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Abstract

Nanowires with Rashba spin-orbit coupling represent a promising platform for the realization of one-dimensional
topological superconductivity and Majorana bound states. In this work we investigate Majorana bound
states in hybrid normal-superconductor and short superconductor-normal-superconductor junctions based
on nanowires with Rashba spin-orbit coupling. In particular, we explore consequences of the topological
phase transition as well as the non-locality and self conjugation properties of the Majorana states on the
low-energy spectrum and the Josephson effect in the case of superconductor-normal-superconductor junc-
tions. Our work shows the great potential of hybrid junctions as a platform for the study of topological
superconductivity and Majorana bound states.
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1 Introduction

Topological materials are a new class of condensed matter systems with unique properties that have at-
tracted significant interest [1], specially because they represent a new state of matter and also due to their
potential use in fault tolerant quantum computation [2]. These exotic states appear after a topological phase
transition in the bulk of the system which is accompanied by the emergence of surface or edge states at
the system’s boundaries [1]. This relation is known as the bulk-boundary correspondence. Examples of
topological materials are topological insulators, Weyl and Dirac semimetals, topological superconductors,
etc. Topological superconductors are of particular significance because they host Majorana quasiparticles
which posses exotic properties [3].

Majorana states were first proposed by Ettore Majorana in 1937 as real solutions to the Dirac equation
[4] and are described by Hermitian creation operators, meaning the particles are their own antiparticles.
Although being first considered in the context of particle physics, it has been shown that zero-energy quasi-
particles in topological superconductors exhibit the reality condition of the Majoranas predicted by Ettore
Majorana. These exotic quasiparticles are also referred to as Majorana Bound States (MBSs). MBSs hold
potential application in fault tolerant quantum computation due to their non-Abelian statistics [5].

The simplest model for topological superconductivity was first envisaged by Alexei Kitaev [6] in a one-
dimensional setup. His model predicted the emergence of MBSs with their wavefunctions located at the ends
of the nanowire which exponentially decay into the bulk. The fact that MBSs emerge spatially separated
at the ends of the system, together with the reality condition, defines a non-local fermion. There is one
unnatural requirement in this model, however: spin polarised p-wave superconductivity, which is a rare
type of superconducting pairing and scarce in nature. Surprisingly, it was later shown that the Kitaev
model can be engineered by using conventional ingredients that include nanowires with Rashba spin-orbit
coupling in proximity to an s-wave superconductor where a magnetic field drives the system into a topological
superconducting phase [7, 8].

The detection of MBSs has been shown to be possible by exploiting their intrinsic properties. They
must emerge at zero energy, a feature that has led to a large number of theoretical and experimental studies
[3, 7, 9] that reported zero bias conductance peaks as a signature of MBSs. All these studies are largely
based on tunneling of electrons from a normal lead (N) to the superconductor (S) with a MBS, where a
perfect Andreev reflection then leads to a quantized value of 2e%/h for the conductance. This transport
process highlights the need of hybrid junctions, such as the normal-superconductor (NS) junctions. NS
junctions also offer the advantage of having tunable chemical potentials through the insertion of gates near
the interface, which can then can control the transmission process.

Another type of hybrid junction that has generated interest is the superconductor-normal-superconductor
(SNS), where a finite phase difference between the superconductors gives rise to the formation of Andreev
Bound States (ABSs) due to Andreev reflection [10] on both interfaces. The ABSs are responsible for the
transfer of Cooper pairs between superconductors, which then leads to a finite persistent supercurrent across
the junction, an effect known as the Josephson effect [11]. In the presence of MBSs, supercurrents have been
shown to exhibit anomalous and unique features, suggesting them as a powerful route for the detection of
MBSs based on the Josephson effect [12, 13].

Motivated by the exposed above, in this work we study topological superconductivity and MBSs in
junctions based on nanowires with Rashba spin-orbit coupling. In particular, by exploiting the intrinsic
MBS properties, we search for signatures of MBSs in the low energy spectrum and supercurrents. For this
purpose we perform numerical simulations with realistic material parameters.



