UPPSALA UNIVERSITY

BACHELOR’S PROGRAM IN PHYSICS
DEGREE PROJECT C IN PHYSICS

Towards a better understanding of protein structures —
assessing the sulfur bridge in Cystine through
photofragmentation

Author: Emma Danielsson
Supervisors: Oscar Granas and Carl Caleman
Subject reader: Mattias Klintenberg

July 20, 2020

Abstract

This work aims to investigate the fragmentation of an ionized Cystine molecule, as simulated
in the framework of molecular dynamics and quantum mechanics. Cystine is viewed as a model
system for larger sets of peptides — ultimately contributing to the understanding of protein
photofragmentation, which is crucial for determining the structure of a protein using new
methods. The analysis software was written in Python, partly in conjunction with another
student. The photofragmentation of the molecule is analyzed in terms of bond integrity
versus time and mass-to-charge ratios for the resulting fragments. Generally, the molecule
disintegrates into more and smaller fragments the higher the degree of ionization is.

Sammanfattning

I det foreliggande arbetet undersoks fragmenteringen av en joniserad molekyl Cystin, som
simulerats medelst molekyldynamik och kvantmekanik. Cystin betraktas som ett modellsy-
stem for storre peptidstrukturer — nagot som i langden kan bidra till stérre forstaelse for
fotofragmentering av proteiner, vilket i sin tur dr avgérande inom nya metoder for struktur-
bestamning. Analysprogrammet skrevs i Python och delvis i samarbete med en annan student.
Molekylens fotofragmentering analyseras med avseende péa bindningsintegritet &ver tid, samt
mass-laddningskvot hos de resulterande fragmenten. I allmédnhet sonderfaller molekylen till
fler och mindre fragment ju hogre joniseringsnivan &r.

Contents

1

Introduction 3
L1 Aim ..o 3
Background 4
2.1 Determination of protein structure L. 4
2.2 Cystine 5
Method 6
Results 8
4.1 Molecular structureo 8
4.2 Bond integrity 9
4.3 Mass-to-charge ratio of fragments L 10
Discussion 14
Appendix 17

1 Introduction

Proteins serve a vast array of purposes in living organisms. For instance, they act as catalysts in
many biochemical reactions that regulate the metabolism of a cell — to the extent that the basic
processes of life wouldn’t be feasible without them. The biochemical function of a protein is deter-
mined both by the sequence of amino acids that comprises it and the three-dimensional structure
that it folds into. Thus, structure determination at atomic resolution has been a major subject of
interest for researchers [1]. The most common method that researchers have used historically has
been X-ray crystallography, a method which requires the protein to be in crystalline form. This
way the energy of the X-ray is absorbed throughout the crystal, allowing for a comparatively long
exposure time and a clear diffraction pattern. One limitation of this method is that many types
of proteins are difficult to consolidate into large crystals. Since a few years back, though, a new
type of radiation source has emerged — the X-ray free electron laser, XFEL.

XFEL uses intense, femtosecond-length pulses of X-rays to gather data from a sample. Due to
the high energy content of the pulses, the molecule being studied will disintegrate into a plasma
during the X-ray exposure [2]. Calculating the structure of the molecule after such a measurement
is only possible if one has some knowledge of how its fragmentation tends to happen.

1.1 Aim

This project will use data from simulations of the dipeptide Cystine to analyse its process of
fragmentation due to ionization. In particular, focus will lie on the behaviour of its disulfide bond.
Integrity of individual bonds will be displayed in heat maps, while the mass-to-charge ratio of each
fragment at the end of the simulation will be displayed in histograms.

2 Background

2.1 Determination of protein structure

In all DNA- and RNA-based forms of life, proteins can be said to constitute the basic biochemical
tools of the cell. They fill a variety of functions — for example information transfer, transport and
catalysis of chemical reactions. Despite of this large variation, most biologically relevant proteins
consist of the same 20 amino acids connected in different sequences. The exact biochemical func-
tion of a protein cannot be identified without knowing its three-dimensional structure. [1]

The first experiments to determine the three-dimensional structure of a protein were carried out
with the help of X-rays in the beginning of the twentieth century. They led to Max von Laue being
awarded the Nobel Prize in Physics in 1914, and were the beginnings of a research field called X-ray
crystallography. [3] The basic principle of X-ray crystallography is to shine X-rays through the
sample, which should be in the form of a fairly large and stable crystal, and to detect the result-
ing diffraction pattern. The diffuse energy absorption by the crystal is what allows the beam to
continue for some period of time without the crystalline structure disintegrating. After the neces-
sary time of exposure, the structure of the individual molecules in the crystal can be calculated. [4]

Many biologically relevant proteins are difficult to consolidate into large enough crystals to be
imaged with X-ray crystallography, and have thus been out of reach for structure determination.
Towards the end of the 2000’s, a new type of radiation source — the X-ray free electron laser
(XFEL) — would come to change this. XFEL structure determination is based on the idea of
collecting a lot of diffraction data during a very short period of time. The central challenge is to
collect enough data before the molecule disintegrates into a plasma. The first facility to achieve
atomic-scale resolution with this technique was LCLS at Stanford University, USA. [2] Although
the usual timescale of the pulses in XFEL is in the range of femtoseconds, this is not enough
to approximate the examined molecule as static during the pulse. On the contrary, the sample
usually starts to decompose before the pulse has ended. This means that the resulting diffraction
data contains information about several stages of disintegration, not just the molecule in its intact
state. To be able to interpret results from this kind of structure determination, then, one needs
information about how the molecule of interest disintegrates due to radiation. [5] [6]

There exists a number of different methods for simulation of biomolecules. Two examples of soft-
ware are GROMACS and Siesta, which are based on molecular dynamics and quantum mechanics
respectively. Siesta uses a variety of underlying quantum mechanical models to simulate the dy-
namics of the molecular system. Several parameters, like ionisation, spatial orientation and the
surrounding medium can be varied. To create a comprehensive picture of the fragmentation pro-
cess, several combinations of these parameters can be run. [7]

The number of amino acids that comprise a single protein varies between 51 and around 34000.
[1] With the soft- and hardware available today, simulating these systems at a quantum level is
generally not feasible. For that reason, researchers often choose to simulate a so-called model
system — shorter peptides or single amino acids. Despite of their limited scope, the results from
these simulations can be used to better understand the compound system.

2.2 Cystine

HS OH
NH,

Figure 1: Skeletal formula of Cysteine |§|

Within the scope of this project, the fragmentation of the dipeptide Cystine will be examined.
Cystine is the result of a condensation reaction between two molecules of Cysteine, a hydropho-
bic amino acid which is commonly occurring in proteins. Like all amino acids, Cysteine has one
carboxyl and one amine group. In Figure 1, they are shown at the top right and the bottom re-
spectively. These groups can form peptide bonds with other amino acids, thus locking the molecule
into a peptide sequence which could form a protein. The side chain of Cysteine, shown to the left
in Fig. 1, consists of a thiol group — that is, one hydrogen and one sulfur atom. It is using this
side chain that two Cysteine molecules can react to form Cystine.

Two Cysteine molecules in different parts of a protein can react to create a Cystine molecule. This
is of great significance for the structure of the protein, since the sulfur bond interlocks two parts
of the peptide chain. Its bonding strength is higher than that of van der Waals-interactions but
somewhat lower than in the covalent C-C bonds that make up the backbone of the peptide chain.
The sulfur bond occurs particularly frequently in keratin, a class of proteins that, among other
things, make up hair, fur, claws, beaks, scales and skin. The different variants of keratin have
many different tertiary structures, but generally the harder types contain more sulfur bonds. [1]

19]

Figure 2: Skeletal formula of Cystine with Natta Figure 3: A schematic represenation of insulin,
projection. The sulfur bond is marked in blue. [10] the smallest known protein, with the Cystine
sulfur bridges marked in orange. [11]

3 Method

The analysis of simulation data will be carried out in the programming language Python, in
particular using the Jupyter Notebook platform. For some parts of the software construction,
I collaborated with another bachelor student, Ebba Koerfer, who does a similar project. When
writing the code, our overarching goal was to make it as general and transferable as possible. The
quantum mechanical simulations analyzed in the project were run by Oscar Granés who also pro-
vided a set of functions for data processing — namely, the script analyze_trajectories.py.
During the course of the project, Ebba and I wrote and added the functions bond_broken_2,
mean_distance_dict and frags_from_dists to this file. An overview of the analysis pro-
cedure is given below — for details about the structure and function of the code, please refer to the
appendix.

