
Perforated Page: Supporting Fragmented Memory
Allocation for Large Pages

Chang Hyun Park∗, Sanghoon Cha†, Bokyeong Kim†, Youngjin Kwon†, David Black-Schaffer∗, Jaehyuk Huh†
∗Department of Information Technology, Uppsala University

{chang.hyun.park,david.black-schaffer}@it.uu.se
†School of Computing, KAIST

{shcha,bkkim,yjkwon,jhhuh}@casys.kaist.ac.kr

Abstract—The availability of large pages has dramatically
improved the efficiency of address translation for applications
that use large contiguous regions of memory. However, large
pages can be difficult to allocate due to fragmented memory,
non-movable pages, or the need to split a large page into regular
pages when part of the large page is forced to have a different
permission status from the rest of the page. Furthermore, they
can also be expensive due to memory bloating caused by sparse
accesses to application data. In this work, we enable the allocation
of large 2MB pages even in the presence of fragmented physical
memory via perforated pages. Perforated pages permit the OS
to punch 4KB page-sized holes in the physical address range
allocated to a large page and re-map them to other addresses
as needed. This not only enables the system to benefit from
large pages in the presence of fragmentation, but also allows
for different permissions to exist within a large page, enhancing
sharing flexibility. In addition, it allows unused parts of a large
page to be used elsewhere, mitigating memory bloating. To
minimize changes to the system, perforated pages reuse the 4KB-
level page table entries to store the hole locations and translates
holes into regular 4KB pages. For performance, the proposed
technique caches the translations for hole pages in the TLBs and
track holes via cached bitmaps in the L2 TLB.

By enabling large pages in the presence of physical memory
fragmentation, perforated pages increase the applicability and
resulting benefits of large pages with only minor changes to the
hardware and OS. In this work, we evaluate the effectiveness
of perforated pages with timing simulations under diverse and
realistic fragmentation scenarios. Our results show that even
with fragmented memory, perforated pages accomplish 93.2% to
99.9% of the performance achievable by ideal memory allocation,
and 2.0% to 11.5% better performance over the conventional
system running with fragmented memory.

Index Terms—virtual memory, address translation, translation
lookaside buffer, memory management, virtualization

I. INTRODUCTION

With the dramatic increase of memory footprints in data-
intensive applications, the efficiency of address translation has
become a critical performance bottleneck. This has led to
numerous proposals to increase the efficiency of the translation
look-aside buffer (TLB). One of the most widely-adopted is
to increase the page size (e.g., to 2MB or 1GB), thereby
multiplying the translation coverage of each TLB entry (by

c©2020 Copyright held by the owner/author(s). Publication rights licensed
to IEEE. This is the authors’ accepted version of the work. Not for redistri-
bution. This work is published by IEEE in ISCA ’20.
https://doi.org/10.1109/ISCA45697.2020.00079

512 times for 2MB pages), but at the cost of additional
operating system or application support.

However, while large pages reduce translation overheads by
improving TLB reach, they lead to physical memory bloating
if the application does not use the full contiguous region [29],
and make content-based page sharing less effective [7], [29].
Furthermore, regions cannot be promoted to larger pages when
there are immovable 4KB pages [35] or 4KB pages with
different permissions in the physical region. Fundamentally,
today’s large pages impose a trade-off between translation
efficiency and memory management flexibility. In this paper
we mitigate this trade-off by providing the flexibility needed
to overcome each of the aforementioned limitations.

To mitigate this trade-off, we propose the ability to punch
4KB hole pages out of large 2MB pages via perforated pages.
This enables the use of large pages even when parts of
the pages are not allocated (avoids bloating), not allocated
contiguously in physical memory (handles fragmentation), or
have different permissions (increases sharing). For example,
Figure 1 shows a perforated page that is allocated to a physical
memory region with an immovable page. To enable a large
page in this situation (VA space 1), a hole is punched in the
perforated page that overlaps the immovable physical page
and the hole in the virtual page is mapped to a separate
physical 4KB region. The example also shows the second
process (VA space 2) sharing the perforated page, but with
a sub-page that has a different permission status. Such a
partial change of permission within a large page can occur
when a new read/write permitted hole page created as a result
of copy on write, while the perforated page remains write
protected. This hole page is similarly mapped to a separate
4KB physical region to enable the remainder of the perforated
page to be shared. Both of these situations would force today’s
architectures to split the large page into separate 4KB pages.

Our implementation provides translations for the non-hole
portions of perforated pages with comparable performance and
overhead to traditional large pages, and efficiently tracks and
stores an arbitrary number of holes pages for each perforated
page. By allowing the overlapped mapping of large and
regular pages, perforated pages provides both the improved
TLB performance of large pages and the flexible memory
management of regular pages.

We propose two changes to existing address translation

https://doi.org/10.1109/ISCA45697.2020.00079

mechanism to support perforated pages. First, the page table
entry (PTE) for a perforated page should contain both the
address of 2MB physical memory chunk and the address of
the next-level PTE page to track the hole pages. If a virtual
address does not belong to a hole page, the physical large page
address in the PTE will be used to calculate the final translated
address. For addresses that do map to hole pages, the next-
level PTE will be accessed during page table walks to find the
translations. Since the current PTE can only contain one of
the two addresses, we implement shadow PTEs for perforated
pages to store the additional address of the PTE page for the
hole pages. This change enables the tracking of arbitrary hole
pages for each perforated page.

The second change enables efficient identification of hole
pages within a perforated page during translation by providing
two levels of hole bitmaps, which can be cached in regular
TLB entries (Figure 3). The first-level hole bitmap is stored
in the unused bits of the perforated page PTE in the TLB.
These bits are unused as perforated pages track 2MB regions,
resulting in 9 unused address translation bits vs. a standard
4KB page. This first-level hole bitmap filters accesses to the
second-level hole bitmap by tracking which coarse-grained
regions of the perforated page do not have holes. The second-
level hole bitmap indicates which of the 4KB sub-pages of
the 2MB perforated page are holes and require access to the
next-level PTE for translation. These bitmaps are stored in a
reserved part of the physical memory and cached in the TLB
along with the other PTEs on-demand, and accessed only if
the first-level hole bitmap does not filter access to them.

Virtualized systems have even higher levels of fragmenta-
tion due to fragmentation in both the hypervisor and guest
operating system [38]. To address this, we extend perforated
pages to support 2-dimensional page walks and add interaction
between hypervisor and guest hole bitmaps.

The contributions of this paper are:
• Overlapping large 2MB and regular 4KB pages to enable

the use of large pages in the presence of fragmentation.
• An efficient implementation of perforated pages with

shadow PTEs and on-demand, TLB-cached, hierarchical
bitmaps for rapid translation and flexibility.

• Minimal HW and SW changes by taking advantage of
existing PTE structures and walkers.

Perforated
2MB Page

Hole
Perforated
2MB Page

Hole

Diff. Permissions

2MB Region

Immovable Page

4kB Region
4kB Region

Shared Perforated Page Shared Perforated PagePhysical Mapping

VA Space 1 VA Space 2PA Space

Fig. 1. Perforated pages support allocation of large pages even when the
physical backing 2MB region is fragmented by immovable pages (center)
and allows shared large pages to contain sub-pages with different permissions
(right). Not shown: portions of perforated pages can be left unallocated to
avoid physical memory bloat as well.

• Addressing both guest and host fragmentation in virtual-
ized systems.

We evaluate perforated pages with an out-of-order execution
simulator under diverse and realistic fragmentation scenarios.
Our results demonstrate that perforated pages enable over-
lapped mappings with only minor performance degradations
when the fragmentation ratio is low. Even when fragmentation
is severe and randomly placed, perforated pages still provide
better performance than the regular page sizes.

To evaluate perforated pages we start by reviewing large
page support in current systems, its challenges, and previous
approaches (Section II), and the impact of fragmentation on
real systems (Section III). We then describe the architectural
(Section IV) and virtualization support (Section V) and soft-
ware changes required (Section VI), before evaluating the
proposal via simulation (Section VII).

II. BACKGROUND

For compatibility with the page table itself, the selection of
available page sizes is tied to the page table organization. In
x86, with a four-level page table tree, 4KB pages correspond
to the coverage of a level-1 page table entry (PTE), while
level-2 and level-3 PTEs correspond to 2MB and 1GB pages,
respectively. This organization makes it easy to store large
pages in the page table by ending the page walk at the
appropriate level for the given page size1.