2 Majoranas in nanowires with Rashba spin-orbit coupling

In this chapter we describe how MBSs emerge in Rashba nanowires, a promising platform for one-dimensional
topological superconductivity [8, 7]. It was shown that the combination of Rashba spin-orbit coupling, an
external Zeeman field and s-wave superconductivity in a 1D system leads to p-wave topological supercon-
ductivity. This system can be modeled by the following Bogoliubov-de Gennes (BdG) Hamiltonian [8, 7],

Hpaa = (—h28§/2m* — W)T200 — 1RO, T.0y + BT,0, + ATyoy, (1)

where m* is the effective mass of the electron, p is the chemical potential through the nanowire, ag is the
Rashba spin-orbit coupling strength, and A is the superconducting pair potential, taken here to be real.
Although B = gupf/2 is the Zeeman energy, linear with the magnetic field 8, we will through this report

refer to B as the Zeeman field. The basis used is U1 = (éL éI, o éi)v so that 7; and o; are the ith-Pauli
matrices in particle-hole and spin spaces, respectively.

In order to show and understand how the topological superconducting phase and MBSs emerge in Eq. (1),
we proceed to study both its bulk and edge properties. The bulk of a system is a continuum of states that
arises due to the translational symmetry of the material. This symmetry results in a conserved quantity, the
wavenumber k along the direction of the wire, and allows us to study the system through dispersion relations
in which the topological phase transition is represented by a gap closing and reopening. This is done in the
first section below. In the second section of this chapter we turn to the edge states, which are discrete and
require a finite sized system. Because of this the wavenumber is no longer a good quantum number and we
must use a discretized model. For this case, besides a gap closing the topological phase transition should
also be evidenced by zero energy states, for which we can analyze the spatial distribution.

2.1 Rashba nanowires: bulk properties

The Rashba nanowire has a more natural basis than the one used in Eq. (1), that is sometimes referred to
as the helical basis and diagonalizes the system for zero superconductivity, with eigenvalues given by

e+ =& /B2 + a3 k2. (2)

Here k is the wavenumber and &, = h%k?/2m* — . We then wish to rewrite Eq. (1) using this helical
basis and, by defining the quantities

—iapkA A iapkA A, = BA 3)

VBE+aZk? T /B2t aRk? VB2 + a%k?’

Ay =

we get the matrix

€4+ 0 A++ A+_
1 0 €_ —A+7 A,,
H == . 4
BIG=5 | AL, —AT . —e, 0 (4)
AL AT 0 —€_
Notice how we now have intraband superconducting terms and, moreover, that they are are odd in k.
These terms (++, ——) are associated with the p-wave superconductivity required by the Kitaev model,

whereas the even terms (+—) refer to the usual s-wave superconductivity. The eigenvalues of the complete
superconducting system are then given by [8, 7]:

1/2
+EL =4 |} +akk? + B2+ A%+ 2\/B2A2 + (B2 + a}k?)&} ()

It is noticeable the mirroring of energies around zero due to the imposed electron-hole symmetry of the
BdG formalism. Also, if we set A to zero we recover Eq. (2). If we evaluate the above expression at k = 0
we get
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Figure 1: The dispersion relation of a nanowire for different values of the external field, with the spin projection
along the Rashba axis shown by color. We study the case of zero field (a), 0.5B. (b), 1.0B. (c¢) and 1.5B. (d). We
note the gap closing in the B = B, case. The parameters used were A = 0.25 meV, u = 0.5 meV and ar = 20
nm.meV, so that B. ~ 0.56 meV.

LB, (k=0) = +|B+ /A2 + 2. (6)

From this it can be seen that the inner bands touch at zero energy for k = 0 when the field reaches a
critical value,

B.=/u2 + A2, (7)

This marks a gap closing and so is an evidence of a phase transition, which we will soon show is a
topological one. To see this, we now plot these eigenvalues as a function of the wavenumber k using realistic
parameter values and look for a gap closing by increasing the field in Fig. 1, where the field is given in units
of the critical field B..