The project can be divided into two main parts — the pre-processing of thermalization data to
investigate how neighboring atoms bond under usual conditions, and the analysis of how these
bonds develop once a high level of ionization (like the one resulting from radiation) is applied.
The first task is to import the necessary data from the thermalization runs into the script, and
to package it into a useful format. This is done with the help of the function parse_timestep
from the script analyze_trajectories.py, which extracts the position of each atom in the
molecule for each time step in one simulation. The process is repeated for every thermalization,
and the resulting data is put into a list. To be able to investigate the bonds of the molecule from
this data, it is essential to not confuse the atoms for one another. Therefore, the atoms were
assigned both an index, indicating their exact position in the molecule, and a label indicating the
type of element. For example, one of the nitrogen atoms was assigned the index 0 and the label
N1. This was also accomplished with a function from analyze_trajectories.py.

To facilitate the analysis of bonds in the molecule, a list of “neighbors” was created. For each
atom in the molecule, this overarching list contains one list of the atoms that would be considered
bonded to it. The list is constructed using the function get_neighborlist, which returns all
atoms within a certain radius of a given atom at a specific time step of the simulation. Thus, it is
a crude measure of what atoms can be said to be bonded to each other.

With these structures done, it was time to determine the mean distances between the supposedly
bonded atoms in each thermalization run. For this purpose the function mean_distance_dict
was written. Through a series of loops, it constructs a dictionary with the names of the bonded
atoms as a key, and a list of the mean distance between them in all thermalization runs as the value.

The next part of the code aims to analyse the bond integrities over time in a highly ionized molecule
of Cystine. Bond integrity is defined as follows:

Nup

1 _ _ om))
B (A, B,t) = N Z (1 + MdilA,B]()~di[A,B)(0)] 05)) (6]
=1

In the above expression, d;|A, B](t) is the distance between the atoms at time t, A is a smearing
parameter and N,,p is the number of molecular dynamics simulations. In the script, the equation
was implemented in the function bond_broken_2 with the slight difference that no averaging
over different runs is made — Ny;p = 1. Rather, data on one bond from its ionized simulation and

from the corresponding thermalization yields one value of %; for each time step in the simulation.
New files, based on simulations with a variety of initial ionizations and configurations, are provided
at this stage. Data regarding positions of the atoms are extracted from these files and loaded into
a set of lists. From these, bond integrity for each bond in each configuration could be calculated
using the function bond_broken_2 . Plots of bond integrity versus time were constructed for
each bond, averaged over all ionization levels and starting geometries.

Since one aim of the project is to determine the fragmentation of the molecule it was necessary to
determine if, when and under what conditions the bonds in the molecule were broken. Being able
to calculate bond integrity from distance between two atoms, this was fairly straightforward. By
studying how the value of the bond integrity oscillated for different bonds in the thermalization
runs, we could establish a “stable range” which would encompass all normal oscillations. The limit
for when a bond would be considered broken was then set well outside of this range — we chose
B; = 0.5. To clarify: since the nature of a chemical bond is continuous rather than discrete, this
limit is somewhat arbitrary and only to be taken as an approximation for when the bond is to
be considered broken. Together with the previously loaded information about distances between
bonded atoms, this limit was fed into the function frags_from_dists. It returns the state of
the molecule at the last timestep of each simulation. Each run is represented by a set of lists that
display the atoms present in a particular fragment. In the cases where no fragmentation occurs,
there will simply be one fragment containing all of the atoms.

Having calculated what fragments are formed in each run of the simulation, some analysis of the
mass-to-charge ratio would also need to be performed. For this purpose the script ElementData,
containing information about the mass of each element, was used. The charges on each atom for
each timestep in the simulation were obtained using the function get_hirsh. Information from
the two sources were combined using simple division, and displayed in histograms. To get a plot
more similar to what would arise from experiment, a kernel density plot was also constructed using
the seaborn library. A gaussian kernel was used, and the smearing parameter bw was set to 0.125.

4 Results

4.1 Molecular structure

In the present work, the atoms of the Cystine molecule have been assigned labels according to
their species and location in the molecule. Of course, Cystine is symmetric around the central
sulfur bridge, so the choices are somewhat arbitrary. The molecular structure, together with the
chosen labels is demonstrated in the illustration below:

Figure 4: A ball-and-stick model of Cystine with the labels assigned to each atom in the present
work written out. [12]

4.2 Bond integrity

As mentioned in the Method section, the integrity of each bond over the course of the fragmenta-
tion was to be calculated. The results are displayed in heatmaps, where the y-axis shows time and
the x-axis shows the value of z = ¢/n. The bond integrity data, displayed with a certain color at
a point (x,y), is compiled from all of the starting geometries. Blue color indicates a value of %,
close to 0, while yellow indicates %A, ~ 1.

The following are heatmap plots of a few bonds that occur in Cystine - for brevity, the rest are
displayed in the Appendix. Figures 5-7 occur in and around the central sulfur bridge, while the
rest are examples of the C-C, N-H and C-H bonds that occur elsewhere in the molecule.

Mean bond integrity for atom pair S1 S2 Mean bond integrity for atom pair C3 S1
1.0
175 4 1754
150 08 150 |
125 4 125 4
- 0.6 w
s 100 4 ‘s 100 A
E 100 E
s 0.4 = s
50 4 50 4
0.2
25 25 4
0 - - - - - - T 0.0 0 T T T . ! ! T
0.00 0.05 0.10 0.15 020 025 030 0.35 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z[e/N] Z[e/N]
Figure 5 Figure 6
Mean bond integrity for atom pair S2 C6 Mean bond integrity for atom pair C1 C2
175 4 175
150 4 150
125 4 125
a a
‘s 100 1 PRILE
£ =
= =
75 A 75 4
50 A 50 -
25 A 25 4
0 T T T T T T - 0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.00 0.05 0.10 0.15 020 0.25 0.30 0.35
Z[e/N] Z[e/N]
Figure 7 Figure 8

Mean bond integrity for atom pair N1 H4 Mean bond integrity for atom pair C6 H8

175 A 175 A
150 A 150
125 A 125 A
a)
'Y 100 % 1001
£ £
= =
75 A 75
50 1 50
251 25
0 T T T T T T T 0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z[e/N] Z[e/N]
Figure 9 Figure 10

4.3 Mass-to-charge ratio of fragments

The plots in this section display mass-to-charge ratios of the fragments that form in each ionization
level of the simulation. Data from all geometric configurations is shown in each plot.

Masspec for ionization 1 at t = 200 fs Masspec for ionization 1 at t = 200 fs
0.7 4.0
0.6 3.5
05 3.0
%* 2.5
2041 %
c €20
303 §
1.5
0.2 10
0.1 05
0.0 . T ; - 0.0 -
239.0 239.5 240.0 240.5 241.0 2415 239.6 239.8 240.0 240.2 240.4 240.6 240.8 241.0
Mass/Charge [u/e] Mass/Charge [u/e]
Figure 11 Figure 12
Masspec for ionization 2 at t = 200 fs Masspec for ionization 2 att = 200 fs
54
2.0 1
4
1.5 A el
> * 34
‘g £
=1
2 1.0 S,
0.5 1 14
0.0 T T T T T 0- T T T T
119.8 120.0 120.2 120.4 120.6 120.0 120.1 120.2 120.3 120.4 120.5 120.6 120.7 120.8
Mass/Charge [u/e] Mass/Charge [u/e]
Figure 13 Figure 14

10

Density

Density

Density

Masspec for ionization 3 at t = 200 fs

0.20 1

0.151

0.101

0.05 1

0.00 ‘A{V\AA ‘p

0 50 100 150 200 250 300
Mass/Charge [u/e]

Figure 15

Masspec for ionization 4 at t = 200 fs

0.16

0.14 1

0.121

0.101

0.08 1

0.06

0.04

0.02 1

0.00 T T T T T
45 50 55 60 65

Mass/Charge [u/e]

Figure 17

Masspec for ionization 5 at t = 200 fs

0.25 1

0.20 1

0.151

0.10 1

0.05 1

0.00 T T T

42 44 46 48 50 52
Mass/Charge [u/e]