As data sizes have increased, so too has the hardware TLB
capacity, resulting in today’s multi-level TLB structures to
deliver low average latency with large effective capacity. In
the latest x86 architectures, the level-1 TLB stores about 64
to 100 entries of PTEs for all page sizes, while the level-2
TLB stores between 1536 and 2048 entries of both 2MB and
4KB pages in a shared array.

A. OS Large Page Support

Operating system support is required for applications to
make effective use of large pages. The most basic in-
terface is to allow applications to explicitly request huge
pages when allocating memory. In Linux, calling mmap with
MAP_HUGETLB flag for allocations that are aligned to the
large (huge) page size will result in the desired large page
allocation. However, this low-level interface requires changes
to the application memory allocation code.

To provide a more friendly interface, Linux provides trans-
parent huge page (THP) support. THP provides large pages to
user processes automatically: whenever there is an opportunity
to allocate a large page for a user process, e.g., the requested
allocation is large enough and aligned, and there is an available
contiguous mapping, the kernel will allocate large pages trans-
parently to the process. Whenever the user process decides to
modify (i.e. change permissions, free pages, etc.) any part of
the transparent large page, the kernel will split the large page
into regular page entries, and act on the page as requested.

1In this work we consider “large” pages to be 2MB, or “huge” pages,
however our approach could apply to a variety of page sizes.

The kernel may also choose to transparently promote groups
of regular pages to large pages to improve TLB performance.
However, this requires either sufficient contiguous physical
memory or explicit (and expensive) compaction/relocation of
existing allocations to create such regions.

B. Related Work

There have been numerous prior works addressing trans-
lation performance for large workloads. To improve TLB
coverage, Pham et al. proposed coalescing multiple adjacent
translations [40] and clustering, in both virtual and physical
space, of small groups of nearby pages to translate any
permutation of memory mappings within the groups [39]. Park
et al. proposed supporting contiguous translations with the help
of the OS [36] to adapt the degree of contiguity at runtime.
Basu et al. revived segmentation to efficiently translate very
large contiguous regions of memory [14]. Karakostas et al.
added support for multiple segments for flexibility [27] and
Park et al. introduced a many-segment translation system that
delays translations for cache misses [37]. These approaches re-
quire large contiguous physical memory blocks, which makes
fragmentation more of a challenge.

Yan et al. proposed OS changes to efficiently generate large
contiguous regions, but they were hampered by unmovable
pages [46]. The recent studies on improving the Linux trans-
parent huge page system by Kwon et al. [29] and Panwar
et al. [35] have targeted latency, performance variability, and
memory consumption by minimizing wasted efforts in trying
to compact page blocks with non-movable pages.

Multiple works have reduced TLB misses and latency by
improving the page table walker [12], [13], [16] and em-
ploying prefetching [17], [31], [32]. Bhargava et al. and Ahn
et al. investigated the translation challenges for virtualized
systems [9], [10], [15]. Pham et al. applied speculation to glue
together regions of large pages that have been splintered by
the hypervisor [38]. Alverti et al. used contiguous allocations
and a page table walk predicting mechanism along with
speculation to minimize page walk latencies [11]. The above
methods could be applied to our approach to reduce latencies
as well.

Swanson et al. proposed providing support for large pages
with non-contiguous physical backing. They did so by adding
an intermediate address layer to enable large pages in the
core-cache side and non-contiguous small physical pages via a
memory controller TLB [44]. Their approach does not benefit
workloads that do not fit into the cache [48]. Du et al.
proposed supporting large pages with non-contiguous physical
memory [19] (Section VII).

Bitmaps have been widely used for fine-grained mem-
ory management. Prior work on DRAM caches [26] and
heterogeneous memory [41] systems use bitmaps for fine-
grained movement/storage. Bitmaps have been used in the
TLB to mark accessed-dirty subblocks [42] or the validity
of a coalesced [40] or clustered mapping [38]. Seshadri et
al. proposed bitmaps to track cacheline overlaying pages for

fine-grained use of virtual memory features. We use bitmaps
to mark parts of the perforated page that are hole pages.

III. MOTIVATION

A. Large Page Management Challenges

Memory bloating: When applications do not use all of
the physical memory allocated to their large pages, they
waste physical memory, leading to memory bloating. This
problem occurs because the operating system’s transparent
huge page support (THP) is not aware of the access patterns
of the applications and tries to allocate large pages when
possible (e.g., from virtual address regions that are multiples
of 2MB, 2MB-aligned, and have identical permissions). If the
application only accesses the data sparsely, this results in the
whole 2MB of data being allocated in physical memory while
only a small amount of it is actually used, thereby increasing
real memory consumption compared to using only 4KB pages.

Memory bloating is one of the reasons that large page sup-
port is recommended to be disabled in common applications
such as Redis, MongoDB, Splunk, and VoltDB [3], [4], [6],
[8], [29]. Perforated pages can address this by punching holes
in the large pages for the regions of regular pages that are
not used by the application. The OS can then use the regular
physical pages that correspond to those holes for other pages.
By allowing holes, perforated pages provide efficient memory
utilization for sparsely used regions and performance benefits
close to those of large pages.
Trade-off between saving memory and performance:
VMware’s transparent page sharing [43] and the Linux ker-
nel’s same page merging (KSM) [1] are common services in
virtualized environments to save memory by deduplication.
The services detect pages with the same content and create
shared mappings to the identical pages. These memory-saving
services have a clear trade-off with large pages: large pages
increase translation efficiency, but reduce the opportunities
for sharing by 4-10x because the chance of having identical
content decreases with the size of the region [38]. Previous
work has addressed this trade-off by breaking cold large
pages into regular 4KB pages to increase the chance of
finding identical pages [21], [29]. To evaluate these effects,
we conducted an experiment using KSM on two Linux virtual
machines (VM) executing the mcf benchmark. The two VMs
consumed 5.16GB in total, but KSM reduced this by 11%. We
observed that page sharing broke 40% of the VMs’ large pages
into regular pages and shared almost all of them. Due to this
40% reduction in large pages, the VM suffered a 34% increase
in TLB misses that translated into 4.9% performance loss.
While page sharing trades performance for memory saving,
our perforated pages do not, as they allow holes in the large
pages to accommodate non-identical sub-pages in large pages.
Compaction overheads and immovable pages: Promoting
pages to a large page requires a contiguous physical memory
region of the large page size. However, the longer the system
has been running, the more the memory becomes fragmented.
The Linux kernel actively compacts physical memory to create
free contiguous memory when it runs out of free contiguous

TABLE I
REDIS PERFORMANCE AS A FUNCTION OF PAGE SIZE.

Factor Large pages Regular pages

Memory allocation (GB) 92.9 77.7
TLB misses (MPKI) 1.00 1.83
Normalized Performance (requests/s) 1.29 1.00

memory. This memory compaction is expensive: it requires
scanning pages, copying physical pages to new locations,
updating PTEs, and TLB shootdowns. Linux performs these
compactions in the page fault handler, which increases fault
latency [29], [34], or in a background thread, which consumes
memory bandwidth and a CPU core. Unfortunately not all
pages can be compacted. Pages used for device drivers,
file caches, and other operating services can be marked as
immovable, preventing compaction [35].

Perforated pages enable cheaper page promotion by al-
lowing the OS to either move existing pages to generate a
contiguous region (if the pages are movable) or punch holes
in the perforated page (if not). Further, more regions can be
promoted by punching holes for immovable sub-pages. This
flexibility reduces the OS compaction burden as creating holes
in the large page may be far cheaper than the overhead of
compaction.

B. Case Study: Memory Bloating

To investigate the trade-off between application memory
bloat and address translation performance, we compared the
effects of large pages and regular pages on the Redis in-
memory database. We configured Redis with 4 million keys
and 16KB objects, as we observed significant memory bloating
for this configuration when running with transparent huge
pages enabled. Table I shows the allocated memory size,
TLB misses per kilo instructions (MPKI), and normalized
performance using large (2MB) and regular (4KB) pages.

The table shows that with large pages, memory allocation
bloats by 20%. To evaluate the effect on performance, one
million requests to random keys are issued to the server to
measure TLB misses and execution times. With large pages,
the TLB MPKI is 82% lower than with regular pages, showing
the benefit of the increased translation coverage. This results
in a performance improvement of 29% (requests per second).

