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Abstract

This report provides a new theoretical measure for the nonlocality of an arbitrary three-qubit

pure state system similar to the method used to describe tripartite entanglement, resulting in a

concept referred to as residual nonlocality, η. This report also investigates the special cases that

can be encountered when using η. This method assigns a numerical value between 0 and 1 in

order to indicate the degree of nonlocality between three-qubits. It was discovered that η has the

characteristic of being consistently larger or equal to the value found for the residual entanglement

which can provide further insights regarding the relation between nonlocality and entanglement.

Abstract

I rapporten föreslås och analyseras ett nytt teoretisk mått för ickelokalitet hos tre-kvantbitsystem

på ett liknande sätt till metoden som används för tredelad sammanflätningar. Detta ger en koncept

som vi har valt att benämna residual ickelokalitet η. Rapporten undersöker också specialfall som

kan påträffas när man använder η. Metoden som läggs fram i rapporten ger ett numeriskt värde

mellan 0 och 1 för att visa graden av ickelokalitet mellan kvantbitarna. Vår undersökning visar att

η kommer under alla sammanhang vara större eller lika med den graden av tredelad sammanflät-

ning i samma system vilket kan ge en bättre förståelse av relationen mellan sammanflätning och

ickelokalitet.
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1 Introduction

Entanglement has had a persistent place at the center of discussions regarding the limitations and rules

of quantum mechanics since Einstein, Podolosky, Rosen (EPR) [1] released their paper questioning the

completeness of quantum mechanics. This led to John Bell’s paper in 1964 and the introduction of

further concepts such as nonlocality and entanglement [2].

Let us first begin by describing what entanglement and nonlocality respectively are. Entanglement

comes about when two quantum systems are created from the same source and allows for the two

quantum systems to in a way correlate to each other. Nonlocality is a result of a violation in a set of

relations referred to as Bell’s inequality and explains how these two entangled quantum systems can

influence each other in a direct manner while not having any direct contact.

Figure 1: The following figure showes
the relation between entanglement and
nonlocallity as general concepts in the
general case [8].

Until 1989 entanglement was believed to be the same as the

violation of the Bell inequalities and by proxy nonlocality. It

was proven that the violation of the Bell inequalities is in no

way a requirement for the entanglement to exist [3]. Mean-

ing that entanglement by itself is a much broader and larger

concept than that of nonlocality and violations of the Bell

inequality, making nonlocality more of a subset of entangle-

ment, where all systems that do violate the Bell inequality

are in fact entangled but not all entangled systems violate

the Bell inequality.

Currently both quantum nonlocality and quantum entangle-

ment are central concepts used in modern quantum informa-

tion. Entanglement is used in many applications of quantum information due to the fact that it is a

quantifiable resource for communication and allows for phenomena such as teleportation of quantum

states [4]. In the span of time between 1989 until now further discoveries have been made regarding

the nature of few-qubit systems which could lead to a better understanding of the larger systems as

well. Most of the research done regarding entanglement is centered around two-qubit systems.

The focus on two-qubit entanglement has been in large due to the relation between entanglement and

nonlocality in a two-qubit pure state system, where, as proven by Gisin in such systems, entanglement

and nonlocality are basically equivalent to one another in terms of resources they provide [5]. As pre-

viously mentioned there are many ways to measure the entanglement for a two-qubit system and to

assign the degree of entanglement a quantifiable value. One such method that is going to be mainly

used in this project is concurrence [7], which provides a distinct value between 0 and 1 for the degree

of entanglement in two-qubit systems.

There has been further progress regarding larger qubit systems such as the tripartite system that will

be discussed in this report. The equivalency proven by Gisin was only applicable to two-qubit pure

states, thus it cannot be applied to the tripartite system meaning that nonlocality and concurrence are
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not equivalent. For entanglement in such systems the measurement method is the concept of residual

entanglement [9], while for nonlocality the answer is less clear. Recently a paper [12] has made inter-

esting progress on the subject. Here, we attempt to answer the question somewhat differently than in

[12] by adapting the concept of residual entanglement to nonlocality between three qubits split among

Alice, Bob and Charlie, yielding a concept that may be called ‘residual nonlocality’ η. Explicitly, for a

pure three-qubit state
∣∣Ψabc

〉
, we define η as

η = C2(Ψa(bc))−B2(ρab)−B2(ρac),

where C and B are concurrence [7] and degree of nonlocality [13], respectively.

Using this approach, this report aims to examine the following properties:

(i) Is η the same under permutation of a, b, and c?

(ii) Is η ≥ 0 and if so is the inequality strict (i.e., η > 0) for non-product states?

Both these properties are consistently found for the tripartite entanglement measure and due to the

similarity between the two concepts of nonlocality and entanglement these properties are to be further

studied.

2 Background

2.1 Nonlocality

This section aims to provide some historical background and fundamental theory regarding entangle-

ment and nonlocality with a main focus on the EPR papers followed by the theory section which directly

discusses the algebra and the formulae used to solve the problems.

Let us begin by considering a two electron system in a spin singlet state such that the total spin of the

system would be zero. Let us continue further and assign each of the two resulting electrons to either

Alice or Bob, such that they each have access to only one of the two electrons which are entangled. As-

sume that Alice and Bob have a relatively large distance between them. This system can be expressed

as:

|ψ〉z =
1√
2

(|↑zA↓zB〉 − |↓zA↑zB〉), (1)

where |ψ〉z is the expected measurements along the z axis and A and B stand for Alice and Bob. Now

assume Alice takes the electron that she has access to and makes a measurement of it. There is a

50-50 chance for either up and down, by measuring Alice finds out what state her electron is in. If

Bob chooses to make a measurement along the z axis after Alice, his result is already decided to be

the opposite of Alice’s, while if he chooses to make a measurement along any other axis such as the x

axis the results would not be effected in by Alice’s measurement at all. For this case we know that the

probability in the x direction would be identical to that of the z direction since spin singlet states have
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no preference regarding any distinct direction, making the singlet state along the x axis to be:

|ψ〉x =
1√
2

(|↓xA↑xB〉 − |↑xA↓xB〉). (2)

Given this we now know all possible outcomes of this experiment between Alice and Bob and we see

how Alice can affect Bob’s results from miles away.

Table 1: All possible results for Bob. Note that if Alice meassures along the x axis the results would
be reversed instead and that x,y and z are interchangeable in regards to the relation.

Possible Alice measurments Possible Bob measurements
↑z ↓z
↑z ↓x
↑z ↑x
↓z ↑z
↓z ↓x
↓z ↑x

It was exactly this interaction and the fact that one particle could alter the probability distribution of

another that made Einstein uncomfortable. Due to the distance in between them and the speed of the

interaction, the system was surpassing the speed of light given the way the information was exchanged

between the two electrons after the measurement. At the time there where two general approaches

regarding the explanation behind this phenomena.