Figure 19

Masspec for ionization 3 at t = 200 fs

4.0 1

3.5

3.0 1

2.51

2.01

Counts [#]

1.5 1

1.01
0.5-
0.0 T

50

100 150 200 250 300
Mass/Charge [u/e]

Figure 16

Masspec for ionization 4 at t = 200 fs

3.0 1
2.51
2.0 A
1.5 1
1.01
0.0 - T
45 50 55 60 65

Mass/Charge [u/e]

Counts [#]

Figure 18

Masspec for ionization 5 at t = 200 fs

Counts [#]

44 45 46 47 48 49 50 51
Mass/Charge [u/e]

Figure 20

11

Density

Density

Density

Masspec for ionization 6 at t = 200 fs

0.175 4

0.150 1

0.125 4

0.100 1

0.075 4

0.050 4

0.025 4

0.000

30
Mass/Charge [u/e]

Figure 21

Masspec for ionization 7 at t = 200 fs

35 40 45

0.08 q

0.06

0.04 1

0.02 1

N

0.00

o4

10 20
Mass/Charge [u/e]

Figure 23

Masspec for ionization 8 at t = 200 fs

30 40 50 60

0.14 1

0.121

0.101

0.08 q

0.06

0.04 1

0.02 1

0.00

10 20 30 40 50 60
Mass/Charge [u/e]

Figure 25

12

Counts [#]

Counts [#]

Counts [#]

Masspec for ionization 6 at t = 200 fs

4.0 1

3.5

3.0 1

2.51

2.01

1.5 1

1.01

27.5 30.0 325 350 375 40.0 425 450 475
Mass/Charge [u/e]

Figure 22

Masspec for ionization 7 at t = 200 fs

4.0 1

3.5

3.0 1

2.51

2.01

1.51

1.01

0.5 1

0.0

0 10 20 30 40 50 60
Mass/Charge [u/e]

Figure 24

Masspec for ionization 8 att = 200 fs

124

10 1

0 10 20 30 40 50 60 70
Mass/Charge [u/e]

(a) Figure 26

Masspec for ionization 9 at t = 200 fs

0.06

0.05 1

0.04 4

0.03 1

Density

0.02 1

0.01 1

0.00

I

20

40 60 80
Mass/Charge [u/e]

(a) Figure 27

Masspec for ionization 10 at t = 200 fs

0.4 1

0.3

Density

0.11

0.0

20 30 40 50 60

Mass/Charge [u/e]

Figure 29

13

Counts [#]

Counts [#]

Masspec for ionization 9 at t = 200 fs

25 A

N
o

=
v

=
o

v

0

Masspec for ionization 10 at t = 200 fs

iy u b LII_NLLIILIIII 11
20 40 60

Mass/Charge [u/e]

Figure 28

80

100

70

60

50 1

40 A

30 1

20 A

10 A

. PEPR sy | 1N ¥ I

|

30 40 50
Mass/Charge [u/e]

Figure 30

60

70

5 Discussion

As shown in the results, the fragmentation process generally follows a pattern: the more ioniza-
tion occurs in the molecule, the less stable it becomes and the more fragments we can observe at
the end of the simulation. Apart from this, though, there are many aspects that warrant discussion.

For example, from the heatmaps (Fig. 8, 36) we can see that the two bonds in the molecule
most prone to breaking are both between carbon atoms that form the backbone of the molecule’s
structure. For low ionization levels, they tend to stay stable for the whole simulation, but between
zZ =0.10 and z = 0.15 both bonds start disintegrating before the end of the simulation. I initially
found these results quite surprising, since there are plenty of bonds in Cystine with a longer average
bonding distance — like the S-S bond. Though, the sensitivity of the C-C bond is consistent with
earlier results. [6]

Another interesting feature of the results is the behaviour of the C-H bonds (Fig. 10, 44-48). At
higher ionization levels, they tend to oscillate in bond integrity. Judging by the colour scale, the
bond integrity seems to stay in the range [0.8, 1] for all of them, which is well above the limit that
was set for bond breaking, BI = 0.5. We can see a somewhat similar, though not as pronounced,
behaviour for some of the other bonds (for example N1,H4).

As stated earlier, the general trend in the fragmentation of the molecule is that higher ionizations
yield a larger amount of small fragments. This is apparent in most consecutive plots of mass-
to-charge ratio, even though their appearance is different due to the bin sizes of the histograms.
Though, there is one detail in the mass-to-charge plot for ionization level 3 (Fig. 15,16) that seems
discrepant — the rightmost bin in the histogram is placed at /e & 310. Since the total weight of the
Cystine molecule is around u = 240, this must have been caused by an error in the code. Despite
quite some searching and checking the script, I have been unable to locate it. The conclusion must
thus be that this unknown error in the code might have affected the other mass-to-charge plots as
well.

One central objective of this project was to study the S-S bond, which proved somewhat difficult
during code construction. More specifically, the long bonding length between the sulfur atoms
(between 2.0 and 2.2 A) posed a hurdle when trying to assign all atoms their correct “neighbors”.
Our initial attempt at trying to set a firm distance limit beyond which atoms would not be bonded
to each other didn’t work at all — if the limit was set high enough to include the sulfur bond, an
extra 15-20 bonds would also be included. Even after thorough pruning, the high distance limit
would cause illegitimate bonds to be included. The solution, though rather crude, was to simply
enter the sulfur bond manually into the list of neighboring atoms.

Once the sulfur bond was included in the data set, though, its behaviour could be visualised in a
heat map (Fig. 5). Comparing it to the heat maps for the sulfur atoms’ respective bonds to carbon
atoms (Fig. 6, 7) revealed some interesting patterns. Firstly, the S-S bond seems to start breaking
up around ¢ = 110 for ionisation levels above z = 0.30, while the C-S bonds generally dissolve
later in the simulation and for lower ionisation levels. Though there is some difference between the
overall volatility of the two, both bonds will start disintegrating at some point between z = 0.20
and z = 0.25. This will usually happen around the time ¢ = 130, but it varies with ionisation level.
From these trends we can draw some conclusions about the fragmentation of the molecule.

14

For ionization levels between zZ &~ 0.20 and z = 0.30 the C-S bonds break while the S-S bond stays
intact, which implies that the two sulfur atoms form a fragment. When 0.30 < z < 0.35 all of the
three bonds tend to break, which results in the two sulfur atoms dropping off of the molecule inde-
pendently. Interestingly, for z > 0.35, we see an increasing bond integrity for the C-S bonds but no
such behaviour in the S-S bonds — which would imply that the molecule breaks right down the mid-
dle. Though, due to the slight difference between the two C-S bonds there also exists “mixed” cases.

As stated in the Method section, the goal when writing the code for this project has been to make
it general and transferable so it can be used in subsequent projects. One example of this is the
function bond_broken_2, which calculates bond integrity. It takes the mean value and standard
deviation of the distance between two atoms from a thermalization run as parameters and uses
them as a baseline for the ionized case — instead of setting an arbitrary limit for all bonds. This
way, bond integrity is automatically calculated differently for each bond.

One underlying source of error in this project is the pre-written code that was provided — specif-
ically, the functions in analyze_trajectories.py. Due to my own lack of experience in
loading and processing molecular simulations, understanding how these functions worked proved
quite a challenge. Even though several of them are used in the final script, and I understand the in-
and outgoing values, a lot of their contents remain a “black box” to me. Not only does this mean
that systematic errors might be introduced to the code, but also that I have no way of estimating
them. Though I understand the necessity of using provided functions and programs, I find this
somewhat troubling from a scientific point of view — because it means I can’t fully guarantee the
quality of the calculations.

Similarly, I have very little insight into the Siesta simulations from which the data originates.
Although I trust my supervisor to have made reasonable assumptions when setting up the system,
this may also be a source of systematic error in the project. Since I have very little experience
with the theoretical groundwork of Siesta, though, that is as concrete a conclusion I can draw at
this point. Beyond that there is only speculation.

Outlook

To deepen the understanding of Cystine photofragmentation, I have some suggestions for future
works. First and foremost: to run simulations width a larger amount of starting configurations
and ionization levels. As could be seen in the Results section the fragmentation process is highly
dependent on both factors, which is a compelling reason to collect better statistics. I would not
necessarily expand the range of ionization levels — since the experimentally probable levels lie well
within it — but rather increase its density. Of course, running more configurations will be more
expensive in terms of time and resources, but it would give a fuller view of the fragmentation
process.