To understand the potential of perforated pages, we use
a trace-based simulation to compare TLB misses for regular
and large pages vs. perforated pages. (Timing performance is
evaluated in Section 6 with the gem5 out-of-order execution
model.) As with the earlier hardware-based experiments, we
allocated 4 million keys for 16KB entry size in Redis, and
then obtained the memory address trace (via Pin [30]) from
1 million random key accesses. We fed the access trace into
a TLB simulator (1.5k-entry, 12-way) with perforated page
support.

The simulations reports TLB MPKIs of 1.75, 1.05 and 1.45
for the regular 4KB, 2MB, and perforated pages, respectively.
As the Redis experiment has random access patterns with
large memory working sets, even large pages cannot drastically

reduce TLB misses. However, even for such harsh patterns, the
proposed technique can reduce the TLB misses significantly,
achieving roughly half of TLB miss reductions from pure large
pages, but without the negative bloating effect inherent in large
pages.

C. Case study: Real-world Fragmentation

To understand real-world fragmentation challenges, we ex-
amined the memory state of a machine running Linux 5.3.8
with 12GB of physical memory. Our benchmark is compiling
the Linux kernel, which allocates memory both in user space
(compiler and build tools) and kernel (kernel metadata and
file caches, known as the page cache). For performance, the
OS keeps the page cache until it runs out of free memory.
This is particularly relevant because the kernel page cache al-
locations create non-movable pages, thereby making memory
compaction and large page allocation difficult.

To evaluate the severity of this effect, kernel compilation
ran until the free memory had been depleted and then started
a benchmark that attempted to allocate 2GB of memory with
large pages. When the benchmark first requested its allocation,
it received only 2.5% large pages (e.g., 25 2MB pages) due to
the system memory fragmentation. We then let the benchmark
idle for for over 100 seconds to give the kernel a chance
to compact memory in the background. At this point, the
fragmentation was reduced, and 2MB large pages were used
for 22% of the application memory.

To investigate the potential of perforated pages, we sim-
ulated a policy for creating perforated pages based on our
performance evaluation in Section VII-B. When <25% of a
2MB region is non-movable and at most 4 of 8 filter bits
are set (not too fragmented), we allocate the 2MB region as
a perforated page. Note that in conventional systems these
2MB regions cannot be allocated in large pages and must be
allocated using regular pages. To evaluate this scenario, we
measured how many perforated pages the OS could deliver.
By applying this perforated page creation policy, we found
that an additional 18% of the 2GB could be allocated using
2MB perforated pages.

We then used the system for other tasks, such as post
processing results for the study, which added memory pressure
leading to more page caches being freed, and then re-ran the
benchmark. Unlike the first run, this time we found that the
OS could deliver 49% 2MB large pages and the potential to
allocate 50% perforated pages. The improvement in the ability
to allocate large and perforated pages is due to the reduction
of immovable pages. These measurements demonstrate that
fragmentation can be both common and severe under typical
workloads.

To assess the performance implication of perforated pages
in this scenario, we simulated the performance improvements
for a random access benchmark (Section VII-B). This indicates
a 20.3% performance improvement by moving from a system
with only 22% large pages to a system with 22% large pages
and 18% perforated pages. For the example of the second
execution, when half of the entire memory is allocated as large

pages, and the other half as perforated pages, the performance
improvement is 69.4% over the conventional system, which
only has half the memory in large pages and the remaining
half in regular pages.

IV. ARCHITECTURE

A. Overview

In this proposal, large pages can be represented either
as standard 2MB pages (contiguous physical region) or as
more flexible 2MB perforated pages (non-contiguous physical
regions). Note that we follow the x86 architecture and use
2MB large pages and 4KB regular pages, but the general idea
can be applied to different combinations of page sizes.

Figure 1 (VA space 1) shows a perforated page in a virtual
address space with a hole mapped to a physical page that is
not contiguous with the rest of the perforated page (center).
Furthermore, the perforated page is shared with the second
virtual address space (VA space 2), but that address space has
a different permission for one page in the shared allocation.
For the 4KB region with a different permission, the hole in its
perforated page (VA space 2) points to another 4KB physical
page with the appropriate permission. This illustrates a copy-
on-write (CoW) situation where the first and second address
spaces shared the same perforated page, but the second address
space wrote to one page, causing a CoW and a new mapping
with a different permission. With perforated pages, the OS
does not need to copy the whole large page nor split it into
smaller pages.

Perforated pages require changes 1) to identify hole pages
in a perforated page, and 2) to provide the translation for hole
pages. First, to identify hole pages, we use hole bitmaps to
track which sub-pages are holes. For efficient accesses to hole
bitmaps, we re-purpose L2 TLB entries to cache hole bitmaps
on-demand, and use a coarse-grained bitmap filter to improve
storage efficiency and latency. Second, to translate hole pages,
we build upon the standard multi-level page table structure
but add shadow L2 page table entries for perforated pages.
The main L2 PTE of a perforated page contains the physical
address of the 2MB region, while the shadow L2 PTE points to
the next L1 page table node containing the translation for any
4KB hole pages. In addition, to avoid changes to the latency-
sensitive L1 TLB, we handle perforated pages in the L2 TLB,
where accesses are translated into 4KB regular pages (either
hole or not) and then stored in the L1 TLB for future use.

B. Hole Page Tracking

Perforated pages use hole bitmaps to efficiently track where
holes exist in the perforated page and shadow L2 PTEs to
access the translations for the 4KB hole pages.

Shadow L2 PTEs for accessing hole translations: For
perforated pages, the L2 PTE must hold two addresses: the
physical address of the 2MB region for the non-hole portions
and the physical address of the L2 page table node for any hole
translations. As current PTEs can contain only one address, we
employ a shadow L2 page table to store the second.

L4
L3 L1

Perforated
page

Hole Page

Shadow L2

L2

63 62 52 51 12 11 8 0

Hole bitmap filter
(8 bits)

4KB PTE

2MB PTE
63 62 52 51 21 12 11 8 0

Ign.

Ign.

Rsvd

Rsvd

Ignored

Ignored

Page Frame Number

PFN

Flags

Flags

Fig. 2. Page table with perforated page support. The shadow L2 page table
is allocated adjacent to the real L2 page table using the buddy allocator. The
extra bits of 2MB PTE are used to hold the bitmap filter.

Figure 2 shows a page table with a shadow L2 node. The
shadowed L2 page table nodes are placed adjacent to the
corresponding L2 page table nodes. This simplifies the address
calculation for the shadowed node since adding a 4KB offset to
the original node is the address of its shadowed node, thereby
avoiding additional indirections and is easy to allocate thanks
to the kernel’s buddy allocator.

For a perforated page, the original L2 PTE contains the
address of the 2MB data page, and the shadow L2 PTE
contains the address of the next-level L1 page table node for
accessing hole translations. Note that the shadow L2 PTEs are
not stored in the TLB. Instead, they are accessed during the
page walk to translate 4KB hole pages and the found 4KB
hole PTE is installed in the TLB. However, to accelerate page
table walks, the content of the shadow L2 can be stored in
the Page Walk Cache and regular cache hierarchy. The level-2
TLB holds regular 4KB and 2MB pages, as well as perforated
2MB pages and hole 4KB pages.

Hole page bitmap for identifying holes: We use a 512-
bit bitmap (one bit per 4KB sub-page) to track holes in the
perforated page and indicate if an access to the shadow PTE
is required. A naive implementation of the bitmap storage is
to extend each L2 PTE by 512 bits to store the status bits
along with the PTE entry. However, such an approach would
require an eight-fold increase in TLB capacity and L2 page
table node size.

Instead, we decouple the hole bitmap from the PTE, and use
a separate block of contiguously allocated physical memory to
store the hole bitmaps for the whole system physical address
space. As every 4KB page of the system has a bit in the
hole bitmap, the location of the relevant bitmap can be easily
calculated from base location of the bitmap storage and the
physical location of the page. This requires 0.003% of the
physical memory, or 4MB for a 128GB system.