The first approach assumes that there exists a hidden variable that decides the states of all parties

even before the observation and dictates all the possible setups. Meaning that the states in a setup

are already decided and by observing them we simply get to see what has been there this whole time,

implying that the information never travels between Alice and Bob but instead it just is confirmed

by them. This argument was originally made in the paper "Can Quantum-Mechanical Description of

Physical Reality Be Considered Complete?" By Einstein Podolsky and Rosen (EPR) [1].

The second approach is that the quantum objects are by nature probabilistic and that their distinct

positions are not exclusive to their local placements and hence they are "non-local", which is the current

and generally accepted method.

Given that Einstein had a more "mechanistic" view he pushed for the notion of a hidden variable while

people like Niels Bohr pushed for the more probabilistic variant at the time. There was no decisive

answer to this problem until 1964 where John Bell released a paper disproving the notion of a hidden

variable theory and its implications.

He started by making several logical arguments.

1) That in case the hidden variable theory was true then it should apply to all cases and all circumstances

since it is a general concept.

2) That assuming the existence of a hidden variable in a system of many particles, there should exist a

finite number of cases for each possible combinations of states along however many chosen axes. While

the given states still cancel each other to give a total spin zero as it is observed/required.
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These assumptions are rather self explanatory since the first one is required for the theory to be accepted

as a general "law" of nature and the second is a direct implication of assuming everything precedes

even if we could only observe one unit vector at a time. He followed this up by considering 3 unit

vectors that are not necessarily mutually orthogonal to each other as opposed to (x̂,ŷ,ẑ), let us call

these 3 unit vectors (α̂,β̂,γ̂). So now take a system of N particles split into pairs among Alice and Bob

and measured along the three aforementioned axes. It is worth stressing that there is no possible way

to measure or ensure that a particle belongs to one exact state experimentally but given that they can

and should exist if there is a hidden variable allows for the to the following table and description while

it would be impossible in practice.

Table 2

Population of state Possible Alice measurments Possible Bob measurements
N1 (↑α, ↑β , ↑γ) (↓α, ↓β , ↓γ)
N2 (↑α, ↑β , ↓γ) (↓α, ↓β , ↑γ)
N3 (↑α, ↓β , ↑γ) (↓α, ↑β , ↓γ)
N4 (↓α, ↑β , ↑γ) (↑α, ↓β , ↓γ)
N5 (↑α, ↓β , ↓γ) (↓α, ↑β , ↑γ)
N6 (↓α, ↑β , ↓γ) (↑α, ↓β , ↑γ)
N7 (↓α, ↓β , ↑γ) (↑α, ↑β , ↓γ)
N8 (↓α, ↓β , ↓γ) (↑α, ↑β , ↑γ)

Now let us assume Alice makes a measurement and find ↑α and Bob follows that up and makes a

measurement and finds ↑β then given the table above it is easy to assume that the results would be

part of the group 3 or 5 which means that the sum of total possibilities would be N3 +N5 and logically

given assumption number two we can make the following statement:

N3 +N5 < (N3 +N7) + (N5 +N2), (3)

which is also equivalent to
N3 +N5∑8

i Ni
<

(N3 +N7) + (N5 +N2)∑8
i Ni

,

which is the definition of classical probability and allows for the rewriting of this statement as:

P (↑α, ↑β) =
N3 +N5∑8

i Ni
,

P (↑α, ↑γ) =
N2 +N5∑8

i Ni
,

P (↑γ , ↑β) =
N3 +N7∑8

i Ni
. (4)

Inserting equation (4) into equation (3) we get a general rule that needs to allways apply to all systems

regarding the probability of our setups.

P (↑α, ↑β) < P (↑α, ↑γ) + P (↑γ , ↑β). (5)
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Notice that all these factors are still dependent on the chosen axes and in this case they are the

arbitrary axes (α̂,β̂,γ̂) which are as stated not necessarily orthogonal to one another. This explains

how the probability of a case happening such as above would depend on the relation between the two

axis i.e the angle between them allowing for the probability to be written as [6]

P (↑α, ↑β) =
1

2
sin2 θαβ

2
, (6)

where θαB is the angle between the two axes and this allows equation (5) to be expressed as:

sin2 θαβ
2

< sin2 θαγ
2

+ sin2 θγβ
2
. (7)

This condition that is built up from the base assumptions of the hidden variable theory is not always

fulfilled take for example cases where θαB = π
2 while θαγ = θγB = π

4 . This system would lead to the

statement that.

0.5 < 0.292,

which is simply not true, showing that the notion of a hidden variable theory is not consistent in all

cases and cannot be treated as a general solution. As a result causing that the only viable answer and

option left is the idea of nonlocality and a truly probabilistic system that has no physical properties

until it is observed. There are also other explanations and experimental methods used for observing

nonlocality such as the CHSH method[16].

The idea of nonlocality by itself was considered revolutionary and extremely mind boggling but it

allowed for large strides to be made in the line of quantum information such as teleportation of quantum

states [4].

2.2 Quantum teleportation

Let us discuss teleportation in slightly more detail in order to better understand what nonlocality and

entanglement allows for within a system consisting of entangled qubits. But before that let us take a

moment to discuss the notation used in the report beyond this point.

As opposed to the case above this project uses |0〉 and |1〉 instead of |↑〉 and |↓〉 respectively. Using

this notation one can express the entangled states without the use of the tensor product as |010〉 for

example where the order of the statements is Alice, Bob and Charlie meaning that:

|↑A〉 ⊗ |↓B〉 ⊗ |↑C〉 ⇐⇒ |010〉 .

Now let us consider the case where Alice and Bob each have a qubit and their qubits are entangled

with one another in such state:

∣∣ψ−
AB

〉
=

√
1

2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B). (8)
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Now consider that Alice’s qubit is entangled with another qubit referred to as |ε〉 which is in a super-

position between the up and down states.

|ε〉 = α |0〉+ β |1〉 ,

where α and β are the probabilities of each state in the system and they sum to 1 as the total probability.

Given this, Alice wants to move the superposition of α and β to Bob exactly as it is. At first glance

this would seem impossible but given nonlocality it is doable. Let us first write out the total system

and what it would be given the consideration of |ε〉:

|ε〉 ⊗
∣∣ψ−
AB

〉
=

α√
2

(|0〉ε ⊗ |0〉A ⊗ |1〉B − |0〉ε ⊗ |1〉A ⊗ |0〉B)

+
β√
2

(|1〉ε ⊗ |0〉A ⊗ |1〉B − |1〉ε ⊗ |1〉A ⊗ |0〉B).

(9)

The equation above can be daunting at first but it can be simplified much further using a series of

predefined superposition states known as Bell states.