My second suggestion to improve upon the present work would be to simulate Cystine in an
aqueous environment instead of vacuum. Although more cumbersome to simulate, this would
represent the molecule’s usual biochemical environment much better.

15

Conclusions

Since I couldn’t analyze the sources of error in the simulations and the provided functions, the
reliability of my results can’t really be evaluated. Though, some patterns — like the ionization level
at which most bonds start disintegrating — are in line with earlier results. In the context of other
works on the subject, the general trends of the fragmentation process weren’t anomalous either.

16

6 Appendix

Bond integrity plots

The plots of bond integrity versus time that were not included in the Results are displayed here.

Mean bond integrity for atom pair N1 H5

175 1

150 A

1254

100 A

Time [fs]

75 A

50 4

25 A

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z[e/N]

Figure 31

Mean bond integrity for atom pair N2 H11

175 A

150 1

125 A

100

Time [fs]

751

50 1

25 A

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z[e/N]

Figure 33

Mean bond integrity for atom pair 04 H12

175 A

150 1

125 A

100 1

Time [fs]

751

50 1

25 A

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z [e/N]

Figure 35

1.0

0.8

0.6

0.4

0.2

0.0

Time [fs]

Time [fs]

17

Mean bond integrity for atom pair N2 H10

175 A

150 A

125 A

100 A

Time [fs]

75 A

50 A

25 4

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z [e/N]

Figure 32

Mean bond integrity for atom pair 02 H6

175 A

150 A

125 A

100 1

751

50 1

254

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z[e/N]

Figure 34

Mean bond integrity for atom pair C4 C5

175 A
150 A
125 A
100 A
75 4
50

25 A

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z [e/N]

Figure 36

Time [fs]

Time [fs]

Time [fs]

Mean bond integrity for atom pair C4 C6
-—

"

175 A

150 A

125 A

100 A

751

50 A

254

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z[e/N]

Figure 37

Mean bond integrity for atom pair C1 C3

175 A '

150 A

125 A

100 A

751

50 A

254

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z [e/N]

Figure 39

Mean bond integrity for atom pair C2 02

175 A

150 A

125 A

100 A

75 A

50 A

251

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z[e/N]

Figure 41

Time [fs]

Time [fs]

Time [fs]

Mean bond integrity for atom pair C1 C2

175 A

150 A

125 A

100

751

50 A

251

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z [e/N]

Figure 38

Mean bond integrity for atom pair C2 O1

175 A

150 A

125 A

100 A

751

50 1

25 A

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z [e/N]

Figure 40

Mean bond integrity for atom pair C5 03

175 A

150 A

125 1

100

751

50 4

251

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z[e/N]

Figure 42

Time [fs]

Time [fs]

Time [fs]

Mean bond integrity for atom pair C5 04

175 A

150 A

125 A

100 A

75 A

50 1

25 4

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z[e/N]

Figure 43

Mean bond integrity for atom pair C3 H3

175 A

150 A

125 A

100 A

751

50 A

251

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z[e/N]

Figure 45

Mean bond integrity for atom pair C1 H1

175 A

150 A

125 A

100 A

751

50 A

25 4

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Z[e/N]

Figure 47

19

Time [fs]

Time [fs]

Time [fs]

Mean bond integrity for atom pair C3 H2

175 4

150 A

125 A

100

751

50 A

251

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z[e/N]

Figure 44

Mean bond integrity for atom pair C6 H9

175 A

150 1

125 A

100 1

751

50 4

25 A

0 T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Z[e/N]

Figure 46

Mean bond integrity for atom pair C4 H7

175 A

150 A

125 A

100 A

751

50 1

25 A

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Z[e/N]

Figure 48

Mean bond integrity for atom pair N1 C1 Mean bond integrity for atom pair N2 C4

175 175 1
150 150 1
125 125 -
))
'@ 100 1 T 1001
£ £
= =
75 75 4
50 1 50 1
25 1 254
0 . . . ; ; , . 0 . . . ; . . .
0.00 005 010 015 020 025 030 0.35 0.00 005 010 015 020 025 030 035
Z[e/N] Z[e/N]

Figure 49 Figure 50

loadv6.ipynb

The following is the code contents of the [Python Notebook file 1oadv6.ipynb. Some basic
commands were provided by Oscar at the beginning of the project, but the majority of the code
has been constructed by Ebba Koerfer and me.

import numpy as np

import scipy as sp

from statistics import mean, stdev

from analyze trajectories import =«

import matplotlib.pyplot as plt

from elementdata import =

import seaborn as sns

e names of the data files must be entered expli 1%

run :[‘thermallzefghortfo.out' 'thermalize_short_1. out‘ 'thermalize_short_2.out', 'thermalize_short_3.out',
'thermalize_short_4.out', 'thermalize_short_5.out', 'thermalize_short_6.out', 'thermalize_short_7.out',
'thermalize_short_8.out', 'thermalize_short_9.out', 'thermalize_short_10.out"']

e data is ext ted and added to
thermalization_list=[]

for run in runs:

time_pos, timeserie, orblegend, specieslegend, numberlegend = parse_timestep (run)
thermalization_list.append (time_pos

index_to_atom, atom_to_index=make_atom_dictionary_from_timeserie (time_pos

#A first, crude estimate of the bonding is made

neighbors_list = get_neighborlist (time_pos[80],1
neighbors_list[7].extend([20])
neighbors_list[20].extend ([18,7])

print (f'Neighbor list[k][j]: {neighbors_list}"')

time step in the simulations

above,

an bonding

mean, dlstances dlct, distance_list = mean_distance dlct(thermallzatlon llSt, index_to_atom, neighbors_list)

for k in range (len(neighbors_list)):
for j in neighbors_list[k]:
print (f"Mean di nce between {index_to_atom[str(k)]} and {index_to_atom[str(j)]}:
f" {mean (mean_distances_dict [str((index_to_atom[str(k)],index_to_atom[str (]j)
print (f'Standard deviation: \t\t\t{stdev(mean_distances_dict[str((index_to_atom[s
end="\n\n")

\&n
1))1)} A"
tr(k)],index_to_atom[str(3)1))1)} A",

some examples

time = [x for x in range(len(thermalization_list[5]))]
for j in neighbors_list[i]:
fig, ax = plt.subplots()
ax.plot (time, distance_list[i][str(])])
ax.set_ylim(0.8, 2.3)
ax.set_xlim(0, 102)
ax.set (xlabel='Time [fs]', ylabel='Distance [A]l', title=f'Distance between atom pair {index_to_atom[str(i)]}, {index_to_atom[str(j)]}")
plt.show ()
#T ,
fig, ax = plt subplots()
ax.plot (distance_list[0] [str(1)], bond_broken_2(distance_list[0] [str(1)],100,1.445,0.03,10))
ax.set_ylim(0, 1.1)
ax.set_xlim(1.25, 3)
ax.set (xlabel='Bond distance [ﬂ]', ylabel='Bond integrity', title=f'Bond integrity for atom pair N1 {index_to_atom[str(1)]}")
plt.show ()

lates

20

#Removing bonds that are copies of other bonds with the names of the atoms swapped, H1,Cl. They contain
the exact same information, which is redundant.
all_keys list (mean_distances_dict.keys())

sorted_keys [sorted(e) for e in list (mean_distances_dict.keys())]

like Cl1,H1 vs.

index=1[]
for i, key in enumerate (sorted_keys):
index.append([i for i, keyi in enumerate (sorted_keys) if key==keyi]
for indexpair in index:
if len(indexpair) > 1:
if all_keys[indexpair[1]] in mean_distances_dict:
del mean_distances_dict[all_keys[indexpair([1]]]

print (list (mean_distances_dict.keys()))

#This code tries to remove any bonds between hydrogen atoms (which doesn't happen in this molecule)
for k in index_to_atom.values():
neighlist= [n for n in mean_distances_dict.keys ()
mainatom=str(k[0])
if mainatom=="H":
#print (k)
for n in neighlist:
#print (n)
if n.count ("H")>1 and n in mean_distances_dict.keys():
del mean_distances_dict[n]

if str(k) in n]

