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It was discovered nearly two decades ago that we live in an accelerating universe that is
dominated by dark energy. Understanding the origin of such an energy has turned out to be a
very difficult open question in physics, and calls on the need for a fundamental theory like string
theory. However, despite decades-long effort, string theory has proven incredibly resilient to a
satisfactory construction of dark energy within its framework.

In the first part of this thesis and the included papers, we examine this problem and propose
two possible solutions. The first is a construction within the framework of M-theory, the eleven
dimensional cousin of string theory. Using only well-understood geometric ingredients and
higher-derivative corrections to eleven dimensional supergravity, we present a new class of four
dimensional vacua that contain dark energy. In the process, we also construct a new class of non-
supersymmetric Minkowski vacua that were previously not known. Our second idea is a novel
proposal that our universe could be embedded on the surface of an enormous spherical bubble
that is expanding in a five dimensional anti de Sitter spacetime. The bubble is made of branes in
string theory and its expansion is driven by the difference in the cosmological constants across
it. We argued that such a construction arises naturally in string theory, and showed how four
dimensional gravity arises in such a universe. We further showed that four dimensional matter
and radiation arise from quantities that are innately five dimensional.

Another challenging problem in physics concerns the nature of black holes – the presence
of an event horizon in particular. This poses a paradox between well understood physical
principles, and requires a fundamental theory for its resolution. Towards this goal, we
constructed a novel class of horizonless objects that mimics black holes, and proposed these
objects as an alternative end point of gravitational collapse. Subsequently, we constructed slowly
rotating versions of these "black shells" and proposed an observational signature that could
distinguish them from black holes in cosmological experiments. This is discussed in the second
part of the thesis and in the included papers.
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“What makes the desert beautiful,” said the little prince,
“is that somewhere it hides a well. . . ”

— Antoine de Saint-Exupéry, The Little Prince
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1. Introduction

It was discovered almost twenty years ago that our universe is not only ex-
panding, but is also accelerating. This discovery caused a major upheaval,
since prior to that it was widely believed that the expansion of the universe
is slowing down. The mysterious energy that seems to be pushing the uni-
verse apart, causing it to accelerate, is called dark energy. Explaining this
acceleration from the present theoretical understanding of cosmology is
still an open problem. The most popular explanation is that there is a vac-
uum energy in the universe, which pushes apart spacetime itself. This is
called the cosmological constant, and observations show that it is incredi-
bly tiny and positive. The cosmological constant is a dimensionful quan-
tity with dimension of inverse squared length. In general relativity, which
is our experimentally verified low-energy theory of gravity, there are only
two fundamental dimensionful quantities namely, the Newton’s constant𝐺 and the speed of light 𝑐. There is no combination of these quantities that
produces an object with the dimension of an inverse squared length. The
appearance of a non-zero cosmological constant within general relativity
is therefore not possible, without introducing a new dimensionful scale in
the problem.
A length scale arises if one introduces quantum mechanics into the pic-

ture. This introduces another dimensionful constant – the Planck constantℏ. The three fundamental constants 𝐺, 𝑐, and ℏ can now be combined into
a quantity 𝓁Pl ∶= √𝐺ℏ∕𝑐3, called the Planck length. The Planck constantℏ is in fact associated with an energy scale in quantum mechanics, corre-
sponding to the zero point energy. This suggests the possibility that dark
energymight have an explanation in terms of the zero point energy of quan-
tum mechanics. In terms of the Planck length, the measured value of the
cosmological constant is Λ ∼ 10−120𝓁−2

Pl , which is an incredibly tiny num-
ber. To get an intuition of how tiny this number is, note that the volume of a
single grain of sand is about 10−90 times the volume of the entire observable
universe. 10−120 is much much smaller than that – about as small as the
volume of a single atom of hydrogen compared to the volume of the entire
observable universe. This raises a deep question – why is the cosmological
constant so tiny? This is the familiar question of naturalness that appears
all over particle physics. The usual answer to such a question is that there
is a symmetry that forces this quantity to vanish. When this symmetry is
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very slightly broken, the quantity acquires a tiny non-zero value. However,
no such symmetry seems to exist for the cosmological constant, making it
very difficult to explain its extremely fine-tuned non-zero value. This is the
essence of the cosmological constant problem.
Since it is clear that the problem involves both quantum field theory and

general relativity, one can hope that a unified theory that combines both,
might provide an answer. Such a theory needs to be a quantized theory of
gravity. The reason why gravity needs to be quantized can be seen, for ex-
ample, from the double slit experiment. In this experiment, the wavefunc-
tion of an electron is a superposition of its wavefunction passing through
both slits. If the gravitational field of the electron were classical, meaning
that it can only exist at one place at one time and not in a superposition,
then one could detect which slit the electron passed through, by measur-
ing its gravitational force, contradicting the quantumnature of the electron.
This strongly suggests that if anything that gravity couples to is quantized,
then gravity has to be quantized as well. See Feynman’s Lectures on grav-
itation (1996) for a delightful discussion around this, and also for the first
attempt to construct a quantized theory of gravity.
String theory is a leading candidate for such a quantum theory of grav-

ity. However, it is consistent only in ten dimensions, and requires an ad-
ditional symmetry called supersymmetry. Supersymmetry postulates that
every matter particle (fermion) has a counterpart that behaves like light
(boson), and vice versa. Such a symmetry is also motivated from particle
physics, where it protects the mass of certain particles, like the Higgs bo-
son, from becoming extremely heavy. Although this is expected to be a
symmetry at extremely high energies where parameters 𝐺, ℏ, and 1∕𝑐 be-
come large and cannot be neglected, it is not a symmetry that we see in
everyday life. Therefore, supersymmetry must cease to exist at some en-
ergy scale, higher than our present scales of experiments, but below the
Planck scale.1 In fact, it has been proven that in ten dimensions, in the
presence of supersymmetry, the only consistent theory of quantum gravity
is string theory. This is a special case of a broader program that goes by the
name of string universality.
A quantum theory of gravity, when complete, would combine general

relativity with a grand unified theory of particle physics, and is sometimes
called a theory of everything, indicating the fact that it is valid over the entire
range of parameter space of the physical parameters𝐺, 𝑐, and ℏmentioned
above. The space of theories in this parameter space can be represented

1For supersymmetry to be of use in particle physics, it must be broken close to the energy
scale at which the Large Hadron Collider is currently running. Failing this, it might still
exist in nature, but loses much of its motivation from particle physics.

10



𝐺
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Quantum
Gravity
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Gravity
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Quantum
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Figure 1.1. The Bronstein cube representing the space of physical theories. Starting
from classical physics at the nearest corner, where 𝐺 = ℏ = 1∕𝑐 ≪ 1, moving along
the sides of the cube corresponds to increasing values of 𝐺, ℏ, and 1∕𝑐 as indicated.
Corners of the cube represent the theory that becomes relevant in that region of
parameter space. The farthest corner represents the regime of quantum gravity,
where all parameters are relevant. The unlabelled corner represents non-relativistic
quantum gravity which is not relevant for our discussion here.

along the corners of a cube, shown in figure 1.1, which is attributed to Bron-
stein (1933) and Stachel (2001). Although most physical processes do not
involve physics that is sensitive to all three parameters at the same time,
objects with an event horizon (which is a surface that only allows one way
passage through it) are an exception. A universe with a positive cosmolog-
ical constant could have such a horizon very far out. Such a cosmological
horizon gives rise to problems with unitarity in quantum mechanics, and
finiteness of entropy in general relativity. Another celestial object that has
an event horizon is a black hole. In this case, it gives rise to an interest-
ing tension between the principle of unitarity in quantum mechanics and
the equivalence principle in general relativity. Resolving these problems,
therefore requires a quantum theory of gravity.
The goal of this thesis is to explore these two questions – the issue of

dark energy, and the problem with black holes – in the context of string
theory. After summarizing the current status of these problems, we will
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introduce solutions that we proposed to resolve them. The purpose of the
thesis is to introduce the problem that we have attempted to solve, and to
put our proposed solutions in the context of other work in the literature –
highlighting similarities and differences. The detailed arguments and sup-
porting computations are contained in our published papers that are a part
of the thesis, and we will refrain, as much as possible, from repeating them
here.
The thesis is divided into two parts. The first part discusses the prob-

lem of dark energy in string theory, while the second part deals with black
holes. After introducing dark energy in cosmology, and its relation to the
cosmological constant in chapter 2, we will discuss attempts to realize it in
string theory in chapter 3. In chapter 4, we will do the same in M-theory,
and present a new compactification to four dimensional de Sitter vacuum,
which we constructed in paper I. In chapter 5, we will discuss some con-
jectures regarding the construction of a positive cosmological constant in
string theory/M-theory. Chapter 6 revisits the braneworld construction by
Randall and Sundrum and in chapter 7, we present a novel construction of
a de Sitter universe in string theory, that we proposed and developed in pa-
pers II, III and IV. In the second part of the thesis, chapter 8 introduces the
black hole information paradox and discusses an alternative to black holes
that we developed in papers V and VI. We will summarize and conclude
the thesis in Chapter 9.
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Part I:
Dark energy in string theory





2. Dark energy and the cosmological
constant

In this chapter, we will briefly review what dark energy is, observational
evidence for it, and its relation to the cosmological constant. In this pro-
cess, we will also introduce some notation that will be used throughout
the thesis.

2.1 What is dark energy?
Let us start with the Einstein-Hilbert action in 𝑑 dimensions,

𝑆 = ∫d𝑑𝑥√−𝑔 ( 𝑅2𝜅2𝑑 + ℒmatter (𝜙𝑖, 𝜕𝜙𝑖)) , (2.1)

where ℒmatter is a matter Lagrangian of some matter fields (𝜙) coupled to
gravity. We will work in conventions where𝜅2𝑑 ∶= 8𝜋𝐺𝑑 ≡ 8𝜋𝑚2−𝑑

Pl ≡ MPl
2−𝑑, (2.2)

for 𝐺𝑑,𝑚𝑑, and 𝑀𝑑 being the 𝑑 dimensional Newton’s constant, Planck
mass, and the reduced Planckmass respectively. Here, and throughout the
thesis, we will work in natural units1 (ℏ = 𝑐 = 1), only making factors of ℏ
and 𝑐 explicit when it adds some insight to the discussion, as in some places
in part 2 of the thesis. Since we will work in both even and odd dimensions
throughout the thesis, we will use the mostly plus signature for the metric,(−,+,+,+,…), so that the determinant is negative in any dimension.
Extremizing the Einstein-Hilbert action with respect to the metric gives

Einstein’s equations

𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 = 𝜅2 (ℒmatter 𝑔𝜇𝜈 − 2𝛿ℒmatter𝛿𝑔𝜇𝜈 ) ∶= 𝜅2𝑇𝜇𝜈, (2.3)

where 𝛿 is a functional derivative and 𝑇𝜇𝜈 is the stress tensor. The left hand
side is a function of themetric and its derivatives, thus representing pure ge-
ometry, while the right hand side involves contribution from matter fields.

1The corresponding four dimensional quantities, with factors of ℏ and 𝑐 explicit are 𝜅24 ∶=8𝜋𝐺4∕𝑐4 ≡ (8𝜋∕𝑐4) (ℏ𝑐∕𝑚24) ≡ (1∕𝑐4) (ℏ𝑐∕𝑀24).
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It is in this sense that Wheeler famously wrote: Spacetime tells matter how
tomove; matter tells spacetime how to curve.2 Let us solve these equations to
find a solution corresponding to our universe. To do this, a good simplifica-
tion is to assume that the universe is homogeneous and isotropic (which is
true at large scales, anyway). In this approximation, the stress tensor takes
a diagonal form, 𝑇𝜈𝜇 = diag (−𝜌, 𝑝, 𝑝, 𝑝, …), where 𝜌 is the energy density
and 𝑝 is the corresponding isotropic pressure. Being coupled, non-linear,
partial differential equations, Einstein’s equations are very difficult to solve
for the metric given amatter distribution; instead, one makes an ansatz for
the metric. For a homogeneous and isotropic universe, this can be written
in the form of the Friedmann-Lemaître-Robertson-Walker (FLRW)metric,

d𝑠2 = −𝑑𝜏2 + 𝑎(𝜏)2 ( d𝑟21 − 𝑘𝑟2 + 𝑟2dΩ2𝑑−2) , (2.4)

where dΩ2 is themetric of a unit 𝑑−2 dimensional sphere. This represents
a time evolving universe, with the radius of a unit sphere being propor-
tional to the scale factor 𝑎(𝜏) ≡ 𝑎, for proper time 𝜏. The spatial part of the
metric represents a space of uniform curvature, which is positive, negative,
or zero corresponding to 𝑘 ∈ {1, 0, −1} respectively. These coordinates are
called comoving coordinates.
Since we are talking about our observable universe here, we will special-

ize to four dimensions in the rest of this chapter. With the FLRW ansatz
for the metric and the diagonal stress tensor, Einstein’s equations diago-
nalize and reduce to equations governing the evolution of the scale factor𝑎(𝜏). These are called the Friedmann equations, and in four dimensions
are given by

𝐻2 ∶= �̇�2𝑎2 = 8𝜋𝐺43 𝜌 − 𝑘𝑎2 , (2.5)�̈�𝑎 = −4𝜋𝐺43 (𝜌 + 3𝑝), (2.6)

where the Hubble parameter, 𝐻 ∶= �̇�∕𝑎, measures the expansion rate of
the universe. Here 𝜌 and 𝑝 are the total energy density and the pressure
respectively, representing the sum over all types of matter in the universe,
i.e., 𝜌 = ∑𝑖 𝜌𝑖 and 𝑝 = ∑𝑖 𝑝𝑖.
While the first Friedmann equation gives the rate of expansion of the uni-

verse, the second Friedmann equation governs its acceleration in response
to the matter contained in the universe. Different kinds of matter can be
conveniently characterized in terms of their equation of state 𝑤 ∶= 𝑝∕𝜌.
2Throughout this chapter, we will use the wordmatter to mean not just ordinary fermionic
matter, but all kinds of energy density – ordinary matter, radiation, etc.
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Matter with 𝜌 + 3𝑝 > 0 causes the universe to decelerate, while that with𝜌 + 3𝑝 < 0 causes it to accelerate. All observed matter in our universe
is of the first kind; for example, relativistic matter (radiation) and non-
relativistic pressure less matter (dust) correspond to 𝑤 = 1∕3 and 𝑤 = 0
respectively. This suggests that our universe should be decelerating.
However, as we will see in the next section, observations show that our

universe is in fact accelerating. This implies that there has to an yet un-
observed energy density in the universe that contributes as 𝜌 + 3𝑝 < 0
(corresponding to an equation of state 𝑤 < −1∕3) to the Friedmann equa-
tion. Since it has not yet been detected experimentally, it is referred to as a
dark energy.

2.2 Measuring dark energy
In order to connect to observations, it is useful to rewrite the Friedmann
equation in terms of the present value of the corresponding quantities. We
will denote thesewith a subscript “0”. Additionally, let us define the critical
energy density 𝜌crit ∶= 3𝐻2∕ (8𝜋𝐺4), as the energy density for a spatially
flat universe. In terms of this, we can define a dimensionless density pa-
rameterΩ𝑖 ∶= 𝜌𝑖∕𝜌crit, which represents the energy density of a particular
kind of matter, as a fraction of the critical energy density. This allows us to
rewrite equation (2.5) as

Ωtotal,0 ≡ Ω𝑚,0 + ΩΛ,0 = 1 + 𝑘𝑎20𝐻20 , (2.7)

wherewehavewritten the total density parameter in terms of contributions
from known matter and a dark energy, denoted by the subscripts𝑚 and Λ
respectively. For a spatially flat universe 𝑘 = 0, with Ωtotal,0 = 1; whereasΩtotal,0 ≷ 1 for 𝑘 ≷ 0 respectively. The deviation ofΩtotal,0 from 1, therefore,
measures the spatial curvature of our universe.
This of interest to observations because, the spatial curvature can be

measured from the position of the first peak in the power spectrum of the
anisotropies of the Cosmic Microwave Background (CMB) radiation. Us-
ing equation (2.7), this gives the total density parameter. The most recent
data from the Planck collaboration (Aghanim et al., 2018) gives|Ωtotal − 1| = 0.0007 ± 0.0019 ≪ 1, (2.8)

which shows that our universe is extremely flat. The next thing that can
be reliably measured is the matter density parameter Ω𝑚. This, combined
withΩtotal ≃ 1, gives a way of obtaining the dark energy density parameter
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ΩΛ. Below, we will briefly mention some ways of measuring Ω𝑚 and the
results obtained. Some good reviews discussing this in more detail are by
Padmanabhan (2003) and by Copeland, Sami, and Tsujikawa (2006).

Type Ia supernova
At the end of its lifecycle, a main sequence star, not much heavier than
the Sun, ends up expelling most of its outer material, leaving behind a hot
dense core called a white dwarf. If such a white dwarf gets more massive,
for example by merging with another white dwarf, it can enter a process of
uncontrolled nuclear fusion and end up exploding in a supernova. These
are the brightest and most uniform type of supernovae, and it is believed
that they have the same peak luminosity wherever they are in the universe,
i.e., irrespective of their redshift. These are called type Ia supernovae and
their universal peak brightness makes them useful as standard candles.
The apparent magnitude 𝑚 (which is proportional to the logarithm of

the observed flux density) and the redshift 𝑧 of a supernova can be mea-
sured directly. These are related to the absolute magnitude 𝑀, by the fol-
lowing astrophysical relation, which can be used to find the luminosity dis-
tance 𝑑L:

𝑚 −𝑀 = 5 log (𝑑L (𝑧)𝑀pc
) + 25. (2.9)

Since the absolute magnitude 𝑀 of all type Ia supernovae are thought to
be the same, their luminosity distance can be used to fit the value of the
density parametersΩ𝑚,0 andΩΛ,0. In their original data set, the Supernova
Cosmology Project (Perlmutter et al., 1999) had discovered 42 supernovae
of type Ia, while the High-z Supernova Search Team (Riess et al., 1998) had
discovered 48 more, to find Ω𝑚,0 ≃ 0.28 and ΩΛ,0 ≃ 0.72. Later, with the
discovery of more supernovae of this type, also with higher redshifts, this
was refined by Choudhury and Padmanabhan (2005) to Ω𝑚,0 ≃ 0.31, andΩΛ,0 ≃ 0.69.
Age of the universe
Another way of measuring the dark energy density is by integrating the
Friedmann equation (2.5) to determine the age of the universe. Using
the definition of the redshift, 1 + 𝑧 = 𝑎0∕𝑎, and the Hubble parameter(𝐻∕𝐻0)2 = Ω𝑚,0 (𝑎0∕𝑎)3 + ΩΛ,0, the age of the universe can be computed
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as

𝑡0 = ∫𝑡0
0 d𝑡 = ∫∞

0
𝑑𝑧𝐻 (1 + 𝑧) = 1𝐻0 ∫∞

0
d𝑧(1 + 𝑧)√Ω𝑚,0 (1 + 𝑧)3 + ΩΛ,0

= 23𝐻0 1√ΩΛ,0 arcsinh
√ΩΛ,0Ω𝑚,0 ,

(2.10)

where as before, the universe has been assumed to be spatially flat. Using
our current best estimates of the Hubble parameter (𝐻0) and the age of the
universe (𝑡0) from the Planck 2018 data, one finds 𝐻0𝑡0 = 0.951 ± 0.023.
Together with the flatness constraint Ω𝑚,0 + ΩΛ,0 = 1, this gives Ω𝑚,0 ≃0.315 and ΩΛ,0 ≃ 0.685.
Equation of state of dark energy
Another cosmological measurement that constrains the nature of dark en-
ergy is that of baryon acoustic oscillations (BAO). In the hot plasma of the
early universe consisting of photons, electrons, and baryons (protons and
neutrons), photon-electron Thompson scattering created an outward pres-
sure that was counteracted by the gravitational attraction, giving rise to
acoustic oscillations in the plasma. As the universe cooled down, electrons
and protons combined into neutral hydrogen (known as recombination).
This caused the photons to decouple and the acoustic oscillations to cease,
but their density fluctuations were frozen and are imprinted in both the
CMB radiation as well as the distribution of ordinary baryonicmatter. This
can be measured today from the power spectrum of density fluctuations of
galaxies. Thesemeasurements, together with data from type Ia supernovae
andCMBmeasurementsmentioned above, constrain the nature of dark en-
ergy to give an equation of state𝑤Λ = −1.028±0.031. The relevance of this
will become clear in the next section.

2.3 Dark energy and the cosmological constant
To summarize the discussion so far, experiments show that our universe
contains an energy density that is driving its acceleration. From the Fried-
mann equation, we know that such a form of energy should have an equa-
tion of state 𝑤 < −1∕3. However, ordinary matter and radiation does not
have such an equation of state. What then is this dark energy and where
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does it come from? In this section, we will discuss the main candidate for
a dark energy – the cosmological constant.
Let us add a constantℒ0 to the Einstein-Hilbert action of equation (2.1),

to get 𝑆 = ∫d𝑑𝑥√−𝑔 ( 𝑅2𝜅2𝑑 + ℒmatter + ℒ0) . (2.11)

Such a constant does not change the equation of motion for matter (ob-
tained by extremizing the action with respect the scalar field), but being
coupled to the determinant of themetric, it does contribute to theEinstein’s
equations to give

𝑅𝜇𝜈 − 12𝑅𝑔𝜇𝜈 = 𝜅2 (𝑇𝜇𝜈 + ℒ0 𝑔𝜇𝜈) . (2.12)

Written in this form, the constant term contributes an extra stress tensor,Δ𝑇𝜇𝜈 = ℒ0 𝑔𝜇𝜈, to Einstein’s equations. Being proportional to the metric,
it has an equation of state 𝑤 = −1. Moving this extra term to the left hand
side of the equation, however, suggests a different interpretation

𝑅𝜇𝜈 − 12 (𝑅 + 2𝜅2ℒ0) 𝑔𝜇𝜈 = 𝜅2𝑇𝜇𝜈. (2.13)

In this form, the extra term appears as a shift of the scalar curvature, with-
out modifying the stress tensor. As indicated before, if we think of the left
hand side of Einstein’s equations as giving a rule for how spacetime should
bend in response to stress tensor on the right hand side, this implies mod-
ifying the rule even when there is no matter on the right hand side. The
modification is in fact so severe that empty flat space is no longer a solution
to these equations. It is customary to write this extra term as ℒ0 = −Λ∕𝜅2,
and Λ is called the cosmological constant.
Going back to the Lagrangian, the addition of a constant is consistent

with the symmetries of the Lagrangian, and everything that is allowed,
must be present in the Lagrangian. So, generically a constant term must
be included in the Einstein-Hilbert action, giving a cosmological constant
in Einstein’s equations

𝑅𝜇𝜈 − 12 (𝑅 − 2Λ) 𝑔𝜇𝜈 = 𝜅2𝑇𝜇𝜈. (2.14)

This modifies the Friedmann equations to include extra contributions pro-
portional to the cosmological constant�̇�2𝑎2 = 8𝜋𝐺43 𝜌 − 𝑘𝑎2 + Λ3 , (2.15)�̈�𝑎 = −4𝜋𝐺3 (𝜌 + 3𝑝) + Λ3 . (2.16)
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This shows that the cosmological constant plays an important role in deter-
mining the acceleration of the universe. When positive (Λ > 0), it serves
to accelerate the expansion, thus acting like a repulsive force. Thus, the
cosmological constant can drive the accelerated expansion of the universe
and has an equation of state𝑤 = −1, which is consistent with observations.
This makes it a leading candidate for dark energy.
Instead of using co-moving coordinates, one can also write the metric

in static coordinates (so named because, in contrast to the co-moving co-
ordinates discussed before, the metric in static coordinates does not have
any time dependence). In this case, one can make a spherically symmetric
ansatz for the metric to find a solution to Einstein’s equation with a cosmo-
logical constant as,3

d𝑠2 = −(1 − Λ3 𝑟2) d𝑡2 + (1 − Λ3 𝑟2)−1 d𝑟2 + 𝑟2dΩ22. (2.17)

These spacetimes preserve all 10 Killing vectors,4 and are therefore maxi-
mally symmetric.5 These are called de Sitter (dS) and anti de Sitter (AdS)
spacetimes forΛ ≷ 0 respectively. Flat space corresponds to the absence of
a cosmological constant, Λ = 0.
An interesting question to ask is: what happens if the matter fields ap-

pearing in the Lagrangian are not classical but are quantized instead. It
was originally argued by Sakharov (1967), and later by Weinberg (1989),
that taking quantum field theory into account, there would be an addi-
tional contribution coming from the constant energy density of the vac-
uum, given by ⟨𝑇𝜇𝜈⟩ = −𝜌vac 𝑔𝜇𝜈. Including this contribution, the semi-
classical Einstein’s equations become

𝑅𝜇𝜈 − 12 (𝑅 − 2Λ) 𝑔𝜇𝜈 = 𝜅2𝑇𝜇𝜈 − 𝜅2𝜌vac 𝑔𝜇𝜈. (2.18)

This additional contribution to the energy density, can be moved over to
the left hand side, to define an effective cosmological constant

Λeff ∶= Λ + 𝜅2𝜌vac. (2.19)

Since standard model matter is indeed quantized, this is the value of the
cosmological constant that would be measured by cosmological observa-
tions.

3An integration constant proportional to−2𝐺4𝑀∕𝑟 also appears in the solution for Einstein’s
equations, which corresponds to a delta function stress tensor at the origin.
4The maximal number of Killing vectors for a 𝑑 dimensional spacetime is 𝑑 (𝑑 + 1) ∕2.
5Alternatively, a maximally symmetric spacetime has 𝑑 (𝑑 − 1) 𝑅𝑎𝑏𝑐𝑑 = 𝑅 (𝑔𝑎𝑑𝑔𝑏𝑐 − 𝑔𝑎𝑐𝑔𝑏𝑑).
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Quintessence
There is however, another possibility. The current accuracy of observations
also allows for the equation of state of dark energy, to be slightly different
from 𝑤 = −1. As an example, imagine that the matter fields coupled to
the Lagrangian discussed above, are not at the minimum of their poten-
tial, but are slowly rolling down a very flat potential instead. In that case,
their vacuum expectation value would slowly change over time, and 𝜌vac
in equation (2.19) would be a time dependent function, rather than a con-
stant. This is the main idea of quintessence, which was originally proposed
by Wetterich (1988), and is an active line of investigation for solving the
dark energy problem. A summary of this and some other proposals for ex-
plaining dark energy can be found in the review by Copeland, Sami, and
Tsujikawa (2006). In this thesis, however, we will focus only on the cosmo-
logical constant.