In Fig. 1(a) we have the dispersion for zero field. We observe that there are two distinct bands for positive
energies, each with a definite spin value, evidenced by color. The parabolic bands are deformed around k& = 0
due to the mixing of electron and hole bands through superconductivity, which generates a gap. We also
point out the horizontal shift caused by the Rashba spin-orbit coupling, separating two distinct spin states.
When we increase the field to 0.5B,, Fig. 1(b), we see that the different spins bands mix and we now have
four non crossing bands, as well as two distinct gaps, indicated by arrows. As we further increase the field
we see that the outermost bands are pushed further away into higher energies and at B = B, Fig. 1(c), the
inner gap closes for £ = 0. By increasing the field again the inner gap reopens and stays that way, Fig. 1(d).
This is a signature of the topological phase transition we search for. In the topological phase the spin is
strongly correlated with the wavenumber and this is sometimes referred to as spin-momentum locking. The
outermost gap never closes and is not related to the topological phase transition and the outermost bands
are pushed into higher energies as the field increases.



2.2 Rashba nanowires: edge properties

We have seen that the bulk of Rashba nanowires shows evidence of a topological phase transition and
development of a topological phase. We will now demonstrate that in a finite sized system the topological
phase is characterized by the presence of MBSs, which are exponentially localized on the edges of the nanowire
[6].

By using a finite nanowire, the translational symmetry is broken, rendering k-space ineffective as a
tool. Therefore we move on to the Tight Binding approach. This consists of discretizing real space and
transforming the kinetic term as a hopping amplitude between different sites. Mathematically,

5 e i ( —h? &2 .
Hyip = ch;,g %@_U( ) Cx adm%zc xz 2m 5x2 ,U(J;i) Co(xi)~ (8)

The expressions for the first and second discrete derivatives are given by

0 ., Cig1—Ci—1 62 Cip1— 26 + G
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where a is the lattice distance and we introduced the notation é; = é(x;). Inserting this into the sum, we
get

Hyin = {(Qf — pl@i)el i 0 — te] (Ciro + 51‘—1,0)} : (10)

where t = h? /2ma? .For the SO coupling, using the expression above for the first order derivative, we
find

. —iar O
Hso = /Z]él,a (0’3,[;' ;:f B ) Cr,ordr — Z ( (Eip1,p = Gimrp) = & (G — éi—u)) - (11)
And for the Zeeman coupling;:

/ZéT cz ordr — ZB ( 16y + cTicm)> (12)

The case for superconductivity is rather trivial and very similar to the way the chemical potential term
changes. First we make the transition from k—space into continuous position space and then, by making
position space discrete, the superconductivity Hamiltonian becomes:

ﬁSCZ%/{A((:T’Tcli—clicr?)+hc}dx—>%Z[A< Ichi—chclT)—ic]. (13)

It is important to notice that our basis for the BdG matrix can no longer be only 4-dimensional because the
kinetic and SO terms mix operators with different values of x. In other words, we no longer have a parameter
according to which we can evaluate the BdG Hamiltonians separately. Instead, we must construct one big
matrix and diagonalize it all at once. This matrix will have dimensions 4N x 4N (2(spin) x 2(particle —
hole) x N (sites)) and we can assign to it the basis

L O I SO VR WA R ) B (14)

Thus, by defining the matrices

_(2t—p B _ t agr/4ma (0 A
h_< B 2t—u)’ U_<—a3/4ma t )’ 5_(—A 0 (15)
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Figure 2: (a): energy spectrum as a function of the Zeeman field for a 2000 nm long Rashba nanowire. The green
bar marks the critical field B, for which there is a gap closing. In red and blue are marked zero and 1.1B. values of
the field for which we plot the lowest energy states wavefunction in (b). (c-d): the same plots for an 8000 nm Rashba
nanowire. The parameters used were A = 0.25 meV, p = 0.5 meV, ar = 20 nm.meV, B. =~ 0.56 meV and a = 10
nm.

the final form of the BdAG Hamiltonian is

h v 0 .. & 0 0
of h v L. 0 1) 0
o of A . 0 0 5
Hpaa =5t o o0 . —p* —o* 0 (16)
0o 6 0 .. —oT —p* —p*
0o o0 & .. 0 =T —n*

On a side note, for the matrix above we chose open boundary conditions, which corresponds to a finite
wire. However, by choosing periodic boundary conditions we could emulate an infinite wire. The only
modification necessary for this would be to insert the elements v and v at the end points of the anti-
diagonal of the first diagonal block and —v* and —v” for the second diagonal block.