#The data files for the cases with ionization must also be entered manually. There are 11 starting geometric
configurations and 11 ionization levels, which makes for a total of 121 initial setups that each correspond to
a separate simulation.

runs2=[['startgeoO_ionizationO.out', 'startgeoO_ionizationl.out', 'startgeoO_ionization2.out',

'startgeoO_ionization3.out',

'startgeoO_ionization4.out',
'startgeoO_ionization8.out"',

['startgeol_ionizationO.out',

'startgeol_ionizationd.out',
'startgeol_ionization8.out',
['startgeo2_ionization0.out'
'startgeo2_ionization4.out',
'startgeo2_ionization8.out',
['startgeo3_ionization0O.out'
'startgeo3_ionization4.out',
'startgeo3_ionization8.out',
startgeod4_ionization0.ou
['start 4_ionizat 0 t!
'startgeo4_ionization4.out',
'startgeo4_ionization8.out',
['startgeo5_ionization0O.out'
'startgeo5_ionization4.out',
'startgeo5_ionization8.out',
['startgeo6_ionization0O.out'
'startgeo6_ionizationd.out',
'startgeo6_ionization8.out"',
['startgeo7_ionizationO.out’
'startgeo7_ionizationd.out"',
'startgeo7_ionization8.out"',
['startgeo8_ionization0.out"'
'startgeo8_ionization4.out',
'startgeo8_ionization8.out',
startgeo9_ionizationO.ou
['start 9 t 0 t!
'startgeo9_ionization4.out',
'startgeo9_ionization8.out',

’

['startgeolO_ionizationO.out'

'startgeol0O_ionization4.out'
'startgeol0O_ionization8.out"
ionization_list=[
for geo in runs2:
for run in geo:

’

’

’

'startgeoO_ionization5.out"',
'startgeoO_ionization9.out"',

'startgeol_ionization5.out"',
'startgeol_ionization9.out"',

'startgeo2_ionizationl.out',

'startgeo2_ionization5.out',
'startgeo2_ionization9.out',

'startgeo3_ionizationl.out',

'startgeo3_ionization5.out',

'startgeo3_ionization9.out',

'startgeod4_ionizationl.out',

'startgeod4_ionization5.out',
'startgeod4_ionization9.out',

'startgeo5_ionizationl.out',

'startgeo5_ionization5.out',
'startgeo5_ionization9.out',

'startgeo6_ionizationl.out',

'startgeo6_ionization5.out"',
'startgeo6_ionization9.out"',

'startgeo7_ionizationl.out"',

'startgeo7_ionization5.out"',
'startgeo7_ionization9.out"',

'startgeo8_ionizationl.out',

'startgeo8_ionization5.out',
'startgeo8_ionization9.out',

'startgeo9_ionizationl.out',

'startgeo9_ionization5.out',

'startgeo9_ionization9.out',

'startgeol_ionizationl.out"',

'startgeol0_ionizationl.out',
'startgeol0_ionization5.out',
'startgeol0_ionization9.out"',

'startgeoO_ionization6.out',

'startgeoO_ionization7.out"',

'startgeoO_ionizationlO.out'],
'startgeol_ionization2.out"',

'startgeol_ionization6.out'

’

'startgeol_ionization3.out"',
'startgeol_ionization7.out"',

'startgeol_ionizationlO.out'],
'startgeo2_ionization2.out',

'startgeo2_ionization6.out'
'startgeo2_ionizationlO.out

'startgeo3_ionization6.out'

’
'

’

'startgeo2_ionization3.out',
'startgeo2_ionization7.out',

1,

'startgeo3_ionization2.out',

'startgeo3_ionization3.out',

'startgeo3_ionization7.out',

'startgeo3_ionizationlO.out'],
'startgeo4_ionization2.out',

'startgeo4_ionization6.out'

’

'startgeo4_ionization3.out',
'startgeo4_ionization7.out',

'startgeo4_ionizationlO.out'],
'startgeo5_ionization2.out',

'startgeo5_ionization6.out'
'startgeo5_ionizationlO.out

'startgeo6_ionization6.out’
'startgeo6_ionizationlO.out

'startgeo7_ionization6.out'
'startgeo7_ionizationlO.out

'startgeo8_ionization6.out'

’
'

’
'

’
'

’

'startgeo5_ionization3.out',
'startgeo5_ionization7.out',

1,
'startgeo6_ionization2.out',

'startgeo6_ionization3.out',
'startgeo6_ionization7.out"',

1,
'startgeo7_ionization2.out"',

'startgeo7_ionization3.out"',
'startgeo7_ionization7.out"',

1,
'startgeo8_ionization2.out',

'startgeo8_ionization3.out',
'startgeo8_ionization7.out’',

'startgeo8_ionizationlO.out'],

'startgeo9_ionization2.out

'
’

'startgeo9_ionization6.out',
'startgeo9_ionizationlO.out'],

'startgeolO_ionization2.out"',
'startgeolO_ionization6.out',
'startgeol0O_ionizationlO.out"']]

'startgeo9_ionization3.out',
'startgeo9_ionization7.out',

'startgeol0_ionization3.out"',
'startgeol0_ionization7.out"',

time_pos, timeserie, orblegend,
ionization_list.append (time_pos)

specieslegend, numberlegend parse_timestep (run)

#Data from the above files is added to ion_dict,

to a key of the form "atoml, atom2".
ion_dict = {}
for key in list (mean_distances_dict.keys()):
index_i = int (atom_to_index[key.split ("'")[1]])
index_j = int (atom_to_index[key.split ("'") [3]])
for geo in range(0,11):
for ion in range(0,11):
current_run=(llxgeo)+ion
ion_dist_list = [dist_timestep(ionization_list[current_run][t],index_1i,index_7j)
for t in range(len(ionization_list[current_run]))]
if key not in ion_dict:
ion_dict [key]=[None]«11
ion_dict [key]=[[None]*11l for x in ion_dict [key]]
else:
pass
ion_dict [key] [geo] [ion]=ion_dist_list
#Plotting the bond integrity vs. bonding distance
atom_pair = "('Cl', 'cz")"
g = 6
ion = 10
fig, ax = plt.subplots()

bond_broken_2 (ion_dict [atom_pair] [g] [ion],len(ion_dict[atom_pair] [g] [ion]),
mean (mean_distances_dict [atom_pair])

ax.plot (ion_dict[atom_pair] [g] [ion],

= atom_pair.split ("'")[1]
j = atom_pair.split("'") [3]

21

which stores the distances between two atoms for each simulation as a value

stdev (mean_distances_dict [atom_pair]),10)

ax.set (xlabel='Bond distance [A]', ylabel='Bond integrity', title=f'Bond integrity for atom pair {i}
plt.show ()

#Plotting the bond integrity vs. time in the simulations for a few bonds

atom_pairs = ["('N1', 'H4')", "('CL', 'C3')", "('C5', '04')", "('C2', 'OL')", "('N1', 'Cl')", "('Sl',
g =7

ion = 9

time = [t for t in range(len(ionization_list[0]))]

for atom_pair in atom_pairs:
fig, ax = plt.subplots()
ax.plot (time, bond_broken_2 (ion_dict[atom_pair] [g] [ion],len(ion_dict[atom_pair][g] [ion]),

{j} with g={g}

1521y

mean (mean_distances_dict [atom_pair]), stdev(mean_distances_dict[atom_pair]),10)

i = atom_pair.split ("'") [1]

j = atom_pair.split("'") [3]

ax.set (xlabel='Time [fs]', ylabel='Bond integrity', title=f'Bond integrity for atom pair {i} {J}
plt.show ()

#Generating heatmap plots for each bond that display their bond integrity as a function of ionization level and time

for atom_pair in mean_distances_dict.keys():

i = atom_pair.split("'")[1]
j = atom_pair.split("'")[3]
mean_g_dist = [[] for _ in range(11l)

all_g = [[] for _ in range(1l1)
for ion in range(11):

all_g[ion] = [ion_dict[atom_pair] [g][ion] for g in range(l1l) if len(ion_dict[atom_pair] [g] [ion])

for t in range(len(time)):
mean_g_dist[ion].append(mean([all_g[ion] [g][t] for g in range(len(all_g([ion]))]))

z_mesh = np.divide (np.linspace(0,10,11),np.float (26))
time_mesh = [t for t in range(len(ionization_list[0]))]

all_mean_integrity = np.transpose ([bond_broken_2 (mean_g_dist[current_i], len(mean_g_dist[current_i]),
mean (mean_distances_dict [atom_pair]), stdev(mean_distances_dict[atom_pair]),10) for current_i in range(11)])

fig, ax = plt.subplots()

p = plt.contourf (z_mesh, time_mesh, all_mean_integrity, levels=100, vmin=0., vmax=1.0,
alpha=1, cmap='plasma')

fig.colorbar(p, ticks=[0,0.2,0.4,0.6,0.8,1])
plt.clim(0,1)

ax.set (xlabel='S\overline{z} [e/N]', ylabel='Time [fs]', title=f'Mean bond integrity for atom pair {i} {3j}'")

plot_filename=f'mBI_{i}_{j}.png’
plt.savefig(plot_filename, bbox_inches='tight', format='png', dpi=400
plt.show()

and i={ion}")

with g={g} and i={ion}"')

== len(time)]

#Using the function total_fragments to calculate the fragmentation of the molecule at each timestep in every simulation.