A historical side note
The cosmological constant has a chequered history. Einstein believed the
universe to be static and closed, which is why he introduced the cosmologi-
cal constant in his equations. Hewas also of the opinion that the spatial cur-
vature of the universe is provided by the matter contained in the universe.
However, de Sitter (1917) constructed a solution to Einstein’s equations rep-
resenting a closed universe that did not contain any matter. This was fol-
lowed by two seminal papers by Friedmann (1924) and Lemaître (1927)
on non-static solutions of Einstein’s equations. However, since the popu-
lar belief at the time was that the universe is static, these developments
went largely unnoticed. Things changed with the discovery of an expand-
ing universe by Hubble (1929). With this new discovery, however, Einstein
no longer saw the need for a cosmological constant in his equations and ve-
hemently argued against it. In his autobiography, Gamow (1970) wrote:

Much later, when I was discussing cosmological problems with Einstein,
he remarked that the introduction of the cosmological term was the biggest
blunder he ever made in his life.

It is interesting to note that Landau andLifshitz (1971) are among themany
notable physicists at the time, who were against the cosmological constant.
In fact, in their classic text, they wrote

At the present time, however, there are no cogent and convincing reasons,
observational or theoretical, for such a change in the form of the fundamental
equations of the theory. We emphasize that we are talking about changes
that have a profound physical significance. . .
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Things have of course changed after the recent discovery of the dark energy
domination of our universe, and the cosmological constant has regained
attention.

2.4 A fine-tuning problem
Our current best estimates for the various components of the energy den-
sity in the universe from the Planck collaboration (Aghanim et al., 2018),
areΩ𝑚 = 0.315 ± 0.007,ΩΛ = 0.685 ± 0.007,Ω𝑘 = 0.0007 ± 0.0019, (2.20)

while the density of radiation is given by the sum of contributions from the
neutrino density (Ω𝜈) and CMB radiation (Ω𝛾), which areΩ𝜈 ∼ 5.38×10−5
and Ω𝛾 < 0.003 respectively. This means that about 68.5% of the energy
density of our universe is dark energy with the remaining 31.5% consisting
of matter (both observablematter and invisible darkmatter), while the spa-
tial curvature is negligible. Using the current measurement of the Hubble
parameter𝐻0, the critical density is estimated to be𝜌crit,0 = 3𝐻208𝜋𝐺n

≃ 8 ⋅ 10−46GeV4. (2.21)

From this, the dark energy density can be computed using 𝜌Λ,0 = ΩΛ,0 ×𝜌crit,0, to give 𝜌(obs)Λ,0 ≈ 5 ⋅ 10−46GeV4. (2.22)
As discussed in equation (2.19), this observed value comes from the effec-
tive cosmological constant, which includes contributions from the bare cos-
mological constant, as well as the vacuum energy of all quantum fields in
the universe. Of these, the latter can be computed in quantum field the-
ory as the sum of all vacuum bubble diagrams, and is given by an integral,
which turns out to beUVdivergent. Anaïveway to regulate this divergence
is by introducing a cutoff scale for the theory, which is the mass scale up to
which perturbative calculations in quantum field theory on curved space
time can be trusted. Taking this to be the Planck scale, leads to the follow-
ing estimate for the vacuum energy:

𝜌vac ∼ 𝑚4
Pl16𝜋2 ≈ (1019GeV)416𝜋2 ≈ 1074GeV4. (2.23)

This is about 10120 orders of magnitude larger than the observed value
in equation (2.22) and is the value often quoted in the literature.6 How-
6One could argue against using the Planck scale as the cutoff. However, even if the cutoff
scale was as low as the the scale of strong interactions (QCD), it would give 𝜌vac ∼ 10−3GeV4,
which is still 49 orders of magnitude too large.
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ever, such a cutoff is not Lorentz covariant, and does not lead to a stress
tensor with the right equation of state (𝑤 = −1) for the vacuum energy.
Koksma and Prokopec (2011) argued that a Lorentz covariant renormaliza-
tion scheme, which gives a vacuum energy that agrees with the result from
dimensional regularization, and has the right equation of state, yields

𝜌vac ∼ ∑
𝑖 𝑛𝑖 𝑚4𝑖64𝜋2 log [𝑚2𝑖𝜇2 ] ∼ 2 ⋅ 109GeV4. (2.24)

Here the sum is over all standard model particles, with 𝑛𝑖 being the num-
ber of particles of each type, 𝑚𝑖 being their respective masses and 𝜇 being
the renormalization scale. A recent discussion of this issue can be found
in an article by Danielsson (2019). The vacuum energy computed in equa-
tion (2.24) is much lower than the naïve estimate in equation (2.23), but
is still about 1055 orders of magnitude too large compared to the observed
value. This suggests that the bare cosmological constant must be equally
large, but extremely fine tuned to 1 part in 1055, so that it almost cancels
the vacuum energy to give the tiny observed value of the cosmological con-
stant. This extreme fine tuning problem is called the cosmological constant
problem. See the article by Martin (2012) for a careful discussion of the
various renormalization schemes.

2.5 The path forward
To summarize the discussion in this chapter, observations tell us that we
live in a universe that is not only expanding but also accelerating. This
acceleration is due to the presence of a dark energy, which constitutes over
two-thirds of the total energy of the universe. Observations also tell us that
the absolute value of this dark energy density is unnaturally small, and we
don’t have a good theoretical explanation of why this should be the case.
When faced with such a problem, a reasonable approach is to turn to a

more fundamental theory for answerswith the hope that this theory knows
something, that our low energy theory does not. The most fundamental
theory would be a quantized theory of gravity, which we do not yet have;
but one of the brightest candidates is string theory. We will do exactly this
in the next chapter and explore the question of a cosmological constant in
the context of string theory.
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3. de Sitter in string theory

String theory is a quantized theory of strings, just as quantum field theory
is a quantized theory of point particles. The string, which can be open
or closed, can vibrate, and the vibration modes correspond to particles.
In particular, the closed string has a vibration mode corresponding to a
massless spin-two particle, which was argued byWeinberg (1965) to be the
particle that mediates gravitational interactions, and is called a graviton.
While a naïve attempt to quantize gravity turns out to be perturbatively
non-renormalizable in 𝑑 > 2 (since 1∕𝜅2 ∼ 𝑀𝑑−2), string theory has the
advantage of being perturbatively renormalizable, and produces finite re-
sults. Moreover, when a string propagates on a curved background, it gives
rise (at sufficiently low energy) to Einstein’s equations, with background
fields in the theory contributing to the stress tensor. In this way, string
theory (which is a quantized theory) naturally gives rise to gravity, and is
hence a leading candidate for a theory of quantum gravity.
For string theory to be the right theory for our universe, it must give both

the standardmodel of particle physics (which is the low energy theory that
describes all forces in the universe other than gravity) as well as four di-
mensional gravity (which has two measured parameters – the Newton’s
constant and the cosmological constant). It turns out that (super)string
theory needs 9 + 1 dimensions to be consistent. Therefore, to be relevant
for our four dimensional universe, the other six dimensions must be com-
pactified in such a way that low energy four dimensional observers, such as
ourselves, do not have access to them. The choice of this six dimensional
manifold determines the properties of the four dimensional world. While
getting the right four dimensional Newton’s constant is not particularly dif-
ficult in string theory, obtaining the observed cosmological constant is an
incredibly difficult open problem. Regardless of its magnitude, obtaining
a positive cosmological constant, by itself, has proven to be very difficult.
In this chapter, we will discuss how string theory naturally prefers a neg-

ative cosmological constant, and what could to be done to get a positive
value. We will then briefly discuss one of the best known current solutions
of obtaining a positive cosmological constant in string theory, and why this
is still under discussion. Wewill briefly comment on the fine tuning aspect
of the problem. Instead of providing an introduction to string theory, we
will only recapitulate some key ideas that we need here. A detailed intro-
duction to string theory can be found in a standard textbook, such as the
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two volumes by Polchinski (1998a,b) or a more modern textbook, such as
the one by Blumenhagen, Lüst, and Theisen (2013).

3.1 Vacuum energy in supergravity
String theory can be understood perturbatively as supergravity (which is
the low energy classical limit of string theory) plus quantum corrections
(𝑔𝑠) and higher curvature corrections (𝛼′). A general compactification of
the ten dimensional supergravity theory on a six dimensional manifold,
gives rise to a number of scalar fields in the four dimensional theory, in ad-
dition to other fields. The potential for these scalar fields determines their
vacuum expectation value and gives the four dimensional vacuum energy.
Generically, some of these scalars fail to develop a potential through the

compactification and remain massless. Such scalars are not allowed in our
universe since they can mediate a yet unobserved fifth force. These are
called moduli fields. Since massless scalars are not observed in the real
world, a mechanism has to be found for them to develop a potential so
that they can be stabilized at a minimum of the potential. Finding such a
mechanism is referred to as the problem of moduli stabilization in string
theory. We will briefly discuss vacuum energy in this section and moduli
stabilization in the next.
The bosonic sector of 𝒩 = 1 supergravity in four dimensions contains

complex scalars, gauge fields and the metric. The low energy interactions
of the scalars are encoded in three functions: a holomorphic superpotential𝑊, a Kähler potential𝐾, and a gauge kinetic function 𝑓𝐴𝐵. The Lagrangian
for the scalar fields has a non-canonical kinetic term proportional to the
Kähler metric 𝐾𝑖𝑗 ∶= 𝜕𝑖𝜕𝑗𝐾 and a potential given by a sum of an F-term
and a D-term potential. The D-term potential is the same as the one from
global supersymmetry 𝑉d ∼ 𝑓𝐴𝐵

r 𝐷𝐴𝐷𝐵, where 𝑓𝐴𝐵
r is the real part of the

gauge kinetic function, 𝑔 is the gauge coupling, and𝐴, 𝐵 are gauge indices.
In particular, 𝑉d is non-negative, since 𝑓𝐴𝐵

r is the coefficient of the kinetic
terms of the gauge fields. The F-term potential on the other hand, has two
contributions. The first is the familiar positive semi-definite potential from
global supersymmetry 𝑉f ⊃ 𝐾𝑖𝑗𝐷𝑖𝑊𝐷𝑗𝑊 (recall that the kinetic term for
the scalar fields is proportional to 𝐾𝑖𝑗), where 𝐷𝑖𝑊 ∶= 𝜕𝑖𝑊 +MPl

−2𝑊𝜕𝑖𝐾,
are the F-terms for scalar field indices 𝑖 and 𝑗. The second contribution
comes from supergravity, and is negative definite 𝑉f ⊃ −3 |𝑊|2. This al-
lows the F-term potential in supergravity to be negative, unlike in global
supersymmetry where it is positive semi-definite. Together, the scalar po-
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tential can be written as

𝑉 = 𝑉f +𝑉d = 𝑒𝐾∕MPl
2 [𝐾𝑖𝑗𝐷𝑖𝑊𝐷𝑗𝑊 − 3

MPl
2 |𝑊|2] + 𝑔22 𝑓𝐴𝐵

r 𝐷𝐴𝐷𝐵. (3.1)
A supersymmetric vacuum, by definition, requires vanishing of the F-terms
and D-terms, i.e., 𝐷𝑖𝑊 != 0 != 𝐷𝐴, resulting in a negative vacuum energy

𝑉 = − 3
MPl

2 |𝑊|2 < 0. (3.2)

The only way for this to be non-negative, is if the vacuum breaks supersym-
metry and one of the F-terms or the D-terms does not vanish. However, in
the absence of supersymmetry, loop corrections no longer cancel against
each other, and quantum corrections become large. For the vacuum to be
stable against such corrections, supersymmetry has to be broken in a con-
trolled way, such that the quantum corrections are small and the resulting
theory is calculable. We will see in section 3.3.3 how this is implemented
in one of the most well discussed examples in the literature.

3.2 Moduli stabilization
Another aspect of constructing vacuum energy in string theory is that of
moduli stabilization. In the next two sections we will use a toy example
borrowed from the book by Baumann andMcAllister (2015) and the review
by Denef, Douglas, and Kachru (2007) to demonstrate this problem, and to
see how switching on fluxes in the compact space can be used to solve it.

3.2.1 KK reduction
Let us start with the ten dimensional Einstein-Hilbert action

𝑆 = 12𝜅210 ∫d10𝑥 𝑒−2Φ√−𝑔10 𝑅, (3.3)

where 𝜅210 is defined in terms of the reduced ten dimensional Planck mass
as 𝜅210 ≡ 1∕𝑀810, Φ is the dilaton, and 𝑅 is the Ricci scalar constructed from
the spacetime metric 𝑔𝑀𝑁 . We will now perform a Kaluza-Klein reduc-
tion of this action for the following ten dimensional geometry, which is
a warped product of a four dimensional space time and a compact six di-
mensional spaced𝑠2 = 𝑒−6𝜑(𝑥)𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 + 𝑒2𝜑(𝑥)𝑔𝑚𝑛d𝑦𝑚d𝑦𝑛, (3.4)
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where 𝜇, 𝜈 ∈ {0, 1, 2, 3} and 𝑚, 𝑛 ∈ {4, … , 9}. 𝜑(𝑥) is proportional to the
volume of the compact six manifold, and depends only on the coordinates
of the four dimensional Minkowski space. The factor exp (−6𝜑) in front of
the four dimensional metric is a convenient choice, so that the dimension-
ally reduced action ends up in the Einstein frame (for a constant dilaton).
The dimensional reduction gives

𝑆 = 12𝜅210 ∫d6𝑦√𝑔6 ∫d4𝑥√−𝑔4𝑒−2Φ (𝑅4 + 12𝜕𝜇𝜑𝜕𝜇𝜑 + 𝑒−8𝜑𝑅6) , (3.5)

where 𝑅4 and 𝑅6 are the Ricci scalars constructed from 𝑔𝜇𝜈 and 𝑔𝑚𝑛 respec-
tively. 𝜑(𝑥), which determines the volume of the compact manifold, ap-
pears as a scalar in the four dimensional theory and we will call it the vol-
ume modulus, i.e., a scalar field that parametrizes the volume of the com-
pact space. The kinetic term for𝜑 can be canonically normalized by scaling𝜑 ↦ 𝜑∕(2√6) to give
𝑆 = 12𝜅210 ∫d6𝑦√𝑔6𝑒−2Φ ∫d4𝑥√−𝑔4 (𝑅4 − 12𝜕𝜇𝜑𝜕𝜇𝜑 + 𝑒− 43√3 𝜑𝑅6) . (3.6)

If the string coupling 𝑔𝑠 ∶= 𝑒Φ is constant over the internal space, and 𝑅6 is
independent of 𝑦, then the six dimensional integration can be performed
explicitly to give

𝑆4 = 12𝜅24 ∫d4𝑥√−𝑔4 (𝑅4 + 12𝜕𝜇𝜑𝜕𝜇𝜑 + 𝑒− 4√6𝜑𝑅6) . (3.7)

From this, the four dimensional Planck mass can be read off as the ten
dimensional Planck mass scaled with the string coupling and volume of
the compact space 𝑀24 ∶= 1𝜅24 = 𝒱6𝑔2𝑠 𝜅210 . (3.8)

From equation (3.7), we see that the potential for the volumemodulus𝜑(𝑥)
goes roughly as−𝑅6 exp (−𝜑). For an internalmanifoldwith negative Ricci
curvature, for example 𝐻6, the potential is monotonically decreasing to-
wards infinity. THis causes the volume modulus to run away to infinity
(i.e., 𝜑 → ∞), corresponding to a decompactification of the internal space.
On the other hand, amanifold with positive scalar curvature, for example a
sphere 𝑆6, leads to a potential for the volumemodulus that decreasesmono-
tonically to an unbounded negative value towards the origin. A Ricci flat
manifold like ℝ6, on the other hand, fails to generate a potential at all. In
neither of these cases is the volumemodulus stabilized. This is the essence
of the problem of moduli stabilization.
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3.2.2 Flux compactification
Stabilizing the volume moduli above requires competing terms in the po-
tential. One possible source for such terms are the various electric and
magnetic fluxes present in string theory. Let us consider the previous ex-
ample again, but this time additionally turn on a constant three-form flux
in the compact space. This modifies equation (3.3) to

𝑆 = 12𝜅210 ∫d10𝑥 𝑒−2Φ√−𝑔10 (𝑅 − 𝑒−6𝜑 |||𝐹3|||2) . (3.9)

Repeating the dimensional reduction on the same warped background of
equation (3.4), gives

𝑆 = 12𝜅24 ∫d4𝑥√−𝑔4 (𝑅4 + 12𝜕𝜇𝜑𝜕𝜇𝜑 + 𝑒−8𝜑𝑅6 − 𝑒−12𝜑 |||𝐹3|||2) , (3.10)

which after canonically normalizing the kinetic term for 𝜑 becomes
𝑆4 = 12𝜅24 ∫d4𝑥√−𝑔4 (𝑅4 + 12𝜕𝜇𝜑𝜕𝜇𝜑 + 𝑒− 4√6𝜑𝑅6 − 𝑒−√6𝜑 |||𝐹3|||2) . (3.11)

The volume modulus, therefore has the following potential

𝑉(𝜑) = 𝑒−√6𝜑 |||𝐹3|||2 − 𝑒− 4√6𝜑𝑅6. (3.12)

The extra contribution from the flux breaks the monotonicity of the poten-
tial and allows for stable points. The first term is strictly positive and can
compete with the second term to generate a minimum, if the internal man-
ifold has a positive scalar curvature 𝑅6 > 0. This toy model shows that it is
possible to stabilize a moduli by adding flux in a compact space.

3.3 The KKLT construction
Summarizing the discussion so far, the existence of a stable lower dimen-
sional vacuum requires all moduli to be stabilized. Additionally, for this
vacuum to be de Sitter, supersymmetry must be broken. However, Malda-
cena and Núñez (2001) showed in the form of a no-go theorem that under
some general assumptions, there are no compactifications of ten or eleven
dimensional supergravity that give a dS vacuum solution. Let us briefly
summarize the theorem below.

Maldacena-Núñez no-go theorem
Maldacena and Núñez (2001) considered a compactification of 𝐷 dimen-
sional supergravity on amanifold of dimension (𝐷 − 𝑑)with finite volume,
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for example, 𝐷 = 10 and 𝑑 = 4. They further assumed a static warped 𝐷
dimensional metric and integrated the trace reversed Einstein equations
on the internal manifold. Under the assumption that there are no nega-
tive tension sources, they proved that the warp factor is constant and no 𝑑
dimensional de Sitter solutions are allowed. Furthermore, this is a state-
ment in supergravity and assumes that there are no corrections from non-
perturbative effects, string loops (𝑔𝑠) or higher-derivative terms (𝛼′).
Constructing a dS vacuum, therefore requires evading one of these as-

sumptions, for example going beyond supergravity or including negative
tension sources such as O-planes. We will now briefly review a construc-
tion by Kachru, Kallosh, Linde, and Trivedi (2003, KKLT), which is one
of the most discussed constructions of a dS vacuum in string theory. This
evades the above no-go theorem bymaking use of non-perturbative correc-
tions.

3.3.1 Flux compactification: IIB on CY3
The starting point of the KKLT construction is type IIB string theory com-
pactified on aCalabi-Yau three-fold (CY3). A CY3 is a three complex dimen-
sional (equivalent to six real dimensions) Kähler manifold with a globally
defined nowhere vanishing holomorphic three-form Ω. It admits a Ricci
flatmetric and its holonomygroup is SU(3).1 CY3 space has several topolog-
ically non-trivial three cycles (three dimensional surfaces), the total num-
ber of which is denoted by a Betti number 𝑏3. They can be written in a
basis of three cycles usually denoted by𝐴𝐼 and 𝐵𝐽 . A Calabi-Yau space also
has a unique covariantly constant spinor, which can be used to construct a
unique two-form, called the Kähler form. When the ten dimensional the-
ory is compactified on a CY3 manifold to get the effective four dimensional
theory, these unique two- and three-forms are integrated over two cycles
and three cycles to yield the Kähler moduli and complex structure moduli
respectively. The Kähler moduli characterize the size of the CY3, while the
complex structure moduli correspond to its shape. For example, for a rect-
angular two torus𝕋2 (which is an example of a CY1) with size 𝑎 and 𝑏, their
product 𝑎𝑏 corresponds to the Kähler modulus, while their ratio 𝑎∕𝑏 is the
complex structure modulus.
Apart from the Kähler and complex structure moduli, which are uni-

versal for every Calabi-Yau compactification and correspond to the geom-
etry, there can be additional moduli fields coming from integrating other
fields over cycles of the CY manifold. For example, fluxes coming from

1See section 4.2 for a definition of the holonomy group of a manifold.
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form fields sourced by D-branes or NS-branes can contribute to axions,2
while position of the D-branes in the space transverse to the CY appear as
D-brane moduli, to name a few.
Let us now outline the basics of flux compactification in IIB string the-

ory following the seminal work of Giddings, Kachru, and Polchinski (2002,
GKP), which KKLT takes as the starting point. The discussion in this part
closely follows the presentation of Baumann and McAllister (2015). The
bosonic part of the action of type IIB supergravity in Einstein frame is given
by

𝑆IIB = 12𝜅210 ∫d10𝑥√−𝑔10 ⎡⎢⎣𝑅 − |𝜕𝜏|22Im(𝜏)2 − |||𝐺3|||22Im(𝜏) − ||||𝐹5||||24 ⎤⎥⎦− 𝑖8𝜅210 ∫ 𝐶4 ∧ 𝐺3 ∧ 𝐺3
Im(𝜏) , (3.13)

where 𝐺3 is defined as 𝐺3 ∶= 𝐹3 − 𝜏𝐻3, with 𝜏 being the axio-dilaton 𝜏 ∶=𝐶0+𝑖𝑒−Φ. 𝐹5 is the self dual (i.e.𝐹5 = ⋆10𝐹5) five-formfield strength defined
as 𝐹5 ∶= 𝐹5 − 12𝐶2 ∧ 𝐻3 + 12𝐵2 ∧ 𝐹3, (3.14)

where 𝐹𝑝 ∶= 𝑑𝐶𝑝−1. We want to look for solutions that are warped prod-
ucts of four dimensional Minkowski spacetime with a compactℳ6 i.e.,d𝑠2 = 𝑒2𝐴(𝑦)𝜂𝜇𝜈d𝑥𝜇d𝑥𝜈 + 𝑒−2𝐴(𝑦)𝑔𝑚𝑛d𝑦𝑚d𝑦𝑛. (3.15)

With this ansatz, four dimensional Poincaré invariance imposes some re-
strictions on the form of the fluxes 𝐺3 and 𝐹5. The 𝐺3 flux should have
non-zero components only along the compact space, while 𝐹5 takes the
following special form:𝐹5 = (1 + ⋆10) d𝛼(𝑦) ∧ d𝑥0 ∧ d𝑥1 ∧ d𝑥2 ∧ d𝑥3, (3.16)

where 𝛼(𝑦) is an arbitrary function on ℳ6. Trace of the ten dimensional
Einstein equations is given by

∇2(6)𝑒4𝐴 = 𝑒8𝐴2Im(𝜏) |||𝐺3|||2 + 𝑒−4𝐴 (|𝜕𝛼|2 + ||||𝜕𝑒4𝐴||||2) + 2𝜅210𝑒2𝐴𝒥loc, (3.17)

where ∇(6) is the Laplacian on the compact space and 𝒥loc represents the
energy corresponding to localized sources

𝒥loc = 14 (𝑇𝑚𝑚 − 𝑇𝜇𝜇) . (3.18)

2In the presence of topologically non-trivial cycles, fluxes can also exist without the need for
brane sources, provided the fluxes satisfy the tadpole condition.
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Since the left hand side of equation (3.17) vanishes when integrated overℳ6, and the only term of indeterminate sign on the right hand side is the
source term, it needs to be negative to give a non-trivial solution. Therefore,
a non-trivial warped compactification requires the presence of localized
sources, for at least some of which 𝒥loc < 0. For 𝑝 < 7, these are negative
tension objects, namely O𝑝-planes. This is the essence of the Maldacena-
Nùñez theorem, where in the absence of O-planes, the right hand side has
to vanish and the warp factor is a constant. The presence of O-planes here
allows for a non-trivial warped compactification, hence evading the no-go
theorem. The Bianchi identity for 𝐹5 isd𝐹5 = 𝐻3 ∧ 𝐹3 + 2𝜅210𝑇3𝜌loc3 , (3.19)

where 𝜌loc3 is the charge density associated with D3 branes and 𝑇3 is the D3
brane tension. Imposing the restriction on the form of 𝐹5 from our metric
ansatz in equation (3.16), and subtracting the trace of Einstein’s equation
in equation (3.17) yields

∇2(6) (𝑒4𝐴 − 𝛼) = 𝑒8𝐴24Im(𝜏) |||𝑖𝐺3 − ⋆6𝐺3|||2 + 𝑒−4𝐴 ||||𝜕 (𝑒4𝐴 − 𝛼)||||2+ 2𝜅210𝑒2𝐴 (𝒥loc − 𝒬loc) , (3.20)

where 𝒬loc ∶= 𝑇3𝜌loc3 is the charge associated with the localized sources.
Similar to equation (3.17), the left hand side of this equation integrates to
zero onℳ6, implying that the right side must vanish as well. For sources
satisfying a BPS-like condition 𝒥loc ≥ 𝒬loc, when this condition is satu-
rated, each term on the right hand side must vanish. This implies that 𝐺3
is imaginary self dual (ISD), ⋆6𝐺3 = 𝑖𝐺3 and the warp factor is related to
the potential through exp (4𝐴) = 𝛼 . Solutions of this form are called ISD
solutions and are among the best understood solutions in IIB flux compact-
ifications. D3 branes, O3 planes and D7 branes wrapping four-cycles (so
as to preserve the𝒩 = 1 of the D3 branes) saturate the bound 𝒥loc = 𝒬loc
while for D3 andD5wrapping a zero volume two cycle, it is a strict inequal-
ity 𝒥loc > 𝒬loc. O3 and O5 planes violate the bound, i.e., 𝒥loc < 𝒬loc.
In summary, from the trace of Einstein’s equations, warped compacti-

fications of the form of equation (3.15) are only possible in the presence
of negative tension sources like O-planes, while positive tension sources
like D-branes give a factorized metric. Combining this with the Bianchi
identity for the self dual five-form tells us that for sources satisfying 𝒥loc ≥𝒬loc, only ISD solutions are possible. An important property of these GKP
flux compactifications is that, on performing a KK reduction to four di-
mensional Minkowski space, the complex structure and the axio-dilaton
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get a potential as is evident from the third term in the IIB action of equa-
tion (3.13)

𝑆 ⊂ − 12𝜅210 ∫ℝ1,3 d4𝑥∫ℳ6
d6𝑦√−𝑔6𝑒−2𝐴(𝑦) 𝑔𝑝𝑞𝑔𝑛𝑟𝑔𝑝𝑠𝐺𝑚𝑛𝑝𝐺𝑞𝑟𝑠2Im(𝜏) . (3.21)

This involves the axio-dilaton both through the denominator and the defi-
nition of 𝐺3, as well as the complex structure modulus through the factors
of the six dimensional metric in the numerator. The effective four dimen-
sional theory obtained from the ISD compactification above can be written
in terms of a Kähler potential and a superpotential of𝒩 = 1 supergravity.
The superpotential is given by the Gukov, Vafa, and Witten (2000, GVW)
superpotential 𝑊 = ∫ℳ6

𝐺3 ∧ Ω. (3.22)

The Kähler potential is

𝐾 = −3 ln (−𝑖 (𝜌 − 𝜌)) − ln (−𝑖 (𝜏 − 𝜏)) − ln (−𝑖∫ℳ6
Ω ∧ Ω) , (3.23)

where 𝜌 is the (universal) volume modulus of the compact manifold, the
holomorphic three-form Ω depends on the complex structure moduli and𝐺3 depends on the dilaton. The superpotential is independent of the vol-
umemodulus, and the Kähler potential is of the form𝐾𝜌𝜌𝜕𝜌𝐾𝜕𝜌𝐾 = 3 (this
is called the no-scale structure). This implies that the scalar potential de-
pends on the volume modulus only through the exponent of the Kähler
potential to give

𝑉 = 𝑒𝐾∕MPl
2 [𝐾𝑖𝑗𝐷𝑖𝑊𝐷𝑗𝑊 − 3

MPl
2 |𝑊|2]

= 𝑒𝐾∕MPl
2 [𝐾𝑎𝑏𝐷𝑎𝑊𝐷𝑏𝑊] ≥ 0, (3.24)

where 𝑖, 𝑗 run over all moduli and 𝑎, 𝑏 run over all except the volume mod-
ulus 𝜌. Therefore, all moduli except the volume modulus are stabilized in
the presence of the 𝐺3 flux. The real part of the volume modulus does not
get a potential at all and remains flat, while the imaginary part gets contri-
bution from the exponent of the Kähler potential, leading to a runaway.