Having now the tools to study these discrete systems we implement those models numerically and analyze
the spectrum. In Fig. 2 we show in (a) and (c) plots of the energy levels as a function of the Zeeman field
in units of the critical field B..

Fig. 2(a) corresponds to a 2000 nm long nanowire, where we observe a hard gap for low field values.
As the Zeeman field increases the gap shortens, which is a consequence of the cooper pairs being destroyed
by the field, until it closes at B., marked by a green stripe. This is the same value for which we observed
a gap closing in the bulk of the system signaling a topological phase transition. At higher fields the gap
reopens giving rise to a topological phase and a subgap state emerges with energy oscillating around zero.
This state, which we highlight with an arrow, is the MBS and this oscillation was proposed as its signature



in zero-bias conductance measurements [14]. We can check that by looking at its spatial distribution across
the nanowire, which is done in Fig. 2(b). The blue curve shows the wavefunction amplitude for the lowest
lying state at a field of 1.1B,. as a function of the position along the 2000 nm nanowire. We observe that the
curve peaks at the edges decaying exponentially towards the bulk of the system. For comparison, we show
in red the lowest lying state for zero field and observe its delocalization. Both states have an oscillatory
wavefunction, which is a result of finite superconductivity and a positive chemical potential. The two values
of the field used are marked with stripes in the spectrum plot for reference.

Similarly, in Fig. 2(c-d) we have the spectrum (c¢) and wavefunctions (d) for a 8000 nm long nanowire.
For this longer system we observe that the oscillations of the MBSs energies are reduced to the point they
can be considered zero energy modes, as pointed by the arrow in Fig. 2(c). Because of this, these states
are sometimes referred to as Majorana Zero Modes. This decrease in energy is due to the greater spatial
separation between the two Majorana peaks and subsequent negligible overlap through the bulk, which can
be seen in the blue curve in Fig. 2(d).

Although we do not show here we have reproduced similar results for different values of the chemical
potential. The main difference observed is that negative values of the chemical potential eliminate the
oscillations of the wavefunction along the wire.

We conclude here the study of the finite simple nanowire systems by underlining that we observed a gap
closing and reopening characterizing a topological phase transition that separates a trivial from a topological
phase. In the topological regime we have found states exponentially localized at the edges, which we identify
as MBSs. Moreover, the decrease in energy oscillation of such states shows a crucial factor for producing
Majorana Zero Modes, that is, if the nanowire is too short the two peaks will overlap significantly, resulting
in a non-zero energy state. We now proceed to the treatment of hybrid structures with nanowires, called
junctions.
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Figure 3: A sketch of the junctions considered and the important phenomena supported by them. In (a) is the NS
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junction and below it the Andreev reflection is depicted. In (b) we show a SNS junction with the cycle of Andreev
reflections that generate an Andreev Bound State and a net transfer of Cooper pairs between the S regions.

3 Superconductor-semiconductor junctions in Rashba nanowires

So far we have considered homogeneous systems, where the parameters are constant throughout the whole
nanowire. Many interesting phenomena involving Rashba nanowires, however, appear when considering hy-
brid structures [3]. These can be constructed by considering nanowires with spatially dependent parameters.
For example, part of the nanowire can have its superconductivity taken away by removing the s-wave super-
conductor around it. These regions are denominated normal or normal-metal regions and we will use them
to construct junctions. From the implementation point of view we simply set § in Eq. (16) to zero for the
corresponding sites.

We will consider two geometries. The first one, depicted in Fig. 3(a), is the NS junction and is comprised
of a normal (N) region on one end of the nanowire and next to a superconducting (S) region. One interesting
new phenomenon that occurs already is that an electron traveling in the N region and hitting the NS interface
may get reflected as a hole instead of a usual electron. This process is called the Andreev reflection and it
transfers a Cooper pair from the N into the S region [10, 15].