BI_cutoff=0.5
lamda=10
total_fragments=frags_from_dists (mean_distances_dict, atom_to_index, ion_dict, lamda, BI_cutoff

#To make a dictionary of the mass-to-charge ratio for each fragment in all of the simulations, we first extract the charge

data for each atom.
all_filenames = []
for geo in runs2:
for run in geo:
all_filenames.append (run)

atom_charge_dict = {}
for file in all_filenames:
charges = parse_hirsh(file)
for atom in range (len(charges[0])):
if atom_charge_dict.get (index_to_atom[str (atom)]) != None:

atom_charge_dict [index_to_atom[str (atom)]].append([charges[t] [atom] for t in range (len(charges))])

else:
atom_charge_dict [index_to_atom[str(atom)]] = []

atom_charge_dict [index_to_atom[str (atom)]].append([charges[t][atom] for t in range (len(charges))])

#The mass data is loaded into a list and used to calculate the weight of each fragment.Then their mass-to-charge ratio

can be calculated, and collected into one histogram + one kde plot per ionization level.
ed=ElementData (

frag_weights=[0]«11
frag_weights=[[0]+11 for x in frag_weights]
for geo in range(0,11):
for ion in range(0,11):
frag_weights([geo] [ion]=[0]+len(total_fragments[geo] [ion])

for geo in range (len(frag_weights)):
for ion in range(len(frag_weights[geo])):
for frag in range (len(frag_weights[geo] [ion])) :
for atm in range (len(total_fragments[geo] [ion] [fragl)):

frag_weights[geo] [ion] [frag] +=ed.elementweight [total_fragments[geo] [ion] [frag] [atm] [0]

frags_charges=[0]*11
frags_charges=[[0]«11 for x in frags_charges]
for geo in range(11):

for run in range(11):

frags_charges[geo] [run] = [0 for x in total_fragments[geo] [run]] #The same # of frags and charges

for frag in range (len(total_fragments[geo] [run])):
for atm in total_fragments[geo] [run] [frag]:
frags_charges[geo] [run] [frag] += atom_charge_dict[atm][ll*geo + run][-1]

22

i =10 # OBS:
mass_charge = []
for g in range(11):

mass_charge.extend (np.ndarray.tolist (np.divide ([m for m in frag_weights[g][i]], [c for c in frags_charges([g][i]])))

fig, ax = plt.subplots()

plt.hist (mass_charge, bins=np.arange (min(mass_charge), max(mass_charge) + 0.5, 0.125)

ax.set (xlabel='Mass/Charge [u/e]', ylabel='Counts [#]', title=f'Masspec for ionization {i} at t = {len(time)} fs')
plot_filename=f'H_masspec_{i}.png’

plt.savefig(plot_filename, bbox_inches='tight', format='png', dpi=400)

plt.show ()

fig, ax = plt.subplots()

sns.kdeplot (mass_charge, bw=0.125

ax.set (xlabel="'Mass/Charge [u/e]', ylabel='Density', title=f'Masspec for ionization {i} at t = {len(time)} fs')
plot_filename=f'G_masspec_{i}.png’

plt.savefig(plot_filename, bbox_inches='tight', format='png', dpi=400)

plt.show ()

analyze_trajectories.py

The majority of this code was provided by Oscar to perform some essential functions in the main
script, like loading and parsing the simulation data. Some functions are written by me and/or
Ebba Koerfer for this project specifically — these are bond_broken_2, mean_distance_dict
and frags_from_dists. The last one is based on code I wrote during a previous project.

‘usr/bin/env py
import os, sys
import numpy as np

import shutil

import matplotlib.pyplot as plt
from statistics import mean, stdev
from numpy import linalg as LA
from scipy import interpolate

from itertools import combinations

"

bonds

preparsed.py

To analyze [p
class atom:
def __init__ (self):
self.name=""
self.rvec=np.zeros (3)
self.dvec = np.zeros(3) # direct

eparsed with "the na.

self.pdos = np.zeros (1)
self.sumdos = np.zeros(l)
self.color = 0 # color index is used to find color from list in plotter, otherwise it's m

self.phonons = []
self.speciesName = ""
self.speciesNumber = 0
self.specnum=0
self.speciesZNumber = 0
self.mass = 0.0
self.hirshfeldcharge=0.0
self.mulliken_legend=[]
self.mulliken_charges=[]

def distance(self,center=np.asarray([(0.0,0.0,0.0])):
return np.linalg.norm(np.subtract (self.rvec,center)

J: grt (self.rvec[0] x+2+self.rve

*%2))

def in_cluster(self,maxrad,center=np.asarray([0.0,0.0,0.0]),minrad=0.0):
return (self.distance(center) <= float (maxrad) and self.distance(center) >= float (minrad))

class lattice:

def __init__ (self):
self.bravais=np.zeros((3,3))
self.reciprocal=np.zero
self.atoms=[]
self.lattparam=0.0
self.indSpecies=[]
self.numSpecies=0
self.indSpeciesNames
self.coordtype=""

n W

def deleteContent (fName): #C
with open (fName,
pass

def Date_and_Time () :

from time import gmtime, strftime #Ct nt date and
t = strftime ("$Y-%m-%d %$H:%M:%S", gmtime())
return t

23

def parse_text_bond_data(filename) :
bond_integrity=[]
f=open (filename, 'r')
for i, line in enumerate (f.readlines()):

if line.split()[-1][-1] is not "]":
full_line = line.split()
else:
full_line = full_line + line.split ()
bond_integrity.append(np.asarray (filter (None, [element.strip('[]') for element in full_line[1:]])) .astype(np.float))

return np.asarray (bond_integrity)

def get_neighborlist (timestep, rmax) :
neighborlist=[
rmin = 0.1 # Do not include self
for i, atm in enumerate (timestep):
neighborlist.append(find_atoms_within_radius (timestep, atm.rvec, rmax, rmin))
return neighborlist

def get_neighborlist_2(timestep, rmax) :
neighborlist=][
rmin = 0.1 # Do not include self
for i, atm in enumerate (timestep):
neighborlist.append(find_atoms_within_radius (timestep, atm.rvec, rmax, rmin))
if atm.name is "H" and len(neighborlist[i]) > 1:
wrong_index = abs(max([i-x for x in neighborlist[i]]) - i)
neighborlist[i].remove (wrong_index)

return neighborlist

def find_atoms_within_cartesian(cluster,xlim,ylim,zlim):
indices=[]
for i, atm in enumerate (cluster):
within = ((float (x1im[0])<= float (atm.rvec[0]) <= float(x1lim[1])) and
(float (ylim[0]) <= float (atm.rvec[l]) <=float (ylim[1])) and
(float (z1im[0]) <= float (atm.rvec[2]) <=float(zlim[1])))
if within:
indices.append (i)
return indices

def find_atoms_within_radius (cluster,center,rmax, rmin=0.0):
indices=[]
for i, atm in enumerate (cluster):
if (atm.in_cluster (rmax,center,rmin)) :
indices.append (i)
return indices

def get_neighborlist (timestep, rmax) :
neighborlist=[
rmin = 0.1 # Do not include self
for i, atm in enumerate (timestep):
neighborlist.append(find_atoms_within_radius (timestep, atm.rvec, rmax, rmin))
return neighborlist