∣∣Φ+
〉

=

√
1

2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉),

∣∣Φ−〉 =

√
1

2
(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉), (10)

∣∣Ψ+
〉

=

√
1

2
(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉),

∣∣Ψ−〉 =

√
1

2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉),

which then allows for the ordinary up and down states to be redefined as well:

|0〉 ⊗ |0〉 =

√
1

2
(
∣∣Φ+

〉
+
∣∣Φ−〉),

|1〉 ⊗ |1〉 =

√
1

2
(
∣∣Φ+

〉
−
∣∣Φ−〉), (11)

|0〉 ⊗ |1〉 =

√
1

2
(
∣∣Ψ+

〉
+
∣∣Ψ−〉),

|1〉 ⊗ |0〉 =

√
1

2
(
∣∣Ψ+

〉
−
∣∣Ψ−〉).

Now it is possible to use these definitions to describe the relation between the two qubits Alice has

access to:

|ε〉 ⊗ |ψAB〉 =
α

2
((
∣∣Ψ+

εA

〉
+
∣∣Ψ−

εA

〉
)⊗ |1〉B − (

∣∣Φ+
εA

〉
+
∣∣Φ−
εA

〉
)⊗ |0〉B))

+
β

2
((
∣∣Ψ+

εA

〉
−
∣∣Ψ−

εA

〉
)⊗ |1〉B − (

∣∣Φ+
εA

〉
−
∣∣Φ−
εA

〉
)⊗ |0〉B)).

(12)
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This can be further simplified to:

|ε〉 ⊗ |ψAB〉 =
1

2
(
∣∣Φ+
εA

〉
)⊗ (α |1〉B − β |0〉B) +

1

2
(
∣∣Φ−
εA

〉
)⊗ (α |1〉B + β |0〉B)

+
1

2
(
∣∣Ψ+

εA

〉
)⊗ (−α |0〉B + β |1〉B) +

1

2
(
∣∣Ψ−

εA

〉
)⊗ (−α |0〉B − β |1〉B).

(13)

So if all the qubits that Alice has access to become observed as an entagled state Bob’s qubit becomes

a combination of the original |ε〉 state and depending on which Bell state Alice observes Bob can alter

the phase of his qubits after Alice tells him about her results, effectively teleporting the original state.

What is more interesting about this is that by technicality the speed of this teleportation can’t be faster

than light since it requires classical communication between Alice and Bob which is definitely slower

than the speed of light.

2.3 Density Operators

The last bit of technical background needed in order to better understand this project is a small intro-

duction to the notation systems and conventions generally applied in the study of quantum information

and the allowed operations. This section is rather important since it is going to introduce the main

linear-algebraic method that will be used for all topics after this point.

For most calculations within quantum mechanics the notation system of density vectors would be

enough to explain many phenomena, but in quantum information an alternative tool referred to as

density matrices or density operators generally noted with ρ is used. This allows one to describe a

system with states that are not completely known. Take for example a system that consist of states

Φ =
∑
i piφi this system can then be expressed in the following manner as a density matrix.Due to the

fact that this project mainly focuses on the pure state calculations only the density matrices for the

aforementioned states will be discussed.

ρ =
∑
i

Pi |φi〉 〈φi| =
∑
i

pip
∗
i |φi〉 〈φi| = |Φ〉 〈Φ| .

Here, Pi is the probability of each state and is the result of multiplying a vector based state function

with its own complex conjugate and
∑
i Pi = 1. Using this system one can calculate the expectation

value and even apply unitary operators to the φi states which is an unknown ensemble of pure states

[11]. This notation system allows for many possibilities but there are only few that are required to

understand this project.

The first of which is a distinction between the different types of density operators and how to effectively

differentiate the types. In general density operator states are referred to as either mixed or pure states.

In general, pure states are cases where the exact information about the quantum system are known.

The mixed state is the combination of probabilities of the information about the quantum state. It

is worth noting that different distributions of pure states can generate equivalent mixed states. This

project chooses to focus on the dynamic of the pure states specifically which allows for each of the

possible combination of Alice, Bob and Charlie’s qubits as shown in table 8 to have their own distinct
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probability of existing upon being observed.

There is a distinct requirement that has to be fulfilled for a system to be considered one made up of

pure states. This requirement is for the trace operator of the square of system to be equal to 1, i.e.,

tr(ρ2) = 1 note that this largely differs from the requirement of tr(ρ) = 1 which is a general requirement

for a system to be considered a density operator without concern for whether it is pure or mixed.

This requirement implies that in order for a system to be considered a pure state it is required that∑n
i P

2
i = 1 and the only way that such system would be possible is that a single Pi is equal to one

while all other values for the probability in the ensemble are zero .

Now that the general requirement for the system is defined it is possible to discuss the possibilities

this notation system allows for. One of the more useful factors in this notations is that in the case of

entangled ensembles it is possible to reduce the ensembles and further simplify them through the use of

the partial trace operator, meaning that in the case of an entangled ensemble the following rule applies

to the density operators:

ρa = trB(ρab),

ρb = trA(ρab).

The final concept worth considering is the idea of the Schmidt decomposition which states that in the

case of an entangled ensemble making a density operator both Alice and Bob would have the same exact

probabilities in their singular density operators caused by the relation with the partial trace operator

above, meaning that ρb and ρa have identical eigenstates to each other. These density operators can

also be written as matrices even for an entangled states in such a manner:


|0〉A 〈0|A

|0〉B 〈0|B |0〉B 〈1|B
|1〉B 〈0|B |1〉B 〈1|B

 |0〉A 〈1|A

|0〉B 〈0|B |0〉B 〈1|B
|1〉B 〈0|B |1〉B 〈1|B


|1〉A 〈0|A

|0〉B 〈0|B |0〉B 〈1|B
|1〉B 〈0|B |1〉B 〈1|B

 |1〉A 〈1|A

|0〉B 〈0|B |0〉B 〈1|B
|1〉B 〈0|B |1〉B 〈1|B



 . (14)

This system continues in the same manner for tripartite systems and goes in the order of Alice, Bob,

Charlie allowing for the calculations to be more flexible.