3.3.2 Moduli stabilization: non-perturbative corrections
Non-perturbative corrections
In order to generate a potential for the volume modulus, it either needs
to appear in the superpotential or the no-scale structure of the Kähler po-
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tential needs to be corrected. Although the superpotential and the Käh-
ler potential considered above are at lowest order in both the perturba-
tion parameters 𝛼′ and 𝑔𝑠, non-renormalization theorems protect the su-
perpotential from getting any perturbative corrections.3 Thus, one either
needs to consider quantum corrections to the Kähler potential, or look for
non-perturbative corrections to the superpotential. The KKLT construc-
tion skips all perturbative 𝑔𝑠 and 𝛼′ corrections to the Kähler potential, and
instead uses non-perturbative corrections to the superpotential. These cor-
rections have two sources in IIB:
1. Gaugino condensation: If there is a stack of ND7 branes extending alongℝ1,3 and wrapping a four-cycle inℳ6, the world volume theory on them
is a super Yang-Mills theory with gauge group SU(N). There can be spon-
taneous symmetry breaking in such a theory when the gaugino bilinear⟨𝜆𝜆⟩ gets a non-zero vacuum expectation value, i.e., gaugino condensa-
tion. This generates a superpotential non-perturbatively

𝑊gaugino = 𝒜𝑒−2𝜋𝑖𝑁 𝜌, (3.25)

where 𝒜 is independent of 𝜌 but can depend on other moduli.
2. D3-brane instantons: A similar non-perturbative contribution to the su-
perpotential arises when a Euclidean D3 brane wraps a four-cycle inℳ6
and is given by 𝑊instanton = 𝒜𝑒−2𝜋𝑖𝜌, (3.26)

where, as before, the prefactor𝒜 is independent of 𝜌 but can depend on
the other moduli, in general.

Together, these non-perturbative contributions can be written as𝑊non-pert = 𝒜𝑒−𝑖𝑎𝜌, (3.27)

with the inclusion of which, the corrected superpotential becomes𝑊 = 𝑊gvw +𝑊non-pert = 𝑊0 + 𝒜𝑒−𝑖𝑎𝜌. (3.28)𝑊0 denotes the GVW superpotential from equation (3.22) which, as we
have seen, is independent of 𝜌.
Supersymmetric AdS
Since all other moduli except for the volume modulus are stabilized, the
relevant Kähler potential and scalar potential are given by𝐾 = −3 ln [−𝑖 (𝜌 − 𝜌)] , 𝑊 = 𝑊0 + 𝒜𝑒−𝑖𝑎𝜌. (3.29)

3Holomorphy and shift symmetry protect against 𝛼′ corrections, while the absence of pertur-
bative 𝑔𝑠 corrections in IIB is more delicate and was shown by Burgess, Escoda, and Quevedo
(2006).
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In terms of a nonzero axion 𝜌 = 𝑖𝜎, the scalar potential constructed from
the above becomes𝑉 = 𝑎𝒜𝑒−𝑎𝜎2𝜎2 [(1 + 𝑎3𝜎)𝒜𝑒−𝑎𝜎 +𝑊0] , (3.30)

which has a supersymmetric minimum at 𝜎 = 𝜎⋆ defined by 𝐷𝜌𝑊|𝜌=𝑖𝜎⋆ =0, with𝑊0 𝑊0 = −𝒜𝑒−𝑎𝜎⋆ (1 + 2𝑎𝜎⋆3 ) . (3.31)

Consequently, the potential at the supersymmetric minimum is negative.

𝑉(𝜎⋆) = −𝑎2𝒜26 𝑒−𝑎2𝜎⋆𝜎⋆ < 0. (3.32)

3.3.3 dS uplift: anti-D3 branes
So far, we have seen that starting from a GKP compactification and adding
non-perturbative corrections to the superpotential, fixes all moduli includ-
ing the volume modulus and gives a four dimensional theory with a super-
symmetric AdS minimum. The final step to obtaining a de Sitter vacuum
is to break supersymmetry and uplift the minimum to dS. This is done in
the KKLT construction by adding D3 branes.
Considering the 𝐺3 flux above, we realize that if it is sourced by posi-

tive tension sources like D3 branes, the internal space cannot be compact.
This follows from the tadpole cancellation condition. A non-compact six
manifold called the Klebanov and Strassler (2000) geometry, can be used
instead. This geometry is obtained by starting from a non-compact CY3
called the conifold (which is ametric cone over the base of amanifold called
T1,1 ≃ 𝑆2 × 𝑆3, i.e., d𝑠2cy3 = d𝑟2 + 𝑟2d𝑠2

t1,1), and deforming it so that the 𝑆3
does not vanish at the tip – hence called the deformed conifold. The co-
ordinate going from the tip to the base of the cone is the coordinate 𝑦 of
equation (3.15). The volume of this manifold goes from a finite value to
infinity at 𝑦 → ∞. This can be smoothly glued to a compact CY3 (with the
addition of O3 planes to satisfy the tadpole condition) at some 𝑦 = 𝑦max.
The ISD fluxes can then be added as before, to support this geometry. The
volume of the compact space therefore has a minimum value given by

exp (𝐴min) ∼ exp (− 2𝜋𝐾3𝑔𝑠𝑀) , (3.33)

where 𝐾 and𝑀 are integers giving the quantized values of the three-form
fluxes 14𝜋2𝛼′ ∫𝐴 𝐹3 = 𝑀, 14𝜋2𝛼′ ∫𝐵 𝐻3 = 𝐾. (3.34)
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These can be chosen so that exp𝐴min ≪ 1, which means that owing to the
strong warping, physics at the tip can be considered independently of that
away from it.
To break supersymmetry, it suffices to add D3 branes at some 𝑦 = 𝑦0.

Since the background contains D3 branes, this breaks all supersymmetry
and contributes an extra energy density

𝑉D3 = 2𝑔−4𝑠 𝑒4𝐴(𝑦0)𝑇3 1
Im(𝜌)3 ≡ 𝐷𝜎3 . (3.35)

The factor exp [4𝐴(𝑦0)] causes the D3 to be attracted to the tip of the coni-
fold, 𝑦 = 𝑦min, giving a small positive contribution to the potential pro-
portional to 𝐷 as defined above. With this, the potential of equation (3.30)
becomes 𝑉 = 𝑎𝒜𝑒−𝑎𝜎2𝜎2 [(1 + 𝑎3𝜎)𝒜𝑒−𝑎𝜎 +𝑊0] + 𝐷𝜎3 , (3.36)

where 𝐷 is a small number, and uplifts the potential to produce a meta-
stable dS minimum with a small positive cosmological constant.

3.4 Discussion
The KKLT construction outlined above, being one of the most concrete
models of dS in string theory today, has been the subject of intense scrutiny.
Several of its aspects are still a matter of active discussion and a consensus
on its validity has not yet been reached. Some of the major points of dis-
cussion are the following.

A zeroth order objection: flux compactification
The first point of debate is already at the level of the GKP flux compact-
ification, before performing moduli stabilization or the anti-brane uplift.
The non-zero 𝑊0 needed for the above construction breaks supersymme-
try already in the GKP construction and one should, in principle, include
perturbative string loop 𝑔𝑠 and higher curvature corrections 𝛼′, even before
adding the non-perturbative corrections considered above. Since these per-
turbative corrections are not yet completely known in type IIB, there is a
debate on whether or not these are small enough to be counteracted by
the non-perturbative corrections. Sethi (2018), who pointed out this issue,
argued that these corrections could lead to a runaway, while Kachru and
Trivedi (2019) argued against it. A resolution of this problem requires a bet-
ter understanding of instantons in time-dependent backgrounds, of which
not much is currently known.
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A first order objection: moduli stablization
The second point of discussion concerns the non-perturbative terms used
for stabilizing the volumemodulus. Moritz, Retolaza, andWestphal (2018)
found a tension between the results obtained fromgaugino condensation in
ten dimensions and the four dimensional result by KKLT. This result was
improved and elaborated on by Gautason, Van Hemelryck, and Van Riet
(2019). It has been argued that the original objection was based on an in-
complete treatment in ten dimensions and proposals were made to cure
the problem (Hamada, Hebecker, Shiu, and Soler, 2019a,b; Kallosh, 2019).
However this has recently been challenged (Carta, Moritz, and Westphal,
2019; Gautason, Van Hemelryck, Van Riet, and Venken, 2020), and it has
been suggested that it might be difficult to achieve this in a controlled way.

A second order objection: dS uplift
A third problem concerns the backreaction of the D3 branes used for the
uplift to a dS vacuum. The three-form flux associated to D3 branes at the
tip of the KS throat are singular, and it is not yet clear if these singularities
are physical. A resolution of this would be to construct the corresponding
non-singular solution or to prove that no such solution exists. There has
been extensive discussion around this in the literature (Bena, Graña, and
Halmagyi, 2010; Blåbäck, Danielsson, and Van Riet, 2013; Danielsson and
Van Riet, 2015; Bena, Blåbäck, and Turton, 2016; Danielsson, Gautason,
and Van Riet, 2017, among others). It has also been argued that D3 brane
polarization could resolve the singularity (Cohen-Maldonado, Diaz, van
Riet, and Vercnocke, 2016; Armas, Nguyen, Niarchos, Obers et al., 2019).

3.5 Other dS constructions
TheKKLTconstruction just outlined, is a compactification of type IIB string
theory. Several other attempts to construct dS vacua have also been made
in type IIA, IIB, and heterotic string theory. Let us briefly outline them
below.

Type IIA
A feature of type IIA string theory is that the R-R and NS-NS fluxes are
even and odd forms respectively, giving the possibility to stabilize all mod-
uli classically, leading to a supersymmetric AdS vacuum. This was shown
by DeWolfe, Giryavets, Kachru, and Taylor (2005). In order to promote
this to a dS vacuum, one needs to evade the Maldacena-Núñez no-go the-
orem. To do this, one can either include quantum corrections or add clas-
sical negative tension objects like O-planes. As for the choice of internal
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manifold, Hertzberg, Kachru, Taylor, and Tegmark (2007) showed that a
Ricci flat manifold CY3 (𝑅6 = 0) gives |∇𝑉|2 ∕𝑉2 ≥ 54∕13, which excludes
dS extrema. dS vacua have, however, been constructed inmassive type IIA
(i.e., including a zero-form field strength 𝐹0, which appears as a parame-
ter in the theory, and is called the Romans’ mass) compactified on a neg-
atively curved manifold (𝑅6 < 0), and in the presence of O6-planes. The
first such constructions were by Caviezel, Koerber, Kors, Lust et al. (2009),
and Flauger, Paban, Robbins, and Wrase (2009). This was followed by
further constructions within this framework by Danielsson, Haque, Shiu,
and Van Riet (2009) and Danielsson, Koerber, and Van Riet (2010). Subse-
quently, a systematic scan of possible solutions of this type was performed
by Danielsson, Haque, Koerber, Shiu et al. (2011), and it was found that
all dS vacua constructed using these ingredients contain tachyons. Re-
cently, suchmodelswere also examined byRoupec andWrase (2019). They
showed that because of the intersecting O-planes necessary for these mod-
els, the ten dimensional equations of motion are not solved pointwise but
only as an integral over the internal space (usually referred to as smeared
sources).4 Moreover, all such solutions were found numerically and have
not been shown to exist in the limit of weak string coupling and small cur-
vature, when the fluxes are properly quantized. Another class of construc-
tions is by Córdova, De Luca, and Tomasiello (2019a,b), who numerically
solved full ten dimensional supergravity equations of massive type IIA, in
the presence of O8-planes; however, a string theory uplift of these solutions
remains to be constructed.
Adding non-geometric fluxes (these are fluxes that are obtained via du-

alities from other perturbative string theories, but that don’t have a geo-
metric source in the theory being considered) introduces more parame-
ters to the problem and helps in the search for a dS vacuum. The first
fully stable (i.e., free from tachyons) stable classical dS solutions were con-
structed by de Carlos, Guarino, and Moreno (2010a,b). Other tachyon free
metastable dS vacua were subsequently constructed in even more general
settings (Danielsson and Dibitetto, 2013; Blåbäck, Danielsson, and Dib-
itetto, 2013; Damian, Diaz-Barron, Loaiza-Brito, and Sabido, 2013; Blåbäck,
Danielsson, Dibitetto, and Vargas, 2015).

Type IIB
The situation is quite different in type IIB, where fluxes can be used to sta-
bilize the dilaton and the complex structure moduli, but the Kähler mod-
uli have a no-scale structure, which keeps them massless at the classical
4Also see the article by Blåbäck, Danielsson, Junghans, Van Riet et al. (2010) for a discussion
on smeared vs localized sources for constructing vacuum solutions in type II supergravity
and its consequences for a string theory uplift.
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level. There are two well known mechanisms of stabilizing them – the
KKLT scenario and the Large Volume Scenario (LVS) by Balasubramanian,
Berglund, Conlon, and Quevedo (2005). As we have just seen, in the KKLT
scenario, the superpotential receives non-perturbative corrections and𝑊0,
which is non-zero, is fine-tuned against it to give a supersymmetric AdS
minimum. In contrast, 𝑊0 is not fine-tuned in LVS. Rather, the Kähler
potential receives perturbative corrections, which are fine-tuned against
the non-perturbative corrections to the superpotential, to give a non-super-
symmetric AdS. The volume𝒱 ∼ exp (1∕𝑔𝑠) ≫ 1 is exponentially large (in
string units) in this minimum, hence the name large volume.
Several dS constructions have been proposed in type IIB that include ex-

tra ingredients. The KKLT construction presented above is one such case
where the extra ingredient in an D3 brane. While in this construction the
uplift to dS is carried out as an extra step after stabilizing the Kähler mod-
uli, in some other constructions, this can also be achieved at the same time
as moduli stabilization. Some of the key ingredients that have been used to
obtain dS are higher curvature terms byWestphal (2007), non-perturbative
effects at singularities by Cicoli, Maharana, Quevedo, and Burgess (2012),
a particular brane configuration called T-branes by Cicoli, Quevedo, and
Valandro (2016), and a flux induced supersymmetry breaking by Gallego,
Marsh, Vercnocke, and Wrase (2017), to name a few. An extensive discus-
sion and review of several other aspects of dS construction in string theory
can be found in the reviews by Danielsson and Van Riet (2018) and Cicoli,
De Alwis, Maharana, Muia et al. (2019). A recent class of solutions was
found numerically by Andriot, Marconnet, and Wrase (2020) but they all
contain tachyons.

Heterotic string theory
Kutasov, Maxfield, Melnikov, and Sethi (2015) showed that heterotic string
theory does not admit dS vacua – to all orders in 𝛼′ (but not in 𝑔𝑠). There
are several attempts to construct dS vacua using non-perturbative effects
in heterotic string theory, but the explicit dS vacua found were all tachy-
onic (Gukov, Kachru, Liu, and McAllister, 2004; Parameswaran, Ramos-
Sanchez, and Zavala, 2011; Anderson, Gray, Lukas, andOvrut, 2011; Cicoli,
de Alwis, and Westphal, 2013, among others).

3.6 What about the fine tuning problem?
The KKLT construction outlined above, tries to address the question of a
positive cosmological constant in string theory but the fine tuning problem
still remains. In the initial days of string theory, it was hoped that the the-
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ory would uniquely determine a vacuum that would be the correct vacuum
of our universe, and would uniquely specify the values of all fundamen-
tal constants. However, it was soon realized that this is not the case and
that string theory allows for an enormous number of consistent vacuum
solutions. This is dubbed the landscape of string theory vacua and was
estimated by Susskind (2003) to be of the order of 10100 or more.5 These
correspond to minima in a multidimensional moduli space. The universe
could then start in any of these vacua and parts of it could tunnel into other
vacua. This could repeat indefinitely, to give a vast universe with all possi-
bilities realized at one place or another – an idea called the multiverse. In
fact, Linde (2017) has argued that our universe might indeed be a part of
such a multiverse. Why then do we live in precisely the vacuum that we
live in? One way of arguing for this is the anthropic principle. A decade
before the discovery of the accelerating universe in 1998, Weinberg (1989)
had argued that for structure formation to be complete before the cosmo-
logical constant comes to dominate the energy density of the universe, the
vacuum energy density should be roughly𝜌Λ ∼ (10 − 100) 𝜌(0)𝑚 . (3.37)

He argued that a value slightly less than this would be the most natural,
but it should not be zero, since that would require fine-tuning. This indeed
turned out to be only an order ofmagnitude or two away from themeasured
value. This was an argument based on the anthropic principle – that if the
cosmological constant was too different from this value, galaxies would not
have formed and we would not be here to ask this question.
Several non-anthropic mechanisms have also been proposed to explain

the smallness of the cosmological constant. One of these is amechanism of
saltatory relaxation of the cosmological constant proposed by Feng, March-
Russell, Sethi, and Wilczek (2001). This uses an older idea by Brown and
Teitelboim (1987, 1988) that nucleation of charged branes could lower the
cosmological constant. which we will briefly review in section 7.1.3. They
proposed a mechanism by which the cosmological constant can relax from
a non fine-tuned value to its present value, via nucleation of a stack of
branes. This decay to its present value happens quickly enough, but it then
remains at its present value for a very long time.
Another proposal by Kane, Perry, and Zytkow (2003) suggests that the

mixing of a large number of connected degenerate vacua in string theory
will lead to a state withmuch lower vacuum energy than any of the individ-
ual vacua. Another radical solution to the cosmological constant problem

5More recent estimates, for example, by Taylor and Wang (2015) give a much larger number
of possibilities from flux compactifications.
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in string theory was proposed by two groups: Arkani-Hamed, Dimopou-
los, Kaloper, and Sundrum (2000), and Kachru, Schulz, and Silverstein
(2000). Instead of arguing for a small cosmological constant, they described
a mechanism that decouples the expansion of the four dimensional uni-
verse from the value of the cosmological constant.
Solving the cosmological constant problem is an enormously difficult

task, and we still don’t have a string theoretic construction of a dS vacuum
that is completely under control. Given this, we will only focus on the
“lesser” problem of obtaining dS vacuum in the rest of the thesis, without
worrying about the fine tuning problem.
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4. de Sitter in M-theory

So far, we have summarized attempts of constructing de Sitter vacua in
string theory and highlighted some of the difficulties involved. In this chap-
ter, wewill turn our attention to eleven dimensionalM-theory and examine
de Sitter constructions there. We will then present a construction that we
proposed in paper I, and discuss it in the context of related work.

4.1 What is M-theory?
M-theory is a eleven dimensional theory whose low energy limit is eleven
dimensional supergravity. The origin of the nameM-theory lies in a famous
article by Hořava and Witten (1996). In this section, following the original
motivation byWitten (1995), we will outline how such a theory arises from
considering the strong coupling limit of type IIA string theory. A more
thorough, but pedagogical, introduction to M-theory can be found in the
textbook by Becker, Becker, and Schwarz (2006) or the one by Ibáñez and
Uranga (2012). A list of the historical benchmarks leading to the develop-
ment of M-theory and following its progress up to the early 2000’s, can be
found in an article by Duff (2004).
String theory is a theory of fundamental strings (F1), as well as higher

dimensional objects: D𝑝 branes and NS5 branes. In terms of the two pa-
rameters of string theory, 𝛼′ and 𝑔𝑠, the tension of these objects goes as𝑇F1 ∼ (𝛼′)−1 , 𝑇NS5 ∼ (𝛼′)−3 𝑔−2𝑠 , 𝑇D𝑝 ∼ (𝛼′)−(𝑝+1)∕2 𝑔−1𝑠 . (4.1)

The mass scales corresponding to the tension of these objects can be read
off from dimensional analysis,𝑀p ∼ 𝑇1∕(𝑝+1)

p , to give

𝑀F1 ∼ (𝛼′)−1∕2 , 𝑀NS5 ∼ (𝛼′)−1∕2 𝑔−1∕3𝑠 , 𝑀D𝑝 ∼ (𝛼′)−1∕2 𝑔−1∕(𝑝+1)𝑠 .
(4.2)

Let us examine them in the weak and strong coupling regimes. In the
weakly coupled limit (𝑔𝑠 ≪ 1), the NS5 brane and D𝑝 branes become ex-
tremely massive and their excitations decouple from the theory, leaving
behind a theory of fundamental strings. However, in the strong coupling
limit (𝑔𝑠 → ∞), the lightest objects are not fundamental strings, but rather
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the lowest dimensional D𝑝 brane. For type IIB string theory, this corre-
sponds to a D1 brane, which is a string. This suggests that weakly coupled
and strongly coupled type IIB string theory are dual to each other, i.e., the
SL(2, ℤ) self duality of type IIB.
For type IIA string theory, however, the lightest object is a D0 brane,

which is a particle and not a string. This suggests that the strongly coupled
limit of type IIA theory is not a string theory, but something else. To under-
stand what this might be, consider a bound state of 𝑛 D0 branes. The mass
of such a bound state goes as

𝑀𝑛D0 ∼ 𝑛 (𝛼′)−1∕2 𝑔−1𝑠 ∼ 𝑛𝑔𝑠 , with 𝑛 ∈ ℕ. (4.3)

This is reminiscent of the mass spectrum of momentum modes obtained
from a KK reduction on a circle of radius 𝑅, in which case one gets 𝑚 ∼𝑘∕𝑅, with 𝑘 ∈ ℕ. This analogy suggests that type IIA string theory in
the strong coupling limit, is dual to an eleven dimensional theory with
the eleventh dimension compactified on a circle – the string coupling cor-
responding to the radius of the circle. Strong coupling, therefore, corre-
sponds to the decompactification limit of the circle. This theory is known
asM-theory, and has only one dimensionful scale – the eleven dimensional
length scale 𝓁11. This should be contrasted with string theory, which has a
dimensionful parameter namely, the string length 𝓁𝑠 ∼ √𝛼′, and a dimen-
sionless parameter 𝑔𝑠 that the theory can be expanded around. In terms of
ten dimensional quantities, the radius of the eleventh dimension is given
by 𝑅 = 𝓁𝑠𝑔𝑠 = √𝛼′𝑔𝑠, while the eleven dimensional length can be writ-
ten as 𝓁11 = 𝑔1∕3𝑠 𝓁𝑠 = (𝛼′𝑅)1∕3. The absence of a dimensionless parameter
makes a perturbative formulation of the theory difficult, and there is still
no microscopic formulation of M-theory.
The low energy limit of M-theory, on the other hand, is well understood

and is given by eleven dimensional supergravity, whose bosonic action can
be written down as

𝑆11d = 12𝜅211 ∫d11𝑥√−𝑔 (𝑅 − |𝐺4|22 ) − 16 ∫ℳ11
𝐶3 ∧ 𝐺4 ∧ 𝐺4. (4.4)

The massless bosonic field content of the theory is an eleven dimensional
metric 𝑔 and a three-form gauge field 𝐶3, with field strength 𝐺4. It can
be shown that performing a dimensional reduction along a circle indeed
gives the action of type IIA supergravity, making the above analogy explicit.
Under this dimensional reduction, the eleven dimensional metric reduces
to the ten dimensional metric, the RR one-form 𝐶1, and the dilaton; while
the three-form 𝐶3 gives the RR three-form and the NS-NS two-form of type
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IIA string theory. The three-form gauge field in M-theory is sourced by a
two-brane M2, while the dual six-form gauge field is sourced a five-brane
M5. These are the only BPS branes in M-theory and have been explicitly
constructed as solutions in supergravity.
Let us now account for the extended objects in type IIA and see how

they are lifted to M-theory. Type IIA has D𝑝 branes for even 𝑝, which are
charged under the RR gauge fields, as well as F1 and NS5 branes, which
are charged under the NS-NS two-form. We have seen that the D0 brane
corresponds to the KK momentum modes. The D2 and 𝐹1 correspond to
M2 branes and its compactification on the 𝑆1 respectively. Analogously,
NS5 and D4 branes correspond to the M5 brane, and its compactification
on the circle respectively. This leaves the D6 brane, which has a special
interpretation in M-theory.