Figure 4 shows that translations for perforated pages must
now first check the bitmap to see if the 4KB sub-page
corresponds to a hole. If it does, then the shadow L2 PTE
is accessed and a L1 page walk returns the 4KB hole page
translation. If it is not a hole, the translation can be directly

P
P

1
0
0

17 Entries

0
0
0
0
0
0

0
0
0
0
0
0

0
0
1
1
1
1

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

16 Hole
Bitmaps

Perforated
Page

Naïve
(All bitmaps)

…P
P

L
P

4
K
B

4
K
B

Other (4KB/Large)
Pages

1+N Entries

0
0
0
0
0
0

0
0
0
0
0
0

0
0
1
1
1
1

N Hole
Bitmaps

Perforated
Page

On-Demand L
P

4
K
B

4
K
B

Other (4KB/Large)
Pages

1+N Entries (Filter tracks which bitmaps have holes)

0
0
1
1
1
1

Filter +
On-Demand

L
P

4
K
B

4
K
B

Other (4KB/Large)
Pages

N Hole
Bitmaps

Perforated
Page

P
P

Fig. 3. Generating 4KB pages from large pages. (top) A Naı̈ve approach
requires 16 L2 TLB entries for each perforated page (PP) to store the hole
bitmaps. On detection of a hole from the bitmap, a page walk is initiated to
load a 4KB page translation for the hole. (middle) An on-demand approach
only loads hole bitmaps as needed. Unused bitmap space can then be used by
other L2 TLB entries. (bottom) Filtering uses bits in the perforated page TLB
entry (black) to identify hole bitmaps that do not contain holes, and thereby
avoid the need to store them in the L2 TLB.

generated using the 2MB large page physical address of the
perforated page. To make this more efficient, we maintain
a second-level, coarse-grained hole bitmap that serves as a
filter to reduce the need to access the hole bitmap if the
coarse-grained hole bitmap region has no holes. (See Figure 2,
bottom.) As the PTE for the 2MB perforated page requires
9 fewer address translation bits than a 4KB page, we have
9 unused bits available in its PTE, of which we repurpose
8 for our hole bitmap filter. Each of the 8 bits in the filter
indicates whether there are holes in the corresponding coarse-
grained region of the full hole bitmap (e.g., 256KB region of
the 2MB page). The filter is placed in the L2 PTE and cached
in the perforated page TLB entry. With this approach we can
avoid accessing the bitmap for any coarse-grained region in
the perforated page that has no holes.

C. L2 TLB Extension

Our design leaves the latency-sensitive L1 TLB untouched.
To accomplish this, we generate 4KB pages for sub-pages
of the perforated page that are not holes directly from the L2
TLB and install them in the L1 TLB as any other page. The L2
TLB, however, needs to be modified for accessing perforated
pages and hole bitmaps.

To make accesses to hole bitmaps faster, we cache them in
L2 TLB entries. This is possible as modern machines support
physical address widths of well over 40 bits (46 and 48 on our
Intel E5-2630 and AMD FX-8105 systems), leading to at least
28 bits of physical address, plus several bits for permissions.
We assume that 32 bits of hole bitmap can be stored in a
TLB entry, thereby requiring 16 L2 TLB entries to cache a
full perforated page bitmap.

Filter/Read
Hole Bitmap

Request

Generate
4KB Page

Miss

Page Table
Walk

Not Hole Hole

Response Response

Hit
Perforated pg.

L2 TLB

L1 TLB
Miss

Hit
Regular Page

(4KB/2MB/Hole)

Fig. 4. Translation Flow. Translation requests that miss in the L1 TLB and
hit on a perforated page in the L2 TLB are serviced by generating a 4KB
page that is then installed in the L1 TLB.

Filter? Bitmap Present? Is Hole? Actions Added Cost

Not Hole skip n/a Generate 4kB Page -

Possibly Hole Present No Generate 4kB Page Bitmap (L2 TLB)

Yes Page Table Walk Bitmap (L2 TLB)
Page Table Walk

Not Present No Load Bitmap
Generate 4kB Page Bitmap (Mem)

Yes Load Bitmap
Page Table Walk

Bitmap (Mem)
Page Table Walk

Fig. 5. Handling holes. If the filter determines it is not a hole then there is
no additional cost. If the access is not filtered, and the bitmap is not present
in the L2 TLB, it is fetched from the memory. If the access is to a hole,
the hole page table entry is fetched via page table walk (red); otherwise the
perforated page generates a 4KB TLB entry to be used in the L1 TLB.

A naı̈ve approach is to load the full bitmap into the L2
TLB when a perforated page is brought in. (Figure 3, top.) As
all bitmap entries for the perforated page will be in the same
64B cache line, a single memory access is sufficient. This
will require 17 L2 TLB entries for each perforated page, not
including any eventual 4KB hole translation entries. However,
this approach may bring in the bitmaps of unused regions
of the perforated page, thereby wasting L2 TLB capacity that
could be used for other translations. A more efficient approach
is to load the bitmaps on-demand (Figure 3, middle). This
provides more TLB capacity for other translations as long as
the full perforated page is not accessed. Our proposed design
(Figure 3, bottom) combines a coarse-grained filter bitmap in
the perforated page TLB entry with on-demand loading of the
bitmap data. The design avoids wasting L2 TLB capacity for
bitmaps with no holes (by filtering) and stores bitmaps in the
L2 TLB only for the regions that are actually accessed (on-
demand loading).

D. Address Translation Flow

Perforated large page support requires changes to the L2
TLB lookup and page table walk logic. Figure 4 shows our
proposed address translation flow. On an L2 TLB access, the
corresponding 2MB or 4KB entry is located in the standard
manner. If the translation hits on a regular 4KB or 2MB entry,

or an already-translated 4KB hole entry, the translation is sent
back to the core and inserted into the L1 TLB (left path). If the
lookup hits on a perforated page, the TLB first checks the filter
bitmap in the TLB entry. If the filter indicates the translation
is in a coarse-grained region of the perforated page that does
not have any holes, a 4KB translation is generated from the
2MB perforated page and inserted into the L1 TLB to handle
future requests, with no additional overhead (Figure 5, row 1).
However, if the filter indicates the region might have holes, the
hole bitmap needs to be consulted, either via a second L2 TLB
access (if it is already cached in the L2 TLB, Figure 5 rows
2 and 3) or a memory access (if not, Figure 5 rows 4 and 5).
If the final access to the bitmap shows that the translation is
on a hole, a page table walk is initiated via the shadow PTE
entry and the 4KB translation for the hole is installed in both
the L2 and L1 TLBs.

E. Changes and Overhead Analysis

Storage: The overall page table structure is not changed, but
perforated pages require a shadow L2 PTE (4KB of additional
page table data per perforated page) plus storage for the
bitmaps (0.003% of physical memory).
HW: The HW change is mostly limited to the L2 TLB
controller (storing, searching, and fetching of hole bitmaps)
and the page table walker logic (checking perforated pages
and generating 4KB regular pages for hits).
Potential performance overheads: 1) L2 TLB translation
latency can be increased due to the secondary L2 TLB access
for the bitmap and the memory access if the bitmap is not
present (Figure 5, rightmost column). 2) TLB capacity is
consumed by bitmap entries, requiring up to 16 additional TLB
entries per perforated page if the filter is ineffective and the
whole range is accessed. Note that the increased coverage of
a perforated page (512×) far exceeds this maximum increased
TLB usage (17×)2.
TLB shootdown: A perforated page shootdown requires in-
validating translations for the perforated page itself, all of its
bitmap entries in the L2 TLB, all of its hole entries in the
L1+L2 TLBs, and all of its generated non-hole entries in the
L1 TLB. This could be up to 512+17 total entries, so instead
of searching for them individually, we take the approach of
the Linux kernel [28] and flush the TLB3.

Shootdowns for non-hole and hole pages that are part
of perforated pages are the result of either punching new
holes or patching existing holes. This occurs due to copy-
on-writes(CoW) or compaction, which already require shoot-
downs. Punching and patching must also update the perforated
page bitmap, which requires invalidating the bitmap entry in
the L2 TLB and updating the bitmap in system memory.
Bitmap changes will be batched with the required existing

2In the worst case a perforated page requires 1 entry for the page, 16 entries
for the bitmaps, and 512 4kB hole page entries, if every sub-page is a hole. In
the baseline system, mapping the same data would require 512 4KB entries.
So as long as the perforated page has more than 17 entries that are not holes,
it is a more efficient use of L2 TLB capacity.

