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1. Introduction

Quantum field theory could be described as a theoretical framework for the
study of physical systems. Itis a collection of techniques, notions and tools that
allow us to calculate physical quantities of interest. Despite its name, quan-
tum field theory is not precisely a theory, but only a framework that needs to
be supplemented by a model in order to form a complete physical theory. A
celebrated example of such a theory is the Standard Model of particle physics.
Quantum field theory (in conjunction with suitable models) has proved extraor-
dinarily successful during the previous decades. For instance, quantum elec-
trodynamics boasts one of the most accurate predictions of any natural science
for the calculation of the anomalous magnetic dipole moment (see for exam-
ple [Hanneke, Hoogerheide, & Gabrielse, 2011]). Another case of a resound-
ing success was the prediction of the existence of the Higgs particle ([Englert &
Brout, 1964], [Higgs, 1964] and [Guralnik, Hagen, & Kibble, 1964]), whose
experimental confirmation came almost fifty years later ([Aad et al., 2012] and
[Chatrchyan etal., 2012]). Furthermore, the usefulness of quantum field theory
extends to other domains, such as condensed matter physics and cosmology.

Despite its success, the framework is surrounded by a wealth of open prob-
lems. For instance, its full rigorous mathematical formulation still evades us.
The problem of the existence of the Yang—Mills theory and its mass gap is
included in the “Millennium Problems” list of the most important open math-
ematical problems of the Clay Mathematics Institute [Witten & Jaffe, n.d.].
The strong coupling dynamics of gauge quantum field theories remain largely
intractable. When one starts considering also the models that get combined
with quantum field theory to build physical theories, even more issues arise.
The hierarchy problem, the cosmological constant problem, and the strong
CP problem are just a few of the major open issues. Perhaps the greatest chal-
lenge of all arises when one attempts to incorporate gravity in the framework
of quantum field theory and reconcile it with general relativity to formulate a
theory of quantum gravity, a theory necessary for the microscopic description
of black holes. This brief overview of open problems is far from exhaustive and
it is only indicative of the opportunities for further research.

One of the most promising ideas proposed to resolve some of the prob-
lems of quantum field theory is that of supersymmetry, first introduced in the
papers [Gervais & Sakita, 1971], [Golfand & Likhtman, 1971] and [Volkov &
Akulov, 1973]. Supersymmetry is a spacetime symmetry that connects bosonic
and fermionic fields. It manages to evade the Coleman—Mandula no-go theo-
rem [Coleman & Mandula, 1967] by introducing fermionic symmetry genera-
tors and thus enlarges the spacetime symmetry group to the SuperPoincaré
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group. According to the Haag—Lopuszanski-Sohnius theorem [Haag, Lo-
puszanski, & Sohnius, 1975], this extension of the Poincaré group is unique.
The canonical reference work for supersymmetry is [Wess & Bagger, 1992],
while a more pedagogic introduction is offered in the lecture notes by Bertolini
[Bertolini, n.d.].

Regardless of whether a quantum field theory has supersymmetry or not,
one can distinguish between two different approaches in studying it: the per-
turbative approach, where one tries to find a small parameter in the theory in
order to set up a perturbative expansion, and the exact approach, where one
seeks exact solutions, sometimes in regimes that perturbation theory cannot
reach. While both techniques have their merits and are used by researchers in
a complementary fashion, here we shall focus on exact results.

In this thesis we employ various techniques to extract exact results for su-
persymmetric quantum field theories. One might have objections for the study
of theories with supersymmetry, as despite their numerous theoretical appeals,
the predictions of supersymmetry have yet to be experimentally verified. How-
ever, in this thesis we take an agnostic view towards this point. Regardless of
whether supersymmetry is physically realized or accessible at energy scales we
can probe with our experiments, it has been an essential ingredient in the vast
majority of exact computations performed both in this thesis and in theoretical
physics in general. Our motivation for studying supersymmetric quantum field
theories in this thesis is not its possible relevance in nature, but the fact that
it allows us to improve our understanding of the complicated subject of quan-
tum field theory. Supersymmetric theories offer a rare opportunity to obtain
exact results even in cases of interacting theories. This can provide valuable
insights about the subject, regardless of the realization of this symmetry in na-
ture (although if indeed realized, arguably the conclusions drawn from such
calculations will be much more relevant). In any case, a great number of exact
results in supersymmetry have been obtained for theories with N” = 2 or more
supersymmetry, which cannot be models for a theory of nature (due to the loss
of the chirality property).

The basic technique that is utilized in this thesis 1s that of supersymmetric
localization, a technique that allows us to obtain one-loop exact results. Super-
symmetric localization is a particular case of equivariant localization, first used
in theoretical physics in [Witten, 1982] and more recently in a seminal paper by
Pestun [Pestun, 2012], where it was employed to derive the partition function
and a circular Wilson loop expectation value in N = 2 super Yang—Mills on the
four-sphere. Using this technique, one is able to reduce an infinite-dimensional
path integral to one of lower dimensionality. In favorable cases, one could end
up even with a zero-dimensional field theory, i.e. a matrix model.

In addition to supersymmetric localization, another important notion that
appears in the thesis is that of topological twisting, whose first appearance was
in a fundamental paper by Witten [Witten, 1988a]. In this paper, Witten stud-
ied N' = 2 super Yang-Mills and revealed a deep relation between quantum

10



field theory and geometry. He demonstrated that correlation functions of this
theory compute Donaldson invariants [Donaldson, 1990] for the manifolds, of-
fering a paradigmatic example of the interplay between theoretical physics and
mathematics. While the equivariant generalization of this twisting procedure
seems a priori unrelated to Pestun’s localization, it was shown in [Festuccia,
Qiu, Winding, & Zabzine, 2020] that the two classes of theories studied using
these techniques can be examined with a unified approach.

Lastly, another powerful concept we employ that constrains the dynam-
ics of theories, is that of infinite-dimensional chiral algebras. This concept is
so powerful that, when present, allows us to investigate even cases that lack
a Lagrangian description. Normally such algebras are present only in two-
dimensional conformal field theories, but it was shown in [Beem, Lemos, et al.,
2015] that they can also be found in ' = 2 superconformal field theories in
four dimensions, by passing to the cohomology of a special supercharge.

The thesis at hand is composed of four works on the topic of exact results
in supersymmetric gauge theories and it is split in two parts. The first part
presents a short introduction to the techniques employed in these four works,
and the second reviews (in the case of the published works) or describes (in the
case of unpublished ones) the developments made in our research efforts.

The rest of this thesis is structured as follows. In Chapter 2, we begin with
an introduction to the technique of supersymmetric localization. We explain
how to construct a supersymmetric theory on a curved manifold, and present
the localization argument. Then, in Chapter 3, we continue with an exposi-
tion of a few basic tools for the study of matrix models, which often arise from
localization. In particular, we concentrate on the analysis of the saddle-point
equation of the matrix models. In Chapter 4, we conclude our introductory
material in Part I with a presentation of the main ideas of topological twisting
in supersymmetric theories. We define the notion of a topological quantum
field theory, and then proceed to explain the twisting procedure for N = 2
theories.

We begin Part II, where novel developments are presented, with a review of
Paper Iin Chapter 5. In this work, we employ localization to calculate the par-
tition function for certain gauge theories in spheres of various (not necessarily
integer) dimensions d, proving a conjecture formulated in [Minahan, 2016].
After defining the theory on the spheres (with 8 supercharges on d < 5 and
4 ond < 3), we set up the localization computation. Then, we embark on
computing the super-determinants by computing the spectra of the relevant
operators. Lastly, we perform an analytic continuation of the theory with 4
supercharges for the case of the four-sphere and conduct checks for the result.

Then, we proceed with Chapter 6, where we present unpublished work on
two-dimensional maximally supersymmetric Yang—Mills. This effort leverages
the results of Paper I to investigate the matrix model arising from the localiza-
tion of the aforementioned theory. We study the theory using analytical and
numerical approaches and find evidence of a phase transition. We conclude
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the chapter with a discussion of our preliminary results and sketch the next
steps for this project.

Next, in Chapter 7, we review Paper II, where we take on a slightly differ-
ent research direction and execute a cohomological twist of a class of N' = 2
gauge theories with matter, extending the work of [Festuccia et al., 2020]. After
defining the theory on a general class of four-manifolds, we introduce a novel
projector acting on spinors (in the spirit of the “flipping projectors” of [Festuc-
cia et al., 2020]) and perform the twisting. Having translated the theory in the
cohomological language, we proceed to localize the resulting theory using an
index computation.

Finally, in Chapter 8, we present unpublished work on another approach to
N = 2 supersymmetric theories, where we search for chiral algebras analogous
to those of [Beem, Lemos, et al., 2015] in H? x S*. The choice of this particu-
lar space is explained in the chapter and has to do with its isometry group. We
begin by motivating the work and reviewing the notion of a chiral algebra in
conformal field theory. We also recall the construction of the chiral algebra in
R*in [Beem, Lemos, et al., 2015]. Then, we start the exposition of our prelim-
inary results on the topic. We define a supersymmetric theory on H? x S1, we
examine the superalgebra of the theory, and proceed to define the twisted su-
peralgebra. We subsequently employ a localization technique, appearing also
in [Dedushenko, Pufu, & Yacoby, 2018] and [Bonetti & Rastelli, 2018], that
allows us to recover chiral algebras via a technique different from the original
work [Beem, Lemos, et al., 2015]. We finish the chapter with an examina-
tion of the line operators that could be incorporated in our framework, and a
discussion of the project and its future directions.

12



Part I:
Introductory material






2. An brief introduction to supersymmetric
localization

In this chapter, we present a short general introduction to the technique of su-
persymmetric localization, which we will use throughout the thesis. We begin
in Section 2.1 by briefly reviewing two common approaches to define a super-
symmetric field theory on a curved manifold. Then, we proceed in Section 2.2
with a presentation of the arguments behind supersymmetric localization and
a discussion of the main steps in a localization computation. The most com-
plete source of information on the subject is probably the recent review [Pestun
etal., 2017], while pedagogical introductions to the subject can be found in the
lecture notes [Benini, 2016], [Cremonesi, 2013] and [Marino, 2011].

2.1 Rigid supersymmetric field theories in curved
spacetime

Before starting to discuss supersymmetric localization, one needs to possess a
supersymmetric theory on a curved manifold, as most localization computa-
tions are performed on compact curved spaces (the curvature acts as a cut-off
for infrared divergences). This can be done by transferring a field theory known
in flat space. To begin this process, we can insert the curved metric wherever we
encounter the flat metric in the original theory and covariantize all derivatives.
For a supersymmetric theory, this should be done for both the Lagrangian and
the field variations. A fundamental requirement for a supersymmetric field the-
ory is that the variation of its Lagrangian with respect to the supercharges is a
total derivative:

DL =a, ()" 2.1)

where the superscript (f) denotes flat space quantities. However, when one
performs these changes to transfer the theory to a curved manifold, one ends
up with a field theory that fails to be supersymmetric:

5L £V, ()", (2.2)

where the superscript (¢) indicates the curved space analogs of the flat space
quantities obtained by replacing the metric and covariantizing the derivatives.

We will present two approaches to solving this issue. The first one seeks
to remedy the problem, by treating the flat space variation with the metric
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and derivative replacements, henceforth denoted by 6(9), as the zeroth order
contribution in an expansion of the curvature scale 7 of the manifold:

§=01 )" riné(m 2.3)

n>1

and similarly for the Lagrangian:

1
L=L94>" 7715(")’ (2.4)

n>1

where £(9) is the flat-space Lagrangian with its metric and derivatives replaced.
Following this method, one has to check the closure of the supersymmetry al-
gebra and ensure that the Lagrangian is supersymmetric order by order. The
careful reader will notice that the upper limit of the sums in the two equations
above was omitted. The sum has to terminate at some finite order, because
7 has dimension [m]~! and at some point one runs out of relevant operators
from the theory for building £(™).

Of course this procedure is not guaranteed to succeed. If one exhausts all the
relevant operators of the theory and the supersymmetry algebra does not close
or the Lagrangian is not supersymmetric, then the manifold does not admit a
supersymmetric field theory with this field content.

This approach, while straightforward, has some disadvantages. First of all,
it has to be repeated for each manifold. Furthermore, in all known examples
where this method was successful, it sufficed to use first and second order cor-
rections in the expansions for the variations (2.3) and Lagrangian (2.4) respec-
tively. The perturbative approach described above does not seem to be able to
provide a justification for this observation.

Some of the shortcomings of this method get addressed in another approach,
put forward in [Festuccia & Seiberg, 2011]. The authors of this paper suggest
that to build a supersymmetric theory on a curved spacetime, one should couple
the original theory to some supergravity theory and take the so-called “rigid
limit”. This corresponds to:

» taking the limit of vanishing Newton’s constant Gy,

* freezing the metric to that of the desired space, and

» fixing the auxiliary fields to appropriate background values (depending

on the number of supercharges that we want to preserve).

The condition we need to impose is that all fermionic fields of the gravity multi-
plet, as well as their variations, should be equal to zero. This condition gives rise
to the generalized Rilling spinor equations, which are a set of first order partial dif-
ferential equations that contain the bosonic fields of the gravity multiplet. The
supersymmetric theory can be put on a specific curved manifold only if we can
find non-vanishing spinors that satisfy the generalized Killing spinor equations.
The solutions to the generalized Killing spinor equations span a vector space
of dimension equal to the number of supercharges that the background admits.
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If we solve the generalized Killing spinor equations and derive the back-
ground gravity multiplet fields that satisty them, we can get the desired super-
symmetric theory by the rigid limit of the combined supergravity and original
theory. The resulting theory will contain the background values of the super-
gravity fields and the supersymmetry variation of its Lagrangian will satisfy:

L=V, (..)". (2.5)
Its supersymmetry transformations form a subalgebra of the local supersym-
metry algebra and thus the supersymmetry algebra will close without any ad-
ditional effort.

Note that some of the formulas derived using this method can be reused for
other backgrounds that satisfy the same Killing spinor equations, in contrast to
the first technique, where one needs to repeat the analysis for every new case.

Using the rigid supergravity approach of [Festuccia & Seiberg, 2011], we
can also solve the riddle of why the expansions (2.3) and (2.4) terminate at first
and second order in 1/7 respectively. The expansion can be thought of as an
expansion in the gravity multiplet auxiliary fields. These fields enter the super-
symmetry transformations only linearly and the Lagrangian only quadratically,
hence the truncation of the expansions (2.3) and (2.4).

2.2 The supersymmetric localization argument
2.2.1 Introductory remarks

Many problems in quantum field theory amount to computing expectation
values of one or more operators. This is often stated in terms of an infinite-
dimensional path integral:

(O)...0,) = ;/[an] Oy ... 0 SHoH, (2.6)

where O; are operators in the theory, ¢ denote collectively the fields in the
theory, [D¢] is some integration measure and Z is the partition function of the
theory:

Z = / (D] e SHoH, 2.7)

The path integral is an object that is notoriously difficult to formalize mathe-
matically and also very difficult to compute, especially in interacting field theo-
ries. Over the years, various techniques have been developed in order to enable
and facilitate path integral computations. These techniques range from pertur-
bative/diagrammatic to exact, the latter being the focus of this thesis.

One of the most powerful exact computational techniques for path inte-
grals is that of supersymmetric localization. This method is a type of an equiv-
ariant localization (the interested reader can consult the mathematical liter-
ature on the subject, for instance [Berline & Vergne, 1982], [Duistermaat &
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Heckman, 1982] and [Atiyah & Bott, 1984]). The first early signs of the use-
fulness of localization in the Theoretical Physics literature appeared in 1982,
when Edward Witten first used it in his paper on supersymmetric quantum
mechanics [Witten, 1982]. Witten continued utilizing similar concepts in his
papers on the two-dimensional topological sigma model [Witten, 1988b], four-
dimensional topological gauge theories [Witten, 1988a] and later mirror sym-
metry [Witten, 1991] and two-dimensional gauge theories [Witten, 1992]. An-
other important milestone in the evolution of the subject is the use of this
technique by Nikita Nekrasov in the computation of the instanton partition
function [N. A. Nekrasov, 2003], building on prior work in [Losev, Moore,
Nekrasov, & Shatashvili, 1996], [Losev, Nekrasov, & Shatashvili, 1998], [Los-
sev, Nekrasov, & Shatashvili, 1999], and [Moore, Nekrasov, & Shatashvili,
2000b]. Finally, the paper that opened the floodgates for the field was [Pes-
tun, 2012], where Vasily Pestun used the technique to compute the partition
function and the circular Wilson loop expectation value for N = 2 super Yang—
Mills on S* and showed that the technique can be used beyond topological field
theories.

2.2.2 How to perform a localization computation

Let us now turn to explaining how one can use the technique. Consider a quan-
tum field theory that possesses a supercharge () (or more generally a Grass-
mann-odd charge), whose square satisfies:

Q? = B, (2.8)

where B is some bosonic charge. It can be a combination of gauge, global
and spacetime symmetries. We will restrict our attention to the set of gauge
invariant operators that satisty the following property:

QOgps = 0. (2.9)

These operators Opps are called BPS operators. 1t is the expectation values of ex-
actly these operators that one can compute using supersymmetric localization:

(Opps) = % /[D¢] Opps ¢ S, (2.10)

Note that from now on, we will omit the normalization of the path integral by
the partition function to avoid visual clutter. The argument below is identical
when one restores the factor 1/Z to the expressions.

Now, let us deform the action in the path integral by a (Q-exact term:

(Ogps)t = /[D¢] Opps e SHA RV, (2.11)
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The expression QV is commonly referred to as the localizing action. Then, one
can show that (Ogps); in fact does not depend on ¢:

i<OBPs>t =— /[D¢] Opps (QV)eSHoH-1QV

dt
== /[D¢] Q (OBPsvefs[{d)}]*tQV)
—0. (2.12)

At this point we have assumed that the symmetry () is not anomalous, and
hence the integration measure D¢ is invariant under (). We have also assumed
there are no boundary terms. Additionally, one can now understand why we
focused our efforts on BPS operators: QO = 0 is crucial for our argument.

So, since (Opps); is t-independent, we can evaluate the path integral for a
value of ¢ of our choice. We usually choose to take the limit ¢ — 400 and
demand that the bosonic part of QV is greater or equal to zero. This means
that main contribution for the integral will come from the saddle points of QV/,
commonly referred to as the localization locus.

The canonical choice for the localizing action is:

L = QY [@VIA+ATQ@ADT] 219
{A}
where we sum over the fermionic field content of the theory. The bosonic part
of the localizing action is then

> (1A + @A) 2.14)
A
and it is positive semi-definite. With this choice of localizing action, the local-
ization locus consists of the following configurations:

A=0, M=o, QM =0, QN =o0. (2.15)
The next step is to expand our fields around the localization locus:
1
¢ = o+ 7

with ¢ denoting the fluctuations. In the limit ¢ — 400 the only terms that
survive from the argument of the exponential in the path integral (2.11), are
those that are not suppressed by powers of 1/v/%. So, we end up with an exact
semi-classical one-loop computation (with respect to the parameter ?):

(Ogps) = /{¢ }[D¢0]OBPS|{¢O}€_S[¢O}Zl-loop[{¢0}]

¢, (2.16)

1
= [Do] Opps |, , ,e510] x ’
/{¢0} o) SDet (W)

2.17)
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where we integrate over the localization locus and SDet denotes the super-
determinant of the fluctuations. We have witnessed a substantial reduction in
the integration space: from the original infinite-dimensional space of fields to
the BPS locus. The size of this space is determined by the spacetime depen-
dence of the fields that comprise it. This can be a quantum field theory of lower
dimensionality or in the most dramatic cases, a zero-dimensional matrix model,
corresponding to ordinary finite-dimensional integrals. In the latter case, one
is able to use the tools we will introduce in Chapter 3 to study the theory.

The last step to arrive to an explicit expression in the evaluation of the path
integral is the computation of the super-determinant in (2.17). There exist two
basic approaches to accomplish this. The first, which we employ in Paper I, is to
compute the spectra of the operators that appear in the fluctuation expressions
for the space at hand. The second, exploited in Paper II, entails invoking the
Atiyah—Singer index theorem (assuming the action of an elliptic operator, or a
generalization of the theorem for a transversally elliptic one). Both approaches
have their merits and their weaknesses. When using the first approach, we
often observe many cancellations. In that sense, the second approach is more
efficient, since we concentrate solely to the modes that are not going to cancel
instead of the full spectra. On the other hand, the index method is dimension-
dependent! and is not without subtleties.

Finally, as the reader might notice, in the procedure presented above, there
have been a few points where we have a freedom of choice. More specifically,
we can choose any of the supercharges of the theory (assuming of course that
the theory has multiple) to localize, and we can choose different localizing ac-
tions instead of (2.13). This freedom 1s sometimes referred to as using different
localization schemes. Calculations performed with different schemes might yield
results that appear to disagree with each other. However, a more careful study
will reveal that the different results agree with each other up to path integrals of
Q-exact expressions, which should be equal to zero (due to a supersymmetric
analog of the Stokes’ theorem).

' Dimension-independence is a sine qua non for the computation in Paper I.
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3. A brief introduction to matrix models

In this chapter, we are going to provide a short introduction to the analysis of
matrix models. While matrix models are a very interesting topic and have nu-
merous applications, we are going to focus on the study of matrix models for
their application in the supersymmetric localization literature. Matrix models
arise in certain cases where the spacetime dependence of the localization locus
field configurations is trivial. The interested reader can find a more detailed
pedagogical introduction in [Marino, 2004]. We will begin in Section 3.1 by
explaining the basic setup of a matrix model, and then we will proceed in Sec-
tion 3.2 to examining its saddle-point equation using the resolvent technique.

3.1 Basic setup

Matrix models present an opportunity to study gauge theories in a simpler set-
ting as they are zero-dimensional field theories (i.e. they have no spacetime
dependence). Their partition function has the following form:

Z = /[DM] e~ SMI (3.1)

where M is an N x N Hermitian matrix, [DM] is an appropriate integration
measure and S[M] is the action. Expectation values of operators O(M) can
be computed in the usual way:

(O(M)) = % / (DM] e~ SMO(Ar). 3.2

The integration measure commonly employed is:

H dM;; [ [ d(ReMy;) [ [ d(imdiy), (3.3)

1<J i<j

while the action is generally of the form:

1
S[M] = Q—TrM2 + V( ), (3.4)
9
with a potential V' (M):
= %Tr MF. (3.5)
k>3
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The case where V(M) = 0 is called the Gaussian matrix model.
The presence of the trace in the action endows us with a gauge symmetry:

M — UMU, (3.6)

where U is any N x N unitary matrix. This means that we can take advantage
of this symmetry to reduce the N? degrees of freedom using a Faddeev—Popov
procedure. In essence we are seeking to diagonalize M via a unitary transfor-
mation (3.6), into:

A = diag(Ag, ..., AN), (3.7)

reducing our model to N degrees of freedom. We begin by inserting a unit:
/ DADUSN) (UMU™ — A) A%(A) =1 (3.8)

in the path integral for the partition function, which becomes:
N
7z - / T dx A2(A)e Z:5(0D, 3.9)
i=1

where we have omitted an overall constant factor, equal to the volume of the
unitary group, as it simplifies in the computation of expectation values. Next,
we need to provide an explicit expression for A?(A) using its defining equa-
tion (3.8). Tor a fixed M, the main contribution in the integral comes from
terms that very close to the unitary matrix U that diagonalizes it. This prompts
us to perform the following changes of variables:

U=(1+R)U (3.10)
with an infinitesimal, anti-hermitian R. Then, the delta function becomes:
SN UMUT — A) = W) [(1+ RU'MU ™ (1 - R) — A]
= 6N RN —NR+ A —A), (3.11)

where A’ = U'MU’~!. The matrices A and A’ are diagonal, and so is their
difference. On the other hand, the commutator [R, A’] has solely off-diagonal
components. Thus, we can split the delta function into two:

SN RA — NR+ AN —A)) = 6NV =ND([R, AN (N —A).  (3.12)
Then, by writing the commutator as:
[R, Al = Rij(Xj — X)), (3.13)
we can rewrite the condition (3.8) as follows:
b= /H d(Re Ryj) d(Im Ryj) A(A) NN (Ry;(N; = X)) (3.14)
1<j
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and finally get an expression for A({\;}):
AN =TTy =), (3.15)

i<j
which we recognize as the Vandermonde determinant.
So, after the dust has settled, we are left with the following partition function:

/Hd)\ [T = x)2e 5 = /Hd)\ e~SAD - (3.16)
1<J

where we have introduced the effective action:

Ser ({Ni}) = 222)\2+ V{A}—QZlog)\—)\) (3.17)

1<j

While matrix models are the simplest gauge theories we can study, the prob-
lems posed by their analysis are still quite difficult to tackle in their full gener-
ality. So, we will take a hint from the O(NN?) scaling behavior of the effective
action (3.17) and try to analyze the theory in the t Hooft limit where N — 400
and A = g?N = fixed [t Hooft, 1974]. In the ’t Hooft limit, the path integral
is dominated by the saddle points of the effective action. Hence, the equation
we need to study is:

8‘S(cff
= .1
o 10V
—_—. .1
z N — )\ 2 o\ (3.19)
J#i

Note that the saddle-point equation, while actually describing the behavior
of the eigenvalues of the matrix model, can also be interpreted in the following
way. One can think of each eigenvalue A; as a particle, under the influence of a
potential V' and a logarithmic interaction between the eigenvalues. Depending
on the interplay and the relative magnitude of these two factors, we can end
up with different configurations for the eigenvalues/particles. In particular,
as we will discuss later, in the case where the potential V' has more than one
minimum, the eigenvalues can split into groups.