3 Theory

In order to explain any quantum system one needs to first establish a wave function or an arbitrary

superposition of the states just to be able to explain any number of states and their setups. This project

is no different, one could simply establish a setup containing all possible entanglements in a tripartite

systems and setting the requirement of normalized probability on it in such a manner:

|ψ〉 = λ0 |000〉+ λ1 |001〉+ λ2 |010〉+ λ3 |100〉+ λ4 |011〉+ λ5 |101〉+ λ6 |110〉+ λ7 |111〉 . (15)
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Here
∑
λ2i = 1. This system would very likely work but it would make the procedure of formulaic

calculations more complicated. Another alternative which was used for this process is to use a more

simplified variant of equation (15). It is possible to rephrase the equation above using the Schmidt

decomposition while containing all possible state compositions [14], which results in a much simpler

system that only has 6 unknown factors as opposed to the 8 unknowns in equation (15).

|ψ〉 = λ0 |000〉+ λ1e
iφ |100〉+ λ2 |101〉+ λ3 |110〉+ λ4 |111〉 . (16)

Here the idea is that the three cases of |100〉, |010〉, |001〉 can be explained as the same ket through

the addition of a phase factor which is the exponential value seen in equation while the |(〉 011) can

be simplified away since it is equivalent to the spin reversed version of |100〉 (16). Note that all values

for λi are real and that the only imaginary part comes from the exponential factor. Now given this

arbitrary explanation of the states it is rather easy to find the arbitrary density matrix that would

cover all possible combinations a tripartite system could have. This density matrix is found by taking

the multiple of |ψ〉 with its complex conjugate and results in the density operator of the total system.

ρabc = |ψ〉 〈ψ| = λ20 |000〉 〈000|+λ0λ1e−iφ |000〉 〈100|+λ0λ2 |000〉 〈101|+λ0λ3 |000〉 〈110|+λ0λ4 |000〉 〈111|

+ λ1λ0e
iφ |100〉 〈000|+ λ21 |100〉 〈100|+ λ1λ2e

iφ |100〉 〈101|+ λ1λ3e
iφ |100〉 〈110|+ λ1λ4e

iφ |100〉 〈111|

+ λ2λ0 |101〉 〈000|+ λ2λ1e
−iφ |101〉 〈100|+ λ22 |101〉 〈101|+ λ2λ3 |101〉 〈110|+ λ2λ4 |101〉 〈111|+

λ3λ0 |110〉 〈000|+ λ3λ1e
−iφ |110〉 〈100|+ λ3λ2 |110〉 〈101|+ λ23 |110〉 〈110|+ λ3λ4 |110〉 〈111|

+ λ4λ0 |111〉 〈000|+ λ4λ1e
−iφ |111〉 〈100|+ λ4λ2 |111〉 〈101|+ λ4λ3 |111〉 〈110|+ λ24 |111〉 〈111| .

This resulting density operator applies to the abc case which tells us very little. It is possible to use

the fact that density operators are partial reducible to find the arbitrary density operators for Alice,

Bob, Charlie and the density operators for Alice relative Bob and Charlie or reversed.

The following equations are defined using the partial trace function on the density operator above:

ρab = trC(ρABC) = λ20 |00〉 〈00|+ λ0λ1e
−iφ |00〉 〈10|+ λ0λ3 |00〉 〈11|

+ λ1λ0e
iφ |10〉 〈00|+ (λ21 + λ22) |10〉 〈10|+ (λ1λ3e

iφ + λ2λ4) |10〉 〈11|

+ λ3λ0 |11〉 〈00|+ (λ3λ1e
−iφ + λ4λ2) |11〉 〈10|+ (λ23 + λ24) |11〉 〈11| .

(17)

The same operation is repeated again but it is instead calculated with the trace of Bob instead.

ρac = trB(ρABC) = λ20 |00〉 〈00|+ λ0λ1e
−iφ |00〉 〈10|+ λ0λ2 |00〉 〈11|

+ λ1λ0e
iφ |10〉 〈00|+ (λ21 + λ23) |10〉 〈10|+ (λ1λ2e

iφ + λ3λ4) |10〉 〈11|

+ λ2λ0 |11〉 〈00|+ (λ2λ1e
−iφ + λ4λ3) |11〉 〈10|+ (λ22 + λ24) |11〉 〈11| .

(18)
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The final case is the trace of Alice which gives both the largest results and the most pattern like variant

of the results.

ρbc = trA(ρABC) = (λ20 + λ21) |00〉 〈00|+ λ1λ2e
iφ |00〉 〈01|+ λ1λ3e

iφ |00〉 〈10|

+ λ1λ4e
iφ |00〉 〈11|+ λ1λ2e

−iφ |01〉 〈00|+ λ22 |01〉 〈01|+ λ2λ3 |01〉 〈10|

+ λ2λ4 |01〉 〈11|+ λ1λ3e
−iφ |10〉 〈00|+ λ3λ2 |10〉 〈01|+ λ23 |10〉 〈10|

+ λ3λ4 |10〉 〈11|+ λ1λ4e
−iφ |11〉 〈00|+ λ4λ2 |11〉 〈01|+ λ4λ3 |11〉 〈10|+ λ24 |11〉 〈11| .

(19)

Now using equations (17),(18) and (19) it is possible to calculate the density operators for Alice,Bob

and charlie with the possibility of cross checking the results to be sure.

ρa = trc(ρ
ac) = trB(ρab) = λ20 |0〉 〈0|+ λ0λ1e

−iφ |0〉 〈1|

+ λ0λ1e
iφ |1〉 〈0|+ (λ21 + λ22 + λ23 + λ24) |1〉 〈1| .

ρb = trA(ρab) = trC(ρbc) = (λ20 + λ21 + λ22) |0〉 〈0|+ (λ3λ1e
iφ + λ2λ4) |0〉 〈1|

+ (λ3λ1e
−iφ + λ2λ4) |1〉 〈0|+ (λ23 + λ24) |1〉 〈1| .

(20)

ρc = trA(ρac) = trB(ρbc) = (λ20 + λ21 + λ23) |0〉 〈0|+ (λ2λ1e
iφ + λ3λ4) |0〉 〈1|

+ (λ2λ1e
−iφ + λ3λ4) |1〉 〈0|+ (λ22 + λ24) |1〉 〈1| .

Now we have a basis to operate on for this project.It is here that the fact that density operators can

be written as matrices comes into effect allowing for equations (17)-(20) to be rewritten as matrices.

ρab =


λ20 0 λ0λ1e

−iφ λ0λ3

0 0 0 0

λ0λ1e
iφ 0 λ21 + λ22 (λ1λ3e

iφ + λ2λ4)

λ3λ0 0 (λ1λ3e
−iφ + λ2λ4) λ23 + λ24

 . (21)

ρac =


λ20 0 λ0λ1e

−iφ λ0λ2

0 0 0 0

λ0λ1e
iφ 0 λ21 + λ23 (λ1λ2e

iφ + λ3λ4)

λ2λ0 0 (λ1λ2e
−iφ + λ3λ4) λ22 + λ24

 . (22)

ρbc =


λ20 + λ21 λ1λ2e

iφ λ1λ3e
iφ λ1λ4e

iφ

λ2λ1e
−iφ λ22 λ2λ3 λ2λ4

λ3λ1e
−iφ λ3λ2 λ23 λ3λ4

λ4λ1e
−iφ λ4λ2 λ4λ3 λ22 + λ24

 . (23)
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ρa =

 λ20 λ0λ1e
−iφ

λ0λ1e
iφ (λ21 + λ22 + λ23 + λ24)

 .