3Modern systems allow per-process TLB flushing to reduce this cost for
large L2 TLBs

gVA

gCR3

Nested page table walk

nL4 nL3 nL2 nL1 gL4 PA

nL4 nL3 nL2 nL1 gL3 PA

nL4 nL3 nL2 nL1 gL2 PA

nL4 nL3 nL2 nL1

nL4 nL3 nL2 nL1 MA
Hole

bitmap

Page or PT address

L2 Page Table Entry
Combined hole bitmap filter

(bitwise OR)

Hole
bitmap

gL1 PA For huge page

Fig. 6. 2D translation in virtualized systems. The hole bitmap filter of the
guest and host page tables are combined (bitwise-or) by the page table walker.

shootdowns, making them negligible4. On subsequent trans-
lations the new bitmap will be fetched, although it could be
updated in-place in the TLB with the right ISA support.

In addition to updating the bitmap, patching holes requires
a regular shootdown of the hole page in the L1 and L2
TLBs. On subsequent translations the perforated page will
simply generate a translation for the new non-hole. Similarly,
punching a hole requires both updating the bitmap and a
regular shootdown of the non-hole page, which may be in the
L1 TLB. On subsequent translations, a fault will be generated
when trying to access the shadow PTE for the new hole, and
the hole 4KB entry will be brought in as normal. Note that
both regular shootdowns for CoW (punching) and compaction
(patching) are already issued in current systems.

V. VIRTUALIZATION

System virtualization has been widely adopted to improve
system utilization by consolidating multiple virtual machines
on a physical system. Virtualization first requires that a guest
virtual address (gVA) for a process within a virtual machine
(VM) to be translated to a guest physical address (gPA),
which is in the virtual physical address space of the VM. The
guest physical address is then translated to a host machine
address (MA) by the second address translation. HW support
for these 2D nested page walks is essential for performance
in virtualized environments.

In virtualized systems, the TLBs store either the final
translation from gVA to MA, or intermediate translations (gVA
to gPA and gPA to MA). If large pages cannot be mapped
in either the gVA-gPA or gPA-MA mappings, the translation
must be stored in intermediate form. For example, a guest
large page backed by regular host machine pages cannot use
a large page mapping from gVA to MA. Instead it has one
large mapping from gVA to gPA, and 512 regular mappings
from gPA to MA [38].

4TLB shootdowns are known to be expensive, but it is the synchronization
of all participating HW cores that results in the µs-scale latency. The
invalidation call to the TLB itself is about 158ns [28].

To support perforated pages in virtualized systems we must
set the hole page status bit properly considering both of the
guest and host page tables. Figure 6 details the translation
path. If a mapping uses a perforated page in both of the
guest and host page tables, its translation can be done by
a perforated page entry in the TLB. With perforated pages,
the guest can use holes to avoid unmovable guest physical
addresses, however, the host may have different sets of holes,
resulting in two independent sets of holes in the two layers
of mappings. In an effort to install the perforated page entry
for gVA to MA mappings, the hole bitmap cached in the
L2 TLB must be aware of the holes made by both guest
and host mappings. Therefore, when the page table walker
traverses both page tables and bitmaps of both mappings, the
hole bitmaps of both mappings are combined by a bitwise-OR
operation, and then inserted into the TLB.

The location of the host hole bitmap is directly accessible
in the host machine address. However, the location of the
guest hole bitmap is set in the guest physical address space.
Accessing the guest hole bitmap requires an additional gPA
to MA translation. As this translation is frequently accessed
and is rarely moved, the host can cache the MA address of
the guest host bitmap in a guest control register.

VI. OPERATING SYSTEM INTERACTION

Choosing perforated pages: The operating system must
choose when to allocate perforated pages vs. multiple regular
4KB pages. The trade-off depends on the application’s access
patterns and the fragmentation status of the memory: the more
an application accesses portions of perforated pages that do not
have holes, the better it will perform, and the more pages are
fragmented in compact chunks, the more effective the bitmap
filter will be. These tradeoffs are explored in Section VII-B.
Page allocation: When the OS allocates L2 page table
nodes it must now allocate a second contiguous page for the
shadow L2 page table node. As page table allocations are also
handled by the buddy allocator, the allocation path can be
easily modified to allocate two contiguous pages. The OS also
then allocates the L1 page table nodes in the same manner as
existing page table allocations.

When a perforated page is allocated and its mapping in-
serted into the L2 PTE, the OS must mark the holes in the
bitmap. However, it can choose whether the hole pages are
allocated at this point or lazily on subsequent faults. This
gives the OS the flexibility to lazily allocate physical space for
holes. Because the holes are marked in the bitmap when the
perforated page is first allocated, no shootdowns are required
for allocating the hole pages as no bitmap entries need to be
updated.

The lazy allocation of hole pages can potentially support a
reservation-based large page allocation [29], [33] with perfo-
rated pages and unallocated holes. The perforated page could
reserve a whole large page, but actually map (and patch the
holes) when the regular pages are actually touched, preventing
unused page mappings from causing memory bloating. In
this case, the bitmaps need to be updated for every patching

TABLE II
SIMULATION CONFIGURATIONS

Component Configuration

Processor 2GHz Out-of-order x86 Processor
L1 I/D Cache 4-cycle, 32KB, 8-way, 64B block
L2 Cache 20-cycle, 2MB, 8-way, 64B block
Memory DDR4-2400, 4 Channel

L1 TLB 1-cycle, 64-entry, 4-way, 4KB
1-cycle, 32-entry, 4-way, 2MB

L2 TLB 9-cycle, 1,536-entry, 12-way
Shared by 4KB and 2MB entries

Page Struct. Cache 4-entry L3 cache entries
24-entry L2 cache entries

operation, requiring TLB shootdowns, thereby trading off
shootdowns for better memory utilization.
Modifying the page mapping: If an application frees a
regular page that is part of a large page, or the OS remaps
a regular page of the large page to another region (e.g. copy-
on-write), the OS can either splinter the large page into regular
pages or punch holes (mark hole bitmap) in the large page to
transition it into a perforated page. Holes can be punched in
perforated pages as well. When adding holes to large pages or
perforated pages, the OS must trigger a TLB shootdown to the
affected TLB entries and/or the bitmap entries. (Section IV-E)

Perforated pages can also be patched, to remove holes, and
even reconstruct a non-perforated large page. This can be a
result of memory compaction. When unusable memory that
was not previously compactable is freed, the OS can compact
it into the perforated page to remove the holes. As with
punching, patching also needs an appropriate TLB shootdown.

VII. EVALUATION

A. Simulation Methodology

To evaluate perforated pages, we implemented the HW and
OS support in the Gem5 simulator under system-call emulation
(SE) mode [18]. (As we simulated the computational region
of each application, the memory mappings were setup prior to
the simulated region and we observed no significant changes
in memory mapping from the applications during simulation.)

The core, cache and TLB parameters are listed in Table II.
As SE mode for x86 does not model TLB miss latencies,
we added the multi-level TLB, page walker cache, and all
delays associated with TLB misses. The two-level TLBs are
organized similarly to the Intel Skylake microarchitecture [2],
[24]. The L1 TLB contains 32 entries for 2MB huge pages, and
64 entries for 4KB pages. The L2 TLB is an 12-way TLB with
1.5K entries, and each can hold 2MB, 4KB, perforated page, or
bitmap entries. As observed by others, we assume that the 4KB
and 2MB page entries can be looked up concurrently in the
L2 TLB [2]. We implemented a page walk translation cache
based on the Intel Page Structure Cache (PSC) [23], [25], [45].
Finally, as the TLB is per core and works independently on
each core, we evaluate a single-core system.

We first study the performance impact of perforated pages
on a microbenchmark that fits in the L2 TLB in the baseline
with the best allocation scenario, but is capacity-pressured with

0 10 25 50 75 90 100
Portion of fragmented 2MB page blocks (%)

100

200

300

No
rm

al
ize

d
IP

C
(%

) clustered

0 10 25 50 75 90 100
Portion of fragmented 2MB page blocks (%)

100

200

300

dispersed
Baseline 4KB Base 2MB+4KB frag: 10% frag: 25% frag: 50% frag: 75% frag: 90% Unallocated holes

Fig. 7. Sensitivity to the portion (percentage of 2MB regions that are fragmented = percentage of perforated pages) and the fragmentation (percentage of
holes or unallocated pages within each 2MB region, or perforated page). IPC values are normalized to the performance of the baseline 4KB TLB.