#checking if element is int
def Is_Int(s):
try:
int (s)
return True
except ValueError:
return False

#Parsing .ANI file
def parse_ANI (filename) :

f = open(filename, 'r')
contents = f.readlines()
f.close()
atoms=[]

time_serie=[]
for i in range (len(contents)):
if (Is_Int (contents[i])):
atoms_in_timestep=int (contents[i].split () [0])
for j in range(i+2,i+2+int (atoms_in_timestep)):
atoms.append (atom())

atoms[-1].rvec=[float (contents[]j].split () [k]) for k in range(l,4)]
atoms[-1] .name=contents[Jj].split () [0]

time_serie.append (atoms)

atoms=[]

return atoms_in_timestep, time_serie

def distR (D) :
N = np.loadtxt (D, dtype=np.float, delimiter=',6")
Q = [np.linalg.norm(a-b) for a, b in combinations (N, 2)]
return Q

def dist_timestep (timestep,atoml,atom2) :
return np.linalg.norm(np.subtract (timestep[atom2].rvec,timestep[atoml] .rvec))

def bond_broken (dist,mean, T=150) :
B=[]

24

for num in range(0,T):

try:

a = np.sqrt ((np.sum(dist [num] -mean)) »*2)-0.5
except:
a = a # will this work for simulations that broke before T=1507?

= 0.03*a
= np.exp (b)
= 1l+c
= 1/d
.append (e)

wo Qoo

return np.asarray (B)

def bond_broken_2(dist, T, mean, sigma, lamda):

B=[]

for num in range(0,T):
e = (1 + np.exp(lamdax (dist [num]-mean-sigma-0.5))) %% (-1)
B.append (e)

return np.asarray (B)

def mean_distance_dict (thermalization_list, index_to_atom, neighbors_list):

"""Returns a dictionary with keys in the form '(Atom_A_index, Atom_B_index)' with values in the form of lists, where the elements are

mean values for the distance between atom A and B over time for each thermalization run in thermalization list (which contains

information from parse_timestep function). index_to_atom is a dictionary made from make_atom_dictionary_from timeserie() and

neighbors_list from get_neighborlist()"""

mean_distance_lexi = {} # Dictionary with every atom pair_kj, in tuple-form, as keys and their values are mean distances over
all time positions for every thermalization run

for run_index in range (len(thermalization_list)):
distance_list = []

for k in range(len(neighbors_list)): # atom_k, atom_j = atom pair_kj
distance_lexi = {}
for j in neighbors_list[k]: # distance_list has dicts for every atom _k with neighbor atom_j as key and with
distance_atom pair_kj(t) as values
distance_lexi[str(j)] = [dist_timestep(thermalization_list[run_index][t_i],k,Jj) for t_i in

range (len(thermalization_list[run_index]))]
distance_list.append(distance_lexi)
for j in neighbors_list[k]:

if mean_distance_lexi.get (str((index_to_atom[str(k)],index_to_atom[str(3j)]))) != None:

mean_distance_lexi[str ((index_to_atom[str (k)], index_to_atom[str(j)]))].extend([mean (distance_list[k][str(j)])])
else:

mean_distance_lexi[str((index_to_atom[str(k)],index_to_atom[str(3j)]))] = [mean(distance_list[k][str(])])]

return mean_distance_lexi, distance_list

def frags_from_ dists (mean_distances_dict, atom_to_index, ion_dict, lamda, BI_cutoff):
l=lamda #Lambda value
broken_bonds_dict={}
for bond in list (mean_distances_dict.keys()):
broken_bonds_dict [bond]=[None] 11
broken_bonds_dict [bond]=[[None]*11l for x in broken_bonds_dict [bond]
for geo in range(0,11):
for ion in range(0,11):
BI = bond_broken_2 (ion_dict [bond] [geo] [ion], len(ion_dict [bond] [geo] [ion]),
mean (mean_distances_dict [bond]), stdev(mean_distances_dict[bond]),1l)
if BI[-1] <= BI_cutoff:
broken_bonds_dict [bond] [geo] [ion]="broken"
else:
broken_bonds_dict [bond] [geo] [ion]="intact"

total_fragments=[None]*11
total_fragments=[[None]+11l for x in total_fragments]

for geo in range(0,11):
for ion in range(0,11):

polyatomic=1[]

monoatomic=[]

for bond in broken_bonds_dict.keys () :
atoms= [x for x in atom_to_index.keys() if bond.split ("'")[l]==x or bond.split ("'") [3]
if broken_bonds_dict [bond] [geo] [ion]=="intact":

found=False
merged=False
for j in range (len(polyatomic)):
if (atoms[0] in polyatomic[j]) and (atoms[l] not in polyatomic[j]):
for k in range (len (polyatomic)) :
if atoms[1] in polyatomic([k] and atoms[0] not in polyatomic[k]:
polyatomic[j].extend(polyatomic[k])
polyatomic[k]=[]
merged=True
break
if not merged:
polyatomic[j].append(atoms[1])
found=True
elif (atoms[1l] in polyatomic[j]) and (atoms[0] not in polyatomic[j]):
for k in range (len(polyatomic)) :
if atoms[0] in polyatomic([k] and atoms[l] not in polyatomic([k]:
polyatomic[]j].extend(polyatomic[k])
polyatomic[k]=[]
merged=True
break
if not merged:
polyatomic[j].append(atoms[0])
found=True
elif (atoms[0] in polyatomic[j]) and (atoms[1] in polyatomic[Jj]):

25

found=True
else:
pass
if found==False: #This is the case where the atoms do not occur anywhere in the current version of "polyatomic"
polyatomic.append (atoms)
elif broken_bonds_dict [bond] [geo] [ion]=="broken":
atom0_in_somefrag=False
atoml_in_somefrag=False
for other_bond in broken_bonds_dict.keys () :

if broken_bonds_dict [other_bond] [geo] [ion]=="intact":
if (atoms[0]==other_bond.split ("'")[1] or atoms[0]==other_bond.split("'") [3]):
atom0O_in_somefrag=True
if (atoms[l]==other_bond.split("'")[1] or atoms[l]==other_bond.split("'") [3]):

atoml_in_somefrag=True
if not atomO_in_somefrag and atoms[0] not in monoatomic:
monoatomic.append (atoms[0])
if not atoml_in_somefrag and atoms[l] not in monoatomic:
monoatomic.append (atoms[1])
else:
pass
else:
print ("broken_bonds_dict ["+bond+"] ["+geo+"] ["+ion+"] was not assigned a value")

for i in range (len(monoatomic)):
monoatomic([i]=[monoatomic[i]]

empty_indices=[]

for j in range(len(polyatomic)):
if not polyatomic[j]:

empty_indices.append(]j)

for empty_index in empty_indices:
del polyatomic[empty_index]

fragments=[]

fragments.extend (polyatomic)

fragments.extend (monoatomic)

total_fragments[geo] [ion]=fragments

return total_fragments

def write_xyz_anim(filename,timesteps,skipstep=1) :
f = open(filename, 'w')
for i, step in enumerate (timesteps):
if (np.mod(i, skipstep)<0.5):
f.write(str(len(step))+"\n")

f.write('Timestep: '+str(isskipstep)+"\n")
for atm in step:
f.write(str (atm.name)+" "+str(atm.rvec[0])+" "+str(atm.rvec[l])+" "+str(atm.rvec([2])+"\n")

def parse_hirsh_from_file(ion,lastion,acid):
all_mean_hirsh=[]
all_std_hirsh=[]
for ionstage in range (ion, lastion):

hirsh=[]
print ("acid, ionstage: ", str(acid), str(ionstage))
for geostage in range (geometry, lastgeometry) :
Sim = './startgeo{0}_ionization{1l}'.format (geostage,ionstage)
os.chdir (Sim)
try:
hirsh.append(parse_hirsh("./stdout"))
except:
print ("Failed to parse Hirshfeld for: {0}/startgeo{l}_ionization{2}".format (acid, geostage, ionstage))
os.chdir("..")