ρb =

 (λ20 + λ21 + λ22) (λ3λ1e
iφ + λ2λ4)

(λ3λ1e
−iφ + λ2λ4) (λ23 + λ24)

 . (24)

ρc =

 (λ20 + λ21 + λ23) (λ2λ1e
iφ + λ3λ4)

(λ2λ1e
−iφ + λ3λ4) (λ22 + λ24)

 .
3.1 The suggested formula

The goal of this project is to provide a means for the measurement of nonlocality, and in order to

do so inspiration has been taken from the method used to measure the entanglement of a tripartite

system. In the case of the tripartite entanglement, measurements are generally done using residual

entanglement[9].

τabc = C2(Ψa(bc))− C2(ρab)− C2(ρac). (25)

Here C2(Ψa(bc)) is the total entanglement experienced by Alice’s qubit and can simply be calculated

as 4det(ρa) and serves as a consistent measurement for all entanglement in the system relative each of

the 3 individuals with qubits. The other variables that are used here are C2(ρab) and C2(ρac) which

are generally referred to as tangle. The tangle operation is simply a squared version of the concurrence

of two bits. Concurrence is a measurement of the entanglement between two qubits and provides a

normalized value between 0-1.

Assume that there is an arbitrary density operator between the two qubits of Alice and Bob denoted

as ρab. In order to calculate the concurrence for this arbitrary system one needs to first define ρ̃ab, this

factor is defined using the Pauli spin matrix along the y axis [7]:

ρ̃ab = (σy ⊗ σy)ρab∗(σy ⊗ σy). (26)

After calculating ρ̃ab it is possible to establish a non hermitian matrix with only positive and real

eigenvalues by multiplying ρ̃ab and ρab. By finding the eigenvalues we are left with four different factors

referred to as γ. To find the concurrence one needs to take the square root of all four γ and choose

largest of the four √γ values and subtract the other three factors from it. If the result of the subtraction

is positive the concurrence is equal to the subtraction. Otherwise the concurrence is automatically equal

to 0. This procedure can be simplified to:

γ4 < γ3 < γ2 < γ1
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max(0,
√
γ1 −

√
γ2 −

√
γ3 −

√
γ4). (27)

The tripartite measurement method using concurrence is specially interesting for two reasons. Firstly

the fact that τabc is larger than zero suggests that the entanglement experienced by Alice’s qubit in a

tripartite system is larger than the individual entanglement between Alice and Bob plus that between

Alice and Charlie and that there is a shared entanglement between all three happening simultaneously.

Secondly that the results equation (25) is the same between Alice Bob and Charlie, i.e.

C2(Ψa(bc))− C2(ρab)− C2(ρac) = C2(Ψb(ac))− C2(ρab)− C2(ρbc) = C2(Ψc(ab))− C2(ρbc)− C2(ρac).

further proving the first point of a common entanglement that is between all three simultaneously

and allowing for a consistent measuring tool for tripartite systems. It is worth mentioning that this

common entanglement is generally referred to as residual entanglement. Modeling this approach led to

the following formula for the tripartite nonlocality:

η = C2(Ψa(bc))−B2(ρab)−B2(ρac). (28)

Here the total entanglement factor is held onto. The change to equation (25) comes in the form of the

switching of concurrence values for that of Bell nonlocality between two particles since although Gisin

proved that entanglement and nonlocality serve the same purpose at the two bit level [5], they still have

different numerical values and formulae assigned to them. The method of measuring the nonlocality

used here is the two qubit Bells inequality equation discovered by Clauser, Horne, Shimony and Holt

(CHSH) [13], this method is also commonly noted as BCHSH . This method provides numerical values

for the nonlocality of two qubits that are normalised and lie between 0 and 1.

To understand this process one needs to be introduced to the concept of the correlation matrix. The

correlation matrix generally denoted by T is a large matrix consisting of the trace of the density

operation in combination with different Pauli spin matrices. Let us consider the case for the qubits of

Alice and Bob with a density operator ρab:
Tr(ρabσx ⊗ σx) Tr(ρabσx ⊗ σy) Tr(ρabσx ⊗ σz)

Tr(ρabσy ⊗ σx) Tr(ρabσy ⊗ σy) Tr(ρabσy ⊗ σz)

Tr(ρabσz ⊗ σx) Tr(ρabσz ⊗ σy) Tr(ρabσz ⊗ σz)

 .

Using the matrix above times its own transpose it is possible to define a matrix with four fully real

eigenvalues. By summing the two largest of these eigenvalues we define the variable M(ρ) = λ1 + λ2,

using the definition of M one can apply the following condition that if m(ρ) − 1 is positive then it is

equal to the numerical value for the nonlocality otherwise the value is simply zero.

Now given the specifications of the residual entanglement it is likely that the reasoning behind the main

questions noted in the introduction section has become more clear. As far as the theory goes (i) will be

answered by making a calculation while in the case of (ii) it is possible to provide a theoretical answer
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to what is expected. The second question asked if the values coming from this method are consistently

larger or equal to zero. Here the answer to the question is yes. Recall the following requirement for the

tripartite concurrence [9].

0 ≤ C2(Ψa(bc))− C2(ρab)− C2(ρac) ≤ 1. (29)

Now combine that with the knowledge that nonlocality is a part of entanglement, meaning that it is

impossible to have bipartite bell nonlocality that surpasses the value of the bipartite concurrence. We

know that 0 ≤ B but it can be mathematically argued that [15]

B(ρab) ≤ C(ρab) =⇒ Bmax(ρab) = C(ρab). (30)

Using the information above it can be observed that 0 ≤ B ≤ c. This means that τabc ≤ ηabc consistently

since the values for nonlocality can be less than that of concurrence and thus subtracting less from the

total value. This by proxy means that 0 ≤ τabc ≤ ηabc → 0 ≤ ηabc. Although this conclusion answers

one of the main questions of the project it also brings up the potential that this result could lead to

values that are larger than one as the total value.

It is possible to theoretically show that the value of η is less than or equal to 1 by continuing with

the same lane of tought. The lowest values B can possibly take is 0 which yields the largest possible

η. Looking at the formula it can than be stated that η = 4det(ρi) where "i" indicates Alice, Bob or

Charlie. From a purely mathematical standpoint the value 4det(ρi) is equivalent to 1 − r2 where r is

the radius of the Bloch sphere and as it applies 0 ≤ r2 ≤ 1 meaning that the largest possible value for

η is in fact 1. This allows for the possible prediction of the expected limits for η which would be

τabc ≤ ηabc ≤ 1. (31)

Given that η now has its limits established it would be smart to consider the specific cases that may

apply. Given the limitations above it is clear that η is definitely equal to 1 when τ is equal to 1 meaning

that the same arbitrary superpositions would apply in both cases for their maximum. Since under those

circumstances equation (31) can be rewritten as.