In a different case we instead remove the proximitized s-wave superconductor from the middle of the
nanowire, leaving two separate S regions. This forms a SNS junction, Fig. 3(b), which also possesses interfaces
between N and S regions and so supports Andreev reflections. Moreover, the hole generated in one of
such reflections can hit the other interface and with the reverse process be reflected back as an electron.
Multiple Andreev reflections result in the formation of an Andreev Bound State (ABS). This cycle of Andreev
reflections is modulated by the superconducting phase and can result in a net current of Cooper pairs
denominated a supercurrent [11], as we will discuss in the last section of this chapter.

3.1 NS junctions

It is important to understand the interactions between the 1D topological superconductors we have seen and
non-superconducting N regions, as shown in Fig. 3(a), because these are present in the experimental settings
related to the measurement of MBSs, such as the studies of zero bias conductance peaks [3]. That is why
we briefly study here the behaviour of the NS junctions.

A NS junction can be modeled by putting the superconducting parameter to zero in one outer region of
the nanowire while keeping the rest of the parameters constant. The size of this region has significant effect
on the energy levels of the system and we are going to consider a nanowire with regions of equal proportions.
By applying the above mentioned changes to the Hamiltonian of the system and numerically diagonalizing
it for a 4000 nm long NS junction of equally sized regions we obtain the results shown in Fig. 4.

In Fig. 4(a) we show the energy spectrum as a function of the Zeeman field. As in the simple nanowire
case we observe a gap closing and reopening at B., marked with a green stripe, with the emergence of low
energy oscillating states at higher fields. This is a sign that there is still a topological phase transition

10
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Figure 4: Panel (a): spectrum as a function of the Zeeman field. Marked in green is the critical field, which is the
of the simple nanowire case. Panel (b): the wavefunctions of the lowest lying states for zero field (red) and 1.1B.
(blue). We have marked with stripes the field values for these states in the spectrum for reference. We point out
that in the topological phase there is one Majorana peak in the outer edge of the S region, but the other peak is not
present. This can be seen as the other Majorana leaking into the N region. The parameters used were p = 0.5 meV
and ar = 20 nm.meV for the whole system with A = 0.25 meV in the S region and A = 0 in the N region.

happening in the system. The main differing features from the previous case are a smaller gap for higher
fields and the presence of trivial finite-energy subgap states for low fields. These states originate from the N
region, where the lack of superconductivity implies the lack of a gap. This can be checked by looking at the
localization of such states, which we do in Fig. 4(b). In red we plot the wavefunction amplitude distribution
across the system for the least energetic state at zero field. We see that it is indeed spread throughout the
N region (left half of the structure) being virtually not present inside the S region (right half). In blue, on
the other hand, we have plotted the wavefunction of the MBS at 1.1B.. We see that the outermost peak is
still present and decaying exponentially towards the bulk, but the other peak, which we expected to find at
the other end of the S region, is not there. This can be seen as the Majorana leaking into the N region and
is a sign that the topological states are significantly influenced by the surroundings of the nanowire. This
should be kept in mind when studying transport properties of these systems.

We have also considered NS junctions with parts of different proportions. We have observed that the
features discussed above are still present, but the effects of the N region (such as the number of trivial subgap
states) diminish as the region gets shorter. By contrast, when the S region is small the Majorana peaks
overlap greatly and the energy of the MBSs becomes very large. If the S region is too small the gap does
not reopen and the lowest lying states are not energetically separated from the others.

Having seen that there is an important interplay between a Rashba nanowire in the topological phase
and its connecting non-topological regions, we move on to study a slightly more complex hybrid structure,
the SNS junction.

3.2 SNS junctions

Differently from the structures so far discussed, SNS junctions present not only one S region, but two (see
Fig. 3(b)). This gives importance to a parameter we have been ignoring so far, that is, the superconducting
phase. The superconducting order parameter is in principle a complex quantity and its complex phase can be
adjusted experimentally. By defining this phase for a given superconductor region labeled i as p; = Arg(A;),
the phase difference between the right and left S regions in a SNS junction is

¢=¢r— L (17)
We will now study how the spectrum of short SNS junctions vary with respect to not only the Zeeman

field, but also this phase difference. In Fig. 5 we present results for a junction with an extremely short N
region of 20 nm length by fixing the Zeeman field to different values. For panels (a-d) we use outer S regions

11
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Figure 5: The energy spectrum, in units of the superconducting parameter, as a function of the phase difference, in
units of 7.