0 10 25 50 75 90100
(a) clustered-frag: 75%

0

50

100

Po
rti

on
 o

f
TL

B
en

tri
es

 (%
)

0 10 25 50 75 90100
(b) clustered-frag: 25%

0

50

100

0 10 25 50 75 90100
(c) dispersed-frag: 25%

0

50

100

0 10 25 50 75 90100
(d) dispersed-unallocated: 25%

0

50

100
perforated pages regular 2MB regular 4KB and holes hole bitmaps

Fig. 8. TLB content breakdowns for various distribution and fragmentations. The x-axis shows the portion (percentage of 2MB regions that are fragmented
= percentage of perforated pages).

less optimal memory allocations, to draw conclusions for a
conservative system configuration. We then use mcf, omnetpp,
libquantum, and zeusmp from SPEC CPU 2006 [22], mummer
and tigr from the biobench suite [20], and SPEC CPU 2017 [5]
(omnetpp17 and xz) to show the impact of perforated page on
larger applications5.

To explore a range of scenarios, we emulated a fragmented
system using two distributions of hole pages: dispersed and
clustered. Dispersed spreads the hole sub-pages throughout
the fragmented 2MB page blocks, while clustered places them
together. We expect the clustered distribution to perform better
due to our bitmap filter. Secondly, to control the severity of
fragmentation, we explore the portion of 2MB regions that are
fragmented and the degree of fragmentation within each 2MB
region.

B. Sensitivity to Fragmentation

We first explore performance with regards to system and
application fragmentation. We assume a worst case memory
access scenario for the TLB by running a random memory
access benchmark with a 2GB dataset that fits in the TLB when
using 2MB pages. As fragmentation increases, conventional
large pages must be split into regular pages, reducing the
effective reach of the TLB, and hurting performance.

Figure 7 shows the performance impact of fragmentation
across the portion of fragmented 2MB regions (% with
holes, x-axis) and the fragmentation inside each region (% of
holes, curves), for both clustered (left) and dispersed (right)
distributions, normalized to 4KB pages. The dashed curve
shows the performance for conventional large page support
(Base 2MB + 4KB).

Note that the real-world fragmentation scenario we observed
(Section III-C) had 50% fragmented 2MB blocks with up to
25 holes clustered in each block. This corresponds to the

5Other benchmarks from these suites were evaluated but as they were not
TLB-sensitive, they showed little difference.

curve frag-25% on the left (clustered) figure at the x-axis
of 50% (portion). From that point we can see the potential
performance benefit (59.4%) of perforated pages (frag-25%)
over traditional large pages (Base 2MB+4KB).

Portion of fragmentation: As the portion of fragmented
2MB blocks increases (towards the right) performance de-
creases. This is expected for Base 2MB + 4KB as the
conventional TLB is forced it to split large pages due to
fragmentation, reducing TLB coverage and increasing the
number of page walks.

Perforated pages show significantly less performance loss as
fragmentation increases, maintaining nearly all of the benefit
of large pages even when 50% of the total large pages have
10% holes. As expected, as the portion of pages that have holes
increases (x-axis, moving right) the performance decreases as
not all of the hole pages can fit in the TLB. In the extreme
case of all pages containing holes and 90% fragmentation in
each perforated page, the performance is roughly equivalent to
the baseline 2MB + 4KB as essentially all pages are holes, and
therefore require a 4KB page translation in the TLB. While
perforated pages should benefit from the 10% that are not
holes, the second L2 TLB access for the 90% hole pages
largely negates this benefit. Figure 8 shows the breakdown
of the L2 TLB entries for these scenarios. As the portion of
fragmented 2MB blocks increases (left-to-right), the portion
of 2MB entries in the TLB decreases and the number of
perforated page entries increases. As the fragmentation of the
perforated pages increases (8b to 8a) the portion of 4KB hole
pages in the TLB increases, reducing its effective coverage.

Fragmentation per block: With increased fragmentation,
the perforated pages access the hole region/page bitmaps
more frequently and bring more bitmaps and 4KB hole page
translations into the TLB. These occupy TLB entries that could
be used for large page entries, thereby reducing its effective
coverage. Figures 8 (a) and (b) show the effect of such
fragmentation on the TLB. As the fragmentation decreases

0 10 25 50 75 90100
100.0

102.5

105.0

107.5

110.0
mcf

0 10 25 50 75 90100
100

105

110

115

120
omnetpp

0 10 25 50 75 90100
100

105

110

115

120
mummer

0 10 25 50 75 90100
100

110

120

130

140
tiger

0 10 25 50 75 90100
100

110

120

130
libquantum

0 10 25 50 75 90100
100.0

102.5

105.0

107.5

110.0
zeusmp

0 10 25 50 75 90100
100.0

102.5

105.0

107.5

110.0
xz

0 10 25 50 75 90100
100

105

110

115

120
omnetpp17

Portion of fragmented 2MB blocks (%)

No
rm

al
ize

d
IP

C
(%

)
Base 2MB+4KB clustered-frag: 10%

clustered-frag: 25%
clustered-frag: 50%
dispersed-frag: 10%

dispersed-frag: 25%
dispersed-frag: 50%

Fig. 9. Performance of native workloads, normalized to the performance of base 4KB TLB

from 75% (a) to 25% (b), the ratio of perforated and 2MB TLB
entries increases while 4KB (needed for hole pages) decreases.
The analysis suggests that performance is better for perforated
pages with up to 50% hole pages (red triangles in Figure 7),
but beyond that performance is similar to the baseline 2MB +
4KB design.

Hole type: Hole pages can be either unallocated or al-
located. As unallocated hole pages are not accessed, the
corresponding hole pages are not inserted into the TLB.
Therefore, the more unallocated holes, the greater the effective
TLB coverage and performance.

Figure 7 shows the extreme case of having all holes un-
allocated as a black dotted curves. For the clustered (left)
unallocated hole curves, each black dotted curve represents
different degrees of fragmentation (10% top, 90% bottom).
In this case, the hole bitmap filter is effective for smaller
degrees of fragmentation and we see better performance for
lower degrees of fragmentation. However, for the dispersed
case (right) the filter is ineffective, resulting in slightly larger
performance drops due to more hole bitmap lookups. Figure 8
shows the breakdown of how TLB entries are used for allo-
cated (c) and unallocated (d) holes. With unallocated holes,
as the corresponding 4KB pages are not loaded into the TLB,
and perforated pages are able to use the entries to store more
perforated, 2MB, and bitmap entries.

This data shows that perforated pages can provide signifi-
cantly better performance in an environment with unallocated
pages, particularly if they are clustered. We see that even when
the unallocated hole pages are dispersed (worse performance),
at the worst case (portion: 100%, frag: 90%), perforated
page performance drops by 31.2% from the best performing
configuration (2MB with portion of 0% perforated page). This
is 2.4× faster than the Baseline 2MB+4KB TLB.

Hole distribution: Perforated pages perform better with
clustered holes as the hole region bitmap can filter many
lookups to the page region bitmap, thereby saving the addi-
tional L2 TLB access required to check the bitmap as well

xz zeusmp mcf mumm.omnpp17 libq. omnpp tigr G.mean
0

10

20

30

IP
C

im
pr

ov
em

en
t (

%
)

GTSM
Perforated pages

Ideal 2MB

Fig. 10. Performance (IPC) improvement of GTSM, perforated pages, and
ideal 2MB normalized to 4KB TLB baseline.

as the L2 TLB capacity to store the bitmap. With dispersed
holes, the filtering is ineffective as the holes are distributed
across all regions. This effect is shown in Figure 8 (b) and (c).
The clustered distribution allows for effective filtering (avoids
68% of bitmap lookups), which results in fewer bitmaps being
inserted into the TLB (58% less).

C. Application Performance

Figure 9 shows application performance for the differ-
ent distributions and varying amounts of fragmentation and
portions of fragmented 2MB blocks. We do not evaluate
unallocated hole pages, as these workloads do not free unused
pages back to the OS and we assume that all memory has
been allocated.