1 ≤ ηabc ≤ 1→ ηabc = 1. (32)

On the other hand the only rule that applies when looking at the minimum case is that τ must equal

0 in order for it to even be possible for η to be 0.

3.2 Special States

To further study this possibility another concept needs to be introduced. In the tripartite case en-

tanglement is slightly different than the bipartite case. In the bipartite case there is only one form of

entanglement, generally referred to as the Bell entanglement while the entanglements between tripartite

systems are generally split into two cases[10].
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Namely either a |GHZ〉 or |W 〉 state. A |GHZ〉 state is the more general case and equation (16)

all subsequent matrices belong to the |GHZ〉 variant, while the |W 〉 states are more specific and are

indicated by the fact that all the states kets availabe in a |W 〉 have only even or only odd number of

zeros present. Meaning that equation (16) can be rewritten as a |W 〉 state in two forms.

|W 〉odd = λ0 |000〉+ λ2 |101〉+ λ3 |110〉 ,

|W 〉even = λ1e
iφ |100〉+ λ4 |111〉 .

What differentiates |GHZ〉 states from |W 〉 in practice is in fact the value for τabc. All |GHZ〉 states

have a residual entanglement value that is larger than zero while |W 〉 states have a residual entanglement

factor that is always zero independent of the numbers involved. That is why in order for η to ever be

equal to 0 a |W 〉 state must be involved since ≤ η. This idea is one that can be theoretically tested

and with it even answer question (i) as well.

Let us begin with showing why the |W 〉 state has a τ that is consistently zero for both the even and

odd variant. Note that all factors that are not present in both even and odd variant of |W 〉 are zero.

Let us start with the odd variant of |W 〉. For the odd variant λ1 and λ4 are set to zero in the matrices

(23)-(28). The residual entanglement factor is only properly proven relative Alice as to demonstrate

the general purpose and to allow for further focus to be put on η

τA(BC) = 4det(ρa)− C2
AB − C2

AB . (33)

The first section of this calculation is relatively straight forward.

4det(ρa) = 4det

|λ0|2 0

0 |λ2|2 + |λ3|2

 = 4λ20(λ22 + λ23). (34)

Given that all that is left to calculate is the concurrence of ρaband ρac. The procedure of these

calculations will be detailed for ρab for pedagogical reasons. To begin the process we first need to define

ρ̃AB

ρ̃ab = (σy ⊗ σy)ρab∗(σy ⊗ σy) =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0




λ20 0 0 λ0λ3

0 0 0 0

0 0 λ22 0

λ3λ0 0 0 λ23




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 . (35)

ρ̃ab =


λ23 0 0 λ0λ3

0 λ22 0 0

0 0 0 0

λ3λ0 0 0 λ20

 .
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Now by multiplying ρ̃ab with the original value and finding its eigenvalues one can find the total

concurrence.

ρ̃abρab =


2λ20λ

2
3 0 0 2λ30λ3

0 0 0 0

0 0 0 0

2λ0λ
3
3 0 0 2λ20λ

2
3

 . (36)

The matrix above gives the eigenvalues γ1 = 4λ20λ
2
3 , γ2 = 0, γ3 = 0, γ4 = 0 inserting the square root

of these eigenvalues it is now possible to define the concurrence between Alice and Bob.

Cab = max(0,
√
γ1 −

√
γ2 −

√
γ3 −

√
γ4) = 2λ0λ3. (37)

Following the same procedure it would be observed that.

Cac = 2λ0λ2. (38)

Which makes the equation (33) be equal to 0 under all circumstances and all values for the arbitrary

values λ and the same logic would apply to the cases relative Bob and Charlie as well. Now that the

fact that the results regarding τabc are proven it is possible to move on to ηabc observing how it behaves

under |W 〉 states and whether it is also consistently equal to zero for nontrivial values for λ. Let us

begin by considering Alice first.

η = 4det(ρa)−B2(ρab)−B2(ρac). (39)

Here 4det(ρa) is the same as equation (34) so it is best to just begin with calculating the CHSH

nonlocality. To do that one must first define the correlations matrix T.

T ab =


Tr(ρabσx ⊗ σx) Tr(ρabσx ⊗ σy) Tr(ρabσx ⊗ σz)

Tr(ρabσy ⊗ σx) Tr(ρabσy ⊗ σy) Tr(ρabσy ⊗ σz)

Tr(ρabσz ⊗ σx) Tr(ρabσz ⊗ σy) Tr(ρabσz ⊗ σz)



=


2λ0λ3 0 0

0 −2λ0λ3 0

0 0 λ20 + λ23 − λ22

 .
(40)

The next step is to multiply this correlation matrix with its transpose and calculate its eigenvalues.

TTT =


4λ20λ

2
3 0 0

0 4λ20λ
2
3 0

0 0 (λ20 + λ23 − λ22)2

 . (41)
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The eigenvalues of the matrix above are γ1 = 4λ20λ
2
3, γ2 = 4λ20λ

2
3, γ3 = (|λ0|2 + |λ3|2−|λ2|2)2. The next

step in order to find the CHSH Bell nonlocality is to choose the two largest eigenvalues and take the

sum of the two together to define the variable M. Given that these eigenvalues are arbitrary there is no

way to establish one as larger than the other. Given this one can only have two possible combinations

of the eigenvalues above which can be referred to as α and β here.

Mα
ab = γ1 + γ2 = 8λ20λ

2
3. (42)

Mβ
ab = γ1 + γ3 = γ2 + γ3 = 4λ20λ

2
3 + (λ20 + λ23 − λ22)2. (43)

These definitions of Mab will each lead to their own possible value for the nonlocality both of which

should be considered since by definition

B =
√
max(0,M − 1). (44)

and in order to have a non trivial solution it would be required that B =
√
M − 1 giving the two

possible results of:

Bαab =
√
Mα
ab − 1 =

√
8λ20λ

2
3 − 1. (45)

Bβab =

√
Mβ
ab − 1 =

√
4λ20λ

2
3 + (λ20 + λ23 − λ22)2 − 1. (46)

Following the same procedure for ρac it is observed that similarly there are two cases of nonlocality

possible there as well.

Bαac =
√
Mα
ab − 1 =

√
8λ20λ

2
2 − 1, (47)

Bβac =

√
Mβ
ab − 1 =

√
4λ20λ

2
3 + (λ20 + λ22 − λ23)2 − 1. (48)

Meaning that for any arbitrary |W 〉 state there are 4 different possible ways for ηa(bc) to be defined.

Let us observe these 4 cases separately as well.

Let us begin with the case that both Bab and Bac are expressed in the α form.