D6 brane in IIA = KK monopole in M-theory
The D0 brane is charged under a RR one-form 𝐶1 in type IIA, which has
a corresponding two-form field strength 𝐹2. The D6 brane is charged pre-
cisely under the magnetic dual of this two-form (𝐹8 = ⋆10𝐹2, correspond-
ing to the 𝐶7 gauge field, under which the D6 is charged). Since the D0
brane lifts to a KK momentum mode in M-theory, we can already antici-
pate that the D6 brane uplifted to M-theory, could have something to do
with geometry as well. This is indeed the case. More precisely, the super-
gravity solution of a D6 brane sources the metric, the dilaton and the RR
one-form 𝐶1. As discussed above, all of these three fields are components
of the eleven dimensional metric in M-theory, and hence the M-theory lift
of a D6 brane corresponds to a purely geometric background in eleven di-
mensions. This was worked out to be the Taub-NUT geometry, otherwise
known as the KK monopole. These will play an important role in the next
sections. For more details on the Taub-NUT geometry, see the book by Or-
tin (2015).

4.2 G2 holonomy and G2 structure
In order to obtain a four dimensional effective theory from M-theory, the
seven extra dimensions need to be compactified. Compactifications that
preserve some amount of supersymmetry in lower dimensions are stable,
and do not contain tachyons. However, preserving too much supersym-
metry (𝒩 ≥ 2) can place severe restrictions. For example, theories with𝒩 = 2 do not allow for chiral fermions, making them unattractive for par-
ticle physics phenomenology. A useful approach is therefore, to consider
compactifications that preserve𝒩 = 1 supersymmetry.
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The amount of supersymmetry in the four dimensional theory corre-
sponds to the number of number of supercharges that are globally well
defined on the internal seven manifoldℳ7. Generically,ℳ7 is curved, im-
plying that parallel transporting a supercharge around a closed loop will
bring it back to a rotated version of itself. As a consequence, the super-
charge is not globally well defined. The condition for having a globally
well defined supercharge is therefore the condition that the internal man-
ifold admits a covariantly constant spinor. This is called a Killing spinor,
and is defined as a spinor 𝜉 that is covariantly constant, i.e.,∇ℳ7𝜉(ℳ7) = 0.
This condition can be restated in terms of the holonomy group of the inter-
nal manifold – which is the group of rotations that a spinor suffers when
it is parallel transported along all possible closed curves on the manifold.
Generically, one would expect this to be SO(7) for the sevenmanifold, leav-
ing no spinor invariant and giving a non-supersymmetric compactification.
In order to preserve some supersymmetry in four dimensions, the holon-
omy group has to be a subgroup of SO(7), with at least one preserved spinor.
The exceptional group G2 is one such group, and compactifying on a seven
dimensional manifold with G2 holonomy leads to a 𝒩 = 1 theory in four
dimensions. A CY3 manifold, for example has SU(3) holonomy, instead
of the full SO(6), which gives 𝒩 = 2 supersymmetry in four dimensions
when type II string theory is compactified on it. This can be orientifolded
to project out half of the supersymmetry and get 𝒩 = 1, if desired. Con-
trary to CY3, a seven manifold with G2 holonomy is much more difficult
to construct. One reason for this is that, being odd dimensional, one can-
not apply the tools of complex geometry to construct such manifolds. The
only known explicit construction of a seven dimensional manifold with G2
holonomy is a smooth torus orbifold𝕋7∕ℤ32 constructed by Joyce (1996a,b).
Starting with an orbifold obtained by quotienting a square seven torus 𝕋7
withunit length, by threeℤ2 orbifold actions (𝕋7∕ℤ32), Joyce provided a con-
structive way to resolve the ℤ32 singularities to obtain a smooth G2 holon-
omy manifold.

Twisted torus and G2 structured manifold
A seven torus is defined as a seven real dimensionalmanifold with periodic
coordinates 𝑥𝑚, with 𝑚 = 1, 2, … , 7, where 𝑥𝑚 ≃ 𝑥𝑚 + 2𝜋𝑅. Tangent one-
forms can be defined on the torus: 𝜂𝑚 = d𝑥𝑚, with d𝜂𝑚 ≡ 0. A twisted
torus corresponds to the one-forms being linear in the coordinates, i.e.,

d𝜂𝑚 = −12𝜔𝑚𝑛𝑝𝜂𝑛 ∧ 𝜂𝑝, (4.5)

with 𝜔𝑚𝑛𝑝 corresponding to the twisting of the coordinate 𝑥𝑚 over the direc-
tions 𝑥𝑛 and 𝑥𝑝. The twists are also referred to as metric fluxes. Compact-

45



ifying on a twisted torus corresponds to turning on metric fluxes, which
can help stabilize some of the moduli. Starting from the 𝕋7∕ℤ32 manifold
of Joyce, Dall’Agata and Prezas (2004, 2005) constructed twisted orbifolds
of the seven torus and studied M-theory compactifications on it. As a re-
sult of the twisting, the holonomy group of the deformed seven manifold
is no longer G2, but the structure group of its tangent bundle is G2 instead.
Such amanifold is called aG2 structuredmanifold. The twisted𝕋7∕ℤ32 is an
example of such a manifold. The four dimensional theory obtained from
compactifying M-theory on this manifold is 𝒩 = 1 coupled to seven chi-
ral multiplets, the scalar sector of which consists of seven complex moduli
fields: 𝑆, 𝑇𝑖, and 𝑈𝑖, for 𝑖 = 1, 2, 3. Danielsson, Dibitetto, and Guarino
(2015) showed that the four dimensional theory obtained from compacti-
fying M-theory on a twisted 𝕋7∕ℤ32 can resemble that obtained from com-
pactifying type IIA string theory on an orientifolded twisted 𝕋6∕ℤ22. In the
weak coupling limit, where the type IIA description is valid, these complex
moduli correspond to: the axio-dilation 𝑆, three complex structure moduli𝑈𝑖, and three volume moduli 𝑇𝑖 – fourteen real scalars in total.
The Kähler potential and the superpotential for the four dimensional𝒩 = 1 theory obtained from compactifyingM-theory on the twisted𝕋7∕ℤ32

is given by

𝐾 = − 7∑
𝑖=1 log (ImΦ𝑖) , 𝑊 = 𝑓0 + 𝑓𝑖Φ𝑖 + 𝑓𝑖𝑗Φ𝑖Φ𝑗, (4.6)

where Φ𝑖 ∈ {𝑆, 𝑇𝑖, 𝑈𝑖}. The constant term, 𝑓0, in the superpotential comes
from the𝐺7 flux, the linear terms, 𝑓𝑖, come from the𝐺4 flux and the quadra-
tic terms correspond to the metric fluxes. Cubic order terms in the su-
perpotential, beyond the ones included here, would correspond to non-
geometric fluxes in M-theory. It was shown by Danielsson, Dibitetto, and
Guarino (2015) that, among the quadratic fluxes, those corresponding to𝑇2 and 𝑆𝑇 are non-geometric in type IIA but geometric in M-theory. A
complete map of the fluxes, and their corresponding contribution to the
superpotential, can be found in table 1 of paper I.

4.3 dS in M-theory
The challenges for constructing a dS vacuum in M-theory are similar to
those in string theory. Most notably, the Maldacena-Nùñez no-go theorem
forbids compactifications to dS vacua in classical supergravity. Hence, con-
structing a dS vacuum in M-theory requires adding extra ingredients, for
example, non-perturbative corrections or higher-derivative corrections. In
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the KKLT construction from the previous chapter, non-perturbative effects
were necessary to stabilize the volume modulus, since the potential, after
a GKP flux compactification, was a no-scale Minkowski with a flat volume
modulus. But, as also argued in the previous chapter, the effect of adding
such terms is not well understood. An alternative to non-perturbative cor-
rections is to add non-geometric fluxes to uplift the Minkowski vacuum.
However, Blåbäck, Danielsson, Dibitetto, and Vargas (2015) showed that
some vacua constructed using non-geometric fluxes, can alternatively be
obtained from non-perturbative terms, thus placing non-geometric fluxes
and non-perturbative effects on a similar footing.
Many of the constructions mentioned in section 3.5 can be obtained

from M-theory. However, most of them involve non-geometric fluxes. As
an example, since the Romans’ mass is a non-geometric flux in M-theory,
all massive type IIA constructions are non-geometric in M-theory. Some
type IIB constructions mentioned before, for example the one by Blåbäck,
Danielsson, Dibitetto, and Vargas (2015) can be T-dualized to type IIA and
then be lifted to M-theory. Furthermore, some fluxes (𝑇2 and 𝑆𝑇 in partic-
ular) that are non-geometric in type IIA, are geometric in M-theory. In ad-
dition to the dS constructions mentioned in section 3.5, many other meta-
stable dS solutions have been constructed using non-perturbative effects
(Blåbäck, Roest, and Zavala, 2014; Danielsson and Dibitetto, 2014; Guar-
ino and Inverso, 2016). Four dimensional de Sitter solutions have also
been explicitly constructed inM-theory. An example is the recent article by
Cribiori, Kallosh, Linde, and Roupec (2020), who constructed a dS vacuum
from a compactification of M-theory on the twisted 𝕋7∕ℤ32, using KKLT
type non-perturbative contributions to construct metastable dS solutions
discussed in the previous chapter. Another construction (Acharya, Bobkov,
Kane, Kumar et al., 2007; Kane and Winkler, 2019) provided an inflation-
ary solution in M-theory compactified on an untwisted 𝕋7∕ℤ32, and argued
that this could be used to construct a dS vacuum via non-perturbative cor-
rections, without the need for uplifting with antibranes. As mentioned, all
of them involve either non-geometric or non-perturbative ingredients, that
have been argued to not be completely understood in string theory.

4.4 dS from higher-derivative corrections
The supergravity action, should in principle, receive corrections from an
infinite series of higher-derivative terms. These terms involve more deriva-
tives of the metric, the gauge fields, or both. Such corrections have been
extensively studied in type IIA string theory, where the first non-zero cor-
rection comes from terms that are quartic in the Riemann tensor (denoted
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by 𝑅4). Having six more derivatives than the Ricci scalar, these terms come
with a coefficient of 𝓁6𝑠 ∼ (𝛼′)3. Such terms do not contribute to the super-
potential because of the non-renormalization theorems mentioned in the
previous chapter. They do, however, contribute to the Kähler potential; for
example, for type IIA string compactified on a CY3, Δ𝐾 ∼ (𝛼′)3 ∕vol (CY3).
Such perturbative corrections to the supergravity action provide another
way to evade the Maldacena-Nùñez no-go theorem. Being dependent on
the volume, they can be useful to stabilize the volume modulus. See the
articles by Berg, Haack, and Kors (2005, 2006), for example, where such
corrections have been extensively studied in type IIB string theory.
Higher-derivative corrections to the eleven dimensional supergravity ac-

tion coming fromM-theory have also been studied extensively (Antoniadis,
Ferrara, Minasian, and Narain, 1997; Green, Gutperle, and Vanhove, 1997;
Green and Vanhove, 1997; Russo and Tseytlin, 1997, among others). The
first non-zero correction in this case comes from the eight derivative term𝑅4, as well as terms containing products of the Riemann tensor with the
four-form field strength G4, and its derivatives, related to each other by su-
persymmetry. From dimensional analysis, all such terms are proportional
to 𝓁611 and contribute at the same order. The eleven dimensional Planck
length can therefore be used to keep track of the order of the higher deriva-
tive terms, similar to 𝛼′ in string theory. See the article by Weissenbacher
(2020) for the form of currently known higher-derivative corrections in M-
theory. In paper I, we used such corrections to construct a metastable dS
vacuum, without using any exotic ingredients such as non-perturbative ef-
fects, non-geometric fluxes or anti-branes. We outline the construction be-
low, highlighting crucial differences with other dS constructions in the lit-
erature. For details of the construction, please refer to paper I.

4.4.1 Non-supersymmetric Minkowski
The starting point for our dS construction is a new class of non-supersymm-
etric Minkowski vacua that we also constructed in paper I. These are con-
structed analytically using only metric fluxes in M-theory (corresponding
to KKmonopoles), which in the language of the STUmodel introduced be-
fore, implies that the superpotential only contains quadratic terms. How-
ever, this also contains 𝑇2 and 𝑆𝑇 terms, which as mentioned before, are
geometric in M-theory but non-geometric in type IIA string theory. These
Minkowski vacua turn out to be free from tachyons and have only one flat
direction, which is purely dilatonic. This should be compared to the no-
scale Minkowski vacua obtained from compactifications of type IIB string
theory à la GKP. While also free from tachyons, in terms of real scalars,

48



they have two flat directions, corresponding to the dilatonic as well as the
axionic direction. While the dilatonic direction can bemademassive using
higher-derivative corrections, the axionic direction is protected by virtue
of the axion shift symmetry and requires non-perturbative effects to be ac-
quire a potential. This crucial feature of our novelMinkowski vacua allows
us to by pass all non-perturbative corrections, and uplift to a metastable dS
minimum using only higher-derivative corrections.

4.4.2 Adding higher-derivative corrections
Next, we add higher-derivative corrections to the Minkowski vacuum ob-
tained above. The form of such corrections is known for the G2 holonomy
manifold 𝕋7∕ℤ32, but has not been explicitly computed in the presence of
twisting. However, in the case of type IIA compactified on a CY3, Graña,
Louis, Theis, and Waldram (2015) showed that turning on SU(3) torsion
does not affect the form of either 𝛼′ or 𝑔𝑠 corrections. We argued in paper I,
that the situation is analogous between a twisted 𝕋7∕ℤ32 and an untwisted𝕋7∕ℤ32, whose singularities have been smoothed out. From this, the form
of corrections to the Kähler potential were found to be Δ𝐾 ∼ −1∕𝜌3, for
the volume modulus 𝜌. This contributes to the scalar potential as Δ𝑉 ∼−𝜌−15∕2 in the large volume limit where 𝜌 ≫ 1. To generate a dS mini-
mum, one can turn on the seven-form field strength𝐺7 inM-theory, which
contributes Δ𝑉 ∼ 𝜌−21∕2 to the scalar potential. We showed how this is
achieved, both perturbatively in the large volume limit, as well as with an
explicit numerical example. For the volume scaling as 𝜌 ∼ 𝑁2∕3, the po-
tential at the minimum 𝑉, the first slow-roll parameter 𝜖v, and the second
slow-roll parameter 𝜂v were computed to be𝑉 ∼ 1𝑁3 ,𝜖𝑉 ∶= 𝐾𝐼𝐽𝜕𝐼𝑉𝜕𝐽𝑉2𝑉2 ∼ 𝒪 (𝑁−4) ,

𝜂𝑉 ∶= min (𝐾𝐼𝐽𝜕𝐼𝑉𝜕𝐽𝑉𝑉 ) ∼ 0.01 + 𝒪 (𝑁−4) .
(4.7)

Quantum corrections
A curious feature of this model is that the supersymmetry breaking scale𝑚3∕2 is parametrically higher than the compactification scale𝑚kk. This im-
plies that an experiment at a high enough energy would find extra dimen-
sions before it finds supersymmetric particles. The absence of supersym-
metry in the low energy theory also implies that the quantum corrections
are non-zero, since boson loops are no longer cancelled against fermion
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loops. However, it was shown that the leading vacuum correction goes as1∕𝑁6, which is parametrically much smaller than the potential at the clas-
sical dS minimum obtained above, and does not destabilize it.

4.5 Summary
To summarize, in paper I, we constructed a metastable dS vacuum in M-
theory compactified on a G2 structuremanifold, namely twisted𝕋7∕ℤ32. To
do this, wemade use of metric fluxes sourced by KKmonopoles, the seven-
form field strength𝐺7, and perturbative higher-derivative corrections. The
advantage of this construction over other dS constructions is that it does
not use any exotic ingredients that are often not well understood and are
argued to give rise to instabilities. As for the fine tuning problem, in order
to get a realistic cosmological constant in this model, the coefficient of the
four dimensional potential at the dS minimum goes as ∼ 1∕𝑁3. This has
to be fine tuned, at a fixed 𝑁, so that it cancels against the vacuum energy∼ 1∕𝑁6 to a high degree, to give the observed cosmological constant of our
universe.
This construction, although appealing at many levels, is not yet the fi-

nal answer to the dS problem. One reason for this is that the fluxes used
in this construction are not quantized. Although non-quantized fluxes are
perfectly valid in supergravity, all fluxes should be quantized in M-theory.
We will discuss this and some other aspects in section 5.5 of the next chap-
ter. In this context, the present construction should be viewed as leading
the way for a new way to construct dS vacua using well understood ingre-
dients. To obtain a model with quantized fluxes in this framework would
require more effort, and we hope to return to this in a future work.
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5. The landscape vs the swampland

Wehave seen in the previous chapters that constructing a vacuumwith pos-
itive energy is very difficult in string theory/M-theory. We also discussed
that there is a very large landscape of lower dimensional effective field the-
ories derivable from string theory. Despite its size, Vafa (2005) argued that
not all apparently consistent effective field theories can be obtained from
string theory. The space of such theories forms an even larger swampland
that surrounds the landscape of truly consistent effective field theories. In
this language, the difficulty of constructing a four dimensional dS vacuum
can be rephrased as asking –whether a four dimensional theory containing
a dS vacuum lies in the landscape or in the swampland of string theory. In
order to be certain that a positive cosmological constant can be constructed
in string theory, one needs to explicitly find such a construction. However,
given the practically infinite number of possibilities to exclude before find-
ing the right solution, a parallel and arguably more productive approach
could be to find features of lower dimensional theories that ensure that
they can be completed in string theory. Once an elaborate set of such crite-
ria is constructed, any effective field theory can be tested against it to deter-
mine whether or not it is possible to construct it from string theory. Apart
from saving us the pain of trying to construct an incompatible theory and
failing, this approach could also point out the guiding principles that pre-
vent their string theory completion, providing a suitable way forward. This
is the essence of the swampland program initiated by Vafa (2005). A sum-
mary and status report of the program can be found in a recent review by
Palti (2019). In this chapter, we will discuss a few swampland criteria that
are relevant for the problem of finding de Sitter vacua in string theory.

5.1 Weak gravity conjecture
One of the most useful swampland conjectures is that, in a theory of quan-
tum gravity with gauge forces, gravity is the weakest force of all. In other
words, there exist particles whose gauge repulsion is stronger than their
gravitational attraction. This was proposed by Arkani-Hamed, Motl, Nico-
lis, and Vafa (2007) and is called the weak gravity conjecture (WGC). This

51



can be statedmore concretely for a four dimensional Einstein-Maxwell the-
ory with a 𝑈(1) coupling 𝑔,

𝑆 = ∫d𝑥4√−𝑔 [𝑀2
Pl2 𝑅 − 14𝑔2𝐹𝜇𝜈𝐹𝜇𝜈 +⋯] . (5.1)

The electric version of the conjecture states that there exists a particle with
mass𝑚 and electric charge 𝑞el = 𝑞 in the theory such that𝑚|||𝑞||| ≤ √2𝑔𝑀Pl. (5.2)

This statement should also hold for magnetic monopoles in the theory,𝑚mag ≲ MPl∕𝑔. Arkani-Hamed, Motl, Nicolis, and Vafa (2007) argued that
themass of amagneticmonopole isUVdivergent and goes as𝑚mag ∼ Λ∕𝑔2,
for a cutoff scaleΛ. Together with the bound on the mass of the monopole,
this gives Λ ≲ 𝑔𝑀Pl, (5.3)

which is called the magnetic WGC. One way to justify the electric version
of the conjecture is to argue that all black holes must be able to discharge
themselves. This is because, if a charged black hole does not discharge
itself completely by the time it Hawking evaporates down to the Planck
scale (beyond which, our semi-classical approximation breaks down), it
will end up inwhat is called a charged remnant. Such remnantswould then
be Planckmass objects, but have different amounts of charge depending on
the charge of the black hole they were formed from. This huge degeneracy
of remnants implies that they lead to pathologies like violation of entropy
bounds, or they could run in loops and contribute to scattering processes.
See the article by Susskind (1995) for more discussion on the trouble with
remnants.
The following argument borrowed from the review by Palti (2019) illus-

trates the connection of black hole decay with the WGC beautifully. Imag-
ine that a black hole of mass𝑀 and charge 𝑄 decays into a set of particles
with mass 𝑚𝑖 and charge 𝑞𝑖. From energy conservation, 𝑀 ≥ ∑𝑖 𝑚𝑖, and
charge conservation, 𝑄 = ∑𝑖 𝑞𝑖, we can write down𝑀𝑄 ≥ 1𝑄 ∑

𝑖 (𝑚𝑖𝑞𝑖 ) 𝑞𝑖 ≥ 1𝑄 (𝑚𝑞 ) |||||||min∑𝑖 𝑞𝑖 ≥ (𝑚𝑞 ) |||||||min. (5.4)

Therefore, for a black hole to decay, there has to be a particle with a charge-
to-mass ratio greater than that of the black hole. This bound is the strongest
for an extremal RN black hole, which has𝑀 = 𝑄√2𝑔𝑀Pl, giving the elec-
tric WGC of equation (5.2).
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Themagnetic version of the weak gravity conjecture follows from apply-
ing the electric version to magnetic monopoles, as mentioned above. An-
other way to motivate the magnetic WGC is by taking the limit of vanish-
ing gauge coupling. The extremality bound,𝑀 ≥ 𝑄√2𝑔𝑀Pl, requires that
a black hole with a given mass should have charge less than

𝑄 ≤ 𝑀√2𝑔𝑀Pl

. (5.5)

In the limit of vanishing coupling 𝑔 → 0, the black hole can have any inte-
gral charge between 0 and 1∕𝑔 → ∞, giving an entropy 𝑆 ∼ − log 𝑔. How-
ever, the Bekenstein-Hawking entropy of the black hole is proportional to
the area of its horizon, which is proportional to 𝑔𝑄. Therefore, taking a
small enough coupling constant 𝑔 → 0, while keeping 𝑔𝑄 fixed, makes the
entropy much larger than the the Bekenstein-Hawking bound. This incon-
sistency arises because, in the process of taking 𝑔 → 0, the gauge symmetry
has become a global symmetry. The above contradiction is at the core of
the well known principle that there should be no global symmetries in a
theory of quantum gravity. Taking the limit 𝑔 → 0 should therefore not
be allowed, and equation (5.3) gives a cutoff scale for the effective theory
for a given value of the gauge coupling strength. See the article by Banks,
Johnson, and Shomer (2006) for more discussion along these lines.
Depending on the state of the theory that satisfies the WGC, there are

twomain versions of the conjecture – the strong version, where the lightest
particle in the theory is the WGC particle, and themild version, where the
WGC particle is the one with the largest charge-to-mass ratio. The strong
WGC when applied to axions, has implications for cosmology. Axions are
usually the lightest state in a theory and the strong WGC forces their de-
cay constant to be sub Planckian, which has implications for cosmology in
general and inflationary models in particular.

5.2 Generalized WGC
Arkani-Hamed,Motl, Nicolis, andVafa (2007) argued that theWGC should
hold not only for point particle charged under a U(1) gauge field, but also
for higher dimensional objects charged under general 𝑝-form gauge fields.
This was made precise by Heidenreich, Reece, and Rudelius (2016) for a(𝑝 − 1) brane with tension 𝑇 and charge 𝑞 under a 𝑝-form gauge field in𝑑 dimensions, to give a generalized WGC that allows not just black holes,
but also black branes to decay𝑝 (𝑑 − 𝑝 − 2)𝑑 − 2 𝑇2 ≤ 𝑞2𝑔2𝑀𝑑−2𝑑 , (5.6)
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where 𝑀𝑑 is the Planck mass in 𝑑 dimensions. This is valid for 1 ≤ 𝑝 ≤𝑑 − 3.
5.3 Non-supersymmetric AdS conjecture
The generalized WGC has interesting consequences when applied to an
older observation by Maldacena, Michelson, and Strominger (1999). They
showed that in a (𝑝 + 2) dimensional AdS space containing a space-time
filling (𝑝+2)-form flux, there are 𝑝-branes chargedwith respect to the flux,
which can nucleate and expand out towards the boundary of the AdS space.
This leaves behind an AdS space with one less unit of flux. Nucleation of
multiple such branes can discharge multiple units of the flux, splitting the
AdS space into two different AdS spaces separated by the stack of nucleated
branes. This process is called AdS fragmentation. The viability of such a
process depends on the ratio of the 𝑝-brane’s charge-to-tension. This is be-
cause, the tension wants the brane to contract, while the charge wants it to
expand. Fragmentation of AdS space therefore, requires a brane withmore
charge than tension. Ooguri and Spodyneiko (2017) showed that such a
brane always exists in the absence of supersymmetry, and equation (5.2)
becomes a strict inequality. This implies that all non-supersymmetric AdS
spaces supported by flux are unstable, and will decay via brane nucleation.
It is interesting to note here that the generalized WGC of equation (5.6)
does not apply when 𝑝 = 𝑑 − 1 as we have above. Applying it to 𝑝 = 𝑑 − 1
anyway, gives a result that is trivially true. However, we showed in paper
III, that energy conservation suggests an absolute value on the left hand
side of the generalized WGC and this extends the result to 𝑝 = 𝑑 − 1 as
well.
Based on this observation, it was conjectured (Ooguri and Vafa, 2017;

Freivogel and Kleban, 2016) that this is a more general result and all non-
supersymmetric AdS spaces (even the ones not supported by fluxes) are
unstable. This conjecture has been explored in string theory (Danielsson
and Dibitetto, 2017; Danielsson, Dibitetto, and Vargas, 2017). Other as-
pects of this conjecture have also been explored (Banks, 2016; Aalsma and
van der Schaar, 2018; Antonelli, Basile, and Bombini, 2019, among oth-
ers). Recently, García Etxebarria, Montero, Sousa, and Valenzuela (2020)
suggested that non-supersymmetric compactifications of string theory/M-
theory could also have a bubble of nothing instability,1 causing them to

1A bubble of nothing is a non-perturbative instability of a spacetime, where a compact
direction shrinks to zero size leaving behind nothing. Such an instanton is spherically
symmetric (hence, a bubble) and accelerates outward, approaching the speed of light. The
existence of such instabilities was discovered by Witten (1982).
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decay. This further supports the conjecture that non-supersymmetric AdS
vacua should be unstable.