3.2 Investigating the saddle-point equation

The starting point for the study of the saddle-point equation is the introduction
of the eigenvalue density distribution p(z):

% Z z— ) (3.20)
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where z; are the eigenvalues that satisfy the saddle-point equation.! In the ’t
Hooft limit, we can replace the sum with an integral over a contour C"

| X
— — | dz. (3.21)
vk

We will also demand that the distribution function is normalized:
/ dzp(z) = 1. (3.22)
C

The integration contour C'is taken over the intervals of finite support of p(z).
If we only have one such interval, we are discussing a one-cut solution; otherwise
we are discussing a mulli-cut solution.

By employing equation (3.21), we rewrite the saddle-point equation as fol-

lows:
1 10V p(2')
— —— =2 ! . .
)\Z+/\6,z ][dzz—z’ (3.23)

We will now proceed to search for a solution of the saddle-point equation, first
by assuming that all the eigenvalues z; lie on a single interval, and then gener-
alize to the case where the eigenvalues lie on multiple intervals.

3.2.1 One-cut solution

We begin by introducing the resolvent:

1 1
w(z) =+ > P (3.24)

or in the continuous limit:

w(z) = /R PRNLCD) (3.25)

2 —z

This is a function which is analytic everywhere in the complex plane except
for the location of the eigenvalues on an interval C. We can also extract the
asymptotic behavior of the resolvent using the normalization condition of the
eigenvalue density distribution p(z) (3.22):

w(z) — —}. (3.26)

Z—+00 z

"We rename our cigenvalues to 2; avoid confusion with the *t Hooft coupling in the continuous
limit.
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Let’s now see how to the resolvent enables us to write down a solution for
the saddle-point equation (3.23). If we evaluate the resolvent at z £ 70, we get:

w(z =+ i0) :/dz' , p(2)

2zl —2F10
][d ) :I:m/dzp(z/)é(z/ —2)
z'—z
!
- ][dz’ ’f(z ) 4 mip(2). (3.27)
2 —z
Then, by using the saddle-point equation (3.23):
1 1
w(z +10) + w(z —i0) = “3ET XV/(Z), (3.28a)
w(z +10) —w(z —i0) = 2mip(z). (3.28b)

We now have a Riemann—Hilbert problem at our hands. Since we are looking
for a one-cut solution, the singular part of the resolvent ws(z)should have the
following form:

ws(z) ~ \/(z —a1)(z — az), (3.29)

where a1 2 are the endpoints of the interval C. Then, by replacing this expres-
sion in (3.28a), we get:

V(z—a1)(z—ag) [* xV’(x)—i—x 1
5 /a dz ——— \/(@_x)(z_al).(mo)

We can then fix the endpoints a1 2 by inspecting the asymptotic behavior of the
resolvent:

_ a1+a2
w(z) = 2(1-23%) @)+ ; <—1 . x) (3.31)

\/CLQ—.Z‘ x—al

w(z) =

and so for each power of z we get:

() +x -
27T)\ \/@_w ) =0, (3.32)
and ( ) o)
T
27r)\ \/ CEDICE = 1. (3.33)

3.2.2 Mult-cut solution

The discussion of the preceding subsection can be generalized for the case of a
solution with multiple cuts. More precisely, the most general solution has n cuts,
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where 7 1s smaller or equal to the number of minima of the potential V. In this
case, the eigenvalues are distributed in n (disjoint) intervals C;, i € {1,...,n}.
We now require that the resolvent w has 2n branch points, which fixes its form
into:

V'(z) + x) 1
T Hill(x — ag)

where ay, are the endpoints of the intervals C; and the integration should be per-
formed on all C;’s. The endpoints are subject to the following n — 1 conditions:

. (3.34)

1 m V/
g V@t s (3.35)
2T A 2n
he1 (€ — ar)
where m = 1, ..., n. This means that we are left with 2n — (n —1) = n+1 of

the interval endpoints remaining to be fixed. The position of these points will
have to be fixed using some additional condition (such as putting the cuts at
equipotential lines). It is also common practice to introduce the filling fractions

fi:
fi = dX p(N), .
/Ci p(N) (3.36)

such that:

zn: fi=1. (3.37)
=1

The filling fractions indicate the number of eigenvalues contained in each cut

Ci.
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4. A brief introduction to topological twisting

In this chapter we will make a brief introduction to the topic of topological
quantum field theories (TQFTs) and their construction from N = 2 supersym-
metric theories via the procedure of twisting. 'The study of TQI"Is has been on
the most important developments of the last decades in mathematical physics,
since it has revealed deep connections between quantum field theory, geometry
and topology, and had significant insights to offer to both subjects.

We begin this chapter by introducing the concept of a topological quantum
field theory in Section 4.1. Since our purpose is to offer an introduction to
work conduced in Paper II, we will limit our presentation to the case four-
dimensional theories. Then, in Section 4.2, we turn to the twisting procedure
for N' = 2 supersymmetric theories. A great deal of additional information
and references can be found in the book [Labastida & Marino, 2005].

4.1 Topological quantum field theories

Consider a Riemannian manifold M with a metric g,,. If we construct a
quantum field theory on the manifold, then the theory will generally depend
on the spacetime metric g,,,,. However, there exist cases of theories that possess
a sector with observables that are independent of the metric:

)
O

These theories are called topological quantum field theories (TQI'Ts). We can distin-
guish two types of TQFT"s:

(0) = 0. 4.1)

o Schwarz type TQF Ts: these are field theories where all the ingredients are
explicitly independent of the spacetime metric. A celebrated example
that belongs in this category is Chern—Simons theory, first presented by
Witten in [Witten, 1988a].

o Watten type or cohomological TQFTs: these are field theories where the ac-
tion and some operators, seem to depend on the metric. However, they
possess a symmetry of the action 9:

55 [{¢:}] = 0. (4.2)

This symmetry ensures that the expectation values of a set of operators in
the theory do not depend on the metric and hence are topological. This
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can be seen as follows. The energy-momentum tensor is defined as the
variation of the action with respect to the metric:

0S[{
T,LLI/ = 5[g{f’/}] (4—3)

If T}, can be rendered in a d-exact form:
Ty = —i0 Ry, (4.4)

where R, is some arbitrary tensor, then the expectation value of an op-
erator O that is invariant under the action of the symmetry, becomes:

6(0)
dgrv

= (OT) = ~i{O8R,) = £ild(O Rw)) =0, (45)

where we have assumed that the symmetry has no anomaly and that there
are no boundary term contributions when performing the field-space in-
tegration by parts. Such a symmetry is sometimes referred to as topological.

In the following, we will concentrate on Witten type TQFTs due to their
relevance for Paper II.

For a Witten type theory, the observables we are interested in are those which
are invariant under the symmetry 0 (so that the argument of equation (4.5)
holds), but cannot be written themselves as the d-variation of another operator
(in which case their expectation value would be identically zero). Restated in
a more formal manner, we concentrate on operators that belong to the coho-
mology of the symmetry operator 0: Kerd/Im ¢ (hence the alternative name
cohomological TQFT for this type of theory). Indeed, the symmetry operator 9 is
Grassmannian in all cases found so far, but it is not always nilpotent (62 # 0).
In fact, in many theories  squares to a combination of gauge and global sym-
metries:

6% = B, (4.6)

leading us to study operators that are invariant under the action of B (equivariant
cohomology).

4.2 N = 2 topological twisting

In this section, we will describe shortly an important technique for obtaining
a cohomological TQFT from a four-dimensional " = 2 supersymmetric field
theory, introduced by Witten in [Witten, 1988a], referred to as twisting.

The theory possesses an SU(2)4 x SU(2)_ rotation symmetry group and
an SU(2); x U (1) internal symmetry group. The left- and right-handed super-
symmetry generators are o; and Qg; respectively. They satisfy the following
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commutation relations:

[]\i-[aﬁaQéi] = g5(aWp)is []\_404,8’ 6:251-] =0,
(M4, Qsi] = 0, (Mg, Q3] = €56 Q0 (4.7)
[B7,Q4] = QY. [BY, Q8] = —e"¢QY),

where Mg (Md/;) are the SU(2)_ (SU(2)4) generators, while BY are the
SU(2)1 generators. The Latin indices 4,7 = 1,2 are SU(2); indices, while
the Greek indices «, 3 (&, §) are SU(2)_ (SU(2).) indices. The fully antisym-
metric symbols €;; are defined so that el2= g5 =+1and similarly for their
dotted counterparts. Symmetric index combinations are denoted by indices in
parentheses pairs.

To perform the twisting, we identify the internal SU(2) group indices i, j

with the SU(2)4. indices &, 3. We also introduce a new generator M 5
M, =M~ B, (4.8)

This generator belongs to the new rotation group of the theory, SU'(2)4 X
SU(2)—. The supercharges of the ' = 2 algebra become:

Qai = Qup Qai — ng (4.9)
Now we can isolate and define a special supercharge:
Q=c%Q, ;. (4.10)

called the topological supercharge. This supercharge is nilpotent, invariant under
the new rotation group SU’(2)4+ x SU(2)_ and corresponds precisely to the
0 symmetry operator that renders the theory topological.

If one follows this procedure for the four-dimensional N' = 2 super Yang—
Mills (as in [Witten, 1988a]), one obtains the celebrated topological theory
called Donaldson—Witten theory, whose correlation functions provide Don-
aldson invariants [Donaldson, 1990]. The theory has additional remarkable
properties. First of all, since the twisting procedure eliminates all spinor fields
from the theory (converting them to differential forms), the resulting theory
can be defined on any orientable Riemannian four-manifold. What is more,
one can show that the action of the theory is Q-exact (up to a topological term)
and that the expectation values of products of Q-invariant operators are inde-
pendent of the coupling constant. This means that we can send the coupling
constant to infinity and obtain the correlation function just by computing the
classical configuration and the quadratic fluctuations. Hence, we have another
example of an exact semi-classical approximation (which historically preceded
the other famous case of Pestun’s supersymmetric localization [Pestun, 2012]).

The same technique can be applied to the four-dimensional hypermultiplet.
Here the twisting cannot remove the spinor objects from the theory, a fact
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which limits the generality of the resulting theory to Spin manifolds. The ob-
struction is the global construction of a spinor field on the manifold, quantified
by the second Stiefel-Whitney class, which needs to vanish for the spinor field
to be globally well-defined. However, this issue can be remedied if one re-
places the Spin structure with a Spin,, structure, which exists for any orientable
Riemannian four-manifold (see [Hyun, Park, & Park, 1995] and [Labastida &
Marino, 1997]). This problem can be also circumvented in the case of a hyper-
multiplet transforming in the fundamental of an SO(3) gauge group [Moore
& Witten, 1997].
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Part II:
Developments






5. Localization on S¢

In this chapter we discuss the developments made in Paper I on the localiza-
tion of supersymmetric gauge theories on d-dimensional spheres. We begin in
Section 5.1 by motivating and discussing the work, and then we proceed by
providing a more in-depth view. In Section 5.2, we present the construction of
a supersymmetric theory on a S%, for the case of 16,8 and 4 supercharges, in-
cluding the off-shell formulation required for localization. Then, in Section 5.3,
we describe the localization process, and in Section 5.4, we briefly review the
results from the calculation of the super-determinants. Finally, in Section 5.5,
we perform an analytical continuation of the partition function for the case of
4 supercharges to the four-dimensional sphere and conduct a few consistency
checks.

5.1 Introduction

After the foundational work of Pestun [Pestun, 2012], a substantial effort was
made to calculate observables in supersymmetric field theories on curved space-
times of various shapes, dimensions, and with different numbers of supercharges.
In the majority of these works, the theories are placed on compact manifolds,
so that the theory is not plagued by infrared divergences, as the curvature of
the manifold plays the role of an infrared regulator. A natural choice for such
a compact manifold is the sphere, a simple, maximally symmetric space that is
conformally flat.

Motivated by the results of computations with 8 supercharges on S? [Ka-
pustin, Willett, & Yaakov, 2010], S* [Pestun, 2012] and S® [Killén & Zabzine,
2012], Minahan formulated a conjecture in [Minahan, 2016]', on the general
form of the one-loop determinants that result from localization, as functions
of the spacetime dimension d of the spheres, where 3 < d < 7. The rele-
vant localizing action for arbitrary dimensions had been written in an earlier
paper [Minahan & Zabzine, 2015]. An important observation was that the
computation did not assume that the parameter d is necessarily integer.

The proposal is consistent with the results for S3, 5% and S® for 8 super-
charges, as well as the results for maximally supersymmetric field theory on S°

"Note also that the conjecture was exploring the case of zero instanton contributions, which is
sufficient for the case of large-N limit studies, but will need to be extended if one needs to move
beyond it.
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and S7 in [Minahan & Zabzine, 2015]. The conjecture was also subjected to
one-loop tests in [Minahan & Naseer, 2017] and was found to be consistent
with the appropriate flat space limits.

The conjecture of [Minahan, 2016] was proved in Paper I for the case of d-
dimensional spheres S%, with d < 5, since we were able to compute the parti-
tion function for supersymmetric gauge theories with 8 supercharges. Further-
more, in the same work, we employed similar techniques to derive the partition
function for the case of theories with 4 supercharges on spheres of dimension
d<3.

Browsing the localization literature, an attentive reader might notice that
there exist two significant missing cases: N' = 1 on S* and N' = 1 on S°.
While a supersymmetric field theory with 4 supercharges has been written for
the four-sphere [Festuccia & Seiberg, 2011], it is not known how to write a
semi-positive-definite localizing action with supercharges that close the algebra
up to a symmetry of the Lagrangian. The case of the six-sphere is perhaps
more challenging, as there seems to be no superalgebra with 8 supercharges
that is compatible with the manifold (but see [Naseer, 2019] for an alternative
approach based on a spacetime-dependent coupling constant).

In an effort to address the elusive case of A = 1 on S%, in Paper I, we also
performed analytic continuation from three to four dimensions to obtain a par-
tition function. Our proposal passes the test of comparison with the partition
function of a vector multiplet with U(1) gauge group and that of a free chiral
multiplet with zero mass. Furthermore, the one-loop f function obtained from
our formulas match that of a general N = 1 theory. In addition, we performed
analytic continuation for a mass deformation of N' = 4 super Yang-Mills, that
preserves N = 1 supersymmetry, in order to make contact with holographic
results for N’ = 1* from [Bobey, Elvang, Kol, Olson, & Pufu, 2016]. In par-
ticular, we found a match in the general structure of the real part of the free
energy F' between the two sides of the correspondence (but see Subsection 5.5.3
for a subtlety regarding the masses).

The main challenge in proving the conjecture of [Minahan, 2016], was the
computation of the super-determinants of the fluctuations away from the lo-
calization locus. In general, this calculation can be performed in two ways.
The first method is using an index theorem, as was done in [Pestun, 2012].
The second entails calculating the fluctuations of the bosons and the fermions
separately, by means of diagonalizing quadratic forms and computing eigen-
values along with their degeneracies. In some sense the index method is more
efficient, as in the second method we witness large cancellations between the
fermionic and the bosonic contribution. The nature of the computation of Pa-
per I, however, demanded generality in the dimension d. This means that the
index method was not an option, since it is dimension-dependent. In partic-
ular, the cases of even and odd dimensions are quite different, as in the case
of the odd dimension, there exists a vector field that does not vanish anywhere
(this 1s related to the so-called “hairy ball theorem” in algebraic topology). The
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computation we performed is a generalization of the one done in [Kapustin
etal., 2010] and in [H.-C. Kim & Kim, 2013]. Once again, we observed large
cancellations between the bosons and the fermions, a hint that perhaps there
might be a non-integer version of the index theorems.

5.2 Defining a supersymmetric theory on S¢

Our first task in the road to localization is to write down a supersymmetric field
theory on a curved manifold, in this case a d-dimensional sphere. In general,
this can be done using the methods described in Chapter 2, but here we will
follow the approach of Pestun in [Pestun, 2012], as was done in [Minahan &
Zabzine, 2015], and we will construct the theory via a dimensional reduction
(Scherk—Schwarz reduction) from the ten-dimensional N' = 1 super Yang—
Mills (16 supercharges). This process was done in [Blau, 2000] for on-shell
supersymmetry and in [Berkovits, 1993] and [Fujitsuka, Honda, & Yoshida,
2013] for the off-shell version. The following material constitutes a revision
and extension of results that appeared in [Minahan & Zabzine, 2015].
The Lagrangian of ' =1 SYM is:
L= —%Tr <1FMNFMN - \w\y> : (5.1)
9104 2

where M and N are spacetime indices (M, N =0,...9)and ¥* (o =1, ..., 16)
1s a Majorana—Weyl spinor, living in the adjoint representation. The matrices
'MeB and f% are the ten-dimensional real and symmetric Dirac matrices.
The Lagrangian is invariant under the supersymmetry variations:

65AM = €FM\I/, (52&)
1
AV 5Ff‘“VFMVe, (5.2b)

with € being a arbitrary constant bosonic real spinor.

Now, we perform the dimensional reduction down to (Euclidean) d dimen-
sions: we split the indices 10d spacetime indices M, N into d indices denoted
by Greek lowercase letters o = 1,. .., d, with gauge fields A,,, while the rest
of the 10d indices will be denoted by I, J, with I = 0,d + 1, ..., 9, providing
the scalars ¢7. The field strength Fjrn will be split into:

F,ul/a
FMN — F,u[ = [Dua¢l]a (53)
FIJ: [¢I7¢J]7

while derivatives along the compactified directions are considered to vanish.
The coupling constant of the resulting theory will be given by the relation:

2 g%Od
AM = 5 5.4
YM Vlofd ( )
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where the ten-dimensional coupling constant, gigq, 1s divided by the volume
of the compactified space, Vig_4. Let’s now focus on the case where the com-
pactified dimensions have the shape of a d-dimensional sphere.

As in [Pestun, 2012], we take the metric of the S¢ sphere to be:

1
2 _
ds® = mdl‘udm‘“, (55)
with # = 1/2r. The constants € that parametrize the supersymmetry transfor-
mations (5.2) are converted to conformal Killing spinors that are given by the
differential equations:

Ve =T, (5.6a)
V€ = —BT . (5.6b)

With the intention of preserving 16 supercharges, we can introduce the follow-
ing additional condition:

Ve = AT, Ae. (5.7)

A choice for A that is compatible with the consistency conditions stemming
from equations (5.6) 1s:

A =T107819. (5.8)
We can now solve the resulting system of differential equations to get:

1 _
‘= T (1 + mur“A) € (5.9

where € 1s a constant spinor. Now, depending on the number of supercharges
we want to preserve, we need to perform different modifications to supersym-

metry transformations and the Lagrangian. Let us review each case separately
below.

16 supercharges (on-shell)
For the case of 16 supercharges, we need to modify only the transformation
rule for the fermions into:

1

6t = TN Fyve+ ) %F“[@V#e, (5.10)
I

where a are constants of the following form:

A(d —
(dd 3), I=238,9,0,
oy = 4 (5.11)
= I=d+1,...,7.
d? + ) ?
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The Lagrangian needs to be augmented with the following terms:

1 d—4

9ym r
1 [dA; ;
=5 |52l 1
Lo 2 <2T2 r g1 ) : (5.12b)
1 2(d—4
Lops = —— 244, ot ([0, ¢7], 6°) . (5.12¢)
g 3T

where we have split the scalars into two groups, labeled by indices A, B (with
A,B=0,8,9 andi,j (withi,j =d+1,...,7). The constants A are given
by:
oy, I=38,9,0,
A= (5.13)
2(d—2
-2 p_ar1,.T
d
16 supercharges (off-shell)
Tor the off-shell formulation of the theory, we introduce the auxiliary fields K,
and the bosonic pure spinors v, where m = 1,...,7. The bosonic spinors
need to satisfy certain properties which can be found in the Appendix A of
Paper I. The Lagrangian needs to be augmented by the term:
1
‘Caux = TTerKm (514“)
9ym

The supersymmetry variations now become:

0Apy = ey, (5.15a)
Lovn AT i m

0cW = STM N Fyve + ZI: ST OV e+ K v, (5.15b)

§ K™ = —v" PV + B(d — 4)v" AV, (5.15¢)

The second variation of the fields is given by a sum of the Lie derivative along
a vector field v™ (some components of which are along the sphere), a gauge
transformation and perhaps an R-symmetry transformation.

8 supercharges (on-shell)
For the case of 8 supercharges in d < 5, we should impose the following addi-
tional constraint on the Killing spinor:

T'e = +e, (5.16)
where we have introduced I™:

[ =679, (5.17)

37



We also split the field ¥ into vector multiplet and hypermultiplet components:

U =1+ x, (5.18)
which satisfy the chirality conditions:
'Y =+,
v v (5.19)
I'y=—x.

The scalars ¢! with I = 6, ..., 9 are distributed in the hypermultiplet, while
the rest are included in the vector multiplet. The constants oy for I =6,...,9

are modified to:
_2(d-2) n diormr

ap = 7 7 (5.20)
where m is the hypermultiplet mass and the o are defined as below:
06,7 = +1, 0g9 = —1. (5.21)
The Lagrangian needs to be supplemented by the terms:
1 ,..d—4
Loy = ———Tr YA, (5.22a)
- R 2
Lop = ——— (Tr [0y > , (5.22b)
e Gou \ 277
1
Ly = ——5— (=imTrxAx). (5.22¢)
Iym
4 ,
Loso = =5~ [(Bld—4) +im) Tr(¢"[¢", ¢'))
YM
— (B(d = 4) = im) Tr(¢[6%, &"])], (5.224)

where now Ay is given by:

d(d— 2
AI: % (mT(mT-i-’L‘O'[)‘i‘(Zl)); -[26)79 <523>

8 supercharges (off-shell)
For the off-shell formulation of a theory with 8 supercharges, the pure spinors
needs to satisfy the relations:
Tvy = +vm, for m=1,2,3, (5.24a)
lvpy = —vm, for m=4,...,7 (5.24b)

and the auxiliary fields K" split up accordingly and get distributed in the vector
multiplet and the hypermultiplet. Their variations are:

—V" DY+ B(d — 4)v™ Ay, for m=1,2,3,
0 K™ = (5.25)
—v™m Py — 2imrBrm Ay, for m=4,...,7.

38



4 supercharges (on-shell)
For the case of 4 supercharges in d < 3, we should impose the following addi-
tional constraint on the Killing spinor:

e = +e, (5.26)
where we have introduced I":
[V =458, (5.27)

The situation in the case of 4 supercharges is somewhat more complex, as
is often the case when moving to theories with fewer supersymmetries. The
spinor W splits into a vector multiplet fermionic field (1)) and three chiral mul-
tiplet fermionic fields (x;):

3
=1+ . (5.28)
=1
The chirality conditions now become:
Iy = (—1) 0y, (5.29a)
M = (1), (5.29b)
[ =T =+, (5.29¢)

where we have written [ in a binary form using the binary digits for [, 55((), in
the following form:

L=2P5(1) + B1(0)- (5.30)
The scalar fields are distributed into a vector multiplet (¢° and ¢?, with i =
d+1,...,3)and three chiral multiplets, containing two scalar fields ¢7,, with

I; =2l + 2 or 2] 4+ 3. The constants oy now are:

2(d — 2 44
o = g, = 2 - )4 L (5.31)

with
o = op, = (—1)#0A0), (5-32)

The supersymmetry variations for the fermionic fields now become:
1 1o a
by = S Farn TN et O3 [on, @] et Y I 9aV e,
=1 a
(5.33a)
1
56Xl = Dud)fz IWIZG + [d)av (bfz]ralle + §6lmn [¢1m7 ¢J7L]FImJn6

70/
+3° #F“I‘ dn Ve, (5.33b)
I,
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where M/, N' =0,...,3anda = 0,d + 1,..., 3. Note that the existence of
fields outside each multiplet in the variations is related to the on-shell formula-
tion supersymmetry we are using.

The Lagrangian needs to be supplemented by the terms:

3
1 .
Lyxx=—=5— Z (—imy Tr xaAxa) (5.34a)
9ym =
3
1 dA
Los=—— Z( . o Tr¢l,¢]l>, (5.34b)
9ym = r
3
4 .
Logp = TR > [y + Bogy(d — 4))Tr (¢%[are2, dorys])] . (5.34c)
YM
where
2 : d(d—2)
A(l) = AIZ = a ml’f‘(mlT + ZO'([)) + T (535)

The requirement of invariance of the Lagrangian under a supersymmetry vari-
ation now yields the following condition on the masses:

3
Bld—4)+i» oqymg =0. (5.36)
=1

4 supercharges (off-shell)
For the case of the off-shell formulation of the theory with 4 supercharges, we
impose an additional condition on the pure spinors:

vy = +Upm, for m=1,4,5, (5.37a)
vy = —Upm, for m=2,3,6,7. (5.37b)
The supersymmetry variations of the auxiliary fields become:
—V" DY + B(d — 4)v™AY,  form =1,
—v" Py — 2ip v Ax1,  form = 2,3,
0 K™ = (5.38)
V" Do — 2ipo S Ay, form = 4,5,
—v™IDx3 — 2ip3BrAxs,  form = 6,7,

where we have introduced the dimensionless parameters g := myr.

