m
X↑2m

 , X†m =
(
X↑0m X↓0m X2↓

m X2↑
m

)
(5.9)
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Using the definitions of the number operator in 4.6 and the spinors in 5.2,
the on-site (Ĥ0), tunneling (Ĥt) and SOC (ĤSOC) parts of the Hamiltonian
5.3 can be expressed in terms of the creation and annihilation operators as

Ĥ0 =
M∑

m=1

ε0

(
ĉ†m↑ĉm↑ + ĉ†m↓ĉm↓

)
+ Uĉ†m↑ĉm↑ĉ

†
m↓ĉm↓

Ĥt = −t
M−1∑
m=1

(
ĉ†m↑ĉm+1,↑ + ĉ†m↓ĉm+1,↓

)
+ H.c

ĤSOC = λi
M−2∑
m=1

(
ĉ†m↑(vz ĉm+1,↑ + v−ĉm+1.↓) + ĉ†m,↓(v

+ĉm+1,↑ − vz ĉm+1,↓)
)

+ H.c

(5.10)
From the definition of tin 5.9 the above equations can be written on the form
X†mAmnXn where Amn are 4× 4 matrix. Carrying out the algebra results in
the following expressions

Ĥ0 =
M∑

m=1

X†mEXm +X†mUXm

Ĥt =
M−1∑
m=1

X†mT Xm+1 +X†m+1T †Xm

ĤSOC =
M−2∑
m=1

X†mVXm+2 +X†m+2V†Xm

(5.11)

where

E = ε0

(
σ0 σz
σz σ0

)
, U =

U

2

(
0 0
0 σ0

)

T = −t
(
σ0 σz
σz σ0

)
, V = λi

(
Ṽ Ṽ σz
σzṼ σzṼ σz

) (5.12)

where σ0 is the 2 × 2 identity matrix and Ṽ = v
(+)
m · σ as in equation 5.5.

Although not explicitly spelled out, Ṽ in the matrix above is site dependent,
enforcing site dependence on the matrix V as well. It is also dependent on the
direction in which the electrons are moving. Since all matrices are Hermitian,
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the Hermitian conjugate on the matrices in 5.11 can be dropped. In the basis
defined in equation 5.9 the number operator, N̂m, counting the number of
electrons at site m, can be written as

N̂m =


X↑↑m
X↓↓m
X22
m

X22
m

 (5.13)

Assuming the molecule consists of at least five sites, one can consider a fixed
site i in the middle of the molecule. By keeping the orthogonality of the sites
in mind, the equation of motion for the number operator N̂i using equation
3.4 turns out to be

i∂tN̂i =X†i T Xi+1 +X†i T Xi−1 −X†i+1T Xi −X†i−1T Xi

+X†i V
(+)
i Xi+2 +X†i V

(−)
i Xi−2 −X†i+2V

(+)
i Xi −X†i−1V

(−)
i Xi

(5.14)

The above equation tells us the time evolution of the number operator at a
fixed state is governed by interactions due to tunneling between adjacent sites
and SOC between next nearest neighbours. Having formulated the equation
of motion in this way enables further work calculating the dynamics of the
molecule.

6 Summary

This thesis has described the basic theory and modelling of the CISS phe-
nomenon. Starting from some of the fundamental theory of quantum me-
chanics, the basic ideas of the tight binding model and second quantization
has been explained. This work should not be regarded as the final work,
but rather as an entry to further studies. To fully grasp the CISS effect and
to calculate an actual magnitude of the spin polarization further work lies
ahead.
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