5.4 de Sitter conjectures
We have seen that constructing de Sitter vacua in string theory is challeng-
ing. Danielsson, Haque, Koerber, Shiu et al. (2011) summarized such con-
structions in type IIA string theory and performed a large scan, finding po-
tentially stable dS vacua, and highlighting some of the difficulties involved.
Similar challenges exist for constructions in type IIB, heterotic string the-
ory, as well as M-theory as summarized in the previous chapters. One of
the main difficulties is that all moduli need to be stabilized, and there are
not too many well understood mechanisms for stabilizing moduli in string
theory.
One could either think of these as being technical difficulties, which can

be circumvented in the future given enough effort, or one could start to
wonder if there are more fundamental obstructions to the construction of
de Sitter vacua in string theory. The second line of thought has led to re-
cent conjectures that string theorymay not allow de Sitter vacua in the first
place.
Stated in the context of the swampland program, all de Sitter vacua are in

the swampland and do not belong to the landscape of string theory. More
specifically, the de Sitter conjecture was proposed by Obied, Ooguri, Spo-
dyneiko, and Vafa (2018), and later refined by two groups (Garg and Krish-
nan, 2019; Ooguri, Palti, Shiu, and Vafa, 2019). The refined version of the
conjecture states that the scalar potential of any theory coupled to gravity
must satisfy either of the following two bounds on derivatives with respect
to scalar fields in the theory,

|∇𝑉| ≥ 𝑐𝑀Pl
𝑉 or min

(𝐺𝑖𝑗∇𝑖∇𝑗𝑉) ≤ − 𝑐′𝑀2
Pl

𝑉. (5.7)

𝑐, 𝑐′ are positive constants of order one in Planck units, |∇𝑉| is the norm of
the vector of derivatives with respect to all scalar fields in the theory, and
min

(𝐺𝑖𝑗∇𝑖∇𝑗𝑉) is the minimum eigenvalue of the mass matrix. The first
condition provides a lower bound on the slope of the potential and there-
fore postulates that the potential, if positive, has to be steep enough not to
allow any extrema. Obied, Ooguri, Spodyneiko, and Vafa (2018) motivated
this criteria by considering an extension of the Maldacena-Núñez no-go
theorem in eleven dimensional supergravity to show that|Δ𝑉|𝑉 ≥ 6√(𝑑 − 2) (11 − 𝑑) . (5.8)
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However, as mentioned in the previous chapter, the no-go theorem is inval-
idated in the presence of O-planes, which are extensively used in type IIA
de Sitter constructions. In that case however, Hertzberg, Kachru, Taylor,
and Tegmark (2007) showed that|Δ𝑉|𝑉 ≥ √5413. (5.9)

This motivates the first criteria. However, it also excludes a positive max-
imum for any scalar potential. This is in contradiction with the Higgs po-
tential, which has a positive value at the “center of the hat”,|∇𝑉|𝑉 ∼ 10−55

MPl
, min

(∇𝑖∇𝑗𝑉)𝑉 ∼ − 1035
MPl

2 . (5.10)

The second condition (i.e., the refinement) ensures that de Sitter maxima
are allowed. Combinedwith the first criteria, this prevent de Sitterminima
from existing. Similar refinements have been proposed before (Andriot,
2018; Garg, Krishnan, and Zaid Zaz, 2019).
To further understand the dS conjecture and the non-supersymmetric

AdS conjectures in string theory, a systematic study of flux compactifica-
tions at asymptotic regions of field space was done by Scalisi and Valen-
zuela (2019). Connections between the dS conjecture, WGC for higher di-
mensional objects, and the swampland distance conjecture have been ex-
plored by Lanza, Marchesano, Martucci, and Valenzuela (2020).2

5.5 Possible counter examples
Several counterexamples to the original dS conjecture exist in the literature,
but evading the refined conjecture is much more difficult. The following
two constructions, if completely under control, could however turn out to
be counterexamples to the refined dS conjecture.

M-theory
The dS vacuum constructed in paper I, which we summarized in the pre-
vious chapter, clearly violates the refined dS conjecture. More specifically,
equation (4.7) does not satisfy equation (5.7), making it a potential counter
example of the above conjecture. The reason for the use of the word poten-
tial is that, as we discussed in the previous chapter, this model has𝑚3∕2 ≫
2The distance conjecture states that, in a theory coupled to gravity, as one travels infinitely
far out in field space, an infinite tower of states becomes light, invalidating the effective field
theory.
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𝑚kk, making it susceptible to uncontrolled quantum corrections. We ar-
gued that these quantumcorrections are parametricallymuch smaller than
the value of the potential at the dS minimum, making our potential safe
against quantum corrections. However, this could be considered one po-
tentially weak aspect of the model. Another issue is the presence of yet
unknown higher-derivative corrections. We have used the state of the art
higher-derivative corrections to stabilize the volume modulus to obtain a
metastable dS vacuum. We have also argued how other terms at that order
cannot contribute to the potential to destroy the dS minimum. However,
since the explicit form of all higher-derivative corrections is not known,
this leaves room for debate. Another issue is that the fluxes used in this
construction are not quantized. While the solution obtained is still a per-
fectly valid supergravity solution, embedding it in M-theory requires the
fluxes to be quantized. Although it may be possible to find a similar model
with quantized fluxes, this has not yet been done.

IIA string theory
Shortly after the refined dS conjecture was proposed, Blåbäck, Danielsson,
andDibitetto (2018) constructed a possible counterexample inmassive type
IIA string theory compactified on a twisted 𝕋6∕ℤ22 with orientifold planes.
This makes use of only geometric fluxes, giving a tachyon free dS mini-
mum with one flat direction that is axionic. This axionic direction can be
stabilized using the non-geometric 𝑇2 and 𝑆𝑇 fluxes. The reason for the
use of the word potential here is again because of the unquantized fluxes
used in the construction. Moreover, if non-geometric fluxes are not em-
ployed and the flat direction is kept unfixed, then perturbative quantum
corrections or higher-derivative corrections could lift it. This could lead to
a quintessence like runaway behavior à la Dine and Seiberg (1985), rather
than a metastable dS minimum.

A comment
Known and failed examples of dS vacua are usually constructed in the
regime of weak string coupling, 𝑔𝑠, so as to have full perturbative control.
However, it is possible for dS vacua to exist away fromweak coupling. Gon-
zalo, Ibáñez, and Uranga (2019) developed a way to examine such regimes
using string dualities, but did not find a counter-example. Similar results
were also found in heterotic string theory (Parameswaran, Ramos-Sanchez,
andZavala, 2011;Olguin-Trejo, Parameswaran, Tasinato, andZavala, 2019).
However, such techniques are ineffective for potentials that are invariant
under dualities, for example the ones constructed by Blåbäck, Roest, and
Zavala (2014). Going away from weak coupling while retaining control, is
therefore still a possible way to look for dS vacua.
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5.6 What does this mean for string theory?
The dS conjectures, if true, could imply that there is no compactification
in string theory that gives rise to a static dS vacuum. All of the construc-
tions discussed so far are debatable in one way or another, and there is no
dS construction yet, which can claim to be completely under control. In
the future, one of these constructions could turn out to be completely un-
der control, thus invalidating the dS conjectures and providing a concrete
realization of dS in string theory. However, if the swampland conjectures
win, there could be a sharp tension between theory and observations that
would cry out for other explanations. On the other hand, one could take a
more positive attitude and try to find a clever way to evade the swampland
conjecture. The review by Danielsson and Van Riet (2018) discusses these
issues in detail. The article by Danielsson (2019) deals with another less
discussed aspect of dS in string theory.
In the spirit of not giving up on string theory, but rather, trying to evade

the dS swampland conjectures, we will review an older idea called brane-
worlds in the next chapter, and examine it from the point of view of a viable
dS construction.
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6. Revisiting an old idea: Braneworlds

At the turn of the millennium, Randall and Sundrum (1999a,b) made a
seminal proposal that changed the way we view extra dimensions. They
proposed that our four dimensional universe could be living on a three-
brane (with a four dimensional world volume), embedded in a five dimen-
sional bulk spacetime, where the fifth dimension is large (albeit warped, to
have a finite volume). Although the original constructionwas for a flat four
dimensionalMinkowski universe, it was later extended to include a cosmo-
logical constant. However, given the lack of a detailed construction of such
braneworlds in string theory, and the timely proposal by KKLT, most of
the attention to constructing dS vacua in string theory shifted to the KKLT
idea. Given the present debate surrounding the possibility of constructing
dS vacua in string theory, it makes sense to re-examine braneworlds for
lessons that it might have to offer for constructing a dS universe. We will
briefly review the Randall-Sundrum construction in this chapter and dis-
cuss some aspects of its extension to a dS universe.

6.1 Braneworlds
The possibility that our universe is a four dimensional surface embedded
in higher dimensional space, and its implications for particle physics and
gravity have long been discussed in the literature (Akama, 1982; Rubakov
and Shaposhnikov, 1983; Pavsic, 1985, 1986, 1996, 1997; Kakushadze and
Tye, 1999; Gogberashvili, 2000). The novelty of the proposal byRandall and
Sundrum (1999a) was that it offered a string theory inspired braneworld so-
lution to the gauge hierarchy problem in particle physics (i.e., why is there
a huge gap between the electroweak scale of standard model particles and
the Planck scale of gravity). This model is usually referred to as RS-I. It in-
volves two three-branes, one with a positive tension, and the other with a
negative tension, embedded in a five dimensional AdS space. Owing to the
warped five dimensional AdS spacetime, particle masses on the negative
tension brane are naturally much smaller than the Planck scale, providing
a solution to the gauge hierarchy problem. The size of the extra dimension
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in this scenario is the vacuum expectation value of a modulus field that is
stabilized by the Goldberger and Wise (1999) mechanism.1
In a subsequent article, Randall and Sundrum (1999b) introduced a sec-

ond model, which is usually referred to as RS-II. This gets rid of the neg-
ative tension brane and shows how four dimensional gravity emerges on
the positive tension brane, without the need for a small extra dimension.
Before RS-II, it was believed that extra dimensions need to be small. This
is because, in the presence of large extra dimensions, the force of gravity
could permeate into the extra dimension,modifyingNewton’s law and lead-
ing to a contradiction with experiments. However, RS-II showed that a
warped extra dimension can localize gravity, effectively confining it to four
dimensions (with deviations from Newton’s law being highly suppressed,
and detectable only in extremely high energy experiments).
We will not talk about RS-I here, but rather focus on the RS-II model,

which we will discuss in some detail in the following sections. Since this is
the only RS model that we will talk about, we will use the expressions RS
and RS-II interchangeably.

6.2 The model
The setup consists of a single positive tension brane and the following five
dimensional action

𝑆 = 12𝜅25 ∫d4𝑥∫d𝑧√−𝑔5 (𝑅5 − 2Λ5) + 𝜎br∫d4𝑥√−𝑔br, (6.1)

where the subscript “5” indicates quantities in the five dimensional bulk
and the subscript “br” indicates quantities defined on the brane. The five
dimensional cosmological constant can bewritten in terms of the curvature
scale of AdS5 as Λ5 = −6𝑘2. Taking an ansatz for the bulk metric of the
form d𝑠2 = 𝑒2𝐴(𝑧)𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 + d𝑧2, (6.2)

Einstein’s equations off the brane can be solved by choosing 𝐴(𝑧) = ±𝑘𝑧
and 𝑔𝜇𝜈 = 𝜂𝜇𝜈. Tension of the brane 𝜎br, is given by Einstein’s equations
on the brane, which can be rewritten as the thin-shell junction conditions
as summarized below.

1See the article by Arkani-Hamed, Dimopoulos, and Dvali (1998) for an earlier solution to
the gauge hierarchy problem with standard model particles on a three-brane and a large
extra dimension, but a different bulk spacetime.
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Thin-shell junction conditions
Given two spacetimes ℳ± with metrics 𝑔±𝛼𝛽, which are both solutions to
Einstein’s equations, imagine constructing a composite spacetime that hasℳ+ in one part of space and ℳ− in another. For the whole spacetime to
be a solution to Einstein’s equations, there has to be some stress energy
tensor at the boundary Σ of the two spacetimes that sources the jump in
the metric. The value of this stress tensor is obtained by writing down an
action similar to equation (6.1), and varying it with respect to the metric to
give the following thin-shell junction conditions:

First junction condition: [ℎ𝑎𝑏] = 0, (6.3)

Second junction condition: 𝑆𝑎𝑏 = − 𝜀𝜅2 ([𝐾𝑎𝑏] − 𝐾ℎ𝑎𝑏) . (6.4)

Quantities in square brackets indicate their difference across Σ, and 𝜀 = ±1
for a timelike or a spacelike hypersurface respectively. ℎ𝑎𝑏 is the metric
induced on the surface Σ and is defined as ℎ𝑎𝑏 ∶= 𝑔𝛼𝛽 𝑒𝛼𝑎𝑒𝛽𝑏 , where the
tangent vectors are given by

𝑒𝛼𝑎 ∶= 𝜕𝑥𝛼𝜕𝑦𝑎 . (6.5)

𝐾𝑎𝑏 is the extrinsic curvature of the embedded surface and is given in terms
of the normal and tangent vectors as

𝐾𝑎𝑏 ∶= 𝑛𝛼;𝛽 𝑒𝛼𝑎𝑒𝛽𝑏 , where 𝑛𝛼 ∶= 𝜀 Φ,𝛼√||||𝑔𝜇𝜈Φ𝜇Φ𝜈|||| , (6.6)

and 𝐾 ∶= 𝐾𝑎𝑏ℎ𝑎𝑏 is the trace of the extrinsic curvature 𝐾𝑎𝑏. Derivation
of the thin-shell junction conditions and more details can be found in a
textbook on general relativity, like the one by Poisson (2009).
In the RS scenario, the 𝑧 coordinate it taken to have a ℤ2 symmetry

across 𝑧 = 0, where the brane is placed. This amounts to choosing 𝐴(𝑧) =−𝑘 |𝑧| in equation (6.2), i.e., the warp factor exp (−2𝑘 |𝑧|) goes to zero far
away from the brane on both sidesd𝑠2 = 𝑔𝑎𝑏d𝑥𝑎d𝑥𝑏 = 𝑒−2𝑘|𝑧|𝜂𝜇𝜈d𝑥𝜇d𝑥𝜈 + d𝑧2. (6.7)

The thin-shell junction conditions give the tension of the brane, which, for
a stationary brane at 𝑧 = 𝑧0 = 0, is 𝜎br = 6𝑘∕𝜅25. This precise fine tuning
between the tension of the brane and the cosmological constant in the bulk
imposes four dimensional Poincaré invariance, giving a flat (Minkowski)
brane.
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6.3 Four dimensional Planck scale
Thefive dimensional action in equation (6.1) can be dimensionally reduced
along the 𝑧 direction for the RS metric in equation (6.7) to obtain

𝑆eff ⊂ 12𝜅25 ∫
∞

−∞ d𝑧 𝑒−2𝑘|𝑧| ∫d4𝑥√−𝑔𝑅, (6.8)

where 𝑅 is the four dimensional Ricci scalar corresponding to the four di-
mensional part of the metric (which we call 𝑔). From this, the four dimen-
sional Planck scale can be read off to be12𝜅24 = 12𝜅25 ∫

∞
−∞ d𝑧 𝑒−2𝑘|𝑧| = 1𝑘 12𝜅25 ⇒ 𝑀24 = 𝑀35𝑘 . (6.9)

This should be compared to a factorizable spacetime of the form d𝑠2 =𝑔𝑎𝑏 (𝑥) d𝑥𝑎d𝑥𝑏 +𝑔𝜇𝜈 (𝑦) d𝑦𝜇d𝑦𝜈, where the effective Planck scale, obtained
froma similar dimensional reduction, would be proportional to the volume
of the extra dimensions, 𝑀24 = 𝑀610𝒱6. The internal dimensions need to
be compact for the volume of the internal space 𝒱6 to be finite, which is
then proportional to the size of these extra dimensions. In contrast, for the
RS construction above, the warping keeps the internal volume finite. This
gives a four dimensional Newton’s constant proportional to the curvature
of the extra dimension, instead of its size.

6.4 Gravity on the braneworld
Generically, a perturbation of the five dimensional metric can propagate
along all five dimensions. This implies that the graviton, which is the trans-
verse and traceless mode of the perturbation, will give rise to the five di-
mensional Newton’s potential. In the RS construction however, the warp-
ing along the extra dimension ensures that the lowest energy state of the
graviton on the brane (called the zeromode) actually gives rise to the four di-
mensional Newton’s potential on the brane (plus high energy corrections).
In this sense, gravity is localized on the braneworld. The wavefunction of
this zeromode, which can be identified as the four dimensional graviton, is
peaked around the brane and goes to zero away from it. In this section, we
will briefly outline how this arises, using the formalism of brane bending
developed simultaneously by two groups Garriga and Tanaka (2000), and
Giddings, Katz, and Randall (2000).
To compute the wavefunction of the graviton, we start by considering

perturbations of the five dimensional RS metric in equation (6.7), in re-
sponse to a point mass placed on the brane. The perturbed metric is of the
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form 𝑔𝑎𝑏 = 𝑔𝑎𝑏 + ℎ𝑎𝑏, for 𝑎, 𝑏 ∈ {0, … , 4}. The perturbation ℎ𝑎𝑏, being
symmetric, has 15 degrees of freedom. Generalized coordinate transforma-
tions, corresponding to 𝑥𝜇 ↦ �̃�𝜇, 𝑧 ↦ �̃�, take away five degrees of freedom,
while the differential Bianchi identities leading to covariant conservation
of the Einstein tensor ∇𝜇𝐺𝜇𝜈 = 0, take away five more. This leaves five
physical degrees of freedom for the five dimensional graviton, and the ten
redundant degrees of freedom can be fixed by choosing a gauge. To deter-
minewhat is a good gauge choice, one canwrite down linearized Einstein’s
equations for the metric perturbation ℎ𝑎𝑏 (which is assumed to be smallℎ𝑎𝑏 ≪ 1), and determine which gauge choices are consistent for the given
stress tensor. See the article by Giddings, Katz, and Randall (2000) for a
detailed discussion. In the absence of matter away from the brane, a gauge
that can be chosen everywhere in the bulk, is called the Randall-Sundrum
(RS) gauge, defined byℎ𝜇𝜈,𝜇 = 0, ℎ𝜇𝜇 = 0, ℎ𝜇𝑧 = ℎ𝑧𝑧 = 0. (6.10)

For an empty bulk, the Einstein’s equations are equivalent to the variation
of the Ricci tensor being zero, which can be written as

𝛿𝑅𝑎𝑏 = −12∇2ℎ𝑎𝑏 −𝑅𝑎𝑏𝑐𝑑ℎ𝑐𝑑 +𝑅(𝑎𝑐ℎ𝑏)𝑐 +∇𝑐∇(𝑎ℎ𝑐𝑏) − 12∇(𝑎𝜕𝑏)ℎ != 0, (6.11)
where the curvature tensors and covariant derivatives are computed with
respect to the unperturbed metric 𝑔𝑎𝑏. In the RS gauge, this reduces to[𝑒2𝑘|𝑧|□(4) + 𝜕2𝑧 − 4𝑘2] ℎ𝜇𝜈 = 0, (6.12)

where□(4) is the four dimensional scalar Laplacian operator and the other
components ℎ𝜇𝑧 and ℎ𝑧𝑧 vanish due to the gauge choice. However, it was
shown byGiddings, Katz, and Randall (2000) that in the presence ofmatter
on the brane (beyond its fine tuned tension), the RS gauge is inconsistent
and the brane cannot be at 𝑧 = 0; it has to be at 𝑧 = −𝑓(𝑥𝜇) as we will
see in equation (6.18). Let us understand what this means. The RS brane
has a fine tuned tension, is static in the RS background, and solves both
bulk Einstein’s equations as well as the junction conditions. If we now
add an extra stress tensor on the brane (for example, a point mass), it will
contribute an extra extrinsic curvature on the brane and the brane will of
course not be at 𝑧 = 0 anymore. This is called brane bending.
One can, however, change coordinates to 𝑧, inwhich the brane is located

at 𝑧 = 0. This involves relaxing the RS gauge and requiring a milder gauge
choice instead, called the Gauss normal (GN) gauge

ℎ𝜇𝑧 = ℎ𝑧𝑧 = 0, (6.13)
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which fixes five degrees of freedom, leaving behind five more that can be
fixed later. The stress tensor on the brane is given by the thin-shell junction
conditions, 𝑆𝜇𝜈 = − 1𝜅25 (Δ𝐾𝜇𝜈 − Δ𝐾𝛾𝜇𝜈) , (6.14)

or equivalently, Δ𝐾𝜇𝜈 = −𝜅25 (𝑆𝜇𝜈 − 13𝑆𝛾𝜇𝜈) , (6.15)

where 𝛾𝜇𝜈 is the metric induced on the brane. Imposing ℤ2 symmetry
across the brane and realizing that 𝐾𝜇𝜈 = 𝜕𝑧𝑔𝜇𝜈 gives

(𝜕𝑧 + 2𝑘) ℎ𝜇𝜈||||𝑧=0+ = −𝜅25 (𝑇𝜇𝜈 − 13𝑇𝜂𝜇𝜈) , (6.16)

where we have used that

𝑆𝜇𝜈 = 𝜎𝜂𝜇𝜈 + 𝑇𝜇𝜈 = 6𝑘𝜅25 𝜂𝜇𝜈 + 𝑇𝜇𝜈. (6.17)

The junction conditions are easier to compute for a brane placed at a fixed 𝑧,
which is why we have evaluated them in the GN gauge. They can however
be translated back to the RS gauge via a gauge transformation that makes
use of the remaining five degrees to freedom. The most general such trans-
formation is given by�̂� = 𝑓 (𝑥𝛼) , (6.18)�̂�𝜇 = − 12𝑘𝑒2𝑘|𝑧|𝜂𝜇𝜈𝜕𝜈𝑓 (𝑥𝛼) + 𝑄𝜇 (𝑥𝛼) . (6.19)

The metric perturbation in RS gauge becomes

ℎ𝜇𝜈 = ℎ𝜇𝜈 − 1𝑘𝑓,𝜇𝜈 − 2𝑘𝑒−2𝑘|𝑧|𝑓 + 𝑒−2𝑘|𝑧|𝜂𝛼(𝜇𝑄𝛼,𝜈). (6.20)

When inserted into the junction condition in the GN gauge, this gives the
corresponding junction condition in the RS gauge(𝜕𝑧 + 2𝑘) ℎ𝜇𝜈||||𝑧=0+ = −Σ𝜇𝜈, (6.21)

where the stress tensor on the brane has an extra contribution proportional
to the bending 𝑓,

Σ𝜇𝜈 = 𝜅25 (𝑇𝜇𝜈 − 13𝑇𝜂𝜇𝜈) + 2𝑓,𝜇𝜈. (6.22)

Let us summarize the discussion on brane bending. In five dimensions,
there are 10 gauge degrees of freedom that need to be fixed, to get the five
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physical degrees of freedom of the massless graviton. The RS gauge is one
such gauge choice in which the brane lies at 𝑧 = 0 in the absence of addi-
tionalmatter on the brane, apart from its tension. However, in the presence
of extramatter, there is extra stress tensor on the brane and it cannot lie flat
at 𝑧 = 0. In order to compute this stress tensor on the brane, we need to
use the thin-shell junction conditions, which are easier to compute when
the brane lies at 𝑧 = 0. So we change gauge from RS to GN and compute
the stress tensor 𝑆𝜇𝜈 in that gauge. However, since the GN gauge still has
5 extra degrees of freedom, we can use the gauge freedom to go back to RS
gauge and find out what the stress tensor looks like in that gauge. Doing
this, we realize that there is an extra contribution to the stress tensor in RS
gauge proportional to the bending. The equations in RS gauge (6.12) and
(6.21) can be written together as[𝑒2𝑘|𝑧|□(4) + 𝜕2𝑧 − 4𝑘2 + 4𝑘𝛿(𝑧)] ℎ𝜇𝜈 = −2Σ𝜇𝜈𝛿(𝑧), (6.23)

whose solution can be formally written in terms of the retarded Green’s
function ℎ𝜇𝜈 = −2∫d4𝑥′𝐺𝑅 (𝑥, 𝑥′) Σ𝜇𝜈 (𝑥′) . (6.24)

Since this is in the RS gauge, where the perturbation is traceless ℎ𝜇𝜇 = 0, it
implies that so is the stress tensor Σ𝜇𝜇 = 0. Combined with equation (6.22),
this gives the bending 𝑓, □(4)𝑓 = 𝜅256 𝑇. (6.25)

This, combinedwith equations (6.24) and (6.22), automatically impliesℎ𝜈𝜇,𝜈 =0. Thematter part of themetric fluctuation ℎ(𝑚)𝜇𝜈 is given by equations (6.24)
and (6.22) as

ℎ(𝑚)𝜇𝜈 = −2𝜅25 ∫d4𝑥′𝐺𝑅 (𝑥, 𝑥′) (𝑇𝜇𝜈 − 13𝑇𝜂𝜇𝜈) . (6.26)

This does not have the right tensor structure for the four dimensional gravi-
ton, which should have a 1∕2 instead of 1∕3. This is taken care of by the
brane bending, and can be seen when the metric perturbation is read off in
GN coordinates on the brane (𝑧 = 0)ℎ𝜇𝜈 = ℎ(𝑚)𝜇𝜈 + 2𝑘𝑓𝜂𝜇𝜈. (6.27)

Using the explicit expressions for the zero mode of the Green’s function
and the bending 𝑓 from equation (6.25),

𝐺𝑅 (𝑥, 𝑥′) = 𝑘□(4) , 𝑓 = 𝜅256 ∫d4𝑥′ 1□(4) 𝑇, (6.28)
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the metric perturbation on the brane ℎ𝜇𝜈 becomes
ℎ𝜇𝜈 = −2𝜅25 ∫d4𝑥′ 𝑘□(4) (𝑇𝜇𝜈 − 12𝑇𝜂𝜇𝜈) . (6.29)

Newton’s potential on the brane world can now be read off from this and
is given by

𝑉(𝑟) = 12ℎ00 = 𝐺5𝑘𝑀𝑟 [1 + 23𝑘2𝑟2 + 𝒪 (𝑟−3)] (6.30)

With the identification 𝐺5𝑘 = 𝐺4, Newton’s potential on the braneworld
is correctly reproduced with subleading Yukawa type corrections for dis-
tances smaller than the AdS5 scale, 𝑟 < 1∕𝑘, which does not contradict
present experimental tests of general relativity.