5.3 Localization preliminaries

Having defined the supersymmetric field theories we would like to investigate
on the d-dimensional spheres, we now move on to the task of localization. The
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potential out of which we will build our localizing action is:

V= / dz\/g T’ (V6T , (5.39)

where we have introduced a positive-definite inner product Tr" on the Lie al-
gebra, which could be distinct from the one used in the original Lagrangian.
For the sake of avoiding visual clutter, we omit the trace from all the rest of this
chapter. Then, the localizing action will be:

QV = / Az /g 0-V5. ¥ — / dz /g V6. (5.7). (5.40)

The factor 6. ¥ will be given by:

1~ -
50 = STV Ey T+ DOV e = KD (541)
It will also prove useful to split the action into a fermionic part £ and a bosonic
part L.

To identify the localization locus, we turn to the bosonic part of the action:

1 1 /N
rb— §FMNFMN _ ZFMNFM’N’ <6FMNM N 06)

. 561041 Fynos <6A(fIfMNFD _ f\OFIFMN)G)
m 0 m 52d2 2 1,0
— K™ K0® — BdoandoK™ (vmAe) + TZ(aI) dro'0. (5.49)

I

By choosing v¥ = 1, v®? = 0 and confining ourselves to the case of no instan-
ton contribution, the locus will be given by the condition:

/82612
Vb VFEe! — (K™ 4 28(d — 3)¢o (vmAe))* +

> (an)?ere’ =0.
T#0
(5.43)

Finally, choosing K" and ¢q to be purely imaginary, we obtain the following
locus:

Ko = —26(d — 3)60 (vmAe) , (5.44a)
¢ = ¢ = const,, (5.44b)
b0 = 0. (5.44c)

The classical action evaluated on this field configuration, will be:

Tr o2, (5.45)

41



where we have introduced the dimensionless Lie-algebra-valued variable o
o =Td. (5.46)

Let us comment in passing, that for d = 3, the classical action (5.45) vanishes,
but we can always add a Chern-Simons term.

As explained in Chapter 2, the next step is to examine the contribution of
the quadratic fluctuations for the bosonic and fermionic part of each multplet.
To that end, we introduce a new type of index: M:

M = {u,i}, p=1,....d, i=d+1,...,D, (5.47)

where D = 5 for the cases of 8 supersymmetries and D = 3 for the cases of 4
supersymmetries. We will also denote the regular vector fields by A,, and the
scalars of the vector multiplet by A; (except for ¢y).

Since this is a lengthy computation, so we will restrict ourselves to presenting
a summary of the final results. The interested reader can refer to Appendix B
of Paper I.

Vector multiplet

£, = AN 0N Ay — [Ag. sIAY, 68 — K™K,
—4B(d — 3)po K™ (vmAe) — o (—V* +48°(d — 3)%) do,  (5.48)

Ll = (078) + (01 [65, 9]) — 5(d ~ 3™ (41T A0)
_ i(d = 3)8 (V) (UIOT gy ) +my () (5.49)
where
S d—1)" 0
an = 462 (( . )y, 6{)’ (5.51)

d—1
———, for 8 supercharges,
my = 2 (5.52)

d — 2, for 4 supercharges.
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Hypermultiplet

9
Ly = > [¢i (=V2 + B2(d — 2+ 2ioip)®) ¢ — [, 04[5, ¢']]
1=6
+ 4B (2ip — 1) pev" V7 + 46 (2ip + 1) vV 09, (5.53)

Lhm = (Yx) + (X5 X]) — %5 (TN Ae) (T g 50)

+ 2iuBu" (XFOfNAX) . (5.54)
Chiral multiplet
3
Lo = Y [¢n (V7 + B(d — 2+ 2ioym)?) " — (65, 61,105, 0"
=1
+40 (2ip — o)) P20 Vudarrs] (5.55)
3 L
Lim = [(XlWXz) + (al®leg, xil) — 38 (GFMNAé) (T 1)
=1
+onB <2i,u,lvN (Xirof NAX1> + x,-AXl) ] (5.56)
skoskosk

The final step before the computation of the super-determinants is the pro-
cess of gauge fixing. This amounts to adding to the Lagrangian the term:

Ser = — / d*a\/gTr (bV, A" — cVc), (5.57)

which includes the Fadeev-Popov ghosts ¢, ¢ and Lagrange multiplier b. We
have also employed A’* to split the gauge field into a divergence-less part and
a pure divergence part:

A, = A+ V0. (5.58)

Next, we perform the path integration for the ghosts b, ¢ and ¢, the field ¢
(which encodes the pure divergence part of the gauge field), the auxiliary fields
K™ and the scalar ¢g. The contributions from all these fields cancel each other,
and we end up the following path integral computation to derive the partition
function:

7 = / doe™5n () / DA, DprpgDWe Swal$=260) (5 59
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We can also reduce the integration over the Lie algebra to an integration over
only the Cartan subalgebra, at the cost of a Vandermonde determinant, by
taking advantage of the invariance under the gauge group adjoint action. Thus,
we get:

Z = / [do]canane™ 5 [ [ (e, 0) / DA DrpgDWe S (00=260),
: (5.60)

Let us also recast the quadratic fluctuations in their final form before comput-
ing the super-determinants. The quadratic fluctuations are of the following
schematic form:

Lh=Tv (cI> O — [, 6], 51]> , (5.61a)
cf =T (\proof U+ OT0[¢d \If]) . (5.61b)

By expanding the fields in the Cartan-Weyl basis, ignoring an overall constant
stemming from ¢§ and writing the fields using the Lie algebra root vectors Ey:

=) O°E,, U=> U"E,, (5.62)

we can rewrite the Lagran;'an as: )
L=a" (ob +48%a, a>2) o, (5.63a)
I (Of +28(a, 0>> ve, (5.63b)

where we have used [0, E,| = (@, 0)E,. So, at the end of the day, the inte-
gration over the fields ® and W will give:

e f a,o
fovonea]- el )] -1 S
(5.64)

5.4 Super-determinants

In this section we will summarize the results of the calculation of the 1-loop
contributions to the partition function from the fluctuations around the fixed
point locus. Since the computations are long and technical we will restrict
ourselves to outlining the basic methodology and refer the interested reader to
Paper L.

First, we need to find a complete basis for the space of fields. To this end, we
define a set of spinors, which we combine with spherical harmonics to construct
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the desired basis. Then, we show that the basis we built is complete. The next
step is to compute the eigenvalues of the operators included in ©° and Of
of (5.63) for the case of a d-dimensional sphere, along with their degeneracies
and diagonalize the action of the quadratic operators O and O7 on the basis.
The computation has to be performed for the bosons and the fermions of each
multiplet separately. Then, when we combine the results from the bosonic
and the fermionic calculation, we get large cancellations and finally reach a
relatively compact expression for the 1-loop contribution. The computation
has to be repeated for each multiplet.

We performed the computation first for the case of 8 supercharges and then
for the case of 4 supercharges. The computations are largely similar, except for
a subtle issue with the completeness of the basis we constructed, which needed
to be supplemented. For the case of 8 supercharges the vector field bilinear v#
leaves an S9~* invariant (i.e. free action on S°, two fixed points on S*, fixed
St on S3, etc), while for the case of 4 supercharges, the vector field leaves an
S92 invariant.

All the results for 8 supercharges match with the predictions in [Minahan,
2016], confirming the conjectures in the paper, as well as with the prior litera-
ture on the subject.

8 supercharges

Ziti [T 0) = TLTT 10+ i o))k +d = 2+ i, o)),
: o (5.65a)
k=00
ARRE H Kkﬁ—i——i—m—i—z(a a>)
a k=0
_Nk,d
X <k‘ + % —ip—i{a, 0))] , (5.65b)
where
Ny Dltd=2) -

T'(k+ 1)I(d—2)

4 supercharges

k=00 .
o, . B (k+i{a,0)) Tk,d
Zy 100sz<a,a> = 1;[ [(k i ——— i<a’a>)] , (5.67a)

(5.67h)

k+ g —ipj —i{a, o) Ttk
> bl

Z3m, () =
tHloop 11 l;I /<7+d;22+i,uj—|—i<oz,a
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where j = 1,2, 3 and

 T(k+d-1)
A P+ )D(d— 1)

(5.68)

The complete one-loop contribution from the chiral multiplet is given by the
product:

Zihom (1, 2, ) = Z5hee (1) Zihoms (2) 250 (= p3).- (5.69)

5.5 Analytic continuation to S* for 4 supercharges

Having derived the partition function for a supersymmetric field theory with
4 supercharges on S%<3, we can attempt to analytically continue in the di-
mension and try to address the elusive case of S*. Before we embark on this
endeavor, let us mention a subtle point. It has been pointed out by Siegel
in [Siegel, 1979] and [Siegel, 1980], that dimensional regularization in this
context is not mathematically consistent (at least when a superspace formalism
1s employed). However, for low loop levels this can be circumvented by utilizing
a component formulation (see [Avdeev, Chochia, & Vladimirov, 1981]). This
argument should be enough to cover the case of a supersymmetric localization
computation which is a 1-loop exact calculation.

In this section we engage in consistency checks of our analytic continuation
proposal. We compare our proposal with the partition function of a free U (1)
theory on S and compute the one-loop beta function that results from the
analytic continuation of our formulas for an arbitrary gauge supersymmetric
theory with 4 supercharges and we find that everything is consistent. Lastly, we
make contact with a holographic computation for N' = 1* super Yang—Mills
in [Bobev et al., 2016] and juxtapose the universal parts of the free energy. We
find that at least their real parts match.

5.5.1 Check against U(1) gauge theory

Our first check is to compare the results from the analytic continuation of our
result for 4 supercharges for the case of a U(1) gauge theory with matter in the
adjoint representation. This is a free, conformal theory, so it will be straight-
forward to write it on S* and compute its partition function.

The action of the aforementioned theory will be:

it = [ v |y (V24890
500 (-V7 +85%) 6 — 0V, (570
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where ¢1 2 are two (real) scalar fields and v is a Weyl fermion field with two
components. The partition function for the chiral multiplet is:

d
Zdm = ct¥ (5.71)

M det(—=V2 + 862)

Using the expressions for the eigenvalues and their degeneracies found in the
Appendix C of the Paper I, and after a shift in the product variable we get:

< g (1))
ch.m. __
Zhm = k|_|0 (k - 1) . (5.72)

The action for the vector multiplet, written in a suggestive form, is:
Ty = / d4x\/§<A"’ [6,/(=V? +128%) + V, V] A4}, — 4 V¢
OV, A — av“a@, (5.73)

where A" is a gauge field, v is a Weyl fermion field with two components, ¢, ¢
are the Fadeev-Popov ghosts and b is the Lagrange multiplier that enforces the
Lorenz gauge condition. We split the gauge field into a divergence-less part A,
and a pure-divergence part V¢ and perform the path integration for the field
¢ and ghosts. Their contributions cancel, and we are left with the following
expression to compute:

(5.74)

o _ det’ (—=V2) det(V)
VO Jdet(—VZ + 128%)

where the expression on the denominator concerns only the divergence-less
part of the vector field. Using the formulas for the eigenvalues and their de-
generacies from Appendix G of Paper I, we finally get:

- JR
A 7 [+ 120, (5.75)
k=0

Let’s now compare with the analytically continued result for 4 supercharges
4
on S*:

o 49 (k+1) (k+2)
Zihe = 11 <k . 1) : (5.76a)
k=0
(0.]
i, = [k + 13, (5.76b)
k=0

We observe that the two results match, up to an unimportant multiplicative
constant.
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5.5.2 Beta function check

In this subsection we will compute the beta function for a supersymmetric the-
ory with 4 supercharges, for the case of one vector multiplet and N, chiral mul-
tiplets living in the R, representation of the gauge group. We will follow [Mi-
nahan & Naseer, 2017]. We replace o with to to discern the O(o?) terms in
the one-loop determinant. We begin with vector multiplet:

dlog Z)™
S S = Y o [F(d -1, 0, ta, o)
a>0 a>0
+Fd—-1,d-1, t{a,0))|, (5.77)
where F is defined as:

oo

o I'(n+x) 1
Flay,z) = nz:% T(n+ D) (n+y)2+22

(5.78)

Then, we set d = 4 — € and expand the right hand side of equation (5.77) in
the variables ¢ and €, while discarding any sub-leading terms, to finally get:

log Z} 3Cg(Adj)02 +..., (5.79)

1- loop
where Cs is the quadratic Casimir operator. Proceeding in a similar fashion
for the chiral multiplet, we get:

ch.m 1
log Z{m = —ECQ(RC) ol ... (5.80)
Taking also into account the O(c?) contributions from the fixed point ac-
tion (5.45), we obtain:

82 8r? 3 ) 1
m = (2 - ECQ(AdJ) + eNcCQ(Rc)>

90
where g is the bare coupling constant and A is a renormalization scale. Finally,
taking the derivative with respect to the logarithm of the renormalization scale
we find:

1o (5.81)

3
/B(g) - - 1277‘2

Hence, our proposal passes also this test.

(302(Adj) - NCCZ(RC)) . (5'82>

5.5.3 Free energy of an V' = 1* theory

We will now turn our attention to the comparison between our results from the
analytic continuation of the formulas for the case of 4 supercharges to the cor-
responding case studied in [Bobev et al., 2016]. The theory we will discuss is
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commonly referred to as N' = 1* super Yang—~Mills and one can construct it as
follows. Starting from N = 4 super Yang-Mills, one can break the supersym-
metry in many ways. From the N' = 1 perspective, N' = 4 super YangMills
comprises one vector multiplet and three massless (m?) = m(?) = m®) = ()
chiral multiplets in the adjoint representation of the gauge group. The different
ways to break N = 4 correspond to the various choices we have for assigning
masses to the chiral multiplets. If we keep one chiral multiplet as massless and
assign the same nonzero mass to the other two, we obtain an N' = 2 theory.
We can further break N/ = 2 into N/ = 1 by changing one of the previously
equal masses or by introducing a nonzero mass for the initially massless multi-
plet. If this process is performed so that superpotential remains unaffected, the
theory is referred to as N = 1*. As with the usual N' = 1 on S%, the theory
has not been successfully localized yet in a direct manner. A caveat that should
be stressed here is that, as found in [Gerchkovitz, Gomis, & Komargodski,
2014], superconformal field theories with 4 supercharges on the four-sphere
have a scheme dependence, but the fourth derivatives with respect to the mass
parameter of the free energy of the theory are universal [Bobev et al., 2016].

The correspondence between the results in [Bobev et al., 2016] and our
analytical continuation is not straightforward. Starting from an N' = 1* theory
on four dimensions and compactifying down to a three-dimensional one, we
end up with complex masses. However, the theory we will use for analytical
continuation involves real masses. Having stated that, we will proceed with the
analytical continuation and the derivation of the free energy for the N' = 1*
theory.

The three-dimensional masses are:

ul =in; +rmf, (5.83)

where Aj is a flavor symmetry charge and mf is the real three-dimensional
mass. Upon analytical continuation, f; should be converted to o), where
pj is the complex four-dimensional mass times 7, and o) is given in equa-
tion (5.32). Then, the analytically continued partition function will be:

—m Tro? —>
/dg%e Hn[k‘—l—zaa 13

a k=0
(k+1) (k+2)

f[ — o) + 2
el + iopy+1

(5.84)

Then, using the identity:

1 [ (k + il o)) (k il o) 427 17 5
(k + i, 0) + 3)(k +i{a,0) +1)3

=i{a,0), (5.85)
k=0
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we get:

7 = / doje o0 [T o) Zuass, (5.86)

«

where we have introduced Z,,ss:

(k+1) (k+2)
2

- > 3 (k —i{a,0) —iogypj + 2)(k +i{a, 0) + 1)
Zmass = 1;[;—[0]1;[1 [(k +ila, o) +iogyp + 1) (k —i{a, o) + 2)]

(5.87)
What we have now is a matrix model, which we can proceed to analyze with
the usual methods (see Chapter 3). However, before doing that, we need to
treat the divergence in the expression (5.87). By defining:

(k+1)(k+2)
2

Zilo — o', p) = [(kz—i(a —o')—ip+2)(k+i(c —0o')+1)

(k+i(oc—0o)+ip+1)(k—i(c —0o') +2)
(5.88)
and expanding log Z, in 1/k:

ol ) = —i Lolo=o?\ 1o i €
log Zy(c—o',u) = Z<k+2+ ’ B o +3ku +0 2 )

(5.89)
we see that in the limit £ > 1 we have a divergence of cubic order in terms of
the masses. The condition for the masses:

wi+pg—p3 =0 (5.90)

takes care of the first order in p term, while the rest of the divergences can be
climinated by the addition of constant local counterterms.

To make contact with the results in [Bobev et al., 2016], we will analyze the
resulting matrix model in the large-/V limit at the strong coupling regime. For
this purpose, it is enough to engage in a saddle-point analysis. The saddle-point
equation for our theory is:

167 1+ 3 (w3 +p3+p3) +i
T 022][da’p(0’) 5 (uF + 15+ p3) Fap2ps

\ p— (5.91)

This is a Gaussian matrix model saddle-point equation, and its solution is the
well-known Wigner semi-circle distribution:

plo) = %\/ A% — o2, (5.92)

where A is given by:

MU+ 5 (07 + 3 + 13) + ippops)

A% =
872

. (5.93)
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Thus, we can now derive an expression for the free energy:

N2
F ~ 5 /dada’ log(o — o’)?

N? Lo 9 oy, .
-5 |1+3 (Wi + 3 + p3) + ipapaps

1 .
x log [A <1 5 (03 + 3+ pi3) + wluzugﬂ : (5.94)
Finally, we expand this expression for small ; and keep only terms above third
order that are universal (see [Gerchkovitz et al., 2014]) to get:

1 i
F o =N? | —(pf + 45 + 113)° + £ (107 + 15 + 13)* napapes
16 4

1 1
—%(M% + 3+ p3)’ - Z(M1M2M3)2 + O(M7)] - (5.9))

The expectation from [Bobev et al., 2016] for the form of the free energy is:

F = —=N?[Ay(ui + pis + 13) + Ao + 415 + p13)?
+iB(pf + i+ p3)ppaps — CrL(pd + pd + pg)
—Co(u + 13 + 13)® — Cs(papaps)® + O(u")] . (5.96)

By comparing this general form with our result (5.95), while also taking into
account equation (5.90), we get:

Ay +24A5 = é, By :—%7 Ch+Cy = i, —12C5 + C5 = é (5.97)
Comparing with [Bobev et al., 2016], we see that the first and the third relation
are in agreement with their results. The fourth relation is a new result that does
not have a counterpart in [Bobev et al., 2016]. This prediction however seems
to be in disagreement with a subsequent investigation performed in [N. Kim &
Kim, 2019], which finds —12C5 + C5 ~ —0.58. Furthermore, the result for
Bj does not match with the holographic analysis of [Bobev et al., 2016]. Their
free energy is real, while the one we obtained is complex. In principle, since we
are dealing with a non reflection-positive theory, it is not guaranteed that the
free energy should be real. At this point it is not clear what the resolution to
this issue is. Another related open problem is to understand from the analytic
continuation perspective the appearance of a gaugino condensate that emerges
in the holographic study.
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6. A phase transition in 2d maximally super
Yang—Mills

In this chapter, we present preliminary results based on a currently unpub-
lished work in collaboration with Joseph Minahan and Anton Nedelin, on the
study of a matrix model resulting from localizing the two-dimensional Yang—
Mills theory. We begin in Section 6.1 with an introduction to this work. Then,
in Section 6.2 we write down the matrix model, first in general dimensions and
then in two dimensions, as was done in [Bobev, Bomans, Gautason, Mina-
han, & Nedelin, 2020]. Then, in Section 6.3, we review and extend the results
of [Kazakov, Kostov, & Nekrasov, 1999], where the authors analyzed the same
matrix model, but with an opposite sign for the 't Hooft coupling. We analyt-
ically continue these results in Section 6.4 for positive values of the 't Hooft
coupling. Next, we engage in numerical and analytical studies of the matrix
model in Sections 6.5 and 6.6 respectively. We conclude in Section 6.7 with a
discussion of the open problems of our work.

6.1 Introduction

In the previous chapter, we constructed and localized a class of supersymmetric
gauge theories on d-dimensional spheres. Such localization computations can
provide valuable information on quantum field theories, especially in the chal-
lenging strong coupling limit. Furthermore, they present a rare opportunity
to perform highly non-trivial tests of the holographic correspondence. These
tests are even more interesting when the quantum field theory side is not con-
formal. A test of this kind was recently performed in [Bobev et al., 2020]. In
this work, the authors employed the matrix models that arise from the local-
ization of maximally supersymmetric Yang—Mills theories, derived in Paper 1.
By examining the planar limit of these models, they were able to compute the
free energies and (BPS) Wilson loop expectation values for 2 < d < 7 in the
strong coupling regime. Then, they made use of the spherical brane solutions
found in [Bobev, Bomans, & Gautason, 2018], to derive the same results from
the supergravity side, and found the two sides indeed match.

The quantum field theory side of the study of [Bobev et al., 2020], entailed
the analysis of the saddle-point equation of the relevant matrix models. As
demonstrated in the previous chapter, the results of the localization of the the-
ories on S% were written in Paper I in a general form as functions of the dimen-
sion. Thus, the authors of [Bobev et al., 2020] were able to engage in a general
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study of the resulting saddle-point equations, but due to the structure of the
quantities involved, this was feasible only for 3 < d < 6. The two-dimensional
case had to be studied using analytical continuation. Despite this obstacle, they
were able to obtain a result that matches the supergravity calculation.

While the treatment of the two-dimensional case in [Bobev et al., 2020]
yielded the results that were expected from the supergravity side, a careful anal-
ysis reveals that they were obtained under assumptions that no longer hold for
d = 2. Both the interaction between the eigenvalues and the potential in the
saddle-point equation are repulsive for d = 2, implying that a finite-width dis-
tribution on the real line, such as the one found for 3 < d < 6, cannot occur.
This presents the starting point of the research project whose preliminary re-
sults are reported in this chapter. Our main goal is to study in detail the matrix
model that arises from the two-dimensional maximally supersymmetric Yang—
Mills and derive an expression for its free energy.

A very similar saddle-point equation to the one that results from our two-
dimensional theory, was studied before in [Kazakov et al., 1999], in an unre-
lated context (it described the motion of D-particles). The equation is almost
identical, with the only difference being a sign, which from our perspective
would correspond to a negative 't Hooft coupling. Thus, we can use their
findings to aid our study by analytically continuing to positive 't Hooft cou-
pling. Pursuing this approach, we find evidence that the system undergoes a
third order phase transition. This can be also understood both from a numer-
ical investigation of the analytically continued solution, and more intuitively
from the “collision” of two cuts of the matrix model. This is similar to what
happens, for instance, in [Russo & Zarembo, 2013], [Anderson & Zarembo,
2014], or [Nedelin, 2015].

Equipped with the results from the analytic continuation of [Kazakov et al.,
1999], we proceed to study the saddle-point equation numerically. We find
that there are two classes of solutions: a one-cut solution and a bifurcating
solution, the latter of which, is not commonly encountered in the literature. By
analyzing the free energy of these solutions, we find that the bifurcating solution
is energetically more favorable, and hence dominates. The numerical study is
augmented with an analytical study of the problem. We are able to derive
analytically the angle of the one-cut solutions in the complex plane, and get
an expression for the eigenvalue density. Our numerical and analytical results
are in very good agreement. We are also able to reproduce the scaling of the
analytically continued two-point function of [Kazakov et al., 1999]. Lastly,
we study analytically a special bifurcating solution that displays a reflection
symmetry relative to the imaginary axis, and show that the resulting free energy
is real and that it is dominating with respect to the other solutions.
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6.2 Matrix model

6.2.1 General dimension

We will begin with a short review of the results of [Bobev et al., 2020] regarding
the matrix model arising from the localization of maximally supersymmetric
Yang—Mills on d-dimensional spheres, for 3 < d < 6, which are based in turn
on [Minahan & Zabzine, 2015], [Minahan, 2016] and Paper I. Then we will
concentrate on the two-dimensional case. Since we have discussed the con-
struction of maximally supersymmetric Yang—Mills on d-dimensional spheres
in some detail in Chapter 5, here we will start from the resulting partition func-
tion and matrix model after having performed localization. In particular, the
partition function on S¢, in the no-instanton sector, takes the form:'

Agp(dt1)/20d—4
Z - / doexp [~ Tr0? | Zip(o)  (6.1)
gY\IF( )

Cartan

where 0 is a Hermitian N X N matrix and R is the radius of the sphere. The
integration is performed over the Cartan of the gauge group and so we can
replace the matrices o with their eigenvalues ;. The one-loop contribution
from the fluctuations around the localization locus is:

T(n4d—3)

Zisoop(0) [J (e 0)? = [ H < n+d 3§a,o><2 70>2>r<n+1>r<d-3>7

a>0 a>0n=0
(6.2)

where we have included the Vandermonde determinant, and « are the positive
roots of the gauge group. This expression converges for d < 6, so for our
purposes we do not have to worry about regularization.