ηααa(bc) = 4λ20(λ22 + λ23)− (8λ20λ
2
3 − 1)− (8λ20λ

2
2 − 1)

= 2− 4λ20(λ22 + λ23) = 2− 4det(ρa).
(49)

Now given that the limits of the 4det(ρa) is 0 ≤ 4det(ρa) ≤ 1 and that 0 ≤ η ≤ 1 it becomes clear that

the αα-case is only possible when 4det(ρa) = 1 and even when this law applies the resulting η would

equal 1 and not 0.

17



Now let us consider the αβ case where Bab is in its α form and Bac is in its β form.

ηαβa(bc) = 4λ20(λ22 + λ23)− (8λ20λ
2
3 − 1)− (4λ20λ

2
3 + (λ20 + λ22 − λ23)2 − 1)

= 2− 4λ20λ
2
3 − (λ20 + λ22 − λ23)2 = 2− 4λ20λ

2
3 − (1− 2λ23)2

= 2− 4λ20λ
2
3 − 1 + 4λ23 − 4λ43 = 1− 4λ23(1− λ20 − λ23) = 1− 4λ23(1 + (λ22 − 1))

= 1− 4λ22λ
2
3.

(50)

Now given the equation above there is no doubt that there are nontrivial cases where the results is 0

but it is clear that the answer is by no means always equal to zero. Additionally since the answer to

the αβ case is undoubtedly within the limit that where established for η it would not be surprising

if the majority of the cases fell under the αβ model due to to the fact that it has a larger variety of

cases where it is possible. Another intresting fact is that the answer to the βα case where Bab is in its

β form and Bac is in its α form was also identical to the results above, for that reason it will not be

fully proven more so the same logic as αβ applies as more cases are likely to belong to αβ or βα in the

|W 〉odd state frame.

ηβαa(bc) = 1− 4λ23λ
2
2. (51)

The final case left to consider is the ββ case

ηββa(bc) = 4λ20(λ22 + λ23)− 4λ20λ
2
3 + (λ20 + λ23 − λ22)2 − 1)

− (4λ20λ
2
3 + (λ20 + λ22 − λ23)2 − 1)

= 2− (λ20 + λ22 − λ23)2 − (λ20 + λ23 − λ22)2

= 2− (1− 2λ22)2 − (1− 2λ22)2 = 2− 2 + 4(λ22 + λ23)− 4(λ42 + λ43)

= 4(λ22 + λ23)− 4(λ42 + λ43).

(52)

As it can be seen the only way the equation above is equal to zero is if both λ2 and λ3 are equal to 1

which is impossible given the normalization meaning that unlike the case of residual entanglement the

nonlocality can be nonzero for |W 〉odd states. The cases relative Charlie and Bob will be provided in

the table below but will not be discussed and proven as thoroughly due to their similarity in method

and results. Giving rise to a clear pattern between the cases.

Table 3

ηb(ac)

αα 2− 4det(ρb)
αβ 1− 4λ22λ

2
0

βα 1− 4λ20λ
2
2

ββ 4(λ20 + λ22)− 4(λ40 + λ42)

ηc(ab)

αα 2− 4det(ρc)
αβ 1− 4λ23λ

2
0

βα 1− 4λ20λ
2
3

ββ 4(λ20 + λ23)− 4(λ40 + λ43)

Now that the odd case is fully considered and checked let us discuss the even case which is much more
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straight forward since due to its set up it can be considered trivial and is 0 in all cases this can be

logically concluded in a relatively easy manner through some logical deduction. Calculating in the

system of |W 〉even the results observed for det(ρa) is equal to zero meaning that due to established

limitations that require η to be always positive B(ρab) and B(ρac) must be equal to zero in addition to

the fact that det(ρc) = det(ρb) = B2(ρbc) making the total results zero. It can be argued that this case

gives the result zero and not due to the fact that it is a |W 〉 state. This in a way could be considered

a short coming of the simplification used in equation (16) and that the simplification does not allow

for |W 〉even states but nontheless the results discovered regarding the odd case should suffice and give

enough of an understanding of the interactions in the |W 〉 states.

There are several conclusions that can directly be drawn regarding the method from the calculations

above. The first of these conclusions is that unlike the tripartite entanglement measure the value for η

is not zero for all |W 〉 cases. The second conclusion is that The result of η varies based on the person

the nonlocality is measured relative to, i.e.,

ηa(bc) 6= ηb(ac) 6= ηc(ab). (53)

This answers one of the initial questions of the project but in the following sections further measures

are discussed in order to unify and apply the method to receive a singular measurement.

4 Method

Since this project is very much a theoretical measurement tool there are no direct experimental ways it

can be tested in a lab. Thus the best way of making observations regarding this method is to do several

calculations of different systems in order to find a potential pattern or limit between all the results of

the equation. Given the nature of the calculations and that calculating several cases would be tedious,

inefficient and extremely prone to human error it seemed clear that the only way to test this theory

would be with an iterative randomized program that would create random arbitrary pure state wave

functions and than calculate their η value.

The coding language used for this process was Matlab due to personal familiarity with the language

and the preexisting mathematical tools it provides. Since Matlab can not use the bra and ket notation

the matrices in equation (21)-(24) are to be used again.

These matrices can now be used in Matlab and receive numerical values using Matlabs random number

generator. For this project both concurrence and the CHSH Bell nonlocality where defined as their

own separate functions in order to make the process much easier.

As previously proven the result for η varies depending on if the measurement is made relative Alice,

Bob or Charlie. This means that the idea of a factor similar to residual entanglement is no longer an

option and instead the goal should be to create a system that can provide a good numerical value for

the nonlocality using the η formula.

The first method that came to mind to use the three varying cases to get a singular value was to take
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the mean value of all three cases which would solve a lot of the issues, but as a result the formula for

the exact value for the total nonlocality of the system would be written as:

ηabcmean =
ηa(bc) + ηb(ac) + ηc(ab)

3
. (54)

Another alternative method is to simply take the smallest of the three possible values for η as the total

nonlocality value. Making the final formula resemble the following case

ηabcmin = min(ηa(bc), ηb(ac), ηc(ab)). (55)

The final approach was to do the opposite of the previous method and simply consider the largest value

of the three possible cases.

ηabcmax = max(ηa(bc), ηb(ac), ηc(ab)). (56)

All these approaches were promptly considered in the code. Given that the final steps to consider was to

decide on the number of iterations required to provide valid results and a valid way to portray the said

results. The agreed upon number was 30000. Additionally the method chosen to portray the results

was to create a graph showing the nonlocality value of each case relative its tripartite concurrence to

see the relation between the two as well.

The most useful method amongst the three suggested above could potentially vary dependant on the

use but analysis of the results could lead to a better idea of the relation of the η value relative to the

value used for concurrence in addition to proving or disproving the expectations and limits that are

expected to apply from the theory section 1

1The full code is available in the appendix
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5 Results

Here are the graphical results of the same Data set using the different suggested methods.