6.5 (A)dS braneworlds
To summarize the discussion so far, in the original RS construction, a so-
lution to the action in equation (6.1) was found with an AdS5 bulk metric,
written as slices of four dimensional Minkowski space. This makes a brane
at a fixed 𝑧 have a Minkowski world volume, with its tension given by the
thin-shell junction conditions.
However, other solutions to the action exist that are dS and AdS slicings

of the AdS5 metric. Placing a brane at a fixed 𝑧 in this background gives a
dS4 or AdS4 brane with a different value of the tension given again by the
thin-shell junction conditions. Karch and Randall (2001) examined these
solutions and showed that there is a four dimensional graviton localized
on the brane, even in the presence of a non-zero cosmological constant on
the brane. Solutions to Einstein’s equations of the form of equation (6.2),
for 𝑔𝜇𝜈 being dS4, Minkowski4, and AdS4, are given by

dS4 ∶𝐴 (𝑧) = log (√Λ4𝑘 sinh (𝑘𝑐 − 𝑘|𝑧|)) , 𝜎br = 6𝑘 coth (𝑘𝑐) ,
MkW4 ∶𝐴 (𝑧) = 𝑘𝑐 − 𝑘|𝑧|, 𝜎br = 6𝑘,
AdS4 ∶𝐴 (𝑧) = log (√−Λ4𝑘 cosh (𝑘𝑐 − 𝑘|𝑧|)) , 𝜎br = 6𝑘 tanh (𝑘𝑐) .

(6.31)

TheMinkowskimetric with 𝑐 = 0 is the familiar result from the original RS
construction that we have used so far in this chapter. For a dS braneworld,
the parameter 𝑐 is the distance between the brane and the horizon in these
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coordinates while for anAdS braneworld, it is the point where thewarp fac-
tor exp(2𝐴) turns around and increases to infinity. Just like theMinkowski
braneworld, the warp factor for the dS case goes to zero away for the brane.
However, for the AdS case, the warp factor decreases until |𝑧| = 𝑐, before
increasing again to infinity for 𝑧 → ∞.
Attempting to construct these braneworlds in supergravity brings up an

interesting conclusion. The five dimensional metric for the Minkowski
braneworld, as well as for the dS braneworld, have warp factors that go to
zero at the boundary and the horizon respectively. This makes the volume
of the fifth dimension finite. In particular, for dS braneworld, this is now
a four dimensional static dS spacetime on a positive tension brane with
the extra dimension having a finite volume. This falls right into the grips
of the Maldacena-Núñez no-go theorem, which prevents it from being re-
alized in supergravity. Other no-go results for smooth RS braneworlds in
supergravity were found by Behrndt and Cvetic (2000). They found that
the spacetime transverse to a domain wall that interpolates between ex-
trema of the superpotential always approaches the boundary of AdS (in-
stead of the center of AdS, like in the Minkowski braneworld). Kallosh
and Linde (2000) also arrived at a similar conclusion. This implies that al-
though AdS4 braneworlds might be allowed in string theory, embedding
a dS4 braneworld in the RS setup is forbidden, unless one evades these
no-go theorems by going beyond smooth domain walls in two derivative
supergravity.
Recently, Karch and Randall (2020) have explored a two brane model

withmismatched cosmologies on the branes (i.e., they differ in the signs of
their four dimensional cosmological constants) and found that these lead
to time-dependent solutions. They argued that, combined with a mech-
anism to stabilize the branes, this could lead to interesting cosmological
implications. Possible connections between the KKLT scenario and the
mismatched RS scenario with two branes have also been explored by Ran-
dall (2019).
Given the current discussion surrounding the possibility of constructing

stable dS solutions in string theory, it is pertinent to also examine other pos-
sibilities. In this context, inspired by the RS scenario, we proposed amodel
of a dS4 universe, which can be potentially completed in string theory. This
is discussed in the next chapter.

67



7. Introducing a new idea: Shellworlds

We have seen in the previous chapter that dS braneworlds describe a way to
obtain a four dimensional universe with a small and positive cosmological
constant. However, because of various no-go theorems, it is not clear if
they can be obtained from string theory without including ingredients that
go beyond two-derivative supergravity.
Inspired by the discussion so far, in paper II, we proposed a new way to

realize a four dimensional dS universe, which seems to be easier to obtain
from string theory. Further aspects of the model were explored in papers
III and IV. In this chapter, wewill point out some key features of thismodel
and how it compares with the RS model discussed in the previous chapter.
Instead of repeating the details of the model, we will point out relevant
sections of the papers, and hopefully make it easier to navigate through
them. The setup of this model relies on false vacuum decay, which we will
briefly summarize in the next section.

7.1 False vacuum decay
7.1.1 Field theory without gravity
Consider a theory with a single scalar in a potential 𝑉(𝜙) with two non-
degenerate minima 𝑉±, with 𝑉− > 𝑉+, separated by an energy barrier 𝑉𝑏,
as shown in figure 7.1,

𝑆 = ∫d𝑑𝑥 [12𝜕𝜇𝜙𝜕𝜇𝜙 − 𝑉(𝜙)] . (7.1)

Classically, a particle at rest in the local minimum at 𝜙 = 𝜙− does not
have enough energy to overcome the potential barrier 𝑉𝑏, and escape to
the global minimum at 𝜙 = 𝜙+. However, it can quantum mechanically
tunnel through the barrier and end up in the global minimum. The local
minimum is thus metastable and can decay through such a barrier pene-
tration process. This vacuum is called a false vacuum. The physics of such
decays was originally studied in two papers by Coleman (1977), and Callan
and Coleman (1977). They showed that such a decay occurs via the nucle-
ation of a spherically symmetric bubble of true vacuum in the false vacuum,
and is similar to a first order phase transition in statistical mechanics. In
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Figure 7.1. A generic potential with two non-degenerate vacua, 𝑉±, separated by a
potential barrier 𝑉𝑏. The false vacuum 𝑉− can decay to the true vacuum 𝑉+ via
quantum mechanical tunneling.

the semi-classical limit (ℏ ≪ 1), the probability of such a process (Γ) per
unit volume of space (𝑉) is given byΓ𝑉 = 𝐴𝑒−𝐵∕ℏ [1 + 𝒪 (ℏ)] , with 𝐵 ∶= 𝑆𝐸 (𝜙𝐼) − 𝑆𝐸 (𝜙−) , (7.2)

where 𝑆𝐸 (𝜙−) is the Euclidean action evaluated in the false vacuum, and𝑆𝐸 (𝜙𝐼) is the Euclidean action for the bounce solution. The bounce is the
instanton solution corresponding to the nucleated bubble, i.e., localized so-
lutions𝜙 = 𝜙𝐼 that extremize, and give a finite Euclidean action 𝑆𝐸 (𝜙). The
coefficient𝐴 depends on details of the potential𝑉(𝜙). The subsequent evo-
lution of the nucleated bubble can be studied using evolution of the particle
in the potential. A particular limit in which the physics becomes simple,
is when the difference in energy density between the vacua is small, i.e.,𝑉− − 𝑉+ ≡ 𝜀 → 0+. This is called the thin wall limit.
7.1.2 Field theory coupled to gravity
While every false vacuum can decay in a quantum field theory, Coleman
and De Luccia (1980) showed that this is not the case when the quantum
field theory is coupled to gravity. Gravity can stabilize some false vacua,
making them eternally stable. This can be understood intuitively by ac-
counting for energy conservation during the nucleation event. The bubble
being an instanton, is formed at a radius that minimizes the Euclidean ac-
tion. In order to form, the bubble needs to spend energy (proportional to
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its tension times its area) to build itself. This energy comes from lower-
ing the vacuum energy in its interior, which is proportional to the vacuum
energy density times its volume. When these exactly balance each other,
the bubble remains at rest after nucleation. However, if the bubble gains
more energy from lowering the vacuum energy than it needs to hold it-
self together, then this extra energy provides the kinetic energy of expan-
sion. Therefore, after nucleating at rest, it accelerates outward, asymptot-
ically approaching the speed of light. This can be written symbolically as𝑉before − 𝑉after = 𝐸wall + 𝐸expansion, where the last term is the kinetic en-
ergy of expansion of the bubble. The expansion energy being positive semi-
definite, gives an upper bound on the tension of the wall,𝐸wall ≤ 𝑉before − 𝑉after. (7.3)

The equality holds for a static bubble when 𝐸expansion = 0.
As an example, let us work this out for the case of a bubble containing

an AdS𝑑 vacuum that nucleates inside a metastable AdS𝑑 vacuum, with a
different cosmological constant. Here we will generalize the four dimen-
sional result that was worked out by Harlow (2010). Consider an AdS𝑑
space, with cosmological constant Λ = −(𝑑 − 1)(𝑑 − 2)∕(2𝐿2), written in
dS slicing d𝑠2AdS = d𝜉2 + 𝑓(𝜉)2 [−d𝜂2 + cosh2 𝜂 dΩ2𝑑−2] , (7.4)

where 𝑓(𝜉) ∶= 𝐿 sinh (𝜉∕𝐿). Let us denote quantities outside and inside
the bubble with subscripts plus and minus respectively. Further, let 𝜎 be
the tension of the bubble, and let us assume that its position is given by𝜉 = constant = 𝜉± as seen from either side. From the thin-shell junction
conditions of equations (6.3) and (6.4), we get𝑓− (𝜉−) = 𝑓+ (𝜉+) ≡ 𝑓,

𝑓′− (𝜉−) − 𝑓′+ (𝜉+) = 𝜅2𝑑𝜎𝑓(𝑑 − 2) . (7.5)

Energy conservation implies𝑓′− (𝜉−) − 𝑓′+ (𝜉+) = 2𝑓(𝑑 − 1) 𝐸(𝜎)𝜎 , (7.6)

where 𝐸(𝜎) is the energy of the wall. For 𝑓±(𝜉±) ∶= 𝐿± sinh (𝜉± 𝐿±) ∕𝑘±
above, and defining 𝑥± ∶= 𝑘±𝜉±, these become𝐿− sinh (𝑥−) = 𝐿+ sinh (𝑥+) ,cosh (𝑥−) − cosh (𝑥+) = 2𝑑𝜎(𝑑 − 2)𝐿− sinh (𝑥−) ,

cosh (𝑥−) + cosh (𝑥+) = 2(𝑑 − 1) 𝐸(𝜎)𝜎 𝐿− sinh (𝑥−) .
(7.7)
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The last two equations can be solved for functions of 𝑥±. Defining the co-
efficients on the right hand side as

𝐴 ∶= 𝜅2𝑑𝜎(𝑑 − 2)𝐿−, 𝐵 ∶= 2(𝑑 − 1) 𝐸(𝜎)𝜎 𝐿−, (7.8)

gives coth (𝑥−) = 𝐵 + 𝐴2 , coth (𝑥+) = (𝐿+𝐿− ) 𝐵 − 𝐴2 . (7.9)

Multiplying the last two equations and using the first gives1𝐿2− − 1𝐿2+ = 2𝜅2𝑑𝐸(𝜎)(𝑑 − 1) (𝑑 − 2) ≡ 𝐴𝐵. (7.10)

Using this to rewrite 𝐵 in terms of 𝐴, equation (7.9) has a solution only
when 𝐴 ≤ 1 − 𝐿−∕𝐿+, which can be written as𝜎 ≤ 𝑑 − 2𝜅2𝑑 ( 1𝐿− − 1𝐿+ ) . (7.11)

This gives an upper bound on the tension of the bubble that can nucleate.

7.1.3 Lowering the cosmological constant via bubble
nucleation

Using the framework of false vacuum decays in the presence of gravity dis-
cussed above, Brown and Teitelboim (1988) demonstrated a mechanism
for lowering of the cosmological constant in the presence of antisymmet-
ric tensor fields. Consider a spacetime where the cosmological constant
is given by the combination of a geometrical cosmological constant and a
field strength, e.g.,

𝑆𝐸 ⊃ − 12𝜅2𝑑 ∫d𝑑𝑥√−𝑔 (𝑅 − 2Λ) − 1𝑑! ∫d𝑑𝑥√−𝑔 |𝐹|2 + … , (7.12)

where for 𝐹𝜇1…𝜇𝑑 = (𝐸∕√−𝑔) 𝜖𝜇1…𝜇𝑑 , the effective cosmological constant is
a combination of Λ and 𝐸2. They showed that similar to Schwinger pair
production of charged particles in an electric field, a spherical membrane
charged under the antisymmetric field (e.g., a spherical D𝑝 brane) can nu-
cleate. By charge conservation, the space inside the bubble would contain
less charge than outside, differing by precisely the amount of charge car-
ried by the membrane. This leads to a lower value of the cosmological con-
stant inside the bubble. In order to nucleate, such a bubble would of course
have to obey energy conservation à la Coleman and De Luccia (1980), as
discussed in equation (7.3).
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7.2 Empty dS universe
The starting point for ourmodel consists of an AdS5 space, obtained from a
ten or eleven dimensional compactification, whose cosmological constant
is supported, at least in part, by the flux of form fields in string theory. A
spherical brane instanton of co-dimension one can nucleate in this back-
ground à la Brown and Teitelboim. This brane is charged under the flux
that supports the cosmological constant of the AdS5. As a result, the space
inside it is an AdS5 with a lower cosmological constant. This is just as one
would expect from the conjecture about non-supersymmetric AdS spaces
discussed in section 5.3. The brane nucleates at rest and its tension dictates
its evolution. For a critical value of the tension, its tendency to expand due
to the difference in the cosmological constant is counteracted by its tension,
and the bubble remains at rest.1 However, for a sub-critical tension, the
spherical brane nucleates at rest and expands outward towards the bound-
ary of AdS, asymptotically approaching the speed of light. In paper II, we
showed that the world volume theory on such an expanding brane with a
fine tuned sub-critical tension is an empty dS universe. We call this con-
struction the shellworld. This is represented in figure 7.2.
This is very different from the RS-II scenario where the brane sits at an

orbifold point with ℤ2 symmetry across it. The interior of AdS is reflected
along the brane and the coordinate range corresponding to 𝑧 ∈ (0,∞) is
just a copy of 𝑧 ∈ (−∞, 0). In this sense, what should have been the outside
of AdS from the brane to the boundary is replaced by a mirror of the inside
from the center of the AdS to the brane. So going away from the brane on
either side is like traveling to the center of AdS. We refer to this as inside-
inside.
In contrast, there is no ℤ2 symmetry in our construction. Instead, the

brane nucleates in an AdS5 whose 𝑧 coordinate goes all the way from 𝑧 →−∞ at the center of the bubble to 𝑧 → ∞ at the boundary of AdS5. An-
other way to see this is by looking at the warp factor. In RS, the warp factor
is exp (−2𝑘 |𝑧|) ≡ exp(2𝑘𝑧)+Θ(𝑧) exp(−2𝑘𝑧), whereΘ(𝑧) is the Heaviside
theta function. This warp factor peaks at the position of the brane 𝑧 = 0
and goes to zero away from it on both sides. In contrast, for the shellworld
written in RS coordinates, the warp factor is exp(2𝑘−𝑧) + Θ(𝑧) exp(2𝑘+𝑧),
where 𝑘± are the AdS5 curvatures outside and inside the bubble respec-
tively. This increases all the way from the center of AdS to the boundary.
In this sense, the space outside the bubble is a just like true AdS before the
bubble was nucleated. This is what we refer to as inside-outside. Let us
examine the consequences that this difference has.

1We refer to the spherical brane including the AdS5 in its interior as the bubble and the brane
itself as the shell.
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Λ− ≡ −6𝑘2−
AdS5 Λ+ ≡ −6𝑘2+

AdS5

Figure 7.2. A schematic representation of a spherical bubble of true vacuum that
has nucleated in a metastable AdS5 with cosmological constant Λ+. The bubble
contains AdS5 space in its interior with a lower cosmological constant Λ−. The
surface of the bubble is made of branes with sub-critical tension, and represents
the shellworld.

1. Because the bulk metric differs between the RS and the shellworld con-
struction, so does the critical tension needed for a stationary brane. This
can be computed from the thin-shell junction conditions of equations
(6.3) and (6.4). For the shellworld, this gives the following critical ten-
sion: 𝜎crit ∶= 3 (𝑘− − 𝑘+) ∕𝜅25. (7.13)

This should be compared to the critical tension for the RS brane, which
is 𝜎crit = 6𝑘∕𝜅25. Comparing the warp factors in the previous paragraph,
we see that flipping the sign in front of 𝑘+ is formally equivalent to going
between the RS and the shellworld. Performing this sign flip in equa-
tion (7.13) indeed recovers the RS result. The reason that this works
is because, flipping the sign between 𝑘− and 𝑘+ in the critical tension,
corresponds to flipping the sign of the normal in the junction condition,
which corresponds to changing the outside to an inside. The critical ten-
sions for the RS braneworld and the shellworld can be seen in figure 7.3,
which is taken from paper II.

2. The next point of difference between the two scenarios is in the type of
brane required to get a four dimensional dS universe. Karch and Ran-
dall (2001) showed that in a dS braneworld, the cosmological constant
is given by Λrs

dS = 𝑘2 [coth2 (𝑘𝑐) − 1] . (7.14)
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(𝜅25∕3)𝜎 →

Λ shell
→

0

(𝑘− − 𝑘+) (𝑘− + 𝑘+)

inside-outside
inside-inside

Figure 7.3. Figure (taken from paper II) showing the four dimensional cosmological
constant on the shell as a function of the tension of the shell. The curve to the left of
the vertical line represents the inside-outside scenario of the shellworld, while the
curve to the right represents the inside-inside scenario of the RS construction. The
dots represent the corresponding critical tension needed for a flat brane (Λshell = 0)
in each case.

A small cosmological constant, thus requires a large 𝑘𝑐, which implies
𝜎rsdS = 6𝑘𝜅25 (1 + 𝒪 (𝑐−𝑛)) = 𝜎rscrit (1 + 𝜖) . (7.15)

Therefore, a super-critical brane is required to get a dS braneworld. In
contrast, for a shellworld,Λshell

dS = 𝜖𝜎shellcrit , 𝜎shelldS = 𝜎shellcrit (1 − 𝜖) , (7.16)

and a brane with sub-critical tension realizes a dS universe. This can be
seen clearly in figure 7.3.

3. A third point of difference is the four dimensional Planckmass. For a flat
RS braneworld, the volume of the fifth dimension is finite and the Planck
mass can be read off from a dimensional reduction as discussed in sec-
tion 6.3. This gives 𝜅24 = 𝑘𝜅25. The same is also true for a dS braneworld.
For the shellworld, however, the volume along the fifth dimension is
not finite, and a dimensional reduction needs to be correctly regulated
to read off the Planckmass. However, the four dimensional Planckmass
can also be read off by deriving the Einstein’s equations on the spherical
brane on the same lines as the covariant approach by Shiromizu, Maeda,
and Sasaki (2000). This involves using the Gauss-Codazzi equations to
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project the five dimensional gravitational curvatures onto the four di-
mensional quantities on the brane. This was done in section 6 of paper
III and gives 𝜅24 ≡ 8𝜋𝐺4 ∶= 2 ( 𝑘+𝑘−𝑘− − 𝑘+) 𝜅25. (7.17)

This can also be read off both from the four dimensional graviton propa-
gator as well as from the Friedmann equations on the expanding bubble.
The graviton propagator is computed in section 3 of paper IV, while the
Friedmann equations are computed in section 2 of paper II and section
3 of paper III. Of course, they all give the same result. Using the inside-
inside vs inside-outside identification discussed before, this result cor-
rectly reduces to that of RS, by flipping the sign in front of 𝑘+, giving𝜅24 = 𝑘𝜅25.

7.3 Populating the universe with matter and radiation
Let us now consider modifying the bulk AdS5 metric by adding five dimen-
sional matter. This backreacts on the geometry of the shell via the thin-
shell junction conditions to give rise to matter and radiation on the shell,
as we will summarize below.
The presence of five dimensional matter modifies the bulk geometry

to five dimensional AdS Schwarzschild, which contributes as four dimen-
sional radiation on the shell. This was shown using Friedmann equations
in section 2 of paper II, and from the full four dimensional Einstein equa-
tions in section 5 of paper III. Four dimensional matter, however, arises in
a much more interesting way – as end points of strings stretching in the
fifth direction. This can be shown in two ways.
1. Consider a string of tension 𝜏 stretching along the fifth direction and
ending on the shell. Einstein’s equations require covariant conservation
of the energy momentum tensor in five dimensions. It was shown in
section 1 of paper IV, that this requires the end point of the string to
behave like a particle. The mass of the particle is given in by the ratio of
the tension 𝜏 of the string, 𝜏, and the five dimensional AdS curvature 𝑘,
i.e.,𝑚 = 𝜏∕𝑘.

2. An isotropic version of the abovewas considered in section 5 of paper III,
where instead of a single string, an isotropic distribution of such strings
was considered. By smearing their energy density parallel to the shell,
one obtains themetric of a cloud of strings. This contributes likemassive
particles of mass 𝜏∕𝑘 to the four dimensional Friedmann equation, ex-
actly like the single string. Not surprisingly, this can also be seen by writ-
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ing down the four dimensional Einstein’s equations, which was shown
in section 5 of paper III.

In this way, a dS universe with matter and radiation can be realized on the
shellworld, making it a model for late time cosmology.

7.4 Brane bending
To understand the effect of the stretched strings further, we can perform a
linearized analysis akin to the brane bending computation in section 6.4.
This was done in section 2 of paper IV. The main result is that, starting
with an empty dS shellworld (i.e., a brane with a finely tuned sub-critical
tension in an empty AdS5 bulk), placing amatter field directly on the brane
gives the amount of bending as

□(4)𝐹 = −𝜅246 𝑆. (7.18)

𝑆 is the trace of the source placed on the brane and 𝐹 ∶= 𝑘−𝑓− = 𝑘+𝑓+ is
constant across the brane by virtue of the first junction condition, although
the brane appears bent by different amounts as viewed from either side (𝑓±
respectively).
This should be compared with the corresponding result in the RS sce-

nario in equation (6.25). Most notably, the sign is flipped. This implies that,
contrary to the RS construction, a matter field placed directly on the brane
(i.e., 𝑆 < 0) causes the brane to bend inwards towards the centre of AdS. For
a string stretching outward from the brane, 𝑆 ∼ 𝛼+∕𝑘+; while for a string
stretching inward, 𝑆 ∼ −𝛼−∕𝑘− with 𝛼± > 0 being the corresponding ten-
sions. This shows that a brane stretching inwards also pulls down on the
brane, while a string pulling outward has the opposite effect. Therefore,
while a string stretching outward corresponds to a particle with positive
mass on the brane, a string stretching inward, or matter placed directly on
the brane contributes as a four dimensional particle with a negative mass.
This is shown in figure 7.4, which is taken from paper IV . This is, of course,
consistent with the result obtained from the Friedmann equation as well
as the four dimensional Einstein equations on the shell. These equations
show that a string pulling on the inside of the brane contributes as a nega-
tive mass particle, while a string pulling outward gives a positive mass in
four dimensions, exactly as the bending analysis gives. Equation (7.18) is
also consistent with a similar expression that was derived by Padilla (2005).
This should be compared with the brane bending in the RS construction

as sketched in Garriga and Tanaka (2000). It was shown there that a posi-
tive mass in four dimensions causes the brane to bend outward just as the
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𝜉 = 0
𝑥𝑎

𝜉

(a)

(b)

(c)

𝑘−

𝑘+

Figure 7.4. A schematic figure (taken from paper IV) showing the direction of brane
bending due to sources in the bulk and on the brane. The interior of the bubble is
shaded in gray, with the bold black line being the shell. The position of the brane
prior to adding and mass or string on it is shown with the dotted line. Object (a) is
a point source placed directly on the brane while (b) and (c) are strings ending on
the brane from the inside and the outside respectively.

string stretching outward does in our model. In this regard, a particle with
an effective positive mass in four dimensions, has a similar effect in our
model as it has in the RS model.

7.5 Gravity on the shellworld
To study gravitonmodes on the shellworld, one has to perform a linearized
analysis of perturbations to the five dimensional Einstein’s equations. This
gives the five dimensional Green’s function corresponding to the graviton
propagator in the bulk. Evaluating this with both points being on the shell,
gives the four dimensional graviton propagator. This was computed in sec-
tion 3 of paper IV. The result is that, we obtain Einstein’s gravity on the
shellworld for lowmomentum, and there are correctionswhen themomen-
tum approaches the curvature scale 𝑝 ∼ 𝑘+. This should be compared to
the result obtained by Padilla (2005), who performed a similar analysis for a
generalizedRS like scenario, and found bothUVaswell as IR corrections to
Einstein’s equations. The crucial difference between the two setups is the
presence of stretched strings for the shellworlds. As we have discussed, the
presence of strings stretching outward from the brane is crucial for generat-
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ing massive four dimensional particles. This allows for non-normalizable
modes in the solution for the graviton Green’s function. In contrast, for the
case considered by Padilla (2005), the wavefunction was required to vanish
at the boundary of AdS. This gives qualitatively different results.
For this mode to be the four dimensional graviton, one also has to make

sure that it has the right tensor structure, as discussed in section 6.4. Sim-
ilar to the RS setup, the brane bending term modifies the factor of 1∕3, to1∕2 in the four dimensional graviton propagator. This was also computed
in section 3 of paper IV. A curious feature, which might appear surprising
at first is that the graviton propagator, when convoluted with the matter
source has a negative sign. The minus sign appears because, as discussed
before, adding a matter source directly on the brane corresponds to having
a four dimensional particle of negative mass. Taking the end point of an
outstretched string as the source on the brane, should remove the minus
sign.
The discussion in this section highlights a truly novel feature of the shell-

world construction. The presence of stretched strings is crucial for four
dimensional Newton’s potential to appear on the shell. The presence of
these strings results in a special form of the graviton propagator – although
it produces four dimensional gravity on the shellworld (upto high energy
corrections), it is not localized along the fifth dimension. In fact, the five
dimensional graviton mode, which produces four dimensional gravity, is
non-normalizable and extends along the strings.
The strings that stretch out from the shell must end somewhere. In the

discussion so far, we have implicitly assumed that they stretch all theway to
the boundary or close to it where they could end a second brane. However,
there is no reason for this brane to be so far away, and it could very well be
close to the shell. Such a scenario has its motivation in another question
that we have conveniently ignored so far: how do these strings form in the
first place? Although we have not yet addressed this question in our work,
in paper III, we briefly speculated on the possibility that collisions between
branes could create strings stretching between them. This could happen,
for instance, when two such shellworlds collide with each other. This gives
rise to an intriguing possibility sketched in figure 7.5, which is taken from
paper IV. In such a scenario, gravity is truly localized between the branes
via the stretched strings andwhole sandwich could be considered as a thick
brane. This also raises an associated question regarding the lifetime of such
a universe. Since the bubbles are accelerating, one would expect them to
collide sooner than later, spelling doom for the universe on the shell. This
is indeed a reasonable outcome, and would be expected to happen instan-
taneously from the perspective of a five dimensional observer. However, it
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𝑘−

𝑘+

Figure 7.5. A cartoon (taken from paper IV) representing a modified shellworld
construction, where the stretched strings end on an adjacent shellworld. The areas
in gray represent the interior of the corresponding bubbles. In this sandwichmodel,
gravity is completely localized, via the stretched strings, between the two branes.

was argued in paper III, that this could take a very long time as seen from
the perspective of a shellworld observer.