While the expression (6.1) for the partition function generically needs to be
supplemented with the appropriate instanton contribution, we will concentrate
on the large-N limit, and hence we will be able to safely neglect instantons. In
this limit, we can make use of the saddle-point approximation, with the saddle-
point equation being:

CiN
1T0i = Gisloij), (6.3)

where 0;; = 0; —0j and A is the dimensionless version of the t Hooft coupling
constant:

A= R4 N. (6.4)

'Note that in [Bobev et al., 2020], the coupling constant g2\ was modified to 2g2y; with respect
to the conventions of Paper I to comply with the supergravity literature convention, and in this
chapter we will do the same.
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The constant C7 is given by:

{r(d+1)/2
I'(%°)
while the kernel of the matrix model G1(0) is:
iGig(o)  I(—io) I'(io) _ I(d-3—io0)
I'4—d) T@d-d—io) T'(4—d+io) I'(1l—io)
I(d -3+ io)
Fi+io) ~ 00

For large separations of the eigenvalues |o;;| > 1, the kernel G16(0;;) can be
expanded to:

GIG(Uij) ~ Cg|0'ij|d75sign(0'ij), (67)
where the constant C5 is defined as:

Cy =2(d—3)I'(d —5) sin M

(6.8)
An analysis of the saddle point equation (6.3) for general d is hindered by the
fact that Cy = 0 for d = 3, effectively limiting the validity of such a study to
3 <d.

By replacing the kernel with its expansion (6.7) to the saddle-point equation,
we get:

C
leO'i :CQZ|O'Z' —Uj|d_5sign(ai —O'j). (6.9)

A
JFi

We proceed by introducing the eigenvalue density p(o):

N
plo) = % > 6(o —03), (6.10)
=1

which can be inserted in the strong-coupling form of the saddle-point equation,
to give:
ﬁ _ ’ / / 1d—=>5: /
)\0’—02 do'p(c’)|o — o'|* sign(o — o), (6.11)
—b
where b denotes the endpoints of the distribution of the matrix model eigenval-
ues. The solution of this saddle-point equation is [Bobev et al., 2020]:

9p(d+1)/2

") G - a7~ one

(6.12)
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The constant b can be fixed by imposing the normalization condition to the
eigenvalue density p(o). This gives:

b= (47200 [32)\1“ <8 3 d) T (6 3 d) r (d; 1)] T 6a3)

The free energy of the theory in the strong coupling, large-/N limit can be
found by evaluating the expression:

F=N? [Cl /b dop(o)o”
o ),

_L ’ ’ / / o /d4:|
Q(d_4)/bd‘7p(‘7)/bd0 p(a')|o —o'|"]. (6.14)

Performing the integrals (see [Bobev et al., 2020] for more details), we get:

F Ch 6—d

N7 T _Q)\H(d—zl)bQ
e et B (5 (5 (5]

(6.15)

6.2.2 Two-dimensional case

Let us now focus on the two-dimensional case, the main topic of this chapter.
The kernel of the matrix model for d = 2 becomes:

4

G = —. 6.16
16(0) o+ o3 ( )
The saddle-point equation now is:
TN 1
=) ——, (6.17)
)\ i Uij + Gij
or expressed in the continuum limit:
b /
™ p(a’)
—~0 = do’ ———. 6.18
s o

One possible way to proceed now, is to perform analytical continuation of the
results of the previous subsection to d = 2, as was done in [Bobev et al., 2020].
Then the eigenvalue distribution is given by:

! (b — 02)%/2, (6.19)

P(U):ﬁ
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and its endpoint is:
gAY\ 4
by = () . (6.20)
T

Inserting this expression for b in equation (6.15), the free energy becomes:
4(2m)1/?
3N\L/2

This means that free energy scales as:

Fy=— N2 (6.21)

Fy ~ N3/2, (6.22)

This result agrees with the holographic study that was performed in the same
paper.

The results for the eigenvalue density (6.19) and the free energy (6.21) were
derived under a large separation assumption. This was a valid assumption for
the range d € (3, 6), where, in the strong coupling regime, the central potential
1s weakly attractive and the interactions between the eigenvalues are repulsive
at wide separations. However, this assumption is not warranted for d = 2,
as both the central potential and the interaction between the eigenvalues are
repulsive (for positive 't Hooft coupling). This implies that a distribution on the
real line with finite width, such as the one above, is not attainable.

A clue to our problem is provided by [Kazakov et al., 1999], where the same
matrix model was studied. The matrix model was obtained under a completely
different motivation, as the authors were studying correlation functions of cer-
tain operators arising from zero-dimensional reduction of a matrix model that
captures the motion of D-particles. However, in their case, the left-hand side
of the saddle-point equation (6.18) comes with an opposite sign, which from
our perspective corresponds to a negative 't Hooft coupling (hence the tile of
the next section). In the following section, we will review the relevant parts
of [Kazakov et al., 1999] and in particular the analysis of the matrix model
and supplement the presentation with a few results that do not appear in the
paper, but follow readily from the expressions therein.

6.3 Study of the matrix model under negative 't Hooft
coupling

To make contact with the conventions of [Kazakov et al., 1999], we will intro-
duce the coupling constant:

@ =-C, (6.23)

Note that the authors of this work, study the matrix model for g > 0, which
corresponds a negative 't Hooft coupling constant. With the purpose of solving
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the saddle-point equation (6.18), they write the resolvent:

W(o) = / " g 2L7) (6.24)

/7
e O—O

which for positive g2 has a cut along the real axis. Then, the saddle-point
equation becomes:

2z . . ) .
7z =W(x +1i0) + W(x —i0) — W(x +1i) — W(x —1), (6.25)
and the eigenvalue density p(o) can be obtained by the equation:
—2mip(z) = W(z +1i0) — W(z — i0). (6.26)

Following [Kazakov et al., 1999], we introduce a second resolvent G(z):

G(z):;z+i[W<z+;)—W<z—;>], 6.27)

which allows us to recast the saddle-point equation in the following simple form:

o) o(e 1), -

where z € (—a,+a). The cuts of the second resolvent G(z) are located at
(:I:% —a, :i:% + a) (see Figure 6.1), and the function is real when z € R, iR
and (£5 — a, =% 4+ a). It would be useful to think of the function G(2) as
a holomorphic map of a region delineated by the positive real axis R, the
positive imaginary axis 2R and the sides of the cut (%, % + a) (see Figure 6.1).
This inverse of this map is G(z) = ¢, with:

¢ dt(t — 3)
w /(= 1) (t — 22)(t — 74)

We assume that the we have ordered the points x; so that 1 > x2 > x3 > 24,
and we impose the following conditions on the map:

z=A

(6.29)

¢ z
+00 +o0
T 0
v Q)2 (6.30)
x3 a+1i/2
T4 i/2
—00 4700
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Figure 6.1. The structure of the resolvent G(z) of the matrix model in the complex
plane. The cuts of the function are presented in red. The region that is mapped under
the holomorphic map G(z) = ( is delineated by the contour in blue.

which gives us the equations below:

1: Z1 dt(t—xg)
2 A/wg Vi@ =)t — @)t —za)

. T2 dt($3 — t)
AA;A¢@1—0@2—QU—$O7

(6.31)

e T3 dt(xs —t)
A/M Vi@ =)z = t)(t — 1)

Analyzing the asymptotic behavior of the function G(z) [Kazakov et al., 1999],
we get also the additional equations:

A=1
27
Ty + 22 + 14 = 23, (6.32)
6
m%+a}%—2x§+xi: 2

These relations, in conjunction with the conditions (6.31) specify the mapping
completely. Introducing the parameter:

m = w7 (6.33)
1 — T4
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with 0 < m < 1, we can express the points z;, the coupling constant g and
the endpoint of the eigenvalue distribution a, as a function of the parameter m
using complete elliptic integral functions. The points x; are given by:

32 29(m) +m — 2

1T K2(m) 392(m) + 2(m — 2)9(m) + 1 —m (6.34a)
2= Kz?(r:n) 302(m) + 2(22(T—n)2)_79(1m) Ti-m (6.34b)
= K:?(T;) 392 (m) +3 129((;1)—2;79(;12) T1-m (6.34)
oy — 32 20(m) +m —1 6.34d)

K2(m) 30%2(m) +2(m — 2)9(m) + 1 —m

where K (m) and E(m) are the complete elliptic integral functions of the first
and the second kind respectively, defined as follows:

(6.35a)

do
e [
0 V1—msin?0
w/2
E(m) = / d0V/'1 —msin? 0, (6.35b)
0

and we have also introduced the symbol ¥(m) for the ratio of the two elliptic
integral functions:

I(m) = ——r. (6.36)

The coupling constant g* then becomes:

4m
¢(m) = )

We can also derive the endpoints of the eigenvalue distribution a:

olm) = g —w B (6 ) + U5 T (6,70 )
(6.38)

where F(¢, z) and E(¢, z) are the incomplete elliptic integral functions of the
first and second kind respectively, which are defined as:

sin ¢ 1
Flo,z) = / dt N EIErTot (6.39a)

51n¢ 1— t2
6.39b
/' a0 (6.30b)

[—39%(m) +2(2 — m)¥(m) — (1 —m).] (6.37)
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and we have also introduced the quantity ¢(m) that is implicitly defined via

the relation: (m) (m)
.9 N Tolm) — xr3lm
sin® ¢(m) = 2a(m) — 2a(m)’ (6.40)

Lastly, in [Kazakov et al., 1999], we can find an expression for the correlation
function v(m) = (Tro?):

4
_ 9" 9F(N,9)
V(m)_2N2 dg?
1 K?%(m) 1

T 127 T 5r2 39(m)P 1 2(m—2)0(m)+1—m
x [109(m)2(I(m) +m — 2) + 29(m)(6 — 6m +m?) + (1 — m)(m — 2)].
(6.41)

6.4 Analytical continuation of the solution of [Kazakov

et al., 1999]
6.4.1 Locus of positive 't Hooft coupling in the m-plane

As mentioned above, the study of the matrix model with the saddle-point equa-
tion (6.18) in [Kazakov et al., 1999] was done under the assumption of negative
’t Hooft coupling or g2 > 0 (for g> = —\/m), at 0 < m < 1. However, for our
interests, we need to study the case of negative g2. To that end, we will analyt-
ically continue the results summarized in the previous section, and perform a
numerical study.

Since we have an expression for the coupling constant g2 as a function of m
(equation (6.37)), we can search for the locus where it is negative. This can be
accomplished by drawing a contour diagram of the real part of g? and search
for areas where the imaginary part is vanishing and the real part is negative.
The resulting plot is shown in Figure 6.2. It appears that the locus of points
where g(m) < 01is a (semi)-circle.

The semi-circle intersects the real axis at m = 2 (and m = 0). However,
the functions E(m) and K(m) have a cut along the line (+1,00), which is
inherited by g?. Thus, every time we cross a cut we need to jump to another
sheet of the elliptic integral functions. At the n-th sheet, the elliptic integral
functions K (m) and E(m) become:

K,(m) = K(m)+ 2inK(1 —m), (6.42a)
En(m) = E(m) + 2in [K(1 —m) — E(1 —m)]. (6.42h)

Using these expression in the coupling constant function g?(m) and moving to
subsequent sheets, we find something interesting. As one can see in Figure 6.3
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Re(m)

-0.2 0

Figure 6.2. Contour diagram of the real part of the coupling constant g?(m) in the m
complex plane. The red curve is the locus of points where Im g%(m) = 0 and hence
g*(m) < 0.

(a), the red locus curve trifurcates. The part of the curve that leads to the most
rich behavior is the one that seems to move towards the point m = 1. In
particular, if one zooms in the region around m = 1 (Figure 6.4), one can see
that the curve moves above the real axis and turns downwards again, before it
gets interrupted by the cut (41, 00). By continuing to the next sheets, one can
see that curve winds helically around m = 1 and approaches it asymptotically
forn — oo. As the curve gets closer to m = 1, g2 moves towards more negative
values.

In order to get more information on the branch of the curve thatis approach-
ing m = 1, we can use an iterative method, such as Newton—Raphson, to solve
the nonlinear equation Im(g?(m)) = 0, using an initial estimate close to this
branch. Doing so, we can also compute the correlation function v(m) using
equation (6.41) and its derivatives (with a finite differences formula). The re-
sults are shown in IFigure 6.5. From Figure 6.5, we see clear evidence that at
g% ~ —0.1, which is the exact point where the red curve of Figure 6.3 (a) tri-
furcates, there exists a discontinuity in 9%v//9(g?)2. Thus, it appears that the
system undergoes a third order phase transition at g ~ —0.1.

After the phase transition, the numerical solution for the correlation function
v(g?) displays a non-zero imaginary part. In principle, this issue could be a
numerical artifact. However further numerical studies with greater accuracy
did not show signs of a decrease in the imaginary part.

6.4.2 Eigenvalue distribution endpoints

We will now try to understand the phase transition hinted by Figure 6.5 by
looking at the behavior of the cuts of the resolvent G(z) (see Figure 6.1 for
the case of g2 > 0). In particular, we will investigate what happens to the
function a(m) (6.38), which describes the position of the endpoints of the cuts,
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Figure 6.3. Contour diagram of the real part of the coupling constant g%(m) in the
complex m plane, where we have jumped to the second, third and fourth sheet of the
complete elliptic integral functions E(m) and K (m). The red curve is once again the
locus of points where g%(m) < 0.

when we move to a negative coupling g2 < 0. This amounts to navigating the
convoluted cut structure of the function and carefully selecting the appropriate
sheets.

The first cut that we need to address is the one that is related to the presence
of g = /g2 in (6.38). The circular locus in the m-plane where g2(m) < 0,
that is the focus our study, is precisely the position of the cut that affects the
function g(m) = 1/g?(m). The correct choice is to remain in the internal
side of the cut, otherwise we would have Re[a(0)] # 0, which would result in
a discontinuity at g?(m) = 0. Having chosen the inner side of the circle, we
have place the endpoints a(m) of the resolvent cuts on the imaginary axis (see

Figure 6.6 (b)).
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Figure 6.4. Coontour diagram of the real part of the coupling constant g?(m) in the m
complex plane at the second sheet of F(m) and K (m).
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Figure 6.5. Plots of the correlation function v(g?) and its derivatives on the locus of
g*(m) < 0.

Continuing further down the spiral, the imaginary part of the endpoints
a(m) gets more negative while the real part remains zero. At some point the
spiral reaches the cut at (41, 00) and we need to change to another sheet for
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Figure 6.6. The cuts of the matrix model resolvent for positive (a) and negative (b)
coupling constant g2(m).

the complete elliptic functions F(m) and K (m) using (6.42), while for the in-
complete elliptic functions E(¢,m/(m — 1)) and F (¢, m/(m — 1)), we do
not need to do anything, since they are continuous on that line. We present
the results from the analytic continuation in Figure 6.7. We observe that when
crossing the cut (41, 00) at g &~ —0.065 and a ~ —0.38i, @ remains continu-
ous. As the imaginary part of a keeps getting smaller, at some point it reaches
the value a >~ —0.52. However, as we can see at Figure 6.6, at that value, the
two cuts collide and merge into one—a common occurrence for third-order
phase transitions in the matrix model literature (see for instance [Gross & Wit-
ten, 1980] and [Wadia, 1980]).

R
0.02 éj(g) Im a(g)
04
0.04F .
0.03F 02
.0
..
% 0020 ! . . . . . ¢
*, 012  -0.10 -008 -006 —004 —002
3
* 001[ Zoal
o
. ) I . &
—0.11 —0.10 =0.00 ~0.08 —0.07 04l
—001*
(a) Re(a) (b) Im(a)

Figure 6.7. The real and imaginary parts of endpoints of the cuts of the resolvent on the
spiral curve where g2(m) < 0.
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6.5 Numerical study

Apart from the analytical continuation of the solution of [Kazakov et al., 1999],
another avenue of exploration is perform a numerical study of the saddle-point
equation (6.17). To accomplish this, we will follow a technique introduced
in [Herzog, Klebanov, Pufu, & Tesileanu, 2011]. Firstly, let us remember that
the saddle-point equation (6.17) that we need to solve was derived from the
following expression:

OF

80’i a
The essential idea behind the technique of [Herzog et al., 2011], is to introduce
a time dependence to the eigenvalues o; — 0;(t) and describe their dynamics

0. (6.43)

via a heat equation:
do; oF

To o = o7’ (6.44)
where 7, € Cis a parameter of our choice. If we choose 7, appropriately, then
the equilibrium solution of equation (6.44), in the limit ¢ — oo, will satisfy the
original saddle-point equation (6.43), or (6.17). Thus, to solve numerically the
original equation (6.17), we need to solve numerically the partial differential
equation (6.44) (using standard techniques) for long enough time intervals to
reach equilibrium.

First, we consider the case below the phase transition point g2 ~ —0.1.
In Figure 6.8 we present the position of the cuts on the complex plane. In
Figure 6.9 we show the eigenvalue density on the imaginary axis using the def-
mition:

(2) 1 dx

x) = — .
r N dim(o(z))
On the same figure, we plot the eigenvalue density using the expression for the
endpoints derived from the solution by [Kazakov et al., 1999]:

plx) = l\/ a? — x2. (6.46)

a?rm

(6.45)

We observe that the results from the numerical solution match exactly the re-
sults obtained from the analytic continuation, both qualitatively and quantita-
tively.

Next, we turn to what happens after the phase transition. Here, the scene is
changing dramatically. In each sub-figure of Figure 6.10, we have plotted three
solutions. The two that form a cross are complex conjugates of each other. The
third one, which splits in two on its two ends is the most remarkable. In fact, this
solution 1is representative of an entire class of solutions of similar shape, which
can be obtained by trying various initial conditions, although they are harder to
obtain than the other type of solution. These bifurcating solutions are not very
frequent in the literature. A case with quiver gauge theories where something
similar occurs, can be found in [Amariti, Fazzi, Mekareeya, & Nedelin, 2019].
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Figure 6.8. The position of the cuts of the matrix model, below the phase transition
point.
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Figure 6.9. The eigenvalue density of the matrix model before the phase transition
point (g2 > ¢2). The dashed line corresponds to the solution (6.46), while the points
are derived from (6.45) and the numerical solution.

To find which of the three solutions is the physically dominant one, we can
turn to computing the free energy for each solution using the formula:

S [log(i — ) — log(1 + (61 — ¢)?)]

1<j

2N
F=-logZ="7> ¢} -2
9° =
(2

(6.47)
The results for the three solutions are plotted in Figure 6.11. We observe that
the bifurcating solution dominates, since it has the lowest real free energy.

6.6 Analytical study

In this section we will perform an analytical study of the various types of solu-
tions of the saddle-point equation (6.17) we found in the previous section. We
will also study the free energies for these solutions.

67



Re(e) 53 o5 Re(e)

Im(e) Im(o)

() g* = —4000

Figure 6.10. The position of the cuts of the matrix model, after the phase transition
point (9 < g7).
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Figure 6.11. The free energies of the three solutions presented in the previous figure.

6.6.1 One-cut solutions

We begin by introducing a new variable 7; in the saddle-point equation (6.17),
by scaling o; with the ’t Hooft coupling as follows:

T; = €0y, (6.48)
where € = A™1/4, Then, the saddle-point equation (6.17) becomes:
1
—2nNT; =2 — (6.49)
' ; 7ij (€ +77)
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In the large-/N limit, this equation becomes:

be /
p(7)
2T =2 dr’
" ][_be Telr—r)+(r— 1)

be /
2 1 1
:7[ dT’p(2)<_,— - _,_,>. (6.50)
be € T—T T—7 +1€ T—T 1€

If we assume that the integration contour is on the real axis and passes through
the origin, then we can replace the principle value integrals in the last two
terms with ordinary integrals. If we also expand equation (6.50) (operating in
the small-€ limit), we finally get:
o be dT’% <2p(7') —p(T' + z'e)/ —p(7 — ze))

pe € T—T

+ g [p(T +ie) — p(T —ie)] + O(e)

be (! T

—be T—7

The appearance of the divergent 1/¢ term in the expression above is troubling.
It is not entirely clear how one should deal with this issue. We will examine the
consequences of the presence or absence of this term.

The 1/¢ term will not be present if the principle value integral does not
contain a region between 7 £ ke, with £ > 1. With the divergent term out
of the way, equation (6.51) is reminiscent of a Gaussian matrix model integral
equation with —p”(7) in place of p(7), so it can be solved to give (see [Russo
& Zarembo, 2012]):

C
V22 — 127

Note that the second term does not contribute to the integral. By choosing
C = b?e?, we get:

(1) = =2/ b2e2 — 72 + (6.52)

1
plr) = 5 (%€ —72)"%, (6.53)
which reproduces equation (6.19). The constant b can be fixed by the normal-
ization of the density:
g\ /4
b= () , (6.54)
7r

which, as expected, agrees with (6.20).
Let us now turn to the case where the 1/e term is present. Then, if we
expand for small €, we get:

P(1) = e + O(e?), (6.55)
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and so p(7) will be:

p(7) = % (72— 1?). (6.56)

If we also assume that the contour passes through zero, we get:

b€ o €3
/k dr (77— k%) = -3k =1 (6.57)
or 1/3
e (-2 659

The roots of this equation that are compatible with contour flow are:

: 174\ 1/3
k = exp (i?) (— 3A2 > . (6.59)

In the original parameters o;, this means that endpoints of the one-cut solution
are given by exp(=im /3)(3X/2)'/3. In Figure 6.12, we draw the two numerical
one-cut solutions, as well the lines with slope =7 /3, and we find a perfect match
in the angle.

Im(o)

Figure 6.12. The two numerical one-cut solutions of the saddle-point equation for g% =
—4000 (red points) along with the lines of slope =7/3 (dashed lines).

In addition to plot of the cuts in the complex plane, we can compare the
eigenvalue density (6.56), with that derived from the numerical study. We
present the results in Figure 6.13. Once again, the numerical and analytical
results match.

Another non-trivial check we can perform for our analytic solution is to re-
produce the scaling behavior of the correlation function v:

4 , 5/3
g* OF(N,g 2 i 3
v= (et = S O = Feo () (5) 60
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Figure 6.13. Comparison of the analytic eigenvalue density (equation (6.56)) and the
results of the numerical study.

using the results of the analytic continuation of [Kazakov et al., 1999]. To
this end, we will investigate the scaling of the intersection points of the spiral
towards m = 1 with the real axis in the limit of g?> < 0. Using the expres-
sions for a (6.38), g2 (6.37), v (6.41) and the expressions for the elliptic integral
functions in the n-th sheet (6.42), we get the following results for the first few
intersection points:

n m—1

1 1
2 0.02351 (6.61)
3 0.0006419

4 0.000017325

We observe that the distance between m = 1 and the intersection point shrinks
exponentially fast, and so we have the following scaling behavior:

m=1+ab", a ~ 42.52, b ~ 0.0235. (6.62)

The values of the parameters a and b were obtained via a numerical fit, but
their precise values are not important for our argument. Using (6.62) in the
expressions for g2 (6.37) and v (6.41), we get:

g* ~n? v~ n (6.63)
Thus, the scaling of v is:
v~ glls or v~ N3, (6.64)

which agrees with (6.60). This is the same scaling behavior one obtains at large
positive coupling,
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6.6.2 Bifurcating solutions

We will now turn to the analysis of the class of the bifurcating solutions. We will
begin with considering the density that corresponds to the one-cut solutions,
which in the large- limit becomes:

p(0) = = (0> — ¥?), (6.65)

, 1/3
k::e”ﬂ3<i;> . (6.66)

In order to study the bifurcating solutions, we will start pulling eigenvalues away
from the one-cut solution line. The Zg symmetry of the system implies that we
need to pull eigenvalues in pairs. Of course, this process is bound to have a
back-reaction to the distribution of the rest of the eigenvalues, but if we remove
a small number of them (say 2M < N), we can assume that that in the large
N limit, the effect is suppressed.