2000 nm long. In Fig. 5(a) we see the energy spectrum with respect to the phase difference in the absence
of Zeeman field. We observe a gap, the size of the superconducting parameter as expected, throughout all
the range of ¢, but also a distinct subgap state. This state is close to the bulk in energy when ¢ is zero, but
dips as this parameter increases, reaching a minimum close to zero energy at ¢ = w. This state is the before
mentioned ABS and it plays important roles in transport dynamics in SNS junctions, as we will see in the
next section.

For now, in Fig. 5(b) we show the case for a field of 0.5B,. Here we observe that the MBS state we
just discussed was actually degenerate and the presence of a Zeeman field split both curves, the bottom one
dipping enough in energy to cross its electron-hole symmetric counterpart. Moreover we point out that there
are two different gaps in the system, pointed by the black arrows. If we increase the field further up to its
critical value 1B, we obtain the results in Fig. 5(c). We see the closing of one of the gaps, just as in the
previous systems, but also the presence of a phase-dependent state reaching a minimum at ¢ = 7. We also
point out that the upper gap never closes and is not related to the topological phase transition. By driving
the field up to 1.5B., Fig. 5(d), we enter the topological regime and see a gap reopening, with a near zero
energy state emerging, the MBS. Moreover, we see another subgap state appearing, with a shape similar to
the ABS, and we observe this state pulls the MBS away from zero energy at ¢ = w and the two bands touch.

The energy splitting in the MBS bands at m is due to the finiteness of the S regions, as we can see by
looking at Fig. 5(e). Here we see that the spectrum for a junction with 4000 nm long S regions does not
present such a splitting, but instead the ABS-like bands cross at zero energy. We can better understand this
behaviour by considering the localization of these states along the junction. This is done in Fig. 6, where
we plot the wavefunctions amplitude along the nanowire.

In Fig. 6(a) we see that a lack of phase difference leads to a distribution closely related to a MBS in
a simple nanowire, with one exponential peak at each end. By setting the phase difference to m we see
this changes by the emergence of new bump in the middle of the nanowire, that is, at the junction. Closer
inspection leads to identifying the bump as two distinct MBS peaks. With this in mind we can interpret the
split in energy seen as resulting from a finite overlap of the new inner MBS peaks with the outer ones. This
is consistent with the disappearance of the split for long enough S regions. From the point of view of the
Kitaev model the finite phase difference separates the nanowire into two distinct topological domains, each

12
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Figure 6: The wavefunction amplitude of the lowest lying state of a SNS junction along the nanowire. In (a) the
case for zero phase difference is shown and distribution of the state is similar to a simple nanowire, with exponential
localization at the edges. In (b) we have the case for a phase difference of w. Here we observe Majorana peaks not
only at the edges but also at the junction, totaling four distinct peaks.

with MBS peaks at its edges.

We have seen that the presence of ABSs and the phase difference between the S regions change signifi-
cantly the behaviour of the low energy spectrum of hybrid structures based on Rashba nanowires. We will
now see some consequences of this in a phenomenon that can be measured experimentally, the Josephson
supercurrent.

3.2.1 Josephson current

The cycle of Andreev reflections implied in ABSs leads to the transference of Cooper pairs from one S region
to another, as is sketched in Fig. 3(b). In principle, the mirror symmetry of a SNS junction would guarantee
that this process happens as frequently as its inverse. However, as we have seen in the last section, there
is a parameter in the system that breaks this mirror symmetry, the superconducting phase difference. As a
consequence, this phase can give preference to the flow of Cooper pairs in a certain direction. This is the
well known Josephson Effect [11] and leads to a measurable supercurrent across the junction. For our system
this supercurrent can be calculated through [15]

e dE,
I(¢) = 72%, (18)
p>0

where E, represents phase-dependent energy levels and the sum is over positive-valued states only. Using
this we can study how the current behaves in SNS junctions made with Rashba nanowires. This is done
in Fig. 7, where we plot the supercurrent as a function of the phase for fixed values of the Zeeman field.
In Fig. 7(a) we consider S regions with a length of 2000 nm. For zero field (red) the supercurrent shows
a sinusoidal behaviour characteristic of the Josephson current. As the field becomes finite and increases
(black, green and blue) we observe a reduction of the current amplitude, which is due to the decrease in
effective superconductivity caused by the interplay between Cooper pairs and magnetic fields. The only
distinct feature observed is a step-like curve for finite fields in the trivial phase (black), which is due to the
ABSs crossing observed in the spectrum in Fig. 5(b).