#print np.asarray (hirsh).mean (0).shape
mean_data_name="'{0}_hirshfeld_charge_{1}_hirshrun.dat'.format (acid, ionstage)
np.savetxt (mean_data_name, np.asarray (hirsh) .mean(0))
mean_data_name="'{0}_stdev_hirshfeld_charge_{1}_hirshrun.dat'.format (acid,ionstage)
np.savetxt (mean_data_name,np.asarray (hirsh) .std(0))
all_mean_hirsh.append(np.asarray (hirsh) .mean (0))
all_std_hirsh.append(np.asarray (hirsh) .std(0))

return all_mean_hirsh, all_std_hirsh

def parse_hirsh(filename) :
f = open(filename, 'r'")
contents = f.readlines()
f.close()
timesteps=[]
charges=[]
numatm=0
for i in range(len(contents)):
if ("NumberOfAtoms" in contents([i]):
numatm=contents[i].split () [1]
if ("Atom # Qatom Species" in contents[i]):
for j in range(i+1l,i+1l+int (numatm)) :
charges.append (contents[j].split () [1])
timesteps.append (np.asarray (charges, dtype=float))
charges=1[]
return timesteps

def parse_eigenvalues (filename) :
f = open(filename, 'r'")
contents = f.readlines()
f.close()
timeserie_eig=[]
timeserie_occ=][]

for i, line in enumerate (contents):
if ("Timestep" in line):

26

current_step=int (line.split () [1])

print (current_step)

num_eigens=int (line.split () [3])

print (num_eigens)

eigenvalues=[]

occupations=[]

for j in range(i+1l,i+num_eigens+1):
eigenvalues.append (np.asarray (contents[j] .split () [0:2], dtype=float))
occupations.append (np.asarray (contents[j].split() [3:5], dtype=float))

Transpose to get spin-channels as timeserie[itime] [ispin][:]

timeserie_eig.append (np.transpose (np.asarray (eigenvalues)))

timeserie_occ.append (np.transpose (np.asarray (occupations)))

return np.asarray(timeserie_eig), np.asarray(timeserie_occ)

read_preparsed_hirsh (acid, ion) :

mean_data_name='{0}_hirshfeld charge_{1}_hirshrun.dat'.format (acid,ion)
mean_hirsh=np.loadtxt (mean_data_name, dtype=np.float)
mean_data_name="'{0}_stdev_hirshfeld_charge_{1}_hirshrun.dat'.format (acid, ion)
std_hirsh=np.loadtxt (mean_data_name, dtype=np.float)

return mean_hirsh, std_hirsh

make_atom_dictionary (filename) :

natoms, md_verlet = parse_ANI (filename)

atomdict={}

name_list=[atm.name for atm in md_verlet[0]]

for i, atm in enumerate (md_verlet[0]):
new_atom_number=name_list[0:1i].count (atm.name) +1
key=str (i)
value=atm.name+str (new_atom_number)
atomdict [key]=value

inverted_dict = dict (map(reversed, atomdict.items()))

return atomdict, inverted_dict

make_atom_dictionary_from_timeserie(timeserie):
atomdict={}
name_list=[atm.name for atm in timeserie[0]]
print (name_list), print (type (name_list[0])
for i, atm in enumerate (timeserie[0]):
print (str (i), atm.name)
new_atom_number=name_list[0:1].count (atm.name) +1
key=str (i)
value=atm.name+str (new_atom_number
atomdict [key]=value
inverted_dict = dict (map(reversed, atomdict.items()))
return atomdict, inverted_dict

parse_xyz (filename) :

xyz=[]

f = open(filename, 'r')
contents = f.readlines()
f.close()

for line in contents:
xyz.append (np.asarray (line.split () [1:4], dtype=float))
return np.transpose (np.asarray (xyz))

parse_timestep(filename, outfile=None):

f = open(filename, 'r')

contents = f.readlines ()

print ("filename: "+str (filename)

print ("length of file: "+str(len(contents)))

f.close()

numatm=0

basissize='SZP'

time_pos=[]

time_mulliken=[]

timesteps=[]

specieslegend={}

numberlegend={}

mulls=[]

orblegend=[]

for i in range (len(contents)):

if ("NumberOfAtoms" in contents[i]):

numatm=int (contents[i].split () [1])
print ("Number of Atoms: "+str (numatm))
break

for i in range(len(contents)):
if ("PAO.BasisSize" in contents([i]):
basissize=str (contents[i].split () [1])
print ("Basis Size: "+str(basissize))
break

for i in range (len(contents)):
if ("SpinPolarized" in contents[i]):

if ("true") in contents[i]:
spins=2
else:
spins=1
break
print ("Spin components: "+str(spins))

for i in range(len(contents)):
if ("AtomicSpecies" in contents[i]):

27

#print "Found AtomicCoord..."
for j in range(i+1l,len(contents)):
print (str(j-i)+" "+str(contents[j].split()))
numberlegend[str (j-1i)]=str (contents[j].split () [3])
if ("AtomicCoordinatesAndAtomicSpecies" in contents[j+1]):
print "Found!"
break
else:
continue
break

for i in range(len(contents)):
if ("ChemicalSpeciesLabel" in contents[i]):
for j in range(i+l,len(contents)):

specieslegend[str (contents[j].split () [0])]=str(contents[j].split() [2])
if ("ChemicalSpeciesLabel" in contents[j+1]):
break
else:
continue
break

print numberlegend
print specieslegend

for i in range(len(contents)):
if ("Atomic coordinates (Ang)" in contents[i]):

atoms=[]

for j in range(i+1,i+numatm+1) :
#print (contents[j])
#print (contents[j].split () [3])
#print (numberlegend)
atoms.append (atom())
atoms[-1].rvec=[float (contents[j].split () [k]) for k in range(0,3)]
atoms[-1] .name=specieslegend[numberlegend[str (contents[j].split () [4])]]
#atoms [-1] .name=specieslegend[str (contents[j].split () [3])]
#print (atoms[-1].name)

time_pos.append (atoms)

Approximately two lines per atom times number of spins + overhead of a few lines
approx_mulliken_size=numatm* (3+spins«2)

for i in range(len(contents)):
if ("mulliken: Atomic and Orbital Populations:" in contents[i]):
mulls, orblegend= parse_mulliken(contents[i:it+approx_mulliken_size],numatm,basissize,spins,outfile)
time_mulliken.append (mulls)

return time_pos, time_mulliken, orblegend, specieslegend, numberlegend

28

References

1]
2l

13l

4]

[5]

(6]

7]
8]
191
[10]
[11]

[12]

Dagmar Ringe Gregory A. Petsko. Protein structure and function. Oxford University Press,
2009.

Nicusor Timneanu Henry N. Chapman Carl Caleman. “Diffraction before destruction”. In:
Philosophical transactions of the Royal Society B 369.1647 (2014). DOI: https://doi.
org/10.1098/rstb.2013.0313.

Herbert A. Hauptman. “History of X-ray Crystallography”. In: Structural Chemistry 1 (1990).
DOI: https://doi-org.ezproxy.its.uu.se/10.1007/BF00674136.

Alan L. Mackay. “Generalized Crystallography”. In: Science of Crystal Structures: Highlights
in Crystallography. Ed. by Istvan Hargittai and Balazs Hargittai. Springer, 2015. Chap. 4,
pp. 37-42.

John C.H. Spence. “Outrunning damage: Electrons vs X-rays — timescales and mechanisms”.
In: Structural dynamics 4 (2017). DOL: https://doi.org/10.1063/1.4984606.

Oscar Granas et al. “Femtosecond bond breaking and charge dynamics in ultracharged amino
acids”. In: The Journal of Chemical Physics 151 (2019). DOI: https://doi.org/10.
1063/1.5116814.

Ibrahim Eliah Dawod. “Structural integrity of highly ionized peptides”. MA thesis. Uppsala
universitet, 2019.

NEUROtiker. Structure of L-cysteine. URL: https : / / commons . wikimedia . org/
wiki/File:L-Cystein_-_L-Cysteine.svg.

Joao Mousqués Renke Dullaart. Keratin — Structure, properties and applications. Nova sci-
ence publishers, 2012.

Ju. (R,R)-Cystine. URL: https://commons.wikimedia.org/wiki/File: (R, R) -
Cystine_BLUE_Structural_Formula.png.

Steven A. Hardinger. Disulfide bond. URL: http://www.chem.ucla.edu/~harding/
IGOC/D/disulfide_bridge.html.

Ben Mills. Ball-and-stick model of cystine. Atomic labels were added by me, the author. URL:
https://commons.wikimedia.org/wiki/File:Cystine-3D-balls.png.

29