We will now pull two eigenvalues =6 from the distribution (6.63). Then, the
equation of motion for ¢ will be:

27 1 2 K do’p(c’)
——— 0= ———3—— 12 . 6.67
T NP T /_k G_o)P+ (o) (6.67)

If the first term in the right hand side of this equation is not to be suppressed in
the large-N limit, then 26 should be close to £¢. Thus, we will parameterize
o as follows:

with

5:%+@ (6.68)

and assume that z is small. So, the equation of motion (6.67) will be (to leading
order):
1 w27z

22N A + A
k
2 1 1
+/ da’p(a’)[ -

i/24z—0 3if24z—0 —if24z—0

—k
itk? 7z
~— —1—7, (6.69)
which gives:
e5im/6 /1y N\ 1/3
z o~ N <18> . (6.70)

Next, we will pull 2M eigenvalues (with 2M < N) off the one-cut solution.
Similarly to the case of one eigenvalue pair, we will parameterize them with the
expression:

@:i<;+a>, (6.71)
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with small z;. The fact that the eigenvalues which are removed from the one-
cut line are centered around +i/2, seems to be supported by the numeric so-
lutions (see Figure 6.10). Then, to leading approximation, from the equation
of motion, we get:

M

k2w 1L 2 1 1
_ _ — 6.7
A A N§zi—z] N zz—l—zJ (6.72)

We will also make the assumption that every z; comes with a z; such that z; =
—2; 420z, with 0z given by (6.70). In case M is odd, we take one j to be equal
to 4. The reason for this assumption is that §z annihilates the first term in the
left-hand side. Doing so, we get:

M
2N 2
EPVT R Dl &73)
JF

We recognize this as the saddle-point equation of an SU (M) matrix model.
It has effective ’t Hooft coupling constant Ay = MA/N and its potential is
negative and quadratic. The solution of this matrix model is well-known: the
eigenvalues z; will be distributed on the Wigner semi-circle along the imaginary
line. This will be true as long as z; are small (and so M needs to be smaller than
N /X) and ¢z is much smaller than the distance between neighboring eigenval-
ues (which translates to the condition that A > M3 /N3),

6.6.3 Symmetric bifurcating solutions

We will now study the case where the bifurcating solutions analyzed above
have a reflection symmetry with respect to the imaginary axis. Our ansatz
for the eigenvalue distribution will consist of the following expressions for the
five branches:

(+C [627”/332 (c—i/2)?], o=i/2+ ™3y,
—-C [647”/332 —1i/2) ] o=1i/2+ eQWi/3x,
plo) = +Cy [e*2m/332 (0 +1i/2)?], o=—i/2+e ™3z, (6.74)
—Cy [e*™3B% — (0 +i/2)?], o= —i/2+e 2 /3,
—iCy, —i/2 <0 <i/2,

with , B € Rand 0 < x < B. Using this distribution in the saddle-point
equation with —i/2 < o < i/2:

2m 2 1 1
——0 =1 do'p(o’ — — . 7
27 ][ gp(a)(a—o*’ o—o +1 J—J’—i) 6.79)
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In order to achieve a cancellation of terms like log(i/2+ o) and log(3i/2 + o),
we need to set:

Cy = —V/3B%C. (6.76)

Then, equation (6.75) in the limit of large B becomes:

-5 = 4rCho + O(B™h), (6.77)

or
O e — - 6.78
1= 5y (6.78)

which is the same as the overall normalization constant of the eigenvalue den-
sity p(o) for the bifurcating solutions (6.65). Imposing the normalization of the
eigenvalue density and using the large B limit, we get:

1/3
B = (if‘) . (6.79)

This reduces the size of its branch by a factor of 2-1/3

respective one for the one-cut solution.

with respect to the

6.6.4 On the free energy

We will now turn to the study of the free energy of the theory in the large-A
limit. We will use the eigenvalue density for the one-cut solution:

(o) = %(02 _ ), (6.80)

Then, the expression for the free energy will be:

2 k
F= —WN2/ dop(o)o?
A —k

k
— N? /—k: dodo’ p(a)p(0’) [log(o — ') —log[(o — 0’)* + 1]] .
(6.81)

We will also introduce the anti-derivative C'(o) of the density p(o), such that
C(k) = 1 and C(—k) = 0. Next, we integrate by parts the second integral
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in (6.81) and make use of the saddle-point equation to get:

2 F 2 F
F = —WNQ/ dop(o)o? — 7TN2/ do C(o)o
A k A —k

A2 (k*U)Q
N /dap(a) logi(k_a)2+1
k 2

_ T2 2 T a2:2 a2 (k—o)

= )\N /_kdap(a)a )\Nk: N /dap(a)log(k_a)2+1
67 (k —o0)?

:—N2k:2—N2/d log ——5—. .
BA oplo)los (6.82)

The last term in this expression is (’)(N2§ log k) and thus can be omitted in
the limit we are studying.

One can also work in a similar fashion for the case of the symmetric bifur-
cating solution, to reach an expression of the following form:

R VA A A
F==550 sz) +(21/3)

The terms in this formula can be understood as follows. The four outer legs
of the solution provide the dominant part of the expression, which is similar
to the one provided by the two one-cut solutions. The overall factor of 1/2
can be attributed to the fact these legs contain half as many eigenvalues as the
one-cut solutions, while the factor 1/ 21/3 is related to the reduced length of the
legs with respect to the one-cut solutions (see Subsection 6.6.3). What is most
important here is that the free energy for the symmetric bifurcating solution

(6.83)

turns out to be real (up to a A-independent constant) and that it is smaller than
the real part of the free energy of the one-cut solutions, making it the leading
solution.

6.7 Future directions and open problems

In this chapter we presented results from the analysis of the matrix model that
arises from the localization of maximally supersymmetric two-dimensional su-
per Yang—Mills and discovered evidence of a phase transition. While we were
able to perform both numerical and analytical studies and find them in good
agreement, and while we have obtained a number of interesting results, there
exists a number of open questions.

The most important of the challenges ahead is to understand the discrepancy
between the scaling of the free energy obtained from the holographic study
in [Bobev et al., 2020] and the solutions of our matrix model. Of course the
analytic continuation of the general-d study of the matrix model in [Bobev et
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al., 2020] is capable of reproducing the predicted scaling, but as we explained
in this chapter, its assumptions are not warranted in the two-dimensional case.

Another significant point to understand is how to deal with the presence of
the divergent 1/€ term in (6.51). If we remove the region 7 + ke, with k& > 1,
as in the previous section, we are effectively in the A > N 1/4 regime. Do-
ing so, we reproduce the results from the original analysis of the matrix model
in [Bobev et al., 2020], which agreed with the supergravity calculation. How-
ever, this puts us in the dual string territory, with the gauge theory being equiv-
alent to a free orbifold conformal field theory (see [Itzhaki, Maldacena, Son-
nenschein, & Yankielowicz, 1998] and [Peet & Polchinski, 1999]). Itis not clear
how the holographic results can match the field theory calculation under these
conditions.

One possible approach to eliminate the 1/¢ divergence in (6.51), is to see it
as an extra term in the potential of the matrix model and try to remove it by the
addition of an appropriate counter-term. Indeed, if we recast equation (6.51)
in the original variables:

b 1"( I
—2—71-0 = ][ do’? (o) 2rp' (o) + O(1/N), (6.84)

A _y o—da
we see that the divergent term can be canceled if the potential is altered to:

V(o) = —@ Z o? — 4w N Zp(ai), (6.85)

and choose 1
_ Lo 932
plo) = 3)\(b a“)?e. (6.86)

However, before accepting this possibility, we need to ensure that the matrix
model potential (6.85) can be derived from a supersymmetric field theory:.

Finally, another possible task would be to try repeating the derivation of the
behavior of the correlation function v (6.60) from the analytic continuation of
the solution of [Kazakov et al., 1999] in order to reproduce the full expression
and not just the scaling. However, this is not an easy task, since once needs
to derive an explicit expression for the analytical continuation curve. Alterna-
tively, an expression for the intersection points of the curve with the real axis
would be sufficient, but also challenging,
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7. Cohomological twisting and localization of
N = 2 gauge theories with matter

In this chapter we discuss Paper II, where we extend the work of [Festuccia et
al., 2020] to include matter in the form of a gauged hypermultiplet. We rewrite
the theory in terms of cohomological variables and we proceed to localize it.

The chapter 1s structured as follows. We begin by offering an introduc-
tion and motivation to the work in Section 7.1. Then, we describe how to
define a supersymmetric theory in Section 7.2, reviewing material that origi-
nates from [Festuccia et al., 2020], as well as new results from Paper II. To do
this, we review how the supergravity auxiliary background fields were written
in terms of Killing spinor bilinears in [Festuccia et al., 2020] (Subsection 7.2.1).
Then, in Subsection 7.2.2 we augment the demonstration from [Festuccia et al.,
2020] that supersymmetry is globally well-defined by showing that the auxiliary
Killing spinors, necessary for the off-shell closure of the hypermultiplet algebra,
are also globally well-defined. Next, in Subsections 7.2.3 and 7.2.4 we present
the vector multiplet ([Festuccia et al., 2020]) and the hypermultiplet (Paper II)
respectively. We proceed in Subsection 7.3.1 with the extension of the “flip-
ping projectors” of [Festuccia et al., 2020] to the case of spinors, established in
Paper II, before reviewing how one can rewrite the vector multiplet ([Festuccia
et al., 2020]) and the hypermultiplet (Paper II) in terms of twisted variables in
Subsections 7.3.2 and 7.3.3. We conclude with presenting the localization of
the resulting cohomological theory in 7.4 from Paper I1.

7.1 Introduction

Supersymmetric localization has been one of the major themes in this thesis.
Supersymmetric theories amenable to localization, such as A = 2 on $* in the
original work of Pestun [Pestun, 2012], provide precious information on quan-
tum field theories and their strong coupling behavior. Another interesting per-
spective in the study of quantum field theories has been given by the topological
twisting of supersymmetric theories. Since the original work of Witten [Witten,
1988a] on N = 2 super Yang—Mills, topological twisting has been a very fruit-
ful technique that offered highly non-trivial results to both Theoretical Physics
and Mathematics, and formed yet another bridge between the two subjects. A
prime example of connection is the extraction of Donaldson invariants [Don-
aldson, 1990] via the computation of correlators in N/ = 2 super Yang—Mills
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in Witten’s aforementioned work. As was the case with Pestun’s work, the topo-
logical twisting procedure was extended and applied in many different settings.
A particular instance of such an extension, especially relevant in this chapter,
1s that of equivariant twisting, applicable when the theory is defined on a man-
ifold which allows a torus action. This possibility was examined in [Losev et
al., 1998],[Lossev et al., 1999], [Moore et al., 2000b] and [Moore, Nekrasov,
& Shatashvili, 2000a], and led to the computation of the celebrated Nekrasov
partition function in [N. A. Nekrasov, 2003] and [N. Nekrasov & Okounkov,
2006].

The connection between the supersymmetrically localizable theories of Pes-
tun and the (equivariant) topologically twisted theories in four dimensions was
not very clear until the advent of [Festuccia et al., 2020], where the authors
were able to connect the two classes of theories under a unified theoretical
framework. This framework describes a wide set of N' = 2 super Yang—Mills
theories that can be defined on any four-dimensional manifold with a Killing
vector field possessing only isolated fixed points.

The construction of [Festuccia et al., 2020] entails decomposing the squared
norm of a Killing vector field into a product of two semi-positive-definite scalar
functions: ||v||? = s3. The fixed points of this vector field are subsequently split
into two groups: those where 5 vanishes (dubbed plus fixed points), and those
where s vanishes (dubbed minus fixed points). Then, the authors introduced a
novel notion of self-duality, where the two-forms can range from being self-dual
in the neighborhood of plus fixed points to being anti-self dual in the neighbor-
hood of minus fixed points in a smooth manner. When the time comes to write
down the partition function, one assigns an instanton contribution to the plus
fixed points and an anti-instanton contribution to the minus ones. For instance,
the equivariant Donaldson—Witten theory can be retrieved by distributing only
instanton partition functions to all the fixed points.

The authors of [Festuccia et al., 2020] affirm that any arbitrary allocation
of pluses and minuses on the fixed points of the Killing vector field produces a
supersymmetric theory. They also show that the theory is globally well-defined
on the class of manifolds they consider. Eventually, they reformulate the theory
using cohomological (twisted) variables and write down a conjecture for the full
partition function of an ' = 2 super Yang—Mills theory on any (orientable)
four-dimensional manifold. More mathematical aspects of this construction
were elaborated further in [Festuccia, Qiu, Winding, & Zabzine, 2019].

The work of [Festuccia et al., 2020] presents the starting point for Paper 11,
as the former covered only the case of the N/ = 2 vector multiplet. Hence, in
Paper II, we extend the framework to incorporate matter coupled to radiation,
via the inclusion of a gauged hypermultiplet.

The twisting procedures for the vector multiplet and the hypermultiplet seem
to move largely in parallel ways, with the vector multiplet one being underlied
by a decomposition of the two-forms bundle ([Festuccia et al., 2020]) and the
hypermultiplet one by the decomposition of the spinor bundle (Paper II). The
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notion of a “flipping projector” that acts on two-forms in [Festuccia et al., 2020]
is extended in Paper II for the case of spinors and the connection between the
two 1s examined.

Despite the similarities, there exist a few key differences between the two
cases. The first difference has to do with the presence or absence of spinors.
For the twisted vector multiplet, the fields are two-forms and hence can be
defined on any orientable manifold. Both the SU(2)r dependence and the
spinorial nature of the fields disappear. However, in the case of the hypermul-
tiplet, this is not possible, and the resulting theory demands a spin structure
to be defined on the manifold. At first glance, this limits the applicability of
the hypermultiplet case construction to spin manifolds. However the analysis
of this issue is quite subtle, and needs to be performed case by case, as certain
flavor symmetries can render the theory well-defined on spin® manifolds, that
is, all orientable manifolds [Teichner & Vogt, n.d.].! Another difference with
the vector multiplet case of [Festuccia et al., 2020] is that for the off-shell for-
mulation of the theory, we need to introduce a pair of auxiliary Killing spinors,
subject to certain constraints. We make a choice for the auxiliary spinors and
show them to be globally well-defined (as for the ordinary Killing spinors).

Having established that the hypermultiplet theory is globally well-defined,
we begin writing down the relevant Lagrangian and supersymmetry transfor-
mations. What is more, we provide a novel expression of the hypermultiplet
Lagrangian as a d-exact term. This generalizes a result found in [Hama &
Hosomichi, 2012].

Next, we rewrite the theory in cohomological variables using an invertible
map. This map requires the explicit solutions of the supergravity background
fields as functions of the Killing spinor bilinears, obtained in [Festuccia et al.,
2020] (also reviewed in Appendix B of Paper II).

Our work on the rewriting of the hypermultiplet theory can be reduced to the
usual topological twisting (for a review, see for instance [Labastida & Marino,
20035]) by removing one set of ordinary and auxiliary Killing spinors (one can
choose (Xia, Gia) or (Cias Xia)) and making one of the Killing spinor bilinears
vanish, thus effectively removing the equivariance (v* = 0).

Having written the theory in cohomological variables, we proceed to local-
ize the theory. We compute the resulting one-loop determinant using index
techniques for the relevant transversally elliptic operator. The result depends
on a parameter ag, which takes values in the Cartan of the gauge group. If the
hypermultiplet is massive, its masses will result in a shift of the parameter ag.
Note also that the result needs to be modified when the manifold allows fluxes,
and one needs to add the relevant magnetic flux m; to the parameter ag (see for
instance the S2 x S? example in Paper II). We also include a discussion of the
various regularization options for the resulting expression. An exposition eluci-

"The mathematical requirement is that the second Stiefel-Whitney class should be vanishing,
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dating in some detail and generality which regularization should be employed,
would deserve its own dedicated work.

Finally, the paper concludes with an illustration of our results with two ex-
amples: a squashed S*, where our answer coincides with that of [Hama &
Hosomichi, 2012] and an 52 x S?, where the answer becomes trivial when
there are no fluxes.

7.2 Defining an N = 2 supersymmetric theory on
four-manifolds

The first task we are presented with is that of defining an ' = 2 supersym-
metric field theory on the general class of four-manifolds we are about to study.
Part of this procedure was accomplished in [Festuccia et al., 2020], and we will
briefly review it in the following subsection. Then, we will demonstrate that the
supersymmetric theories we want to formulate are globally well-defined, and
write down the N = 2 vector multiplet and hypermultiplet along with their
Lagrangians in the original variables. The vector multiplet was studied in [Fes-
tuccia et al., 2020], while our results from Paper II refer to the hypermultiplet.

7.2.1 Killing spinor equations and their solutions

As demonstrated in [Festuccia & Seiberg, 2011], a supersymmetric theory can
be defined on a curved manifold in a systematic manner, by coupling the the-
ory to a supergravity background (and subsequently freezing the gravitational
degrees of freedom). For the case of N' = 2 theories with a conserved SU(2) g
current this was done in [Festuccia et al., 2020], where the theory was coupled
to the N = 2 Poincaré supergravity.

We consider a four-dimensional Riemannian manifold endowed with a spin
structure. The setup also contains an SU(2) g connection (V,,*; where i, j, . . .
are SU(2) R indices). The supergravity multiplet includes the following list of
auxiliary fields: a scalar (IV), a one-form (G,) and a two-form (W,,,,), another
closed two-form (F,,) and a scalar SU(2) g triplet (S;;).

The supersymmetry transformation parameters are ¢/, and X', which are
left- and right-handed spinors respectively, both in the SU(2) g fundamental,
with 4 being an SU(2)pr index and «, & being spinor indices. Their reality
conditions are taken to be symplectic Majorana conditions:

Ga)*=C" (W) = X (7.1)

The spinors ¢’ and ¢ need to satisfy the so-called generalized Killing spinor
equations, which are derived by demanding that the variations of certain aux-
iliary supergravity fields vanish. The two sets of these partial differential equa-
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tions are:

: i
(Dp —iGu)Gi — QWLU Xi = 50ui =0,

: (7.2)
. —i ——ppri v
(DN + ZGH)X + §Wupo—pc - 50—1”7 =0 )
and
]' —1 3 — v —1 . . — —v
(N . 6R>X — 4i0,G, "X + (V" + 2iGH) W 5”C
+io* (Dy + iG#)ni : (7.3a)

<+ia“(znt—zcagﬁi, (7.3b)

where in the equations above, the covariant derivative D, includes the SU(2) g
connection V,,*; and R is the Ricci scalar. The spinors * and 7" introduced
above are defined as follows:

= (FF = WG - 2G,0"5 — Sy

. . T (7.4)
i = —(F =W)X +2G,0"C — SV,

where W = 1W,WU“ and W™ WWU“’ (with analogous expressions
for F). Yor additional information regardmg our conventions, the interested
reader can refer to Appendix A of Paper I1.

We will also introduce the following scalars:

s=20"¢, §=2X"v (7.5)
and the vector field: ‘
o = 254, (7.6)
made of Killing spinors ¢!, and X¢. By employing the reality conditions (7.1),
we deduce that the vector field v# and the scalars s, § are real and that s, § > 0.
FFurthermore, the norm of v* is given by:

|[v]|* = s3. (7.7)

In [Festuccia et al., 2020], the Killing spinor equations written above were
solved and the aux1hary supergravity fields were written as functions of bilin-
ears of the Killing spinors ¢, and y¢'. To accomplish this, first one uses equa-
tions (7.2) and by demanding that v* is a Killing vector and that the bilinears
s and $ are invariant along v, one gets a solution for W, and (Vu)ij . These
solutions contain also a one-form b that satisfies v#b,, = 0 and acts as a pa-
rameter for them. Then, one can use equations (7.3) to obtain IV, and (7.4) to
find F,,, (parameterized by a constant K) and S;;. We will refrain from repro-
ducing the explicit solutions for the supergravity fields here, as some of them
are quite lengthy, but they can be readily found in [Festuccia et al., 2020] or in
Appendix B of Paper II. Note also that these solutions are not unique.
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7.2.2 On the global properties of the Killing spinors

A globally well-defined supersymmetric field theory on a curved manifold relies
crucially on the Killing spinors ¢, and Y to be also globally well-defined. What
1s more, since we are interested in the case of theories with a hypermultiplet
in its off-shell formulation, we will need to examine that the auxiliary Killing
spinors ; and ; also satisfy the same properties.

According to the construction of [Festuccia et al., 2020], the fixed points of
the Killing vector field v# are separated into two kinds, referred to as “plus”
and “minus” fixed points. These fixed points can be distinguished by which
of the two scalars s and s vanish on them (see equation (7.7)). Wherever §
vanishes (“plus” fixed points), s tends to some positive constant K (and vice

versa). Wherever § is non-vanishing (“minus” fixed points), s approaches zero
like ||v]|?/K (and vice versa).

Killing spinors

We will show that one can construct globally well-defined Killing spinors ¢?, and
X&' on the manifolds we are considering. To do so, we can create a covering of
the manifold using a collection of charts, so that each chart contains at most
one fixed point of the Killing vector field v#. Then, we can build the desired
Killing spinors using a non-negative scalar s and a vector field v# as follows:

A 5 .1 .
G=Y, X = S0H(0,G)° 78

However, in the minus fixed point charts (s = 0), these are not well-defined, so
they have to be modified. This can be accomplished by beginning from a plus
fixed point chart and transforming it appropriately. Performing an SU(2)r

transformation: 4

Ui] = 'ngﬂij, (79)
we get for the minus fixed points:
i V5 ‘ 1 »
X = _Z75iaa Co = _gvu(UuXZ)a. (7.10)

Thus, we have defined a pair of Killing spinors that are globally well-defined.

Auxiliary Killing spinors
The off-shell closure of the hypermultiplet requires the addition of an auxiliary
field as well as that of a pair of auxiliary spinors ¢; and Y, transforming under

SU(2); %7, SU(2) ;5 (G) and SU(2), X7, SU(2) 5 (X3)- These spinors need to

satisfy the following consistency conditions with the Killing spinors:

Gé —xix; =0, G¢ = X",

o B (7.11)
X'o!G+ x'a"G =0, xixX' = ¢'G,
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which except for local SU(2) j, transformations, fix them uniquely. The auxil-
iary Killing spinors shall be taken to have symplectic Majorana reality condi-
tions:

(G = Can (X" = X (7.12)

We proceed in a manner analogous to that for the Killing spinors, making sure
that the constraints (7.11) are satisfied, and find that for charts that do not
contain minus fixed points:

o \/g ;
o V5
2

. 1 .
i Gia = = VM (0uXi)a- (7.13)
For a chart possessing a minus fixed point, we need to use an SU(2); trans-
formation:

Ui =i (o) (7.14
=1 ou)i’, 7.14
CINE

to get:

V3 i

o VE U B
G = 17%, X5 = gv“(ayg)a. (7.15)

It is worth noting that this is distinct from the commonly employed practice
of identifying the SU(2) 5 bundle with the SU(2) g one using the solution:

G =iflac, @ =iflax 09
S S

which is not globally well-defined.

7.2.3 Vector multiplet

The case of the N/ = 2 vector multiplet was examined in [Festuccia et al.,
2020]. We present a brief review for the sake of completeness, and because
some of the fields make an appearance in the gauged hypermultiplet expres-
sions.

The NV = 2 vector multiplet consists of a complex scalar (X), a gauge field
(A#) and two fermionic fields (\;q and A}) called gauginos, that live in the fun-
damental representation of SU(2)g. Finally, it also includes an auxiliary real
scalar field (D;;), that transforms as an SU(2) g triplet. All the vector multiplet
fields except for the vector field A itself, live in the adjoint representation of

the gauge group.
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The supersymmetry variations of the vector multiplet fields are:
6A, = iCio N +iX G\

5Dij = i(ot (Dqu Z'GM)S\]‘ — i)‘(z-&“ (Dﬂi ZGM) >‘j

+ 2i[X, ¥iAj] + 20X, G+ (04 5) 717
6N = —2i(D,, — 2iG,) Xo'xi+ 2(FF = X WH)(,

+ Dy ¢? +2i[X, X1 — 2Xmi

OA" = 2i(D,, + 2iG ) X (' +2(F~ = X W)X
— DYy, — 2i[X, X|X' 4 2X7" .

where F},,, is the field strength two-form corresponding to A*, and as in the

previous subsection, we made use of the notation F'* := %FM,,O"U‘V and F'~ =

1 FHV

2 FMVO- -. . . .
Applying a supersymmetry transformation twice on a vector multiplet field

W, we get:

820 = iL, U + 'V, 0 U + iAB o U — j[®, U], (7.18)

[T L)

where L, is the Lie derivative along the Killing vector v and the symbol “o” in-
dicates that we need to act on the field according to the SU (2) g representation
under which it transforms. In equation (7.18), A% is an SU (2) g parameter:

R - = . . — . .
A(ij) = xi0" (D, —iG L) — G (D, +1iG L) x5 + (i < j), (7.19)
and @ is a gauge transformation parameter:
O =it +sX +5X. (7.20)

Thus, a supersymmetric transformation of a vector multiplet field squares to a
translation along the Killing vector field plus an SU(2) g and a gauge transfor-
mation.