In Fig. 7(b) we have the corresponding curves for a junction with 4000 nm long S regions. We observe
similar results for fields up to the critical one (green), but a distinctly new behaviour in the topological phase
(blue). We see that the supercurrent loses its sinusoidal character to increase linearly up to ¢ = w, where it
drops sharply to a negative value and continues to linearly increase. The fact that this change happened by
increasing system length is a sign that it is related to non-local phenomena. This is referred to as a saw-tooth
profile and is generated by the MBS peaks located at the junction [16]. This can be verified by looking at

13
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Figure 7: The supercurrent as a function of the phase difference for fixed Zeeman field and for S regions 2000 nm
(left) and 4000 nm long (right). The zero field curves (red) follow sine-like behaviour and have maximum amplitude.
As the field increases the amplitude diminishes (black, green and blue) and in the trivial phase (black) there is a
step-like behaviour due to ABS crossings. For the longer system we observe the topological phase (blue) has a peculiar

saw-tooth shape.
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Figure 8: The contributions to the supercurrent as a function of phase difference for a SNS junction with 4000 nm
long S regions. We observe the contribution from the outer MBS (red) is negligible, while the contributions from the
bulk (green) is small and negative. We see that the inner MBS (blue) contributes the most towards the total (black)
and is responsible for the saw-tooth shape.

the different contributions to this curve. In Fig. 8 we compare the contributions made by different states.
The outer MBS (red) has virtually zero influence on the supercurrent. The bulk, or quasi-continuum, states
(green) have a small and negative contribution. Finally we see that the inner MBS (blue), that is, the one
localized at the junction, is responsible for the saw-tooth shape and overall contributes the most to the total
supercurrent (black).

As we have seen, the Josephson supercurrent in SNS junctions can be calculated from the spectrum and
the presence of MBSs at the junction affects the supercurrent in a unique way. This enables the use of the
supercurrent profile as a signature detection of MBSs. Moreover, the dependence of the profile on the length
of the superconductors is evidence on itself of the non-locality of the MBSs.
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4 Conclusions and outlook

Through the study of both bulk and edge properties of nanowires with Rashba spin-orbit coupling, we have
seen these systems present a topological phase transition at a critical field characterized by a gap closing
and reopening and, for finite nanowires, the emergence of non-local low energy states in the topological
phase that are exponentially localized at edges. These states were identified as the MBSs and they become
Majorana Zero Modes when the nanowire is long enough.

By implementing hybrid structures we have seen that the presence of N regions inserts subgap states at
low fields but the phase transition still present, although with a smaller gap in the topological phase. In a NS
junction the MBS emerges in the S region with only its outer peak visible, the other leaking and spreading
into the N region. In short SNS junctions the topological phase transition was observed, but we also have
seen the appearance of ABSs as subgap states already in the trivial regime. We studied the effects of the
phase difference between the S regions and have seen that when this difference equals m the Majorana Zero
Mode gains a finite energy and becomes degenerate with the ABS, which in turn becomes a MBS. Looking at
the wavefunctions of these states we see two Majorana peaks at the outer edges and two around the junction.
These internal peaks became important when studying the Josephson current in the SNS junctions. We have
seen that this current presents a sinusoidal behaviour with the phase difference and a drop in amplitude
with the Zeeman field, but also a peculiar saw-tooth profile for long systems in the topological regime. By
separating the different contributions to the current we have isolated the inner MBS as the source of this
behaviour. This phenomenon serves as tool to detect the presence of MBSs and its dependence with the
system length is evidence of the non-locality of these states.

Understanding the usefulness of hybrid junctions in the study of MBSs, we are now working on a new
direction with a novel geometry involving several Rashba nanowires. This setup still holds experimental
relevance and we aim to understand how to properly identify identify MBSs through its non-local property
and using the tools we have studied here, such as detecting the gap closing.
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