Across all applications, perforated page performance de-
creases with the portion of fragmented blocks and the frag-
mentation within the blocks. The effectiveness of the filtering
is clearly seen in the significantly better performance of the
clustered (solid line) distributions compared to the dispersed
(dashed line) ones. In the case of mcf at 50% fragmentation
and 50% fragmented blocks, the hole region bitmap filter
eliminated up to 85% of bitmap accesses and resulted in
26% fewer bitmap entries in the TLB, enabling greater ef-
fective TLB coverage and better translation performance. For
libquantum the absolute TLB MPKI were rather low (0.43,
0.92, for clustered and dispersed), but it is heavily sensitive
to translation latency. As a result, it sees significantly worse
performance for dispersed fragmentation due to the second

0 10 25 50 75 90100
100

110

120

130

140
mcf

0 10 25 50 75 90100
100

110

120

130

140
omnetpp

0 10 25 50 75 90100
100

120

140

160

180
mummer

0 10 25 50 75 90100
100

150

200

250
tiger

0 10 25 50 75 90100
100

120

140

160

180
libquantum

0 10 25 50 75 90100
100

105

110

115

120
zeusmp

0 10 25 50 75 90100
100

110

120

130

140
xz

0 10 25 50 75 90100
100

120

140

160
omnetpp17

Portion of fragmented 2MB blocks (%)

No
rm

al
ize

d
IP

C
(%

)
Base 2MB+4KB clustered-frag: 10%

clustered-frag: 25%
clustered-frag: 50%
dispersed-frag: 10%

dispersed-frag: 25%
dispersed-frag: 50%

Fig. 11. Performance of virtualized executions, normalized to the performance of base 4KB TLB on a virtualized system

L2 TLB access to the bitmap required for each non-filtered
access.

From the real-world fragmentation study (Section III-C) we
found that 50% of the allocated memory was unfragmented
(large pages) and the remaining 50% fragmented with a degree
of 25% (i.e. 25% of sub-pages in each large page would
needed to be holes) but clustered. For the corresponding
configurations in Figure 9, we see that perforated pages are
able to achieve between 93.2% and 99.9% of the ideal large
page performance (no fragmentation), and provide between
2.0% to 11.5% IPC improvement over conventional TLBs in
the fragmented system.

D. Comparison to GTSM

Gap-Tolerant Sequential Mapping (GTSM) [19] enables
large page allocation in the presence of memory-fault (hole)
fragmentation. Memory faults of even 1% are shown to prevent
the use of large pages [19]. GTSM divides the physical
memory into 4MB chunks and provides flexible mappings
using sub-blocks of 64KB to generate a single 2MB large page
within each 4MB chunk6. The remaining sub-blocks can then
be used as regular 4KB pages. While this allows for mapping
around faults, it limits the allocation of large pages to one-half
of the available memory. Our work provides a more flexible
mapping approach by punching holes for the faulty physical
pages within large pages, remapping the holes to functional
regular pages, thereby enabling the use of these, otherwise
faulty, large pages by utilizing perforated pages.

We compare GTSM to our work for the specific fragmenta-
tion scenario GTSM is targeting: 5.5% randomly placed faults,
resulting in zero un-fragmented 2MB blocks. Beyond this
error rate GTSM cannot provide even 50% of the memory
as large pages. We increase the size of the L2 and L3
page walker caches to 32 entries for GTSM, as GTSM is
sensitive to the size of the page walker cache, and these are

6GTSM supports three different large page sizes, 1MB, 2MB, and 4MB,
but the fundamental design is the same.

the original parameters of GTSM [19]. Figure 10 shows the
performance improvement of our perforated pages, GTSM,
and an ideal 2MB (no-fragmentation) scenario, normalized to
the IPC of running with only 4KB pages. The analysis shows
that perforated pages outperform GTSM by 6.2% on average,
even for this scenario with very limited fragmentation.

E. Virtualized System

We implemented the two-dimensional page walk [47] for
virtualization in our simulation infrastructure by mapping the
guest memory and (guest) page tables using another set of
(host) page tables. Any access to the guest physical space
(native physical memory access) is augmented with an address
translation from guest physical to the host machine address,
as shown in Figure 6.

As described in Section V, reading in page bitmaps under
virtualization requires reading both guest and host bitmaps, in
addition to the standard 2D page walk. We found that even
with the state-of-art page caching for two dimensional page
walk, the page walk resulted in an average of six memory
accesses (still many fewer than the default 24). Figure 11
shows using perforated pages is beneficial compared to using
regular pages, which experiences more page walks due to less
TLB coverage.

In virtualized systems, the performance improvements from
large pages are greater than in native systems due to the
increased TLB miss costs. As the cost of the page table
walk becomes greater, we observe more benefit from per-
forated pages: while libquantum did not perform well with
the dispersed distribution, in a virtualized context it now out-
performs the non-perforated page baseline. Based on the same
configurations that we observed in the fragmentation study, we
see that perforated pages achieve between 78.9% and 99.9% of
the ideal large page performance, and provide between 7.2%
to 48.0% IPC improvement over conventional TLBs in the
fragmented system.

In our evaluation we have explored the effects of a frag-
mented memory environment and shown that perforated pages
are far more effective at retaining the benefits of larger effec-
tive TLB reach across a variety of fragmentation scenarios than
the standard 4KB/2MB page system. These benefits increase
further in a virtualized environment where TLB misses are
even more expensive, and decrease when the holes are not
clustered in the perforated page, as filtering becomes less
effective, requiring both more L2 TLB accesses for the bitmap
and more storage for the hole pages.

VIII. CONCLUSION

While large pages improve translation efficiency by in-
creasing effective TLB reach, they have strict requirements
for contiguous physical memory regions that both limit the
contexts in which they can be used and results in physical
memory bloat for applications with sparse memory usage.
In this work we addressed this inflexibility by introducing
perforated pages, which allow the OS to punch out 4KB holes
in 2MB large pages. This provides the benefit of large pages
even when the physical backing memory region is fragmented
(immovable pages) or if shared pages have variations (different
permissions), while also removing the requirement that large
pages allocate the full physical memory (reducing bloat).

We implement perforated pages efficiently by building upon
the existing hierarchical page table with shadow PTE entries
to translate holes, and by providing two-levels of hole bitmaps
that are filtered and cached in the L2 TLB. Our results show
that perforated pages can provide most of the benefits of the
extended reach of large pages, from 2.0% to 11.5% improve-
ment in native environments and 7.2% to 48.0% improvement
in virtualized environments, even in the presence of realistic
memory fragmentation which prevents the use of large pages.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF-2019R1A2B5B01069816), the Insti-
tute for Information & communications Technology Promo-
tion (IITP-2017-0-00466), the Knut and Alice Wallenberg
Foundation through the Wallenberg Academy Fellows Pro-
gram, the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program
(715283), The NRF and IITP projects are funded by the
Ministry of Science and ICT, Korea.

REFERENCES

[1] “How to use the Kernel Samepage Merging feature,” https://www.kernel.
org/doc/Documentation/vm/ksm.txt.

[2] “Intel Skylake,” https://www.7-cpu.com/cpu/Skylake.html.
[3] “MongoDB recommends disabling huge pages,” https://docs.mongodb.

com/manual/tutorial/transparent-huge-pages.
[4] “Redis Administration – Redis,” https://redis.io/topics/admin.
[5] “SPEC CPU 2017,” https://www.spec.org/cpu2017/.
[6] “Splunk recommends disabling huge pages,” https://docs.splunk.com/

Documentation/Splunk/7.3.1/ReleaseNotes/SplunkandTHP.
[7] “Transparent Page Sharing (TPS) in hardware MMU systems

(1021095),” https://kb.vmware.com/s/article/1021095.
[8] “VoltDB recommends disabling huge pages,” https://docs.voltdb.com/

AdminGuide/adminmemmgt.php.

[9] J. Ahn, S. Jin, and J. Huh, “Fast Two-Level Address Translation for
Virtualized Systems,” IEEE Transactions on Computers, vol. 64, no. 12,
pp. 3461–3474, 2015.

[10] J. Ahn, S. Jin, and J. Huh, “Revisiting Hardware-assisted Page Walks for
Virtualized Systems,” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ser. ISCA ’12, 2012, pp. 476–
487.