7.2.4 Hypermultiplet

We will now turn to the case of the (gauged) hypermultiplet, which we study
in Paper II. We will consider the gauge group as embedded in Sp(k), with the
hypermultiplet transforming in its fundamental representation. The field con-
tent of the hypermultiplet includes a scalar field gy, two spinorial fields g,
and 4, and, since we will study the multiplet in its off-shell formulation, an
auxiliary field F,;. The indices n,m = 1,...,2k are Sp(k) indices, while i
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and 7 are SU(2)g and SU(2) j; indices respectively, transforming in the fun-
damental representation of the corresponding group.
The reality conditions that we will use for this work are:

(gni)* = ¢™, (Fpi)* = F™. (7.21)
The hypermultiplet fields transform under supersymmetry as follows:

8Gni = Cithn + Xithn,
§bn = 2i(D i) 0" i + iqnic® (Dyy 4 iG) Xi + 4 X, qrmiC + 2iFl,
SY™ = 2i(D,q")G" G +iq™a" (D, — iG) G A 4i X g™ X + 20F X,

§Fn; = G [0 (Dy — iGL) ¥n — 2X0™m + 2(N) ™ i — iW 1)
+ %0 [0 (Dy +0G) Y 42X — 20 g + iW "y
(7.22)

The derivate D), that appears in the expressions above is covariantized under
the gauge and R symmetries. Note that wherever a vector multiplet field like
X, appears in the variations above, it is understood that it is contracted with
1%, eg X, = X%, As stated above, the off-shell closure of the
hypermultiplet requires the introduction of the auxiliary field F),; as well as
a pair of auxiliary spinors ; and x; which transform in the fundamental of
SU(2) .2 These spinors need to satisfy certain consistency conditions (7.11)
with the Killing spinors. Their reality conditions shall be taken to be symplectic
Majorana ones (7.12).

Applying a supersymmetry transformation twice on a hypermultiplet field
U (other than the auxiliary field F},;), we get:

820 = iL, U 4 iv'V, 0 U + iAo U + Gg 0 T, (7.23)

which, as in the case of the vector multiplet (7.18), consists of a Lie derivative
along the Killing vector and a combination of gauge and SU(2) g transforma-
tions, always in accordance to the appropriate representation (the symbol “¢”
indicates that we should act on the field according to the gauge group represen-
tation under which it transforms). The analogous expression for the auxiliary
fields contains an SU(2) ; transformation instead of an SU(2) g one:

82U = iL, U + iv"V, 0 U + iAFo T + Gy o T, (7.24)

?The reason that we use checked indices (7) for the auxiliary field and the auxiliary Killing spinors
is to emphasize that the SU(2) z bundle is generally distinct from the usual SU(2) g bundle.
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where Vu and A® are the SU (2)  background connection and transforma-
tion parameter respectively. The latter is equal to:

Agt:%WM@%_4G0§f+%@W+G—2%W% u+u;)§
+2ix;Wx; + (i ), (7.25)

with D, being an SU (2) j, covariantized derivative.
The dynamics of the hypermultiplet are governed by the following super-
symmetric Lagrangian:

1 . i g 1.
Ly = +5(D"q")(Dydni) = 54"i(DV )0 Gmj + 5 F™ Fus

R N
- <12 + 4 > q an +qm{X X}n dmi, (7-263~>

ﬁF = —%1/)”0“ (DM — iG;A) &n + %wanmwm + %J}anm,(/;m

= )i — 0 ()i — (8 o+ 5 )
(7.26b)

where we have split the Lagrangian into a bosonic (L) and a fermionic part
(LF). The gauged hypermultiplet Lagrangian £+ £ turns out to be d-exact:

Ligper = L + L = 0Va, (7.27)
where, after some work, it can be shown that Vi is given by:
1 ‘ _ o
Vo= 2(s +3) [QZ(D“ + 4G ) (qniC) "™ — 2i(D,, — iG ) (qniX")T* "

+ 20Fi (X" = (") = diguni (X" X 9" + X0 C9")
= 20ni(X'WP" + (W ")
83— v f;me( i5“¢" - CiU‘Ll/;")
— 4ig™ [()‘z)nm@ + (S\z)nmXJ] %nj]' (7.28)
A similar result for the hypermultiplet Lagrangian as a §-exact expression ap-
peared in [Hama & Hosomichi, 2012], albeit in a somewhat less general form,

as it is predicated on the fact that s + 5 is constant and hence F,,, = 0, while
we make no such assumption here.

7.3 Twisted supersymmetry

We will begin with a short account that rewrites the vector multiplet in terms
of cohomological variables, worked out in [Festuccia et al., 2020]. Then, we
will proceed with the hypermultiplet case which was considered in Paper II.
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7.3.1 Decomposition of two-forms and spinors

A crucial point for the argument of [Festuccia et al., 2020] was the construc-
tion of certain projectors, dubbed “flipping projectors”. These projectors are
defined such that when they act on a two-form they produce self-dual forms at
plus fixed points of the Killing vector field, and anti-self-dual ones at the minus
fixed points (hence the name). These projectors are given by:

1
Pi= sy (P14 (2 =) —annn), (29

and

P_=1- Py, (7.30)

where 1 is the identity operator and & is the one-form dual to v.

The analogous construction in the case of the hypermultiplet (Paper II), re-
lies on similar projectors that act on Dirac spinors. Written in terms of its
components, a Dirac spinor has the form:

U= (Zﬁg) . (7.31)

Usually, one can isolate the left and right-handed components by employing
the projectors:
1 5 1 5

L:§(1+7), R:§(n—fy), (7.32)
where 7> = —71727374, with v* being the Dirac matrices in the chiral repre-
sentation (see Appendix A of Paper II for more information on the conventions
we follow). However, for the purposes of our work, in the spirit of [Festuccia
et al., 2020], we define another projector:

1 s— 3§ 2
Z,.=—(1 — i . 7.33
+ 2< +s—|—§75 s—|—§v 757“) ( )

One can show that Z is idempotent (and linear) and is indeed a projector. In
fact, one can obtain more projectors by simple variations on the theme:

Z_=1-27,, Zy =524, Z_=1-27,. (7.34)

Then, one can see that Z and Z, analogously to their two-form counterpart
P, project spinors to left-handed ones on plus fixed points and to right-handed
ones on minus fixed points. In fact, there seems to exist some relation between
the self-dual two-forms and the left-handed spinors defined by P and Z re-
spectively (as well as analogous relations for the other projectors). This can be
seen by composing the following two-form:

Wpy = \I/QFYMV\IIM (7.35)
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where W1 o are spinors that satisfy the projection relation ZL W1 = Wy . It
can be shown then that w is self~dual:

Piw=w. (7.36)

7.3.2 Twisted vector multiplet

As part of [Festuccia et al., 2020], the authors wrote the vector multiplet in
terms of new cohomological variables. The dictionary between the usual for-
mulation and the cohomological one can be found in the aforementioned paper
or in the Appendix C of Paper II. As some of the vector multiplet fields make
an appearance in the gauged hypermultiplet expressions, we would be remiss
not to summarize the vector multiplet theory in its twisted formulation.

In the cohomological language, the vector multiplet organizes naturally in
three submultiplets, one long and two short ones. The long submultiplet con-
tains a scalar field ¢, a Grassmann one-form ¥ and a gauge field A (with field
strength F). The scalar and the one-form transform in the adjoint representa-
tion. Their supersymmetry variations are:

6¢ = ZU\II)
SV = 1, F + id o, (7.37)
SA =i,

where 72, denotes the inner product with the Killing vector field v.

One of the two short submultiplets comprises a scalar ¢ and another Grass-
mann scalar 7, both transforming in the adjoint representation, whose super-
symmetry variations are:

dp = in,

7.38
on = 1dap — (¢, ¢]. (7:35)

The second short submultiplet contains a two-form / and another Grass-
mann two-form x, both transforming in the adjoint representation, with the
following supersymmetry variations:

ox = H,

7.39
where £/} denotes the Lie derivative along v that contains also the gauge field
A. Both two-forms satisfy a projection relation: Pyy = x (and similarly for
H). The reality conditions of the twisted fields follow from those of the original
vector multiplet theory.
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7.3.3 Twisted hypermultiplet

The hypermultiplet expressed in the cohomological language, contains four
fermionic fields gy, b, (Grassmann-even) and b, ¢, (Grassmann-odd), all in
the fundamental representation of the gauge group Sp(k). For the purposes of
our work, it is convenient to package the Killing spinors (; and x; into a Dirac

spinor:
Q)
=12, 7.40
3 <Xi (7.40)

that enjoys the projection relation Z13; = 3;. We will do the same for the
auxiliary Killing spinors ¢; and y;:

(G
3i <>21>’ (7.41)

which also enjoy a similar projection relation: Z_3, = 3,.

First, let us show how one can create these cohomological fields from the
ordinary hypermultiplet fields presented in Subsection 7.2.4. The scalar field
qni gets mapped to the field gy,

i ' qni
= = >, . 7.42
n = 3 dni <Xz (Im'> (7.42)
The inverse of this mapping is given by:
4 _
Ani = Ts13 §i Yn- (7.43)
The degrees of freedom from the two spinorial fields ¥, and 1, get distributed
to ¢ _
5+s Un 1 (s, — vHo, i,
=— Zo | F")=—= {5 e 7.44
o 4 * <wn> 4 <5¢n + UMUu@bn ’ ( )
and b,,:

_sts; U\ _ L[ St +vtouty
bn = 4 275 (%) 4 <_5'¢n + vu(l;u¢n> ) (7.43)

Their inverses are:

4
(:’%Z) =7 g(%bn —Cp). (7.46)

Finally, the dictionary entry for the field b, in terms of the original hypermul-
tiplet fields can be obtained by demanding that b,, = —idb,,, giving us:

s+ 5_;

SRS PR (A2 (043)

/Yu(Du—i_Z.TM)qn‘i‘Z'U’uGuqn_i

(anqm] )
(7.47)
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where T}, was introduced to make the expression shorter, and is defined as:

s—3§ s§ 0,(s2 +5?)
T, = —— _— A4 4
e T e T G e (7.48)

where b 1s a one-form that arises from the derivation of the supergravity back-
ground fields (see Subsection 7.2.1). To return to the auxiliary F,; we can use
the inverse mapping:

8 - s+ 52 . , <
Fui= Grae 3ibn — ——37" (Dy + 1T)qn — 10" G (3:9n)

(s+35 2

(s+3)

+i 5 0" Giqm) | - (7.49)

The cohomological fields also satisty certain projection relations:
Z.q=0q, Zoc=rc, Z_b=b, Z_h=h. (7.50)

Using the reality conditions of the original hypermultiplet fields (7.21) and
the reality conditions of the background supergravity fields (see Appendix B of
Paper II), we can deduce the reality conditions for the twisted fields:

()" = —b" = [ (s 4 8)(D +iL,)3"y" — 200" Cq"

—i(s+ 3§ em" | Z_, (7.51)

=N

(4.)" =7q".

Now we can write down the supersymmetry transformation of the cohomo-
logical hypermultiplet fields. These are organized into two submultiplets:

5q = (7.52a)

Sc = (iLy — Ga)q (7.52b)
and

5b = ih (7.53a)

oh = (L, +iGa)b (7.53h)

where Gg is a gauge transformation with ® = (72, A + ¢), acting differently on
fields depending on their representation. Finally, the square of a supersymme-
try transformation 1s

62 =iL, — Go, (7.54)

which a sum of a Lie derivative along the Killing vector field and a gauge trans-
formation.

As we reported in Subsection 7.2.4, the hypermultiplet Lagrangian is d-
exact: L = 6Vg. Thus, to rewrite the hypermultiplet Lagrangian as a function
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of the twisted fields, we can first translate Vg(qni, ¥n, ¥n, Fi) to Va(q, b, ¢, b)
and then apply the supersymmetry transformation rules (7.52) and (7.53). Car-
rying out the translation of Vg, we get:

Vo =

(5430 {iCE’Uq +iq[¢ +i(s — 8¢l ¢ — i(Tpvy)c g

82—8

22
— (s+3) (GM - 64b#> &g
+i(s + 8)by" (D, + iT),)q

— (s +3)bpq—2,,Gbq — %(s + 5)%qxq — ibb}, (7.55)

where the Sp(k) indices are implicitly contracted with the convention U1 Wy =
(U1),, U2, and we also introduced the notation x = % X Y*. Taking the
supersymmetric variation of Vg using (7.52) and (7.53), we derive the hyper-
multiplet Lagrangian in cohomological variables:

L=Lp+LFp (7.56)

where L is the bosonic part given by:

Lp = 5 { — LoGLoq — Dypvy Gy Loq —i(s — 5)q ¢ Log

s — &2

ZAM Fa
o bu) (G Log+ar"oq)

+i(s+ 3) <G“ -
— Ouv, @y o q

- 38 [5HPHT 4 {00} +ils— (v.0) g
— (s +8)by"(Dy + 1T,)q — 2i,Ghg

+z’(s+§)ﬁsoh+6h}, (7.57)
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and L is the fermionic part given by:

8 _ _ —
Lp = . { — iDL, + ibpb — icLyc —i(s + 5)by" (D, + iT},)c

(s +3)

2 — 2

+ 21,Gbc + (s + 3) (Gu - 64bu> catle
+ic[p+i(s — 3)p] ¢ + i v,c 0
+ (s +38)cpb+i(s+3)qy" b +i(s + 5)qn b

+iq [2%\1/ — (s — &)+ %(s + §)2X] c}. (7.58)

7.4 Cohomological Localization

In this section we will review the localization computation performed in Pa-

per 11

7.4.1 Localization preliminaries

As explained in Chapter 2, in a localization computation the path integral lo-
calizes on the BPS configurations of the theory. For the case of the twisted
hypermultiplet theory, this is given by vanishing fermionic fields and super-
symmetric transformations thereof. The resulting equations are:

h=0,
(iﬁv - g@)q = 0.

To solve the second of these equations, we may recall the reality conditions of
the quantities involved (complex @, real v, and equation (7.51) for q), to get:

q=0, (7.60)

(7.59)

and hence our BPS locus is trivial.

The next step in the localization procedure, is to specify the localizing ac-
tion, which for us will be given by the supersymmetry variation of the following
expression:

U T = — O [(560) bn + (Sen) ], (7.61)

‘/loc =

or

Viee = { —b0b+Db [i(s + )V (Dy +iT,) — 20,G — g(s + 3¢l q

(s+ )3
+ (00) iy — i® — i(20+ i(s — S)p)]a}. (762
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Our reality conditions (7.51) ensure that 0V, is greater or equal to zero.
For the purposes of the one-loop determinant computation, we may rewrite
equation (7.62) in a matrix form:

8 — = [(Doo Do q
oc — po ; ’ 7.
W (s+35)3 (9a, ©) (DIO D11> <5b (7.69)

where:
D()() :iﬁv—i(p—i[2¢+i(8—§)g0], D()l :0,

7.64
Dy =i(s + 5" (Dp +iT,) — 2t,G — g(s + 8)p, Dy =—1. ( )

Note that the matrix entry D1g satisfies two important properties:
. Z_D102+ = D1 (by virtue of equation (7.50)),
* Djg is transversally elliptic (i.e. it is elliptic in the directions orthogonal
to the orbits of a group action).
To see the latter, consider the symbol of Dy:

8p ~
o[D1o] = ﬁZ—VMZJr (7.65)

which on plus/minus fixed points becomes:

_ 8pu

8
7 [Dullig = "2 RY'L, o [Dulg = 2

52

LV"R (7.66)

respectively (remember that s = 0 or § = 0 implies that v = 0). But these are
precisely the symbols for chiral Dirac operators, which are well-known to be
elliptic in Euclidean space. To establish that D1q 1s transversally elliptic, we can
examine its behavior where s = 5:

P vy, v
o [Dull,—s = 55 (1 - ) ¢ (1 - fvm”)
== Z,fyg,y“”pﬂv,,. (7.67)
However, when p* = v# # 0:
o Do),z =0, (7.68)

and thus ellipticity fails. Still, wherever p is non-zero and orthogonal to v,
the symbol is invertible. So, we have demonstrated that D1 is transversally
elliptic with respect to the Killing vector field and we can compute the one-loop
determinant by employing index theorems for transversally elliptic operators:

. Trqe_”H — Trbe_“H
ind(D1o)(t) = Z el o (7.69)

. TrT=x

In this expression, H denotes the torus action:

H=206%=iL, — Gsp, (7.70)
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which maps z to . The sum in equation (7.69) runs over the fixed points of
the aforementioned torus action, and ¢ takes values in the real numbers. Let us
now compute the various elements that appear in the index formula (7.69) for
the case of plus and minus fixed points.

7.4.2 Index computation

Plus fixed points
First, let us switch coordinates to (z1, 22), where z; € C. In the neighborhood

of a plus fixed point, the Killing vectors are parameterized by a set of real

parameters (€], €1 ):

v=ie"(210,, — 2105,) + ieS") (220, — %205,). (7.71)
In terms of the complex coordinates (21, z2), the torus action acts as:

(21, 22) = (Z1,22) = (121, @222), (7.72)

where o
qo = €2t teR, (7.73)

ie.asa U(1) x U(1) action. Now, we can write the determinant in the index
formula (7.69) as:

d(1- ) =-wi-a-w-m), 0
“j

where q; 5 denotes the complex conjugate of ¢1,2 respectively. The last nec-

essary ingredient is the action of H on the spinor fields. As explained in Pa-

per II, this can be accomplished by embedding the U(1) x U(1) group in

Spin(4) = SU(2)4+ x SU(2)-. We introduce z:

0 0 Zo  Z1

0 0 zZ1 —Z22
—z9 —2z1 O 0
—Z1  Z2 0 0

z=x,7" = (7.75)

Then, a transformation g from the group SU(2)4+ x SU(2)_ will have the
following form:

g = diag (\/ﬁﬁz, V192, /71925 \/ qﬁz) ; (7.76)
and will act on the coordinates as:
z — gzg ', (7.77)

and on the fields as:
U — gl (7.78)
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Taking into account that on the plus fixed points, the spinors g and b are left-
and right-handed respectively, we obtain the following expressions for the in-
fluence of ‘H on the spinor fields of (7.69):

9+ = V3132 9+,

q- — v 71929,

6+ — V Q162 EJra

B; — \/qlqg E;.
Combining (7.74) and (7.79), we find that the index formula (7.69), evaluated
on a plus fixed point, gives:

ind(Do)| - vaP® ] S ertel®o), (7.80)

plus point (1 _ q1)<1 — ¢

(7.79)

PER

where we are summing over the weights p of the representation R, and ®g is a
combination of a Coulomb branch modulus ag and a flux contribution.

Minus fixed points

For the case of minus fixed points, we follow a similar procedure. We introduce
complex coordinates (21, z5) and write the Killing vector field in terms of the
real parameters (€] , €, ):

v=ie (0 — 210z) +ies ) (0. — 7), (7.81)
with the torus action acting on the coordinates as:
(21, 25) = (21, %) = (d121, ©22%), (7.82)
where
glo=€97t,  teR (7.83)

We can now compute the determinant in (7.69), as in the case of plus fixed
points. For the spinors q and b we need to remember that the chirality switches
with respect to the previous case, and so:

by — \/dig5 by,

R 780
§t o \Jaga, |
i = \/Tdba

Therefore, we obtain the index formula (7.69) for a minus fixed point:

! !
ind(D1o)| — VAT N te®), (7.85)

minus point (1 . qll)(l o qé) et
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7.4.3 Regularization

The final step in the computation entails converting the expressions for the
indices in equations (7.80) and (7.83) into an infinite product and performing
a regularization. This is a subtle issue, which we do not treat in its generality
in Paper II and would merit an independent work. In what follows, we restrict
ourselves to presenting various ways to perform the regularization.

First, let’s introduce some useful notation for the regularization:

[1 _ql] => q, (7.86)

n>0

and
[H] =- ) d=-) (7.87
n<—1 n>0

We will also use the plus/minus subscripts to denote which regularization we
employ for the expression, with the convention that the first subscript will refer
to ¢1 and the second one to g2. Finally, for the purposes of the regularization
of the infinite products, we will employ the gamma function:

Iywla)= [ (w+a-m)" = ePviewldle, (7.88)

ENN
where (n(s,w|d@) is the Barnes multiple zeta function:
(n(s,wld) = Y (w+a-m)°. (7.89)
TENN

Let us now examine the regularization for the plus and minus fixed points.

Plus fixed points
* Plus-plus (4-+) regularization:

. nl"r* n2+2 _ o
[(D10) i |, =+ D ¢ gy TRt (7.90)
pPER n1,n2EN

where in all the expressions for a plus fixed point, @ is given by:
Do = ag + ks (7, e, (7.91)

with k4 (egﬂ, egﬂ) corresponding to the flux contribution, as explained below
equation (7.80). The corresponding expression for the one-loop determinant
is:

(+) (+)

L2219, d). .92

Z‘?ﬁ? oo (a0 k) } H Ty (i p(Po) +
PER
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* Plus-minus (+—) regularization:

[ind(Dlo)‘pluspoint] = _Z Z n1+7 _nri et P(®o) (7.93)

PER n1,n2EN

and the one-loop determinant is:

(+) _ () -
HM - &1 €% () _ ()
|:Z6§+),eé+)(a0ak+)i| L H L2 (i p(®o) + fh ,—€6 )
PER
(7.94)
* Minus-plus (—+) regularization:
. ni—% npti
[lnd(Dlo)‘plus p()int] == Z Z ql ’ ; ‘e to(o) (795)
PER n1,n2EN
and the one-loop determinant is:
HM _€§+) + 5 () () o
[Z€§;>7€g+>(ao7 k+)] LT H s (i p(@o) + #2’ 6 .6 )
- PER
(7.96)

* Minus-minus (——) regularization:

[ind(Dm)hﬂuspoim} =+ T Mg e ) (7.97)

pER nl,nzeN
and the one-loop determinant is:
HM ( )+ eg : (+) _ ()
[Z6§3r>7€g+>(a0>k+)] = H F2 ZP (®o) — =€ —€ )

PER
(7.98)

Minus fixed points
* Plus-plus (++) regularization:

[ind(Dlo)‘minuspoint] = _Z Z nl+ n2+7 7tp( o) (799)

pE’R T1,N2 eN

where in all the expressions for a minus fixed point, ®{, is given by:
b=ap+k (67,7, (7.100)
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with k_ (eg_), eé_)) corresponding to the flux contribution. The resulting ex-
pression for the one-loop determinant is:

=), (=) -1
| . € + € _ _
2 e k)] =TT [r2<w<q>s>+1 o)l
PER

* Plus-minus (+—) regularization:

[ind(Dlo)yminuspoim} i T ()t (gy) et

PER n1,n2EN
(7.102)
and the one-loop determinant is:
HM / / fg_) — 62_) =) _ (=)
{Z< ) <—)(a07k’7)} = H F2(iP(q)0) =+ fkl y —€9 )
PER
(7.103)

* Minus-plus (—+) regularization:

[ind(DlO)’minus p()int:| =+ Z Z ql e 2 2)n2+5€7tp(¢‘6)

(7.104)

and the one-loop determinant is:

(
. — + ) (=
[Z?lfg E(,)(a{), k_)} = H [FQ (i p(®() + %‘ — eg )765 ))

e
PER

* Minus-minus (——) regularization:

[ind(D10)|minuspoint} = = Z Z 177 ) n27%€7t’0(¢)6)

PGR ny, nzeN
(7.106)
and the one-loop determinant is:
HM / / egi) + ng) =) _ (=) -
[Zgl?)’ggf)(a()vk—)}__ = H T2 (i p(®)) — f| —q 6 )
PER
(7.107)
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8. Chiral algebras and H? x S'

In this chapter we report partial results from a project in collaboration with
Thomas T. Dumitrescu, Guido Festuccia, Antonio Pittelli and Konstantina
Polydorou. The basic idea of the project is to look for a structure similar to the
chiral algebra found in R* in [Beem, Lemos, et al., 2015], for the case of an
N = 2 supersymmetric field theory on H? x S,

We begin in Section 8.1 with an introduction and motivation to the project.
Then, in Sections 8.2 and 8.3 we review the basic ideas from [Beem, Lemos,
etal., 2015], recalling the difficulties in obtaining a chiral algebra in conformal
theories of dimension greater than two, and explaining how the authors of the
aforementioned work were able to evade them in an N = 2 superconformal
theory. Then, in Section 8.4 we lay the groundwork for the supersymmetry
setup of our work on H? x S'. In Section 8.5 we discuss the relevant aspects
of the superalgebra we will employ. We continue with Section 8.6 where we
use the idea of “boundary localization”, also employed in [Dedushenko et al.,
2018], for a free hypermultiplet and an Abelian vector multiplet, in order to
extract chiral algebras on the conformal boundary 0H3. In Section 8.7 we
examine the possibility of introducing defects to the theory. We finish in Sec-
tion 8.8 with discussion of the work and its future directions.

8.1 Introduction

Exact results are rare and difficult to obtain in non-trivial quantum field theo-
ries. Supersymmetric localization, a technique employed in several chapters of
this thesis, is an example of a method which allows us to extract exact answers
for both free and interacting theories. Another such example is that of confor-
mal bootstrap, first introduced in [Polyakov, 1974] and [Ferrara, Grillo, & Gatto,
1973]!. This method does not require the knowledge of a Lagrangian, giving
us access to non-Lagrangian theories which are very difficult to approach by
other means. The problem with the conformal bootstrap though is that the
resulting bootstrap equations are infinite-dimensional and challenging to solve
in most cases, unless the theory is either a meromorphic rational conformal
field theory (normally realizable only in two dimensions) or a topological field

'A description of the techniques of conformal bootstrap falls well beyond the scope of this thesis.
The interested reader can find an accessible introduction in the lecture notes [Simmons-Duffin,

2017].
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theory. In these two classes of theories, the crossing symmetry constraints can
help us solve the theory.