7.6 Swampland conjectures
The construction presented above, is a model of late time cosmology in a
dS universe. A natural question to ask is, whether there is any hope of
being able to realize this in string theory. To address this question, let us
briefly comment on how this model measures up against the swampland
conjectures and the no-go theorems discussed in the previous chapters.
1. The dS conjecture discussed in section 5.4 is based on assuming a static
compactification of a ten or eleven dimensional theory. The shellworlds,
as we have discussed, are spherical instantons that nucleate at rest and
accelerate outwards asymptotically approaching the speed of light. This
implies that the position of the shell is time dependent and thus the full
five dimensional metric is also time dependent, via the position of the
shell. In this way, the shellworlds bypass the dS conjecture. Note that
the four dimensional Planck scale as well as the cosmological constant,
are however, time independent as explained in this chapter.

2. The Maldacena-Núñez no-go theorem also does not apply here. The
reason is that it requires the volume of the extra dimensions to be finite,
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which is not the case for our fifth dimension. This is also the case for
an AdS braneworld in the RS construction (as pointed out by Karch and
Randall, 2001), as we have discussed in the previous chapter.

3. The WGC and the non-supersymmetric AdS conjecture turn out to be
helpful for us, and provide motivation for the decay of metastable AdS
that our model relies on. As we have mentioned at the beginning of
section 5.4, nucleation of the spherical brane instanton, that is our shell-
world, is in fact motivated by these conjectures. The generalized WGC
for 𝑝-form gauge fields, discussed in section 5.2, which governs such a
nucleation, turns out to be trivially true for our case (𝑑 = 5, 𝑝 = 4). Such
a nucleation of a co-dimension one brane, was stated as an implicit mo-
tivation for the non-supersymmetric AdS conjecture by Vafa (2005), but
has not yet been made explicit to the best of our knowledge. In section
2 of paper III, we tried to make this explicit by demanding consistency
with energy conservation à la Brown and Teitelboim. Further support
for the instability of non-supersymmetric AdS vacua in string theory
comes from the work by Danielsson and Dibitetto (2017) and Daniels-
son, Dibitetto, and Vargas (2017).

7.7 Support from string theory
There does not seem to be any obvious obstruction to construct a model
of shellworlds in string theory. What is required for an explicit construc-
tion is a five dimensional compactification, which has at least two non-
degenerate AdS5 vacua. The vacuum with higher energy should be non-
supersymmetric, whereas the other can either be supersymmetric or non-
supersymmetric. If the second vacuum is non-supersymmetric, it is likely
that there will exist a third supersymmetric vacuum in the theory allow-
ing that vacuum to decay, giving another shellworld. This cascade of de-
cays can continue until one ends up in a supersymmetric AdS5 vacuum.
For the non-perturbative vacuum decay to occur, tension of the brane that
mediates the decay between these vacua needs to be sub-extremal. In su-
pergravity, this brane is a domain wall that sources the change in the flux-
induced superpotential across it, and its tension can be calculated. To real-
ize the shellworld construction, this tension has to be less than the critical
tension, which can be computed from the vacuum energies.
In section 4 of paper II, we presented a construction in type IIB string

theory that has a non-supersymmetric and a supersymmetricAdS5 vacuum
with the right hierarchy of vacuum energies. Further, we showed that the
domain wall tension interpolating between these vacua was indeed sub-
critical. An explicit embedding of the branes needed for this construction
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was not addressed there, and so this is not yet an explicit construction in
string theory. However, it does provide strong evidence in favor of the via-
bility of such a construction in string theory and that the necessary ingre-
dients are not difficult to obtain.
This should be compared with the RS construction. As we have dis-

cussed before in this chapter, four dimensional Minkowski and dS brane-
world constructions in supergravity are restricted by no-go theorems and
the only viable candidate for a string completion appears to be the AdS4
braneworld. Kraus (1999) generalized this setup to a moving AdS4 domain
wall in supergravity and found that the tension of the brane needed for such
a realization was much larger than those available from string theory.

7.8 What next?
To summarize, in this chapter we have presented a novel construction of
a four dimensional dS vacuum in a string theory inspired setup. The dS
universe sits on the world volume of an expanding bubble, and the setup
is time dependent. We have explored gravitational aspects of this construc-
tion, and have shown how matter and radiation arise on the shellworld,
providing a model of late time cosmology. This five dimensional construc-
tion also seems to evade the swampland conjectures, and there does not
seem to be any obvious obstruction against constructing such shellworlds
in string theory. This makes it a potentially viable model for the burning
question of constructing a dS vacuum in string theory. In order to achieve
that goal, an explicit construction of this model in string theory is required.
Although a toy model was presented in paper II, showing that the requi-
site ingredients, with the necessary hierarchy exist in string theory, a fully
explicit construction has not yet been completed. This is a very interest-
ing direction open for future research, which, if successful, could have a
significant impact.
While the model, with the stretched strings, is a model for late time cos-

mology, the early universe – inflation in particular – has not yet been ad-
dressed. Accommodating inflation might require adding extra ingredients
in addition to the ones currently present. This was briefly pointed out in
the outlook of paper III and still remains a very interesting avenue for fur-
ther work.
Nature of the stretched strings, and the kind of matter represented by

their endpoints, also needs further exploration. Given that the endpoint of
the string represents a particle of mass 𝜏∕𝑘, it was argued in paper III, that
to get realistic standard model particles on the shellworld, these cannot
be fundamental strings, but need to be low tension strings such as gauge
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strings or topological defects. Constructing the standard model of particle
physics on the shellworld, using the stretched strings as well as gauge fields
living on the brane, is a challenging and very interesting open question.
A natural question to ask is about the holographic interpretation of the

expanding bubble in terms of the dual field theory on the boundary of the
AdS5 at infinity. This becomes difficult to answer because the AdS is non-
supersymmetric by construction, and non-supersymmetric holography is
not well understood. Heuristically, this is because the probability of bub-
ble nucleation over the full volume of AdS is unity – implying that the
field theory on the boundary decays instantaneously. However, in the pres-
ence of a brane on which the strings can end, for example in the sandwich
construction proposed in figure 7.5, the second brane can serve as a holo-
graphic screen on which the dual field theory can be studied. Since radi-
ally stretched strings are the natural way to obtain massive particles in an
asymptotically AdS spacetime, understanding the holographic dual of this
model can lead to further insights. See the outlook of papers III and IV for
more discussion on this.
The question of how four dimensional black holes are realized on the

shellworld is yet another interesting open question. We will comment on
this briefly in chapter 9, after the discussion of black shells in the next chap-
ter.
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Part II:
Black holes





8. Black shells

In the first part of the thesis, we have discussed how the question of dark
energy brings together general relativity and particle physics, requiring us
to turn to a theory of quantum gravity, like string theory, for answers. An-
other cosmological object which demands a treatment in quantum gravity,
is a black hole. In this chapter, we will briefly sketch why this is the case.
We will then highlight a model of black shells that we proposed, in papers
V and VI, in an attempt to answer some of these questions.

8.1 Black hole thermodynamics
As an object falls past the event horizon of a black hole, its degrees of free-
dombecome inaccessible to the outside universe. This leads to an apparent
decrease in the entropy of the universe, unless the black hole itself carries
an entropy that increases by an amount equal to or larger than the entropy
of the infalling object. Therefore, the second law of thermodynamics leads
to the notion of black hole entropy.
Furthermore, Hawking (1971) showed that in classical general relativ-

ity, under very general assumptions, the area of the event horizon is a non-
decreasing function of time. This led Bekenstein (1973) to propose that
black holes have an entropy proportional to their horizon area giving rise
to a second law of black hole thermodynamics. Bardeen, Carter, and Hawk-
ing (1973) showed that to make the analogy with thermodynamics more
concrete, a first law could be proposed if black holes carried a temperature
given by the scale of their horizon radius. The discovery byHawking (1975)
that black holes have a temperature, made these ends meet, and the con-
stant of proportionality between the entropy and the area of the horizon
was found. Let us outline the derivation of the entropy below, but using
a more modern approach. In the next paragraphs, we will first derive the
temperature of a Schwarzschild black hole using the Euclidean periodicity
trick, and then find the numerical constant in the entropy using the second
law of thermodynamics.
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Temperature
To derive the temperature of a black hole, let us start with a Schwarzschild
black hole of radius 𝑟𝑠,

d𝑠2 = −(1 − 𝑟𝑠𝑟 ) d𝑡2 + (1 − 𝑟𝑠𝑟 )−1 d𝑟2 + 𝑟2dΩ22, (8.1)

and write it in the near-horizon radial coordinate 𝜀, which is defined as𝑟 = 𝑟𝑠 (1 + 𝜀2) for 𝜀 ≪ 1. To simplify it further, let us ignore the angular
directions. This gives the following near-horizon metricd𝑠2 = −𝜀2d𝑡2 + 4𝑟2𝑠 d𝜀2. (8.2)

This resembles the Rindler metric that describes the spacetime seen by a
uniformly accelerating observer in flat space,d𝑠2 = −𝑅2d𝜂2 + d𝑅2. (8.3)

This metric has a horizon at 𝑅 = 0 and the time coordinate is periodic with
an imaginary period, 𝜂 ∼ 𝜂 + 2𝜋𝑖. Such a Rindler observer experiences
a universe in a thermal bath, with the temperature given by the inverse
of the period. The near-horizon Schwarzschild geometry can be identified
with the Rindler geometry by making the identification 𝑅 = 2𝑟𝑠𝜀 and 𝜂 =𝑡∕ (2𝑟𝑠). The periodicity of 𝜂 ∼ 𝜂 + 2𝜋𝑖 then implies a periodicity of time𝑡 ∼ 𝑡 + 4𝜋𝑟𝑠𝑖. Analogous to the Rindler spacetime, this is just the time
coordinate of a quantumfield theory at a finite temperature𝑇, i.e., 𝑡 ∼ 𝑡+𝛽𝑖
for𝛽 ≡ 1∕𝑇 (in unitswhere theBoltzmann constant is unity, 𝑘𝐵 = 1). From
this, the temperature of the Schwarzschild spacetime can be identified as

𝑇 = 14𝜋𝑟𝑠 . (8.4)

This trick to find the temperature of a black hole spacetime can be justified
by using the Euclidean path integral. See the lecture notes by Hartman
(2015) for a pedagogical introduction.

Thermodynamics
Let the entropy of the black hole be given by 𝑆 = 𝐶 ⋅ area = 𝐶 ⋅ 4𝜋𝑟2𝑠 ,
where 𝐶 is the constant of proportionality that we want to determine, and𝑟𝑠 ≡ 2𝐺𝑀 is the Schwarzschild radius of the black hole (of mass𝑀). Given
the temperature of the black hole obtained above, its entropy can be com-
puted from the first law of thermodynamics, d𝐸 = 𝑇d𝑆, provided that we
know the energy of the black hole. This can be computed using the ADM
formalism, which gives the energy of an asymptotically flat spacetime as
the boundary integral at spatial infinity. Performing the integral for the
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Schwarzschild spacetime gives that the energy is equal to the mass of the
black hole, i.e., 𝐸 = 𝑀. With this, the first law of thermodynamics givesd𝑆d𝐸 = 1𝑇 ⇒ 32𝜋𝐺2𝑀 ⋅ 𝐶 = 8𝜋𝐺𝑀 ⇒ 𝐶 = 14𝐺 . (8.5)

This gives the famous Bekenstein-Hawking entropy:

𝑆 = 𝐴4𝐺 = 𝐴4𝓁2
Pl

ℏ𝑐3 , (8.6)

where in the last step we have expressed the Newton’s constant in terms
of the four dimensional Planck length, 𝐺 = 𝓁2

Pl𝑐3∕ℏ. To get an idea of
how big the entropy of a black hole really is, let us compute this for a solar
mass black hole, which has a radius of 𝑟𝑠 ∼ 3 km. This gives an enormous
entropy 𝑆 ∼ 1077. Turning our attention back to the temperature of the
black hole, we can restore all fundamental constants in the expression for
temperature above, to get

𝑇 = ℏ𝑐38𝜋𝑘𝐵𝐺𝑀 . (8.7)

For a solarmass black hole, this turns out to be𝑇 ∼ 10−7K,which is smaller
than the cosmicmicrowave background radiation by 7 orders ofmagnitude.
A larger black hole will have an even smaller temperature and an even
bigger entropy. This shows that black holes are incredibly cold objects, but
carry a huge amount of entropy.
From equation (8.7), we see that the temperature vanishes both in the

classical limit (ℏ → 0) as well as in the Newtonian limit (𝐺 → 0), indicat-
ing that the Hawking temperature and the associated Hawking radiation is
a phenomenon that is fundamentally quantum mechanical as well as gen-
eral relativistic. This gives an indication that black holes are objects that
are interesting for understanding the physics at the intersection of both of
these regimes, making them ideal test beds for understanding quantum
gravity.
Given the thermodynamic nature of black holes, Bekenstein interpreted

equation (8.6) as corresponding to their actual thermodynamic entropy,
meaning that 𝑆 gives the logarithm of the number of microstates of a black-
hole of a given mass. However, general relativity (through Birkhoff’s the-
orem) predicts that a Schwarzschild black hole of a given mass is unique,
and hence should have zero entropy (𝑆 = ln 1 = 0). Another way to state
this tension between the two results is that, the process of black hole forma-
tion breaks time reversal at a microscopic scale, since degrees of freedom
(information) of the collapsing matter is lost in the final black hole and
there is no way to find out what fell into it.
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This extends naturally to black holes with charge and angular momen-
tum. The energy for such a black hole receives additional contributions
from its charge 𝑄 and its angular momentum 𝐽. This gives the following
first law of black hole thermodynamicsd𝑀 = 𝑇d𝑆 + Φd𝑄 + Ωd𝐽, (8.8)

for electric potentialΦ, and angular velocityΩ at the horizon. The entropy
also receives extra contributions from charge and spin, giving a black hole
with an enormous entropy, while general relativity predicts only three de-
grees of freedom – charge, mass and angular momentum (no-hair theorem,
see section 8.4).

8.2 Information paradox
Hawking (1975) showed in his celebrated paper that because of its temper-
ature, a black hole radiates like a gray body with the rate of emission in a
mode of frequency 𝜔, harmonic 𝑙, and width d𝜔 given by𝑑𝐸𝑑𝑡 = 𝜔d𝜔2𝜋 𝑇𝜔,𝑙𝑒𝛽𝜔 − 1, (8.9)

where 𝑇𝜔,𝑙 is the gray body factor describing the departure from pure black
body radiation, and 𝛽 = 1∕𝑇 is the inverse of the Hawking temperature.
This Hawking radiation is independent of the characteristics of the matter
that fell into the black hole. This implies that any information about what
fell into the black hole cannot be carried out by the Hawking radiation and
is lost for ever.
This can be made precise with the following thought experiment. Let

us take a pure state, say 𝑛 pairs of EPR particles, and throw one of each
pair into a black hole. If we wait long enough, the black hole will decay via
Hawking radiation. We have seen above, that these Hawking quanta do
not carry any information about the particles that fell into the black hole.
When the black hole has evaporated completely, we will be left with our
half of the EPR pair, while the other half that we threw into the black hole
has completely disappeared into Hawking radiation. Our half of the EPR
pair is, therefore, no longer entangled with anything. Something remark-
able has happened – we started with a pure state of entangled pairs and
are now left with a bunch of particles that are not entangled with anything
anymore, i.e., a mixed state. Such an evolution of a pure state to a mixed
state can only occur via the action of a non-unitary operator on the state,
and such operators are not allowed in quantum mechanics. Evaporation
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of the black hole has thus violated unitarity, which cannot happen in quan-
tum mechanics or gravity. This, in summary, is the black hole information
paradox. A detailed discussion of various aspects of this paradox can be
found in the reviews by Harlow (2016) and Polchinski (2017).

8.3 Resolution of the information paradox
In an attempt to resolve this paradox, the various assumptions leading up
to its formulation have been critically examined. In this section, we will
briefly summarize some of the main lines of investigations. We will di-
vide them into two groups: (i) black holes form normally, but evaporation
requires corrections to semi-classical physics, (ii) corrections to the semi-
classical theory prevent a black hole from forming in the first place.

8.3.1 Departure from semi-classicality during evaporation
Let us first examine those scenarios that offer a solution to the black hole
information problem by modifying the process of black hole evaporation,
without affecting their formation in general relativity.

Remnants
In the thought experiment above, the pure state went into a mixed state
because the black hole was allowed to evaporate completely. However, as
the black hole continues to evaporate, and gets down to a Planck sized ob-
ject, the semiclassical physics used to analyze its evaporation is no longer
enough. Since it is not possible to say what happens beyond this point,
a reasonable stance to take is that the evaporation stops at this stage and
the black hole survives for ever as a Planck mass object. Such an object is
a remnant similar to the charged ones discussed in section 5.1. In order
for remnants to provide any respite from the information paradox, they
need to carry all of the entropy of the black hole that they descended from.
This would suggest that all black holes end up as Planck mass remnants,
but carry vastly different entropies. There would then be an infinite num-
ber of such Planck mass remnants in the universe, corresponding to every
black hole that ever formed. This has implications for low energy quan-
tum field theory. Normally, the correction to a scattering amplitude from
a Planck mass object running in loops is suppressed because of its mass.
However, having an infinite number of them would lead to an infinite con-
tributionmaking allQFT amplitudes divergent. Apart from the breakdown
of the effective field theory, remnants also lead to violation of covariant en-
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tropy bounds and are therefore believed to be forbidden. See the article by
Susskind (1995) for a discussion of some issues with remnants.

Small corrections
Since Hawking’s computation for the evaporation is semi-classical, one
could argue that the reasonwe have a paradox, is that we have trusted equa-
tion (8.9) all the way to the Planck scale, where it might no longer be valid.
Following this argument, it would seem that the information could be car-
ried out in small correlations between the quanta of Hawking radiation.
However, Mathur (2009) proved that such small corrections, even if they
existed would not be sufficient to resolve the information paradox. More-
over, equation (8.9) is valid up to order 𝑚𝑝∕𝑀, and any resolution to the
information paradox has to start reducing the entanglement entropymuch
before the black hole reaches Planck mass. See the discussion on the Page
curve, in one of the reviews mentioned before.

Black hole complementarity
A solution to the information paradox was proposed by Susskind, Thor-
lacius, andUglum (1993), who argued that causally disconnected observers
could, in principle, observe mutually inconsistent versions of a event, as
long as they cannot compare notes. This has interesting consequences
when applied to the black hole information problem. The equivalence
principle says that, an observer falling into a large black hole should not
see anything special at the horizon. To prevent loss of information, a dis-
tant observer however, should see the infalling observer disappear at the
horizon, and would expect her degrees of freedom to reappear as Hawking
radiation. The essence of black hole complementarity is that, both of these
point of views could be true at the same time. They argued that the ob-
server who sits outside the black hole, and collects all the Hawking quanta
corresponding to her in-fallen friend, cannot then jump into the black hole
to see her friend again. So from her point of view, her friend has thermal-
ized at the horizon. In this way, the equivalence principle and unitary evo-
lution could be reconciled in an observer dependent way. This argument
for black hole complementarity relies on three basic postulates: (i) Hawk-
ing radiation is in a pure state, (ii) the equivalence principle holds for an
infalling observer, (iii) all information carried by the radiation is emitted
near the horizon, and effective field theory holds at a microscopic distance
away from the horizon.

Firewall
Adecade and a half after the proposal of black hole complementarity, an in-
consistency in the argument was discovered by Mathur (2009), which was
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then refined by Almheiri, Marolf, Polchinski, and Sully (2013) and Marolf
and Polchinski (2013), to show a sharp inconsistency among the assump-
tions of complementarity. The following is a caricature of their argument.
Consider an old black hole formed from a pure state, i.e., whose Hawking
radiation forms a subsystem at least as big as the state of the black hole
itself. Let us identify three subsystems: (A) the early time Hawking radia-
tion far away from the black hole, (B) late time Hawking radiation near the
black hole horizon, and (C) the interior of the black hole. The equivalence
principle implies that the horizon is locally like flat space, and thus sub-
systems (B) and (C) should be highly entangled. However, for the external
observer to not observe any loss of information, subsystem (B) should also
be highly entangledwith subsystem (A), implying that the subsystem (B) is
highly entangled with both subsystems (A) and (C) at the same time. This
violates the principle of monogamy of entanglement (i.e., a system can be
strongly entangled with only one other system at a time), which follows
from the principle of strong sub-additivity of the von Neumann entropy,
that was proved by Mathur (2009). This would still not be a problem for
the complementarity argument, but they additionally showed that there
is a reference frame in which a single observer can measure both of these
entanglements, and thus black hole complementarity is inconsistent.
To remedy the situation, they suggested violating one of the three as-

sumptions of black hole complementarity listed before. They argued that
the most conservative approach was to drop the assumption that the in-
falling observer sees nothing special at the horizon. The suggestion was
that the horizon of a black hole has a firewall instead, which is a structure
where an infalling observer thermalizes instead of being able to fall into
the black hole.

8.3.2 Departure from semi-classicality during formation
Another radical class of proposals suggest that a black hole never forms dur-
ing a gravitational collapse, and some other horizonless structure is formed
instead. This provides a way out the information paradox, since there is no
paradox in the absence of a horizon. Motivating the absence of a black hole
at the end of gravitational collapse requires either amodification of general
relativity or another structure that can preferentially form in the place of
a black hole, within the framework of general relativity. Proposals of both
kinds have beenmade in the literature. See the review byCardoso and Pani
(2017b), especially table 1, for a classification of such proposals. In paper
V, we proposed an alternative end point of gravitational collapse within the
framework of general relativity, which is motivated by string theory. Here,
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wewill briefly reviewdifferent classes of such horizonless objects and point
out where our proposal fits into the picture.
Such horizonless objects are classified according to their observational

signatures, which are usually based on the orbits of massive and massless
particles around them. Of these, the smallest possible circular orbits – both
for photons as well as for massive particles – are particularly diagnostic of
these objects. We will derive these below. Consider a spherically symmet-
ric metric of the following form:d𝑠2 = −𝑓(𝑟)d𝑡2 + 𝑓(𝑟)−1d𝑟2 + 𝑟2 (d𝜃2 + sin2 𝜃 d𝜙2) . (8.10)

Metric compatibility of the connection implies that𝜖 = −𝑔𝜇𝜈 d𝑥𝜇d𝜆 d𝑥𝜈d𝜆 , (8.11)

is a constant ofmotion for an affine parameter 𝜆. Amassive particle follows
a timelike trajectory and has 𝜖 = 1, while a massless particle follows a null
trajectory with 𝜖 = 0. The Killing vectors 𝐾 = 𝜕𝑡 and 𝐾 = 𝜕𝜙 correspond
to conservation of energy and angular momentum respectively:

𝐸 = 𝑓(𝑟) d𝑡d𝜆 ≡ 𝑓(𝑟)�̇�2, 𝐿 = 𝑟2 d𝜙d𝜆 ≡ 𝑟2�̇�2. (8.12)

The other two Killing vectors, corresponding to the conservation of the
direction of the angular momentum, imply that motion is restricted to a
plane, which we can choose to be the equatorial plane 𝜃 = 𝜋∕2. This gives− 𝑓(𝑟)�̇�2 + 𝑓(𝑟)−1�̇�2 + 𝑟2�̇�2 = −𝜖, (8.13)

which can be rewritten as a kinetic equation for 𝑟(𝜆),
�̇�2 = 𝐸2 − 𝑓(𝑟) (𝐿2𝑟2 + 𝜖) ≡ −𝑉eff(𝑟). (8.14)

Written in this form, circular orbits correspond to extrema of the potential,𝑉′
eff(𝑟) = 0, 𝑉′

eff(𝑟) = 𝑟2𝑟𝑠𝜖 − 𝐿2 (2𝑟 − 3𝑟𝑠) != 0. (8.15)
Furthermore, the orbit is stable if it corresponds to a minimum of the po-
tential, and is unstable otherwise. This implies that a photon (𝜖 = 0) has
circular orbits at 𝑟0 = 3𝑟𝑠∕2 for all values of 𝐿. However, this turns out to
be the maximum of the potential, implying that these orbits are unstable.
This surface of unstable circular photon orbits is called the photosphere. A
massive particle (𝜖 = 1), on the other hand, has two circular orbits at

𝑟 = 𝐿2𝑟𝑠 ⎛⎜⎝1 ±
√1 − 3𝑟2𝑠𝐿2 ⎞⎟⎠ . (8.16)
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unstable circular orbits stable circular orbits

massless particles 𝑟 = 3𝑟𝑠∕2 —
massive particles 3𝑟𝑠∕2 ≤ 𝑟 < 3𝑟𝑠 𝑟 ≥ 3𝑟𝑠

Table 8.1. Location of stable and unstable circular orbits for massless and massive
particles in the Schwarzschild geometry. 𝑟𝑠 is the Schwarzschild radius of the black
hole.