[11] C. Alverti, S. Psomadakis, V. Karakostas, J. Gandhi, K. Nikas,
G. Goumas, and N. Koziris, “Enhancing and Exploiting Contiguity for
Fast Memory Virtualization,” in Proceedings of the 47th International
Symposium on Computer Architecture, ser. ISCA ’20. IEEE, 2020.

[12] T. W. Barr, A. L. Cox, and S. Rixner, “SpecTLB: A mechanism for
speculative address translation,” in Proceedings of the 38th Annual
International Symposium on Computer Architecture, ser. ISCA ’11.
IEEE, 2011, pp. 307–317.

[13] T. W. Barr, A. L. Cox, and S. Rixner, “Translation Caching: Skip, Don’t
Walk (the Page Table),” in Proceedings of the 37th Annual International
Symposium on Computer Architecture, ser. ISCA ’10, 2010, pp. 48–59.

[14] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
Virtual Memory for Big Memory Servers,” in Proceedings of the
2013 40th Annual IEEE/ACM International Symposium on Computer
Architecture, 2013, pp. 237–248.

[15] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating Two-
dimensional Page Walks for Virtualized Systems,” in Proceedings of the
2008 13th Annual IEEE/ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2008, pp.
26–35.

[16] A. Bhattacharjee, “Large-reach Memory Management Unit Caches,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-46. ACM, 2013, pp. 383–394.

[17] A. Bhattacharjee, “Translation-Triggered Prefetching,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’17.
ACM, 2017, pp. 63–76.

[18] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The Gem5
Simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,
Aug. 2011.

[19] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem, “Supporting
superpages in non-contiguous physical memory,” in Proceedings of
the 21st International Symposium on High Performance Computer
Architecture, ser. HPCA ’15. IEEE, 2015, pp. 223–234.

[20] M. Franklin, D. Yeung, n. Xue Wu, A. Jaleel, K. Albayraktaroglu,
B. Jacob, and n. Chau-Wen Tseng, “BioBench: A Benchmark Suite
of Bioinformatics Applications,” in Proceedings of the 2005 Annual
IEEE/ACM International Symposium on Performance Analysis of Sys-
tems and Software, vol. 00, 2005, pp. 2–9.

[21] F. Guo, S. Kim, Y. Baskakov, and I. Banerjee, “Proactively Breaking
Large Pages to Improve Memory Overcommitment Performance in
VMware ESXi,” in Proceedings of the 11th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE
’15, 2015, pp. 39–51.

[22] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, 2006.

[23] TLBs, Paging-Structure Caches, and Their Invalidation, Intel, 2008.
[24] Intel R© 64 and IA-32 Architectures Optimization Reference Manual,

Intel, 2016.
[25] Intel R© 64 and IA-32 Architectures Software Developer’s Manual, Vol-

ume 3, Intel, 2019.
[26] D. Jevdjic, S. Volos, and B. Falsafi, “Die-Stacked DRAM Caches for

Servers: Hit Ratio, Latency, or Bandwidth? Have It All with Footprint
Cache,” in Proceedings of the 40th Annual International Symposium on
Computer Architecture, ser. ISCA ’13. ACM, 2013, p. 404–415.

[27] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant Memory
Mappings for Fast Access to Large Memories,” in Proceedings of the
2015 42Nd Annual IEEE/ACM International Symposium on Computer
Architecture, 2015, pp. 66–78.

[28] M. K. Kumar, S. Maass, S. Kashyap, J. Veselý, Z. Yan, T. Kim,
A. Bhattacharjee, and T. Krishna, “LATR: Lazy Translation Coherence,”
in Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’18. ACM, 2018, p. 651–664.

https://www.kernel.org/doc/Documentation/vm/ksm.txt
https://www.kernel.org/doc/Documentation/vm/ksm.txt
https://www.7-cpu.com/cpu/Skylake.html
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages
https://redis.io/topics/admin
https://www.spec.org/cpu2017/
https://docs.splunk.com/Documentation/Splunk/7.3.1/ReleaseNotes/SplunkandTHP
https://docs.splunk.com/Documentation/Splunk/7.3.1/ReleaseNotes/SplunkandTHP
https://kb.vmware.com/s/article/1021095
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://docs.voltdb.com/AdminGuide/adminmemmgt.php

[29] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated
and Efficient Huge Page Management with Ingens,” in Proceedings of
the 2016 12th USENIX Conference on Operating Systems Design and
Implementation, 2016, pp. 705–721.

[30] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation,” in Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2005, pp. 190–200.

[31] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
Address Translation,” in Proceedings of the 52Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. ACM,
2019, pp. 1023–1036.

[32] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
Address Translation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. ACM,
2019, p. 1023–1036.

[33] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, Transparent
Operating System Support for Superpages,” SIGOPS Oper. Syst. Rev.,
vol. 36, no. SI, pp. 89–104, Dec. 2002.

[34] A. Panwar, S. Bansal, and K. Gopinath, “HawkEye: Efficient Fine-
grained OS Support for Huge Pages,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ser. ASPLOS ’19, 2019, pp.
347–360.

[35] A. Panwar, A. Prasad, and K. Gopinath, “Making Huge Pages Actually
Useful,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’18, 2018, pp. 679–692.

[36] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid TLB coalescing:
Improving TLB translation coverage under diverse fragmented memory
allocations,” in Proceedings of the 2017 44th Annual IEEE/ACM Inter-
national Symposium on Computer Architecture, 2017, pp. 444–456.

[37] C. H. Park, T. Heo, and J. Huh, “Efficient Synonym Filtering and Scal-
able Delayed Translation for Hybrid Virtual Caching,” in Proceedings of
the 43rd International Symposium on Computer Architecture, ser. ISCA
’16, 2016, pp. 90–102.

[38] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee, “Large pages
[47] I. Yaniv and D. Tsafrir, “Hash, Don’t Cache (the Page Table),” in

Proceedings of the 2016 ACM SIGMETRICS International Conference

and lightweight memory management in virtualized environments: Can
you have it both ways?” in Proceedings of the 48th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’15. IEEE,
2015, pp. 1–12.

[39] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing TLB
reach by exploiting clustering in page translations,” in Proceedings of the
2014 20th Annual IEEE International Symposium on High Performance
Computer Architecture, 2014, pp. 558–567.

[40] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT:
Coalesced Large-Reach TLBs,” in Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture, 2012, pp.
258–269.

[41] J. H. Ryoo, M. R. Meswani, A. Prodromou, and L. K. John, “SILC-
FM: Subblocked InterLeaved Cache-Like Flat Memory Organization,”
in Proceedings of 23rd International Symposium on High Performance
Computer Architecture, ser. HPCA ’17. IEEE, 2017, pp. 349–360.

[42] J. H. Ryoo, S. Song, and L. K. John, “Puzzle Memory: Multifractional
Partitioned Heterogeneous Memory Scheme,” in Proceedings of the 36th
International Conference on Computer Design, ser. ICCD ’18. IEEE,
2018, pp. 310–317.

[43] V. Seget, “VMware Transparent Page Sharing (TPS) Explained,” https:
//www.vladan.fr/vmware-transparent-page-sharing-tps-explained, 2017.

[44] M. Swanson, L. Stoller, and J. Carter, “Increasing TLB reach using
superpages backed by shadow memory,” in Proceedings of the 25th
Annual International Symposium on Computer Architecture, ser. ISCA
’98. IEEE, 1998, pp. 204–213.

[45] S. van Schaik, K. Razavi, B. Gras, H. Bos, and C. Giuffrida, “Reverse
engineering hardware page table caches using side-channel attacks on
the mmu,” Vrije Universiteit Amsterdam, Tech. Rep., 2017.

[46] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Translation
Ranger: Operating System Support for Contiguity-aware TLBs,” in Pro-
ceedings of the 46th International Symposium on Computer Architecture,
ser. ISCA ’19. ACM, 2019, pp. 698–710.
on Measurement and Modeling of Computer Science, ser. SIGMETRICS
’16, 2016.

[48] L. Zhang, E. Speight, R. Rajamony, and J. Lin, “Enigma: Architectural
and Operating System Support for Reducing the Impact of Address
Translation,” in Proceedings of the 24th ACM International Conference
on Supercomputing, ser. ICS ’10. ACM, 2010, p. 159–168.

https://www.vladan.fr/vmware-transparent-page-sharing-tps-explained
https://www.vladan.fr/vmware-transparent-page-sharing-tps-explained