The search for such a solvable truncation of the bootstrap equations was one
of the motivations behind [Beem, Lemos, et al., 2015]. In this paper the au-
thors were able to circumvent the obstructions for constructing a chiral algebra
of operators with meromorphic correlators for the case of a four-dimensional
N = 2 (or greater) superconformal field theory. The essential ingredient in this
construction is supersymmetry. If one attempts to search for a chiral algebra
in a theory that is defined on a manifold of dimension greater than two, one
will find that the only operator compatible with the requirements is the iden-
tity operator, and thus the chiral algebra is trivial. This was evaded in [Beem,
Lemos, et al., 2015] by passing to the cohomology of a specific supercharge
Q, selecting a plane R? in R, and concentrating on a protected subsector of
the theory. Then, they were able to show that the correlation functions of (ap-
propriately twisted) operators from the protected subsector are meromorphic
functions of their positions on the plane, up to Q-exact terms. These opera-
tors form an infinite-dimensional chiral algebra, thus establishing a mapping
between four-dimensional superconformal field theories and two-dimensional
chiral algebras. Furthermore, the operators coincide with those that count for
the Schur limit of the superconformal index (see [Kinney, Maldacena, Min-
walla, & Raju, 2007], [Gadde, Rastelli, Razamat, & Yan, 2011] and [Gadde,
Rastelli, Razamat, & Yan, 2013]) and hence the authors of [Beem, Lemos, et
al., 2015] dubbed them Schur operators. One noteworthy aspect of this corre-
spondence is the relation between the central charge of the two-dimensional
theory, coq, and the conformal anomaly coefficient of the four-dimensional
one, c4q, which is cog = —12¢4q. Thus, for a unitary superconformal field
theory, the resulting two-dimensional theory will be non-unitary.

This construction is not unique to four dimensions. Analogous results have
been found among others on three-dimensional manifolds and S3 with N' > 4
in [Chester, Lee, Pufu, & Yacoby, 2015] and [Dedushenko et al., 2018], and in
N = (2,0) six-dimensional theories [Beem, Rastelli, & van Rees, 2015].

The basic idea behind the ongoing project reported in this chapter, is to
search for a chiral algebra structure in an A = 2 superconformal field theory
defined on another four-dimensional manifold, H® x S!. This is a confor-
mally flat manifold, albeit a non-compact one. The motivation behind pick-
ing this particular manifold was that the symmetries used in [Beem, Lemos,
et al., 2015] for the construction of the chiral algebra are spacetime symmetries
for H3 x S1. This implies that there exists the possibility that this infinite-
dimensional symmetry will persist even if one adds massive deformations and
moves away from the superconformal fixed point where the initial theory lives.
In fact this possibility was investigated and exploited in [Dedushenko et al.,
2018] for the case of N = 4 theories on S2, where the authors were able to
study non-conformal theories with real mass and Fayet—Iliopoulos paratemers.
This paper extended earlier work [Chester et al., 2015] for three-dimensional
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N = 8 superconformal field theories, where it was shown that the correla-
tors of certain half-BPS operators confined on a line give rise to a topological
quantum mechanics.

To pursue our goals, we begin by describing our background and construct
a supersymmetric theory on it. The procedure is nearly identical to that of Pa-
per II, so we will be brief. Then, we discuss the superalgebra of our theory and
move to the main tool we will employ for our study. This is a supersymmetric
localization method previously utilized in various recent papers, such as [De-
dushenko et al., 2018], [Bonetti & Rastelli, 2018] and [Pan & Peelaers, 2019].
This method is explained in detail in Section 8.6, but the basic idea is to reduce
the path integral over the bulk into some integral that instead will involve only
the values of the BPS fields/configurations evaluated at the boundary. We will
dub this technique “boundary localization”.

Once we possess the action of the boundary theory, we can use it to com-
pute correlation functions. These will correspond to correlators of operators
inserted at the boundary for the original theory, effectively allowing us to in-
vestigate the presence of a chiral algebra. This constitutes a different approach
to the algebraic method followed in [Beem, Lemos, et al., 2015] and [Chester
etal., 2015].

After performing the boundary localization computations for the free hy-
permultiplet and the Abelian vector multiplet, we also examine the possibility
of inserting non-local operators to our framework. Finally, we conclude with a
discussion of the future directions of the project.

8.2 Chiral symmetry and the lack thereof

We will begin with a short review of the presence or absence of chiral symme-
try in conformal field theories of two and higher dimensions.? In the interest of
space, we will not present any derivations, which can be readily found in the rel-
evant literature. For instance, a comprehensive pedagogical review of confor-
mal field theory can be found in the classic lecture notes by Ginsparg [Ginsparg,
1988].

In the case of two dimensions, the theory has a global SL(2, C) symmetry,
whose infinitesimal version can be encoded using the operators:

_1=—0., Ly = —20,, Ly = —22%9,,

. . , 8.1)
-1 = _827 LO — _Eafu L+l = -z 82)

=~ =

2The notion of chirality in conformal field theories is different to that of A” = 1 supersymmetric
field theories, where we call chiral those operators O(x) that satisfy the condition { Qa, O(x)} =
0, for a supercharge Q., where a could be + or —.
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that satisfy the following relations:

[Ly1, L] = 2L, [Lo, L+1] = FL+1,

— — — _ (8.2)
[Ly1,L_1] = 2Lo, (Lo, L+1] = FL+1.
We observe that the algebra factorizes into sl(2) x sl(2).

Chiral symmetry manifests itself in terms of operators O(z), that do not de-
pend on the anti-holomorphic coordinate z, and hence transform trivially un-
der s1(2).% In the presence of such operators, one obtains an infinite number
of conserved charges in the form of:

O, = §£ d—z.zn+h_1(’)(z), (8.3)
2mi
where h is the scaling dimension of the operator, which we can take to be
positive to avoid finite-dimensional representations of the si(2) algebra. The
canonical examples in this setting are those of the energy-momentum tensor
T}, and the conserved current J 4 related to global symmetries of the theory.
The tracelessness and the conservation of the energy-momentum tensor im-
ply that its only non-zero components, 7’,, and 7%z, are meromorphic and
anti-meromorphic respectively, and are hence commonly written as:

T(z) :=T,.(2), T(z) =T=(2). (8.4)
The conserved charges (8.3) that correspond to T'(z) are then:
dz
L, = 9§ %Z"HT(Z) (8.5)

and satisfy the commutation relations:
c
[Lons L) = (m — ) Loy + Em(m2 — 1)dmin.0, (8.6)

where c is the central charge. We recognize this as the well-known Virasoro
algebra. An analogous structure exists for the anti-meromorphic T'(Z).

Similarly, for the conserved currents J4(2) of the global symmetries we get
the charges:

d
JA = %%fﬂ(@, (8.7)

with commutation relations:
[T TP = ifABCIs  + m k6P 6 im0, (8.8)
C

which we recognize as a level-k affine Lie algebra.

*Such operators O(z) are often called “holomorphic” in the literature, instead of the more ap-
propriate “meromorphic”, in a slight abuse of terminology. We will adopt the latter term.
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It is precisely the algebra of such meromorphic operators (or equivalently
their conserved charges) that is called a chiral algebra. This infinite-dimensional
algebra, places strong constraints in the form of correlation functions and op-
erator product expansions and offers a powerful approach to computing quan-
tities in two-dimensional conformal field theories.

Let us now turn to the case of higher-dimensional conformal field theories
and attempt to search for similar chiral algebras. In the d-dimensional flat space
RY, we can select a two-dimensional plane and study operators with support
only on that surface. These operators will need to transform trivially under an
51(2) and non-trivially under another sl(2), which should be parts of the so(2+
d) spacetime isometry of R? (s1(2) x s1(2) C so(d+2)). This seems promising
until one realizes that if the operators transform trivially under an sl/(2) in
so(d+2), they will transform trivially under the entire so(d+2). Thus the only
operator that will satisfy these criteria is the identity operator. It appears that
one cannot construct a non-trivial chiral algebra in conformal field theories of
dimension greater than two. In the next section, we will describe how [Beem,
Lemos, et al., 2015] were able to circumvent this obstruction and build such
an infinite-dimensional algebra in a four-dimensional N~ = 2 superconformal
field theory.

8.3 Obtaining a chiral algebra in four dimensions

In this section, we are going to explain the procedure developed in [Beem,
Lemos, et al., 2015] to obtain a chiral algebra in a four-dimensional supercon-
formal field theory. The key ingredient in this construction is the possibility to
pass to the cohomology class of a special supercharge Q , where we can find
non-trivial operators that transform in a chiral representation of s[(2) x sl(2),
forming the desired chiral algebra.

In order to accomplish this, we have to identify a special supercharge Q and
a subalgebra s(2) x s[(2) of the theory’s superconformal algebra (which for the
case of the N/ = 2 theory we are discussing is s/(4]2)) that fulfill the following
four conditions:

+ nilpotency of the supercharge (Q* = 0);

» the subalgebras s1(2) and sl(2) generate holomorphic/anti-holomorphic
Moébius transformations on a complex plane;

* sl(2) is closed with respect to Q;
» 51(2) is exact with respect to Q.

A subalgebra of si(4]2) that seems promising to satisfy these conditions is
sl(2) x s1(2|2), which corresponds to a two-dimensional N = (0, 4) supercon-
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formal field theory. The next step is to understand how objects of the N' = 2
theory transform under this subalgebra. Ior details on this topic we refer the
interested reader to the original work [Beem, Lemos, et al., 2015] (especially
Appendix A). Finally, we need to identify the special nilpotent supercharge Q
that fits the description above. There exist two possibilities:

Q=0 +§2, Q2 =38 — Qs. (8.9)

where Q1 Q; 4 are Poincaré supercharges and St S’ are conformal super-
charges. Both these supercharges meet the criteria and there doesn’t seem to
be a reason to discard either of them.

Thus, we can now turn to the analysis of the non-trivial operators in the co-
homology classes of these supercharges. At the origin, these are Q ;-closed but
not Q;-exact operators. Using various commutation relations and a cohomo-
logical argument, one can show that the eigenvalues of these operators need to
satisty the following conditions:

1 . . . .
5(E—(]1 +j2))—R=0 and r+ (j1 —Jj2) =0, (8.10)

where E is the conformal dimension, j; and js are sli(2); and sl(2)2 charges
that correspond to the rotation generators M, and M™ ;. of the four-di-
mensional A" = 2 superconformal algebra, R is the sl(2) g charge and r is the
U(1), charge. In fact, the conditions (8.10) describe precisely the operators
that contribute to the so-called Schur limit of the four-dimensional supercon-
formal index [Gadde et al., 2013], and thus the authors of [Beem, Lemos, et
al., 2015] have dubbed them Schur operators.

As hinted before, the discussion above holds when the operators are exam-
ined at the origin of the complex plane in R*. However, because the nilpotent
supercharges Q ; contain conformal supercharges &, which do not commute
with the displacement generators, the Schur operators need to be modified if
they are to be moved away from the origin. The modification consists of a
combination of twisting and translation (on the plane (3, z4)):

O(z,z) = eZL*IJFEE*l(’)(O)e*ZL**EZ*I, (8.11)

where we have introduced the usual holomorphic/anti-holomorphic coordi-
nates z = x3 + iv4 and Z = x3 — ix4. The operator O(0) is a Schur op-
erator inserted at the origin, and the symmetry generators that appear in the
expression above can be written in terms of the four-dimensional generators as
follows:

1 .
2

with P, K being the translation and special conformal transformation genera-
tors, and H being the dilation generator, and

E_l =L_1 + R, EO = 2(fo - R), E_H = f—l—l — 'R,Jr, (8.13)
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where R™, R and R are Chevalley basis generators for sl(2) g, and L_1, Lo
and L, are given by the following generators of the N' = 2 superconformal
field theory algebra:

T =P

_ 1y

_ 1 _ .
Lo =5 (M- M), Loa=K". (814

While the twisted-translated Schur operator seems to depend on the anti-holo-
morphic coordinate Z, one can show that, by passing to the cohomology of
one of the supercharges Q ;, the operator O depends only on the holomorphic
coordinate 2:

9[0(2,2)]q; =0 (8.15)

up to Q;-exact terms.

Finally, let us write a Schur operator inserted at a point (z, Z) using an sl(2) g
spin-k representation OF1+2x with Z; = 1,2. In the origin, it will be equal to
O1+1(0,0), while at any other point of the plane it will become:

O(2,%) = uz,(Z) . .. uz,, () 05T (2, 7) (8.16)

with uz = (1,%).

8.4 Supersymmetry on H? x S1

In this section we will write an N = 2 supersymmetric field theory on H? x S,
We will also state our conventions and set up the notation we will use for the
results in the rest of the chapter.

8.4.1 Metric and Killing spinors

The metric we will use for the study of H3 x S is:
L2
ds® = = (da® + dy® + dr®) + L*B%d6”, (8.17)
r

where L is the H? radius, 3 is the ratio of the S' and H? radii, and the angle
variable 6 is periodic: 6 € [0, 2m). The vielbein we will use is:

L L L
el = Zdu, e? = Zdy, e3 = Zdr, et = L3do. (8.18)

T r r
We will denote vielbein indices by Latin letters (a, b) and spacetime indices by
Greek letters (14, v). Our conventions for the Killing spinors, the sigma matrices
and the related quantities are those of Paper II unless otherwise noted. They

are summarized in Appendix A of the aforementioned work.
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We would like to study an N = 2 supersymmetric field theory on this back-
ground. To that end, we employ the technique introduced in [Festuccia &
Seiberg, 2011]: couple the theory to supergravity and freeze the gravitational
degrees of freedom. Since the procedure is identical to that of Paper II, where
we also make use of an A/ = 2 vector multiplet and a hypermultiplet, we will
be brief and restrict ourselves to the basic equations that will be most pertinent
to our goals.

The supersymmetry transformations on H? x S! will be parameterized by
the Killing spinors, which are given by the solutions of the equations:

Dl —iAY0,,¢ =0, (8.19a)
DX +iA"G X =0, (8.19b)

where we have introduced the covariant derivative D,,, containing the spin
connection wy, qp = €4, Ve,” and the SU(2) g connection V#JI:

1 1

D, Cr = 0uCr + SWnab ¢ — iVuJICJ, (8.202)
_ 1 1 _

DX = 0. + W ab s+ iv,f x’. (8.20D)

For H3 x S, with A = —df and VHIJ = 0, we can solve the Killing spinor
equations and get:

1 i ) 1T g\ @
o= 1 (W) e L (AT g,

where we have once again introduced the holomorphic/anti-holomorphic co-
ordinates w = = + 4y and W = = — 1y, and ay, by, c1, dr are arbitrary param-
eters.

8.4.2 Vector multiplet

The N' = 2 vector multiplet in its off-shell formulation consists of a complex
scalar X, two gauginos of opposite chirality A; and A, a vector field a,, and
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an auxiliary field Dy ;. Their supersymmetry transformations are:

60X = =N, (8.22a)
§X =3\, (8.22b)
da, = iCro N +ixX G (8.22¢)

SAr = —2i "X DpX + Fuo™ ¢+ Dry¢? + 2ig[X, X]¢r - (8.22d)
SA = 21D, X + F,a"x — DXy — 2ig[X, XIX!,  (8.22¢)
i

D1y = 2i (0" <Du + ;AM> Ay — 20X (0" (DM — 2Au) A

+ 4ig [X, %(IXJ)} +4ig [)N(,C(I)\J)} . (8.22f)
Using these fields, we can write the following supersymmetric Lagrangian:

- 1 1
Ly =Tr {—4(7)“ +iA)X (D! —iAM)X = S Fu P §D”D1J

2R _ < - \ ~
+ ?RXX + 4% X, X)? — 2iAj0t (DM - ;AM> A

—2igM X, ] — 2igM [X, XI]} . (8.23)

8.4.3 Hypermultiplet

As in Paper II, we will consider a hypermultiplet transforming in the funda-
mental representation of a gauge group, which we will embed in Sp(k). The
index that transforms under this Sp(k) will be denoted by n or m and it will
take values in the range 1, ..., 2k. The index I or J will transform in the fun-
damental representation of SU(2)g. The hypermultiplet consists of a scalar

GnI, two fermionic fields of opposite chiralities 1, and ™ and an auxiliary
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field F},1. These fields transform under supersymmetry as follows:

8anr = Crtm + X1, (8.24a)

L~ ) l -
0y, = 2i O'uXIDMQnI + igprot <Du + 2Au> X!

+4ig X, " qmr¢! — 2iF, (7, (8.24b)

~, o~ I~ )
oY" = 2i U“QDMQ”I + Zq”ja“ <DM — 2Au> (r

+ 4ig X" g™ X — 20F™M Y, (8.24¢)
. 7 ~
0F, = CI |:0"u (Du - 2Au) ¢n - QQXnmd}m + 29(/\J)anmJ:|
+X; [a# <Dﬂ T ;AM> U + 29X m — 290N )0 ™ gm J] , (8.24d)

where we have also introduced the auxiliary Killing spinors {7 and X1, nec-
essary for the off-shell formulation of the hypermultiplet. As mentioned in
Chapter 7, these spinors need to satisty certain consistency relations with re-
spect to the Killing spinors ¢ and X', but are otherwise arbitrary. We will
follow [Hama & Hosomichi, 2012] and make the following choice (which is
not the only possible one):

{r= \/ECL X = —\/gi’, (8.25)

where we have introduced the following scalar combinations of the Killing
spinors:
s =1, s=xix" (8.26)

Note that the relation (8.25) between the Killing spinors and the auxiliary
spinors is not valid for all supercharges (as both s and s need to be nonzero).
Not all supercharges can be extended off-shell, but this does not pose a prob-
lem. What is important is that the supercharge used to perform localization
should satisfy this property.

The Lagrangian for the hypermultiplet theory coupled to the vector multi-
plet is:

1 ) 1 R
£H - _ §Duqn1Duan + §ganDIJnmqu _ §FnIFnI + Eqnlqn[

nl v m i n i o
- 92(] I{XaX}n GmI + §w ot (D,u - 2A,u> Un
i n m i ny m, .
- §g¢ X" m — 597!) Xn " m
+ige" (N ) gonr + igd" (N ) G 8.27)
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8.5 Superalgebra

In this section we will expound on the algebra of the N/ = 2 superconformal
field theory on H3 x S* and present the supercharges that we will use for the
cohomological construction.

8.5.1 Superalgebra and Killing spinors

The action of the spacetime symmetry generators .J * and the R-symmetry gen-
erators R%) on a field ® living in the fundamental representation of SU(2) g
will be:

[J“‘),cpf] = L0, {R(i)@[} —ROL,p7 (899

where R is a 2 x 2 traceless matrix with the following entries:

1

1
= —(r' —ir?), RY1=5% (7'1 +iT2) ,
2L

' (8.29)
where we denote the Pauli matrices by 7°. Let us now present the generators
of the conformal algebra. We begin with P (anti-holomorphic translations on
the conformal boundary OH?), K (special conformal transformations), M |
(rotations orthogonal to OH? or translations along S1), M, (rotations preserv-
ing OH?), D (dilations), P (holomorphic translations on H?) and K (special

conformal transformations on O H?>):

1 _ _p2 L 1
R1=-R"% 57T R 2

L = % (0?05 +wrdy, —1%0y), L, = % (WO — W) ,

Lp = % (w0 + W + 1, Lo, = —L'L'Bag, (8.30)
Lp=—10m Lp= 100,

L= % (w?0 + wrdy, — 1%0g) .

Having introduced these generators, we can compute their commutation rela-
tions, the non-trivial of which are:

7 7

[D,P] = _ZP’ [D,K] = ZIC’
1 1

My, Pl = 7P, M K] = =K, (8.31)
1 1

[P,K] = -7 (iD+ M), [R';,,RFL]= 7 (6% R, = 6" LR™ ).
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Note in particular that M| commutes with all other bosonic generators. We
can summarize the basic facts about the algebras with the following statements:

span{ M } = u(1)rm,,
span{P, K, D +iM} = sl(2), (8.32)
span{ R’ ;} = su(2)x.

The sl(2) above is the anti-holomorphic subalgebra of so(1,3) (so(1,3) ~
s1(2) @ s1(2)). It is worth noting that this algebra is the isometry algebra of the
hyperbolic space H?3.

Before moving on to the supersymmetric part of the algebra, we need to
clarify a point regarding the interpretation of some of the generators above on
the conformal boundary. Looking at the expressions (8.30), we observe the
presence of terms containing a differential operator with respect to the radial
coordinate: 0,. Thus, we need to justify the claim that the generators act as
boundary symmetry generators in the limit 7 — 0. To do so, we will examine
the action on a boundary scalar field ¢(w, w, r, @) with mass m, of the genera-
tors D and K, which contain the offending radial coordinate. The periodicity
along S

$(w, 7,0+ 2) ~ G (w, W, 7,0) 839

allows us to perform a Fourier expansion:

o(w,w,r,0) = Zeikaqﬁk(w,@,r). (8.34)
k

This results in a tower of Kaluza—Klein modes ¢y, (w,w, ) on H?, whose ef-
fective mass is:
s, 1 kO
my, = m° — 72 + (I/ﬂ) . (8.35)
Solving the equation of motion for the scalars, provides us a way to relate these
modes to their value ¢ Ar (w,w) on the conformal boundary (this should be
familiar from the AdS/CFT correspondence [Witten, 1998]) as follows:*

lim ¢y (w, W, 7) = 1™ ¢, o (0,) + r2F ¢, o+ (w, ), (8.36)
r—0 "=k =k

where Af are the scaling dimensions, which need to satisfy A + A, =
dim 9H %!, For a free theory the scaling dimensions are given by the expres-

*Note that if AY = A~ = d/2, the BF bound is saturated, and the scaling on the conformal
boundary becomes (see [Freedman, Mathur, Matusis, & Rastelli, 1999]):

lim ¢ (w,w,7r) = —r"*logr qﬁk,A; (w,w) + r?/? ¢k,A2’ (w, w).

r—0

It can be shown that our argument continues to hold in that case as well.
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sion:

+ d d? 2,2
Ak:§j: Z+L my. (8.37)

This asymptotic behavior was shown to persist when turning to interacting
theories in [D’Hoker & Freedman, 2002].
Let us now examine the action of D on the Kaluza—Klein modes:

m (D, ¢y] = r2* [D7¢k,A,j} + {D’qbk’ﬁﬂ

I

r—0
. .

= 71 (WD + WO + A7) b

— =A% (wdy +W0p + Af) G ap- (839

Now, we only have to perform an r-power matching on the two sides of the
equation above, to get:

[Di6pat] = =7 (w0 + WO + AF) &y 55 (8.39)

Thus, the operator D indeed generates dilations on the conformal boundary
and the fields ¢, AF have conformal dimension Af. Doing the same for the
action of K:

[iC, %Aﬂ = —% (0?0 + ALW) ¢y a2 (8.40)

which implies that K indeed acts as a generator of anti-holomorphic special
conformal transformations on O H?3.

ok ok

We will now turn to the supersymmetric part of the algebra. A field &/
transforms under the action of {d¢, oy} as follows:

{6¢,0¢)0" = 2iLk® + iK'V, ;07 —i0! ;07 (8.41)
where L is the Lie derivative on the direction of the Killing vector K*#:
K= X'ah ¢, (8.42)

and we also introduced the Killing spinor bilinear 67 ;:
e 1
o', =4iA, (XIJ“C J— 551 JK“> . (8.43)

The Killing spinors in equation (8.21) correspond to eight supercharges de-
pending on our choice of the parameters ar, by, ¢! and d’. Using a chiral rep-

resentation and indicating the generators as 0g,a,b,b, and ¢, cod,dy> WE AN
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establish the following correspondence:

o = 81000, 0% = 50100, St — o010, S2 6
1000 0100 0010 o001 844

o~ ~ o~ _
Q" — 61000, Q~ — do100, S1 — dooto, Sa — dooo1,

where Q! Q; 4 are Poincaré supercharges and S¢, 8¢ are conformal super-
charges. These supercharges satisfy the following anti-commutation relations:

{28/} = 2", (8.45)
{SY,SJ}::-+251JK; (8.45h)
(01,8} =6"y (=D +iM +iMy) + 2R, (8.45¢)
{8.Qs} =o'y (-D+iMy —iMy) - 2R, (8.45d)

where we have included only the non-trivial relations. The commutation re-
lations (8.31) along with the anti-commutation relations (8.45) form the su-
peralgebra sl(2|2), which is the anti-holomorphic part of the superconformal
algebra sl(2) x sl(2|2) of the N = (0,4) theory in two dimensions.