The one at smaller 𝑟 is unstable, while the other one is stable. Either of
these circular orbits exist only when the angular momentum is larger than
a critical value namely, 𝐿 ≥ √3𝑟𝑠. At this critical angular momentum, the
two roots coincide to give a stable orbit at 𝑟 = 3𝑟𝑠. For very large angular
momentum, 𝐿 ≫ 1, the smaller root converges to an unstable orbit at 𝑟 =3𝑟𝑠∕2, analogous to the photosphere, while the larger orbit is pushed out
to infinity. The smallest stable circular orbit is therefore at 𝑟 = 3𝑟𝑠, and is
called the innermost stable circular orbit (ISCO).
To summarize, in the Schwarzschild geometry, a massless particle only

has unstable circular orbits. These are located at the photosphere, 𝑟 =3𝑟𝑠∕2. Massive particles on the other hand, have unstable circular orbits
between 3𝑟𝑠∕2 ≤ 𝑟 < 3𝑠, and stable circular orbits for 𝑟 ≥ 3𝑟𝑠. This is
summarized in table 8.1. Therefore, the two radii 𝑟 = 3𝑟𝑠∕2 and 𝑟 = 3𝑟𝑠
are special for the Schwarzschild geometry.
By Birkhoff’s theorem, the geometry outside any uncharged, non-rotat-

ing object is given by the Schwarzschildmetric. So any object dense enough
to have a radius smaller than 𝑟 = 3𝑟𝑠, would have an ISCO at 𝑟 = 3𝑟𝑠,
whereas bigger objects would not. Such objects smaller than 𝑟 = 3𝑟𝑠 are
called compact objects, and the presence of an ISCO would observation-
ally distinguish them from their non-compact counterparts. The densest
known objects in classical general relativity are neutron stars, which by
the above definition are compact objects, and any object with a higher den-
sity is expected to collapse into a black hole. Therefore, any object that is
compact but not a neutron star, must bemade of exoticmatter, and is called
an exotic compact object (ECO).
On the other end of the range of special radii lies the photosphere. Be-

ing the closest circular light orbit to a black hole, the region within the
photosphere is expected to look darkwhen imaging a black hole in the elec-
tromagnetic spectrum. This dark region is called the shadow of the black
hole. An object with a radius smaller than the photosphere is therefore ex-
pected to look similar to a black hole in the electromagnetic spectrum and
is called an ultra-compact object (UCO). The dynamics of light close to the
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photosphere is however, vastlymore interesting than that of the ISCO. This
is because, contrary to the ISCO, the photosphere is an unstable extremum
of the potential and orbits of light very slightly inside the photosphere will
fall inwards with time. For a black hole, such a light ray will encounter
vacuum all the way to the horizon where it is absorbed. However, for an
UCO, it will find the surface of the object before hitting the horizon and
can scatter back to the photosphere. This is true for both electromagnetic
as well as gravitational waves, and the properties of the photosphere can
help to distinguish between a black hole and a horizonless UCO. However,
Cardoso and Pani (2017a,b) showed that if the radius is close enough to
the Schwarzschild radius, most of the waves trapped at the photosphere
will have relaxed away by the time the reflected wave makes it way back to
the photosphere. For an object of radius 𝑟 = 𝑟𝑠 (1 + 𝜖), they showed that
this corresponds to 𝜖 ≲ 𝜖crit ∼ 0.0165. An object satisfying this limit, will
therefore have a photosphere very similar to that of a black hole, and is
called a Clean Photosphere Object (ClePhO). Another special value of the
radius is the Buchdahl radius. For an object made of an incompressible
isotropic fluid, whose pressure does not decrease as one goes towards the
center of the object, compressing it beyond 𝑟 = 9𝑟𝑠∕8 makes the pressure
at the center divergent. This limit was first found by Schwarzschild (1916)
when computing themetric inside an incompressible fluid sphere, andwas
later generalized by Buchdahl (1959) to any matter distribution with these
properties. Therefore, any compact object smaller than the Buchdahl ra-
dius must be made of matter that does not obey these assumptions.
To summarize, we have discussed four special values of the radius: the

ISCO at 𝑟 = 3𝑟𝑠, the Buchdahl radius at 𝑟 = 9𝑟𝑠∕8, the photosphere at𝑟 = 3𝑟𝑠∕2, and the ClePhO radius at 𝑟 = 1.0165𝑟𝑠. The significance of
these radii is that they can be used to classify ECOs, based on their obser-
vational signatures. A comprehensive summary of ECOs can be found in
reviews by Cardoso and Pani (2017b, 2019). Here, we will only highlight
some aspects of two particular ECOs, namely gravastars and black shells.
Based on the above reviews, we present a classification of ECOs, depending
on their radii, in figure 8.1.

Gravastars
Gravastars are short for gravitational vacuum stars, and were constructed
by Mazur and Mottola (2001) as an alternate end point of gravitational col-
lapse. They are non-singular, spherically symmetric horizonless objects,
consisting of a layer of stiff matter (𝑝 = 𝜌) sandwiched between two thin
shellswith dS space in the interior. Themetric is continuous across the thin
shells, with energy densities on them given by the thin-shell junction con-
ditions. By replacing the two shells and the enclosed matter with a single
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Figure 8.1. A schematic classification of compact objects following Cardoso and
Pani (2017b). The black shells proposed in paper V are UCOs and can be as small
as 𝑟 = 𝑟𝑠 (for charged extremal blackshells) to as large as the Buchdahl radius (for
uncharged black shells).

shell, Visser and Wiltshire (2004) constructed a thin-shell gravastar. These
thin-shell gravastars share essentially the same properties as Mazur and
Mottola’s gravastars, but are much easier to analyse. Unlike Schwarzschild
black holes, which have a negative specific heat and are thermodynami-
cally unstable, gravastars are thermodynamically stable. Visser and Wilt-
shire analysed dynamical stability of thin-shell gravarstars against radial
perturbations and showed that they can be stable under some physically
reasonable equation of state.

Black shells
Motivated by gravastars, we proposed a novel construction in paper V, as
non-singular horizonless objects, which are thin spherical shells contain-
ing AdS space inside. We call these objects black shells. The main motiva-
tion for replacing the dS core of the gravastar with AdS, is to construct such
objects from a quantum theory of gravity, like string theory. As we have dis-
cussed in the first part of this thesis, construction of dS vacuum in string
theory is a difficult challenge, and whether or not such a construction is
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possible is still under debate. However, there are several well understood
examples of supersymmetric AdS vacua in string theory. We showed how
such a black shell can be constructed out of one such vacuum, which is one
of the sixteen supersymmetric AdS vacua in type IIA string theory compact-
ified on a twisted torus orbifold𝕋6∕ (ℤ2 × ℤ2) that were found by Dibitetto,
Guarino, and Roest (2011). Let us briefly outline the construction of these
shells below.
The idea behind black shells is to construct a spherical shell enclosing an

AdS4 space in its interior, and having an effective Schwarzschild metric in
the exterior. The physical properties of such a shell are given by the thin-
shell junction conditions, as discussed in equations (6.3) and (6.4). Just
as for the thin-shell gravastars of Visser and Wiltshire (2004), naïvely, the
junction conditions do not give a sensible equation of state for the mat-
ter that makes up the shell. However, since our shells should follow from
a construction in string theory, details of such a construction provide the
physical properties of the matter that make up the shell.
The main idea is to consider D0 branes in four dimensions. These could

also be D𝑝 branes wrapped along 𝑝 internal directions, which look like
D0 branes in four dimensions. These branes can polarize into spherical
D branes à la Myers (1999), with the D0 brane charge dissolved in them.
Non-extremal black holes in general, and a Schwarzschild black hole in
particular, would have both D0 and D0 branes such that the total charge
is given by the difference in their numbers. The D0-D0 system could be
stabilized thermally, similar to the discussion by Danielsson, Guijosa, and
Kruczenski (2001) and could exist without annihilating. Physical proper-
ties of matter present on the spherical brane can be deduced from its world
volume action, which consists of the DBI and Chern-Simons terms. This
was discussed in detail in paper V, with the conclusion that there are three
main contributions to the stress tensor on the brane, which in the limit of
a microscopic AdS radius are:
(i) tension of the spherical brane, with equation of state 𝑝 = −𝜌 = −𝜏,
(ii) dissolved D0 branes that behave like matter with a stiff equation of

state 𝑝 = 𝜌, and
(iii) a gas of open strings stretching between the D0 branes, with an equa-

tion of state 𝑝 = 𝜌∕2.
These physical properties of the matter constituting the shell allow for a so-
lution to the thin-shell junction conditions, and fix the radius of the shell.
For an uncharged shell, this turns out to be the Buchdahl radius 𝑟 = 9𝑟𝑠∕8,
while for a charged shell, the radius approaches the Schwarzschild radius
as the charge-to-mass ratio approaches extremality. Thus, in the classifica-
tion scheme for compact objects, the uncharged shell is an UCO, and the
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charged shell can be anything from aClePhO to anUCOdepending on how
close to extremality it lies. This is shown in figure 8.1.
Since we have used high energy objects to construct the shell, it is inter-

esting to see how the energy balance works. The shell has an enormous
tension, which is balanced by the huge negative energy of the AdS4 in its
interior. The energy of the dissolved D0 particles and the strings stretch-
ing between them contribute a small effective mass, which is visible from
outside as the mass of this object.
In order for such an object to be an alternative to a black hole, there

has to be a mechanism for the shell to form at the end of a gravitational
collapse. The shell is a spherical instanton that can nucleate à la Brown
and Teitelboim, if the Minkowski vacuum that we live in is unstable to
such a tunneling process. The probability for such an instanton tunneling
event is extremely small and is suppressed by the exponent of the square of
its radius Γ∕𝑉 ∼ exp (−𝑟2) making the metastable Minkowski extremely
long lived. However, in the presence of collapsing matter, entropy of the
infalling matter can compensate for this suppression leading to a huge en-
hancement of the probability of nucleation. This is how such shells would
form. When matter falls onto such a shell, its degrees of freedom would
likely get absorbed into open string degrees of freedom of the gas on the
shell, making such shells highly absorbing, hence the name black shells. It
was argued in paper V that these objects are stable against small radial per-
turbations, with the stability arising from an exchange of energy between
the various components.

8.4 Spinning black objects
Discovery of the Kerr solution was followed by the development of unique-
ness theorems in the 1960s and 1970s, which led to the famous phrase
by Ruffini and Wheeler (1971) – a black hole has no hair. An overview
can be found in the review by Chrusciel, Lopes Costa, and Heusler (2012).
Roughly, the no-hair theorem states that, a stationary asymptotically flat
spacetime, which is non-singular at and outside a connected event horizon,
is uniquely characterized by its mass, charge and angular momentum. This
is a powerful theorem because, although the spacetime outside a spinning
black hole could have an infinite number of multipole moments, it can
only have three degrees of freedom namely mass, charge, and angular mo-
mentum, i.e., the multipole moments are not all independent. However,
all of this relies on the presence of a horizon, in the absence of which, no
such uniqueness theorem exists and the geometry outside a spinning ax-
isymmetric horizonless object can be characterized by multipole moments
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different from that of the Kerr solution. Apart from trying to solve the in-
formation paradox, anothermotivation for considering alternatives to Kerr
black holes is that the Kerr geometry has closed time like curves close to𝑟 = 0.
Many of the ECOs in figure 8.1 have rotating counterparts, e.g., rotating

thin-shell gravastars were constructed by Pani (2015), rotating fuzzball so-
lutions were constructed by Jejjala, Madden, Ross, and Titchener (2005).
A rotating version of black shells was constructed in paper VI for small
spin (up to second order) where, as expected, the spacetime in the exte-
rior differs from Kerr in having an additional quadrupole moment. The re-
sults for a fast spinning black shell have not yet been computed and we can
only speculate on what could happen. One reasonable expectation is that
it would behave similar to a charged black shell. The charged black shell
shrinks down to the size of its horizon as it approaches extremality. If this
were also true for the spinning black shell in the limit of extremal spin, it
would be expected to reduce down to the size of a Kerr black hole, restoring
the horizon and the uniqueness theorem,making the extra quadrupolemo-
ment disappear. If this is the case, it would be very difficult to distinguish
between fast spinning black shells andKerr black holes. On the other hand,
the radius could remain well outside the horizon and the deviation of the
quadrupole moment could persist even at higher spins.

Ergoregion instability
Let us make a few comments about an instability that can effect horizon-
less spinning objects. It was discovered by Friedman (1978), and recently
proved rigorously by Moschidis (2018), that spinning objects with an er-
gosphere but no horizon, are unstable against scalar, electromagnetic and
gravitational perturbations. However, it was shown by Maggio, Pani, and
Ferrari (2017) that stability can be ensured if the surface of the object has
an absorption rate greater than or equal to 0.4%. Let us seewhat thismeans
for our black shells. A slowly rotating black shell has a radius bigger than
the ergosphere and so there is no ergoregion instability. As we speculated
above, if the object approaches close to the horizon size for faster spins, an
ergoregion would appear. However, the surface of the shell is highly ab-
sorptive due to the large number of degrees of freedom coming from the
gas of open strings on it, and the ergoregion instability is expected to be
quenched à la Maggio, Pani, and Ferrari (2017).
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8.5 Observational tests
Electromagnetic and gravitational wave observations can distinguish be-
tween black holes and some exotic compact objects. A comprehensive re-
view going into this in detail is by Barack et al. (2019). Here, following the
review, we will highlight some of the observational signatures that will be
relevant for us.

8.5.1 Electromagnetic signature
Since light trajectories around compact objects can only be traced back to
the photosphere, observations in the electromagnetic spectrum cannot be
used to distinguish ClePhOs (which have very similar photospheres) from
black holes with sufficient accuracy. They are however, good probes for
distinguishing UCOs from black holes. When a UCO is illuminated by an
accretion disc, it is expected to appear as a dark shadow in the middle of a
bright disc, corresponding to the photosphere. For a spinningUCO like the
black shell above, the photosphere is no longer spherically symmetric and
is expected to have an asymmetry proportional to its spin. For a Kerr black
hole, this is of the order 𝑎3. However, the additional quadrupole moment
for the black shell contributes an extra asymmetry of order 𝑎2, thus provid-
ing an observational test that would distinguish it from a Kerr black hole.
There is, in fact, an ongoing cosmological experiment that aims tomeasure
black hole horizons with sufficient precision to be able to detect such a de-
viation. This is known as the Event Horizon Telescope (EHT), and is a very
large baseline interferometery (VLBI) array that images horizon scale struc-
tures around the supermassive black object at the center of the Milky Way,
and in the elliptic galaxy M87. The first images of the black hole in M87
were recently published by the EHT collaboration (Akiyama et al., 2019).
Although the current M87 images do not have the resolution needed to dis-
tinguish between these effects, future observations of the black hole at the
center of the Milky Way are expected to have enough resolution to do so.

8.5.2 Gravitational waves signature
Unlike light, gravitationalwaves (GW) are not restricted to the photosphere
and can be used to probe the structure of UCOs beyond their photosphere,
making them valuable for distinguishing ClePhOs from black holes. For
two black objects coalescing into one, if one or both of the objects is dif-
ferent from a black hole, the GW signal can differ in all three stages of the
merger: inspiral, merger and ringdown.
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(i) In the inspiral phase, the objects are far fromeach other and can be anal-
ysed with perturbation theory. If the merging objects are rotating black
shells instead of black holes, their extra quadrupole moment could pro-
duce detectable signatures in the gravitational waves emitted during
this phase.

(ii) Merger is a highly non-linear event and does not yield itself to a pertur-
bative analysis. It requires full blownnumerical simulations, andmany
techniques for analyzing this phase are under active development.

(iii) Next comes the ringdown phase where the two objects, post merger,
are settling down into one. This phase is well described by a set of
quasi-normal modes (QNM). Various kinds of ECOs have distinctly dif-
ferent QNMs, and this phase provides one of the best signatures to dis-
tinguish between them. TheQNMs of an object depend on the reflectiv-
ity of its surface as well as its internal structure. Although we have not
computed QNMs for the black shells, they are expected to be different
from a black hole and the GW signal during ringdown can distinguish
one from the other. Another feature of UCOs discovered by Cardoso,
Hopper, Macedo, Palenzuela et al. (2016) is presence of echoes in the
GW ringdown signal. The region between the surface of the UCO and
the photosphere can support quasi-bound trapped modes, which con-
tribute these echoes to the GW signal. The detection of such echoes
would be indicative of a UCO.

Since the LIGO collaboration studies collisions of stellar mass black holes,
it is unlikely that it will have the sensitivity needed to probe deviations
from the Kerr quadrupole moment. However, the space based interferom-
eter LISA will be sensitive to lower frequencies. It will therefore be able to
measure gravitational waves from the merger of super massive black holes,
as well as gravitational waves from stellarmass objects orbiting a supermas-
sive black hole. This can provide a definitive test that will either confirm
or rule out the existence of rotating black shells in our universe.

8.6 What next?
To summarize, in paper V, we constructed a novel horizonless object called
a black shell. We argued that this is a viable end point of gravitational col-
lapse, and that such an object is well motivated from string theory. We
explored the possibility that black holes with horizons may not exist in na-
ture, and that they could all be black shells instead. In paper VI, we con-
structed slowly spinning black shells, and discovered that they differ from
Kerr black holes in their quadrupolemoment, therefore providing an obser-
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vational signature. There are two particularly interesting aspects of black
shells that we have not yet explored but would like to, in the future.
First is the extension of our construction to fast spinning black shells.

This is particularly relevant for observations because real world black holes
are expected to be spinning fast, e.g., the black hole at the center of the
Milky Way is estimated to have close to maximal spin. In this chapter, we
have speculated onhowour results could apply to fast spinning black shells,
and it would be very interesting to see which of these speculations holds.
The second aspect, also extremely relevant for observations, is the com-

putation of quasi-normal modes for the black shells. Being dependent on
the internal structure of the object, different UCOs have differing, and of-
ten very specific quasi-normal mode signatures. This could serve to distin-
guish them from each other if such a gravitational wave signal is detected
in the future. The same is true for gravitational wave echoes, which could
have variable amplitudes and frequencies depending on the structure of
the ECO. Echoes have been computed for other rotating Kerr-like objects
(Bueno, Cano, Goelen, Hertog et al., 2018; Wang and Afshordi, 2018) as
well as for specific non-rotatingECOs. See the reviewbyBarack et al. (2019)
and the references within, for a summary of such computations.
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9. Conclusion

In this thesis, we have presented our results along two main lines of re-
search – dark energy in string theory, and black holes. To tackle the dark
energy problem, we have presented two new ideas: one being a newway to
obtain de Sitter vacuum from a M-theory compactification, and the other
being a novel time dependent construction of de Sitter vacuum, called shell-
worlds. Towards solving the black hole information problem, we have con-
structed a novel horizonless object called a black shell, that could serve as
an alternative to a black hole.
In our M-theory compactification, we have constructed a new class of

non-supersymmetric Minkowski vacua using only geometric fluxes, and
which possess only one flat direction. This flat direction is uplifted to a
metastable de Sitter minimum, using higher-derivative corrections to ele-
ven dimensional supergravity, without the need for including any non-pert-
urbative effects, or other exotic ingredients like anti-branes.
The main idea of the shellworldmodel is that, our universe could be sit-

ting on the surface of a bubble that is expanding in a five dimensional anti
de Sitter space. This could explain the observed dark energy in our uni-
verse. Ourmodel is motivated by string theory, which contains all the right
ingredients to construct such a shellworld. We showed that end points of
strings stretching out along the extra dimension of the anti de Sitter space
represent massive objects on the shellworld, while radiation arises from
the presence of mass in five dimensions. We further demonstrated how
gravitational attraction between these massive particles on the shellworld
arises from interaction between the stretched strings.
Black shells discussed in the second part of the thesis, are proposed as an

alternate end point for gravitationally collapsing objects. These are higher
dimensional spherical branes coming from string theory that don’t have
a horizon, but have other properties similar to black holes. We pondered
on the possibility that there are no black holes in string theory and every
collapsing object forms a black shell instead. We discovered that spinning
black shells have a quadrupole moment that is different from a Kerr black
hole in general relativity, and proposed observational tests that could dis-
tinguish them from black holes.
A natural question to ask is: if our universe really is a shellworld, how

does a four dimensional black hole look like? Given that massive particles
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are endpoints of stretched strings, a black hole formed from a collapsing
shell of matter would correspond to the stretched strings converging to-
gether. Naïvely, one would expect the strings to coalesce into a black string
à la Chamblin, Hawking, and Reall (2000). Four dimensional sections of
such a black string corresponds to a Schwarzschild black hole, and so this
appears like a plausible way to get four dimensional black holes. However,
Gregory and Laflamme (1993) showed that such black strings are unstable,
making it difficult to realize a black hole with them. Additionally, they do
not correspond to strings of uniform tension along the fifth dimension.
Interestingly, there is another possible fate for the converging strings.

They do not need to coalesce into a black string, but can instead tunnel into
a brane with cylindrical symmetry, when they get close to each other. This
would be like a five dimensional analogue of the black shells. Normally,
such a nucleation process would be exponentially suppressed, but in the
presence of the stretched strings, the huge entropy of these strings could
provide the necessary compensation, just as in the case of fuzzballs and
black shells, to form a black tube. Four dimensional sections of this object
on the shellworld would correspond to the black shells, thus providing a
natural uplift of the black shells to the shellworld picture. This is a very
intriguing possibility and is something that we hope to investigate further
in a future work.
To conclude, the ideas presented here open up very exciting avenues for

further investigation and we hope to explore them in our future research.
It would also be very interesting to see if these ideas survive observational
tests and the test of time.
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Svensk sammanfattning

Det har gått nästan två årtionden sedan man upptäckte att vårt universum
domineras av en mörk energi som får det att expandera allt snabbare. Den
överraskande upptäckten ändrade helt vår uppfattning om universum och
belönadesmed 2011 årsNobelpris. Fysiker har försökt att förstå denmörka
energins ursprung inom ramen för gängse teorier. Man har kopplat den
mörka energin till den kosmologiska konstanten i Einsteins fältekvationer
för den allmänna relativitetsteorin. Den kosmologiska konstanten är enligt
experimentella mätningar numeriskt liten och positiv.
En förklaring till mörk energi kräver inte bara fysik på en galaktisk skala,

utan också fysik på skalor mycket mindre än atomens storlek. Detta kräver
en teori som inkluderar den allmänna relativitetsteorin, som beskriver ob-
jekt på stora skalor; samt också kvantmekaniken som beskriver små objekt
på små skalor. En sådan teori skulle kunna förklara fenomen på alla skalor
och är således en teori för allting. Vi har hittills inte lyckats hitta en sådan
teori.
Strängteorin är dock den bästa kandidaten för en sådan fundamental

teori. Strängteorin antar att universum är uppbyggt av små strängar (kan-
ske en miljard miljard gånger mindre än protonen) och att partiklar är vi-
brationer hos sådana strängar. Teorin kräver tio rumtidsdimensioner (vil-
ket kan jämförasmed vårt universums fyra rumtidsdimensioner). Strängte-
orin har också en elvadimensionell kusin känd som M-teorin, vilket är en
teori bestående av membran istället för strängar. Strängteorin innehåller
dessutom tunga högredimensionella membran som är relaterade till mem-
branen i M-teorin. Eftersom extra rumsdimensioner inte har observerats
experimentellt måste dessa sex extra dimensioner i strängteorin (eller sju
i M-teorin) vara extremt små och kompakta. Det finns olika sätt att kom-
paktifiera dimensionerna, vilket ger upphov till distinkta teorier i våra fyra
rumtidsdimensioner. Till följd av de många olika sätten att kompaktifiera
de extra dimensionerna, finns det ett enormt antal av möjliga fyrdimen-
sionella teorier som strängteorin kan ge upphov till. Alla dessa fyrdimen-
sionella teorier beskriver ett distinkt universum. Svårigheten är att hitta
vårt universum, med rätt mängd mörk energi. Denna utmaning har syssel-
satt fysiker de senaste två årtiondena.
Trots de otaliga möjliga universumen så har detta visat sig svårare än

väntat. Att hitta en tillfredsställande modell av mörk energi är fortfarande
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ett öppet problem inom strängteorin. Till följd av många oväntade hinder
har vissa forskare även gått så långt som att föreslå att det kan vara omöjligt
att konstruera en positiv kosmologisk konstant inom strängteorin.
Strängteorins matematik kan bara hanteras om man gör vissa approx-

imationer. Utmaningen med att konstruera en positiv kosmologisk kon-
stant är att det ofta krävs ingredienser där dessa approximationer inte län-
gre är giltiga. Många av de konstruktioner som föreslagits är av denna typ. I
denna doktorsavhandlingen presenterar jag en konstruktion vid lågenergi-
gränsen av M-teorin och formulerar en modell för mörk energi där approx-
imationerna är under kontroll. Detta är ett lovande nytt resultat som banar
vägen för ytterligare konstruktioner som inte bara är giltiga vid lågenergi-
gränsen av M-teorin, utan vid alla energier.
Ett annat spännande resultat som jag presenterar i denna avhandling

är en helt ny konstruktion av mörk energi inom strängteorin. Jag antar
att vårt universum är inbäddat i ytan av en sfärisk bubbla som expanderar
i fem dimensioner. En sådan bubbla skulle bestå av högredimensionella
membran från strängteorin, där den femte rumsdimensionen är inte nöd-
vändigtvis liten. Detta är en radikal ny modell som skulle kunna förklara
mörk energi. Materiepartiklar svarar mot strängar som sträcker sig ut från
bubblan i den femte dimensionen.
Ett annat öppet problem inom fysiken rör svarta hål. Dessa svarar mot

kroppar vars gravitationskraft är så stor att inte ens ljuset kan ta sig därifrån.
Svarta hål omsluts av en händelsehorisont somutgör en enkelriktad väg för
ljus och materia. Närvaron av en händelsehorisont skapar en konflikt mel-
lan två grundläggande fysikaliska principer: den ena ifrån den allmänna
relativitetsteorin och den andra ifrån kvantmekaniken. Antag att en na-
tionalencyklopedi kastas in i ett svart hål. Stephen Hawking – en av de
mest kända fysikerna någonsin – upptäckte att svarta hål inte kan existera
för evigt. Istället dunstar svarta hål så småningom bort, vilket gör att också
informationen som ramlar in försvinner och aldrig kommer tillbaka. Vid
första anblick förefaller detta inte vara ett så stort problem. Borde inte in-
formation försvinna omdu eldar upp en bok? Även om så verkar vara fallet,
är det faktiskt möjligt att samla in all aska, rök och ljus från elden och åter-
skapa informationen i boken. Det må kräva avancerad utrustning och hårt
arbete, men det är i princip möjligt. Problemet med svarta hål är att det
inte är möjligt, ens i princip, att återskapa informationen. En sådan infor-
mationsförlust går emot kvantmekanikens fundamentala principer. Detta
kallas informationsparadoxen. Troligen krävs en ny fundamental teori,
som strängteorin, för att man skall kunna lösa problemet.
I avhandlingen presenterar jag ett nytt försök att lösa gåtan, där jag an-

vänder strängteorin för att konstruera en nytt slags objekt med egenskaper
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som liknar de hos svarta hål men utan en händelsehorisont. Ett sådant ob-
jekt består av strängteoretiska sfäriskamembran i form av ett svart skal och
har en härva av vibrerande strängar på ytan. Allt som dras till det svarta
skalet träffar till slut ytan och blir till en del av stränghärvan. Om svarta
hål i själva verket är svarta skal skulle informationsparadoxen lösas upp
eftersom ingen händelsehorisont existerar. I avhandlingen konstruerar jag
också roterande versioner av de svarta skalen som efterliknar roterande
svarta hål. Fastän de svarta skalens egenskaper liknar svarta håls, så finns
det viktiga skillnader. Dessa skillnader skulle kunna göra det möjligt att
skilja svarta skal från svarta hål genom astronomiska observationer. För-
hoppningen är att man kommer att nå den nödvändiga precisionen inom
en nära framtid.
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