Figure 2: s

21



Figure 3

6 Conclusions

There are several possible takeaways from the results provided above, first of which would be the

confirmation of the theoretical expectations such that none of the three approaches is ever larger than

1 or smaller than 0. In addition it can also be observed the value for η is never smaller than that of

the residual entanglement and the two create the almost linear border between the two cases which

confirms equation (31).

Interestingly another potential implication of the observation that τ ≤ η at all times could be that

the general notion of nonlocality being a sub part of entanglement as indicated by figure 1 which was

proven for the bipartite case may not fully apply to the tripartite system. This idea requires further

research and calculations and hence it can not be fully proven.

There are also many ways in which the formula for η can be tested or further improved such as the

inclusion of |GHZ〉 states where one of the variables can be zero which is very unlikely given the random

number generator in Matlab. The addition of such a system could shed further light on the limits of

the method and help establish limit cases for the results that could consistently result in an exact value

such as zero or cases where η would be the same value relative all three of Alice, Bob and Charlie.

Lastly the final step that could potentially further confirm and test the results above would be a

proposal for an experimental method to put the formula to the test and maybe even help dictate which

of the three normalization methods or even potentially another unknown method should be applied to

receive values that are the most effective and correct.
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Appendix

The Code

The concurrence function

function c=concurrence(rho)

y=[0,-1i;1i,0];

R=rho*kron(y,y)*conj(rho)*kron(y,y);

s=real(sqrt(eig(R)));

e=-sort(-s);

c= max(e(1)-e(2)-e(3)-e(4),0);

end

The nonlocality code

function D=nonlocality(rho)

x=[0,1;1,0];

y=[0,-1i;1i,0];

z=[1,0;0,-1];

T=[trace(rho*kron(x,x)),trace(rho*kron(x,y)),trace(rho*kron(x,z));

trace(rho*kron(y,x)),trace(rho*kron(y,y)),trace(rho*kron(y,z));

trace(rho*kron(z,x)),trace(rho*kron(z,y)),trace(rho*kron(z,z))];

p= T*transpose(T);

a=eig(p);

a=-sort(-real(a));

M=a(1)+a(2);

D=real(sqrt(max(M-1,0)));

end

The data collection loop

clc

n=1;

length=30000;

Data=zeros(length,12);

analysis1=[];

analysis2=[];

analysis3=[];
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analysis4=[];

maxi=[0];

mini=[1];

maxin=[0];

minin=[0];

while n<length

r=rand(1,5);

l=[(1/(sqrt(sum(r.^2))))*r,pi*rand];

A=[l(1)^2,l(1)*l(2)*exp(-1i*l(6));

l(1)*l(2)*exp(1i*l(6)),l(2)^(2)+l(3)^(2)+l(4)^(2)+l(5)^(2)];

B=[l(1)^(2)+l(2)^(2)+l(3)^(2),l(2)*l(4)*exp(1i*l(6))+l(3)*l(5);

l(4)*l(2)*exp(-1i*l(6))+l(5)*l(3),l(4)^(2)+l(5)^(2)];

C=[l(1)^(2)+l(2)^(2)+l(4)^(2),l(2)*l(3)*exp(1i*l(6))+l(4)*l(5);

l(3)*l(2)*exp(-1i*l(6))+l(5)*l(4),l(3)^(2)+l(5)^(2)];

AB=[l(1)^(2),0,l(1)*l(2)*exp(-1i*l(6)),l(1)*l(4);

0,0,0,0;

l(1)*l(2)*exp(1i*l(6)),0,l(2)^(2)+l(3)^(2),l(2)*l(4)*exp(1i*l(6))+l(3)*l(5);

l(4)*l(1),0,l(4)*l(2)*exp(-1i*l(6))+l(5)*l(3),l(4)^(2)+l(5)^(2)];

AC=[l(1)^(2),0,l(1)*l(2)*exp(-1i*l(6)),l(1)*l(3);

0,0,0,0;

l(1)*l(2)*exp(1i*l(6)),0,l(2)^(2)+l(4)^(2),(l(2)*l(3)*exp(1i*l(6))+l(4)*l(5));

l(1)*l(3),0,l(3)*l(2)*exp(-1i*l(6))+l(4)*l(5),l(5)^(2)+l(3)^(2)];

BC=[l(1)^(2)+l(2)^(2),l(2)*l(3)*exp(1i*l(6)),l(2)*l(4)*exp(1i*l(6)),l(2)*l(5)*exp(1i*l(6));

l(3)*l(2)*exp(-1i*l(6)),l(3)^(2),l(3)*l(4),l(3)*l(5);

l(4)*l(2)*exp(-1i*l(6)),l(4)*l(3),l(4)^(2),l(4)*l(5);

l(5)*l(2)*exp(-1i*l(6)),l(5)*l(3),l(5)*l(4),l(5)^(2)];

conA=4*det(A)-abs(concurrence(AC))^(2)-abs(concurrence(AB))^(2);

conB=4*det(B)-abs(concurrence(BC))^(2)-abs(concurrence(AB))^(2);

conC=4*det(C)-abs(concurrence(AC))^(2)-abs(concurrence(BC))^(2);

nonlocA=(4*det(A))-nonlocality(AC)^(2)-nonlocality(AB)^(2);

nonlocB=(4*det(B))-nonlocality(BC)^(2)-nonlocality(AB)^(2);

nonlocC=(4*det(C))-nonlocality(AC)^(2)-nonlocality(BC)^(2);
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nonloc=[nonlocA,nonlocB,nonlocC];

res1=mean(nonloc);

res2=min(nonloc);

Data(n,1:6)=l;

Data(n,7)=conA;

Data(n,8:10)=nonloc;

Data(n,11)=res1;

Data(n,12)=res2;

if (real(nonlocA)==real(nonlocB)&& real(nonlocB)==real(nonlocC))

analysis1=[analysis1,n];

end

if(real(nonlocA)>1)

analysis2=[analysis2,n];

end

if(real(nonlocB)>1)

analysis2=[analysis2,n];

end

if(real(nonlocC)>1)

analysis2=[analysis2,n];

end

if(real(res1)==real(conA))

analysis3=[analysis3,n];

end

if(real(res2)==real(conA))

analysis4=[analysis4,n];

end

if(res1>=maxi(size(maxin)))

maxi= [maxi,res1];

maxin=[maxin,n];

end

27



if(res2<=mini(size(minin)))

mini= [mini,res1];

minin=[minin,n];

end

n=n+1;

end

figure(1)

plot(Data(:,7),Data(:,11),’*’);

figure(2)

plot(Data(:,7),Data(:,12),’*’);
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