8.5.2 Twisted superalgebra

Let us now define the special nilpotent supercharges that we will use. As in the
case of [Beem, Lemos, et al., 2015], we find two possible supercharges:

Ql = Ql _§27 @2 = Sl + @25
Q=81 — Oy, Q= Q' + &2

These combinations of supercharges anticommute with the central element

(8.46)

Z=LM 1. They can also be used to generate twisted translations:

I=-"l@.0)=-Fe. 0 = —itpr+ R, 470
Ly = %{Ql;@l} = %{@2,@2} = g(MH —iD)— LR, (8.47h)
L= 2018 = +5(02,8Y) = ~ilKy — LR, 8479

where we have used:

{@m@}z—%é. (8.48)

These generators L_, Lo and L generate an su(2) g twisted s1(2), henceforth
denoted by sl(2). Their commutation relations are:

Ly, L] = 2Ly, [Lo,L+] = FLx. (8.49)
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The action of these generators on su(2)g singlets living on the conformal
boundary (r — 0) is:

L_ = _aﬁv ZO - _@26@7 E-l— = _an7 <850)

as in the case of a two-dimensional conformal field theory (8.1). This is very
similar to the su(2)pg twist performed in [Beem, Lemos, et al., 2015] to get
the Schur operators. In terms of the generators we have introduced above, the
Schur operators are those su(2) g highest-weight states that fulfill the additional
conditions at the origin of the conformal boundary of H?:

[Lo,00)] =0, [Z,0(0)] =0. (8.51)

These commutation relations give rise to the condition (8.10) written in terms
of their eigenvalues.

8.6 Boundary localization

In this section, we will follow a localization technique previously employed
in [Dedushenko et al., 2018], [Bonetti & Rastelli, 2018] and [Pan & Peelaers,
2019] to extract a chiral algebra at what would correspond to the conformal
boundary for OH? for our setup. To illustrate the procedure, we will outline
how it works for the case of a hypermultiplet. Consider a hypermultiplet scalar
®, which we separate in three parts:

d=dy+ D+ 50, (8.52)

where ®g, o comprise the BPS part and §® represents the fluctuations around
it. The difference between ®g and ® is that the former satisfies the equations
of motion, while the latter does not. The fluctuations 6P also do not satisfy the
equations of motion. Replacing equation (8.52) in the path integral partition
function, we get the following schematic expression:

Zi (0, ] = exp (=S[00, m]) [ DB exp (520, m]) Ay,
(8.53)

where m is a collection of moduli, A is the one-loop determinant of the

1-loop
fluctuations §®, and the actions Sy and S% are given by:

P P
S]?PS = / d221d222 —O(zl> 0(22) + ...,
OH3

e (8.54)

Sh= [ @280 +

The one-loop determinant can be thought as an integration measure for the
path integral, as in [Dedushenko et al., 2018]. The non-local boundary action
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S@hs is found by the evaluation of the initial action using classical BPS solu-
tions of boundary value ®g. The local boundary action S% can be computed
by replacing in the initial action the auxiliary field /" as a function EI;, obtained
via the BPS equations. Note that the derivation of both boundary actions de-
mands that we know the boundary behavior of the fields ®¢ and ®. The field
®( 1s non-normalizable, thus inducing a divergence which needs to be treated
using the well-known prescriptions of holographic renormalization [Bianchi,
Freedman, & Skenderis, 2002], [Skenderis, 2002], to get the finite action Sgps.
The derivation of the action S% however does not entail such a complication,
as ® is normalizable.

In the rest of this section, we will examine a free hypermultiplet and an
Abelian vector multiplet, but first we will investigate the scaling behavior of

various of the fields of these multiplets in anticipation of our work in Subsec-
tions 8.6.2 and 8.6.3.

8.6.1 Analysis of scaling behaviors of the fields

In preparation for the boundary localization of the hypermultiplet and the vec-
tor multiplet, we will study the scaling behavior of their fields.

Hypermultiplet
For the hypermultiplet, the BPS equations are d7) = 67 = 0, which for the

special nilpotent supercharges Q1 and Q2 become:

Lf+7(0,G+20,F) =0, 10, F —205G—Lfy =0,  (8.55)

where L is the H? radius and we have introduced the following quantities:

1
G=-(¢"+wg®) = - (g2 —wqn),

T T

1 1
F=-q=-——¢,
R 7{ " (8.56)
f=- (F' +wF?) = = (F, — wh),

1 1
fo==-F=—-F?

T r

Next, we diagonalize the BPS equations (8.55) without the presence of auxiliary
fields:

10y (r710,G) +4050,G =0, 1710, (0, F) + 4050, F = 0. (8.57)
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To solve these partial differential equations, we can use a Fourier transforma-
tion for F and G for the coordinates = and y:

53¢ Fpe, ),

(8.58)

d2 . ~
= / (27r)2el(p“”p”y)g(pxmy,T)-

Demanding that F and G solve the BPS equations (8.57), and that they remain
finite in the bulk of H?, we find:

F(pzr vy, ) = Ko(r|p) FO (pa, py),
_ r(ips (8.59)
G(pespyr) = (p,p‘*p” LD FO (s, py).

where K,(z) are Bessel functions of the second kind. Here we also introduced
the modulus of p: |p| = /P2 + pg. We can translate these results for the
Fourier transforms g1 and g2 of the hypermultiplet scalars ¢; and g2, to get:

ql(p:rapwr) = TKO( ‘p|) (pxapy)

N (8.60)
@ (pe,py. 1) = rKo(r|pl) (i0p, + p,) F O (pe, py).

Thus, the boundary behavior of our fields we will be:

lim g1 — rlog rF© (P2, Py),

r—0

lim @ = rlogr (i0, +p,) F (z,p,),
T

. ~1 — 92 . =~
}%(q +wq”) — T}E})g(vapyyr)v 861)

7,2

~ i
m G — |———— + —(i 1
lim G px+ipy+ 2(zpm+py)(og?"+’y

1 Pl =(0)
2+1 4>+...]]-" (Pa, Py)-

Vector multiplet
The procedure for the vector multiplet moves in a manner analogous to that of
the hypermultiplet. First, let’s begin by examining the following BPS equations:

oD =o. (8.62)
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In momentum space, these equations are satisfied by the following gaugino
expressions:

)\i(pxapya ) 3/2(ipx +py)Ko(T‘pD)\(O)I(px,py),
)\I_(px,py, r) = 7“3/2’17‘K1( \p!) (pvay)
5 (8.63)
X (9o ys ) = 72 (ipe + py) Ko(rlp) Xy (9o 1),
)\ (p3?7py7 )_ 7“3/2’p|K1( ‘p|))\f (pmapy)

where MO (p,. p,) and X(O)I(px,py) are the gaugino boundary configura-
tions. The rest of the BPS equations:

0X = 0, ((5 + 5BRST)a,u, =0 (864)

constrain further equations (8.63). By imposing them, we get for A:

1L o
[Q27ax] = _W (A}J,- + w)‘?i- + T)‘2—> = _aXC(xaya T)v
_ L 1 —=\2 2\
[Q?a ay] - 7‘3/2\/5 ()\Jr + UJA+ T')\i) - ayC(.Z', Y, T)? (865)
[QQ, ar] — iL ()\1_ + W)\Q_ - 74)\3_) = —8TC(.ZU, Y, 7"),

13/2./2
[Q2, ag] = [Q1, X] =0 — AL+ w2 + AL =0,

where ¢(z,y,r) is the bulk ghost field, with analogous relations holding for

A. We can also use the BPS equations to get an expression for the Fourier
transform ¢(p,, py, ) of the ghost field ¢(z, y, r):

(s pyT) = TWKl(rlpl)A“)”(px,py)- 8.66)

8.6.2 Hypermultiplet boundary localization

We will begin by considering the case of the free hypermultiplet. We are going
to evaluate its Lagrangian on the BPS locus. For the free hypermultiplet, the
Lagrangian (8.27) reduces to:

R
Ly = —D"¢"'D,qnr + Eq”f qnr — F™M E,,; + fermions. (8.67)

We now need to express F,; as a function of ¢,r using the BPS equations
0 = 6 = 0. To do so, we contract the BPS equations with the Killing

spinors (7, X
2%iLxq™ —i0! ;" =0, (8.68)
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s oxI . .
as well as with the auxiliary Killing spinors (7, X , which give us:

1 . . 1 ~
FnJ = _§ |:2,DuQnICJO—MXI + QnICJU'u <DM + 2A#> XI:| )
1 » (8.69)
X o~ = ~ ?
Fny= 5 |:2DMQnIXJ0"u<I + qurx o (Du - 2Au> CI} :

If we concentrate on the special supercharges Q;, the Killing vector K* be-
comes parallel to A#, implying ©7/ = 0. Then:

{Q1,Q2}gnr =0 = LK qnr < Oggnr =0, (8.70)

so the hypermultiplet scalars g,; do not depend on the S* coordinate on the
BPS locus. Using equations (8.69), F™ F,;, evaluated on the BPS locus, be-

comes:

R
(FnIFnI) ’BPS = _DuanDMQnI"i_

1
6q Qn1+4v |: ( IO"u XJ)QnIDVq

(8.71)
We can now replace this expression to the free hypermultiplet action (8.67) to
obtain the action on the BPS locus:

s 2oL |

4
&’z [\/é(xm XJ)anDnQ"J] : (8.72)
OH® 8

oOH?

where fi # 1, 0 denote the boundary coordinates. We would like to rewrite this
expression for the action in a cleaner form. First, we will use the identity:

S ~ o~ ey~ 3
X[O'“VV,,XJ = ZAVX[O'“VXJ + gZSA'uE[J, <8.73)

which can be obtained by contracting one of the Killing spinor equations (8.19)
with Y70, as well as the fact that V- = 0. We will also define the following
spinor field living in the fundamental representation of Sp(k):

e, lan 1 rfl/ZQn e
q = XI qg 1= E <—7"_1/2qn2 5 <874’>

where
Q" = u(w)g™ = "' + wg" 2 (8.75)
Now our action becomes:
SBPS — _grpL / i [r—?’qnaiﬁpﬁqn] : (8.76)
OH3 r=0

Notice that the field Q™ has exactly the form of the twisted-translated Schur
operators (8.16) of [Beem, Lemos, et al., 2015] and thatitis a BPS operator with
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respect to both of our special supercharges Q;. This suggests that we should
investigate the behavior of this field on the conformal boundary to establish
whether Q™ is indeed a Schur operator there. To that end, we employ the
results for the asymptotic behavior of the fields found in (8.61), which lead to
the following boundary BPS action:

SBPSCT _ ZWBLQ/

2w [QQ(O)”(w, )96 (w, T)
oOH3

+1og rG " (w, w) FO (w,@)} , (8.77)

r=0

where GO = lim,_,y G". The part that contains ]:720) in the expression above
1s diverging and needs to be subtracted using appropriate (boundary) countert-
erms:

ST = —27pL? / dwdw [r2gn1q™] (8.78)
OH?3

resulting in the regularized action Sg:

‘é}?}’s — S}]%[PS + SII?IPS CT‘ (879)
Doing so, we finally get:
Si1Q] = g / dwdw Q" (w, )0 Qn (w, W), (8.80)
OH?

where Q" = GO and gy = 4mBL?. We recognize this action as the action of
asymplectic boson, as was observed for the case of the hypermultipletin [Beem,

Lemos, et al., 2015] and [Pan & Peelaers, 2018].

Using the action ‘SA’?IPS, it is now straightforward to compute two-point cor-

relation functions for the operators Q™:

AN AN 1 an
Qm(z7 5) Qn(wv @) ~

T 2 — W’

(8.81)

where Q,,,, is the Sp(k) invariant form that satisfies Q™" Q,,,, = 6™,. We
observe that indeed the two-point function is meromorphic, as expected when
dealing with a chiral algebra.

We will now proceed to utilize the BPS boundary action S\}BIPS (8.80), to com-
pute operator product expansions for the energy-momentum tensor and the
global symmetry currents and extract valuable information for the boundary
theory.

Energy-momentum tensor
Let us now consider the canonical energy-momentum tensor corresponding to

the boundary BPS action §}BIPS, which we will denote by ¥55. Its components
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are:

Y (w, W) = 9H< Q" (w, @) 0 Q" (w, ) O). (8.82)

2 \-Q"(w, W) 05 Qn(w, W) 0
Note that these expressions are to be understood as normal ordered. All com-
ponents of ¥ are equal to zero on shell. Now, we can build a traceless and
symmetric energy-momentum tensor 7'(w, W) out of ¥55(w, W), which will be
equal to:

T(w, @) = %’@”(w,@) 0,y O™ (w, ). (8.83)

We can compute operator product expansions involving the energy-momentum
tensor T'(w, w). To make the expressions cleaner, we will omit factors of Tgy,
which can be easily restored via dimensional analysis. Doing so, we get:

~ (1/2)@n(w) n awén(w)

T ~ 8.84

(Z)Qn(UJ) (Z_w)g 2 —w ( )
and k2 2T(w)  0uT(w)
— w ' (w

T(2)T(w) ~ 8.85

()T (w) ~ s + oy + 8.85

We can now read off the two-dimensional theory central charge cog = —k and

the conformal dimension h = 1/2 of the operator Q,,. As is the case in [Beem,
Lemos, et al., 2013], the two-dimensional theory has a negative central charge
and is thus non-unitary.

Currents
Consider the following current:

Ty (0, W) = O, (w, W) O, (w, W). (8.86)

We can once again compute operator product expansions involving these cur-
rents:

Ton(2:2) B4, ) v+ (0B ,) + Qs B, ) (3.87)
and finally:
Tkt (2, Z) Sy (w, W) N(z_lw)g (en m + Qe Qi)
+— (QUndkm + QUmJin + QnJim + QmJrn) -

(8.88)

The presence of a second order pole implies that Jp,,,(w) is an affine Lie al-
gebra current with a central extension. The generators of this algebra are the
coefficients of a Laurent expansion of Jy,, (w).
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8.6.3 Vector multiplet boundary localization

We now turn to the case of an Abelian vector multiplet. The procedure we will
follow will be very similar to the one for the free hypermultiplet explained in
the previous section. We begin by contracting the BPS equations A/ = 0 and

SM = 0 with the Killing spinors and the auxiliary Killing spinors, to get:

L X + gs [X, )?} —0, LxX+g5 [X, 5(] —0,  (8.89)

and
Dy = g [Cro™ CryFuy — 2iX 10" ¢y DuX] 600
Dl _ _% [%(IEWCJ)FW n Qi%(IEﬂCJ)DH)?] | (8.90)
Then D'/ Dy on the BPS locus becomes:
DM Dy = B F™ + 8D, X DX +8¢% [ X, X i
+8(A, A" — R/6) XX
+ %Aﬂ (sX +5X) Dy (35X - sX)
- %vp (7 Fu K (sX +5X ) | 8.91)

Replacing this expression in the bosonic part of the vector multiplet action, we
get:

SPS = —dmiBL / Ao [ VG Bk (sX +3X)| . 892
OH? r=
Using \/g = LAB/r3, Ko = iLJ and the boundary behavior of the fields
Fap, X, X:
0 2 . AN
'T' 4
0P — 5 o

(8.93)
(8X+§X) — 72 <SX+§X) ,

where ¢, j are flat boundary indices ranging in ¢ = 1, 2, we get the action:

Siipes = 4w L' 5% lim 7 / d*x e Fy (s)? +35X ) —0. (8.9
OH?3

r—0

Thus, the bosonic part of the BPS vector multiplet action vanishes on the con-

formal boundary. Next, let us investigate its fermionic counterpart S‘li?frm. In
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order to avoid having a trivial BPS action, we will not consider the usual BPS lo-
cus, where all fermions vanish. We will also introduce the ghost fields ¢, ¢ and b,
as well as the bosonic and fermionic zero modes denoted by (ag, ag, bo; o, Co).
We also define the following cohomological fields:

0 = —2iK"a, +2 (35X - sX),

Ay = iCro N +ixX 5

1/ _ ~ _ (8.95)
Y= e (SX(I)\J) - S((I/\J)) ;
A]J = D]J — 27, YII}D,J (S)Zv + gX) + 28§YMK(IYVJ)KFHV,
where Y#1; is a Killing spinor bilinear defined as:
1 -
YM[J:T ([O’MCJ). (896)
8
These fields form the cohomological complex described below:
ba=A+de, ON=2iLga+d,0, 82A=2LgA,
3X = Ao, SAo = 2Lk X, 5%Ao = 2L Ao, 507
6X = Ay, 5 Ao = 2iLk X, 52Ag = 2iLx Ao, '
SE[J:A[J, gUZ—QiﬁKC, /5\2A[J:2i£[(2]]7
and for the ghost fields and the zero modes:
S0 =—0+ay, Odag=0, dc=0b, 5b = 2iL b,
e 0 - - K% gog)
5&0 = Cp, 560 = 0, 5b0 = Cp, (SCO =0.

In the expressions above, 0 is a sum of the usual supersymmetry variations d
and the BRST variations dgrst.
Now, the fermionic part of the vector multiplet action on the BPS locus will

be:

V, ferm

SBPS/BRST _ 47rﬁL/ d3a:\/§ \P [gsy#JKYVIKEU&,c] . (8.99)
H3

Note that the presence of J,,c in the action originates from the equation sa=0
which is equivalent to A, = —08,,c. The action stated above is the integral of
a total derivative on H?, which corresponds to an action on the conformal
boundary OH?. To obtain an explicit expression for this action, we need to
evaluate Y7, for our special supercharges @; and use the boundary scaling
behavior for the fields 277 and ¢. The boundary scaling of X715 descends from
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that of A’ and A in equation (8.63), while for the ghost ¢ we can deduce it by
noticing that its kinetic term is identical to that of a massless scalar, yielding:

lirr(l) c(w,w,r) — —rlogr co(w,w) + re(w, ). (8.100)
r—

Finally, the convergent part of the vector multiplet action evaluated on the BPS
locus involving only fluctuations is:

o~ ~

st =gy [ (Rww) - Ko ) dgt(wm), - @101
OH?

where gy = —v/2782L3 and A(w, W), A(w, W) are given by

~ —~ ~ ~ ~14 ~2+4
AMw,@) = AL + @2, A(w,@) =\ +@\ . (8.102)

Now, if we set:

~
o~ ~

b(w,w) = Aw,w) — Aw, w), (8.103)
we observe that the action (8.101) coincides with the (b, ¢) ghost system action.
This is in agreement with the results of [Beem, Lemos, et al., 2015] for the case
of a free vector multiplet. Using the action S%};S’KERST, We can now compute
the usual operator product expansions, such as (we omit factors of gy ):

1
bz, D)e(w, W) ~
1

(= w)?’

which turn out to be meromorphic as expected.

(8.104)
b(z,Z)0c(w,w) ~

8.7 Line operators

In this section we examine the possibility of including non-local operators to
our setup, for both the case of the hypermultiplet and vector multiplet.

8.7.1 Hypermultiplet
For the case of the hypermultiplet, a line operator will have the form:

W =Trg Pexp 7§ dot,rq™, (8.105)
v

where the loop 7 is taken to be on the boundary and along the S! direction.
For the loop to preserve supersymmetry, the following condition must be met:

Q (tnrg™) = ™ (tnrCh) + 9™t X") = 0. (8.106)

However, this implies that ¢,,; must be vanishing and so there can not be such
non-local operators in the Q; cohomology.

122



8.7.2 Vector multiplet

For the case of the vector multiplet, a Wilson loop transforming in a represen-
tation R of the gauge group should be of the following form:

W = TrRPexpygdt [aua':“ + |&] (nX + ﬁf()} , (8.107)

where 7y 1s a closed loop. Let’s consider the most general case where this Wilson
loop is invariant under a general linear combination of the special supercharges
Q;y, thatis Q = C1Q1 + C2Q3. By demanding that the Wilson loop is invariant
under the supercharge Q, we get:

Q [auw + i) <nX + ’ﬁf{)} = Ayt + |2 (nAO + 57\0) —0, (8.108)

where we have assumed no gauge fixing. We can now expand A, along K,
and Y”I 7 (one can show that they form a full basis):

A, =AK, + Ar;Y,17, (8.109)

where A is such that it satisfies the condition iK* A, = sAg — sAg, and hence

is given by the equation:
Ay A
A:i<0—~>. (8.110)
5 5

Then, the variation equation (8.108) becomes:

1
S

ArgY, it Ag ( K it + y:m) +Ag (—EK“M + ﬁ]a’c\) =0. (8.111)
S

This equation implies that:
l i ~
v, it =0, JKud 4 |i|n = 0, = Kyt — |7 =0. (8.112)
Thus, the Wilson loop should be on the S! direction and n, 72 should be given
by:

n=-‘K, =LK, (8.113)
S S

8.8 Discussion

In this chapter we reported partial results of a search for chiral algebras in
N = 2 supersymmetric field theory on H? x S'. What has been obtained so
far seems encouraging and invites further investigation.
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First of all, the technique of boundary localization developed in Subsec-
tion 8.6, depends crucially on solving BPS equations. For any boundary con-
dition, there needs to exist a BPS solution that fills the interior uniquely and
regularly. In the case of [Dedushenko et al., 2018], one can always find such
a solution, corresponding to any boundary condition on a great circle of the
sphere. Tor our case this turns out to be a subtle issue, and the answer de-
pends on the choice of the auxiliary Killing spinors. We would like to show in
some rigor that our BPS equations do possess regular, normalizable solutions
on H3 x S, for some choice of auxiliary Killing spinors (and perhaps after the
introduction of some other appropriate background field). We would also like
to understand in more generality when one can find a non-singular solution to
the BPS equations that fill the bulk, as a function of the boundary condition.

Furthermore, it would be very interesting to investigate the implications of
the AdS/CFT correspondence for our setup. This investigation would not be
without complications. For example, for the case of the hypermultiplet, the
list of Schur operators includes currents, which for our case are localized on
the boundary. However, according to the holographic dictionary, boundary
currents correspond to propagating fields in the bulk. For the massless hyper-
multiplet there are no such propagating gauge fields in the bulk. The resolution
of this issue is not clear at the moment.

Finally, we would like to apply our framework to non-free theories and even-
tually examine the possibility that a chiral algebra exists even for non-conformal
theories.
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10. Svensk sammanfattning

Kvantfiltteori, framforallt gaugeteori, har spelat en viktigt roll 1 var forstaelse
av universum. Gaugeteori har varit en grundlaggande ingrediens 1 beskrivning-
en av bland annat partikelfysikens standardmodell, fasta tillstandets fysik och
kosmologi. Trots dess oerhorda framgang och nytta finns det fortfarande en
lang lista med ol6sta problem av bade matematisk och fysikalisk natur. Ett pri-
mart exempel av ett sadant problem ar beteendet hos en starkt kopplad gauge-
teorl. Denna regim ar extremt svar att studera med befintliga analytiska- och
storningstekniker utan att inféra ytterligare antaganden.

En lovande vag mot 6kad forstaelse av starkt kopplade gaugeteorier, och
ett flertal andra problem, ar att studera supersymmetri. Supersymmetri dr en
rumtids-symmetri som relaterar fermioniska och bosoniska falt och ar, enligt
Haag—Lopuszanski—Sohnius teoremet, en unik utvidgning av Poincaresymme-
tri. Oavsett om supersymmetri aterfinns i naturen, och da realiseras inom de
energiskalor vi har tillgang till med vara begransade experimentella resurser,
forser den oss med sdllsynta mojligheter att erhalla exakta resultat 1 komplice-
rade gaugeteorier.

En av de viktigaste och mest anvandbara teknikerna fran supersymmetri ar
lokalisering. Lokalisering gér det mojligt att utfora exakta en-loops berdkningar
aven 1 komplicerade véaxelverkande teorier. I de mest gynnsamma fallen kan
en odndligdimensionell vigintegral 1 den ursprungliga modellen reduceras till
nolldimensionell faltteori, en sa kallad matrismodell.

I denna doktorsavhandling applicerar vi lokaliseringstekniken 1 olika sam-
manhang med syfte att erhélla exakta resultat 1 supersymmetriska gaugeteorier.
Vi underséker ocksd resulterande matrismodeller och olika aspekter av dessa
teorier. Avhandlingen ar uppdelad 1 tva delar. I den forsta delen ger vi en kort
genomgang av koncept samt tekniker som anvands 1 avhandlingen, namligen
lokalisering, matrismodeller och topologisk vridning. Vi fokuserar endast pa
grundldggande aspekter av dessa omfattande amnen och begrinsar diskussio-
nen till vad vi behéver fér vara andamal.

I den andra delen presenterar vi de nya resultaten fran var forskning. Des-
sa ar grupperade 1 fyra distinkta kapitel. Forst diskuterar vi lokalisering av en
samling av supersymmetriska gaugeteorier med atta eller fyra superladdningar
pa en d-dimensionell sfar. Resultaten fran denna diskussion haller 1 godtyckliga
dimensioner 1 ett sarskilt intervall. Vi bygger teorierna och beraknar dérefter
associerade en-loop determinanter. Till sist utfor vi en analytisk fortsattning av
vara resultat for en teori med fyra superladdningar pa en fyrdimensionell sfar
och gor en rimlighetsanalys.
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Efter det fortsétter vi med en analys av matrismodeller som uppkommer 1
det tidigare namnda arbetet; specifikt vid lokalisering av maximalt supersym-
metrisk tvadimensionell Yang—Mills gaugeteori. Vi underséker med analytiska
samt numeriska metoder sadelpunktsekvationen och jamfér vara resultat mot
litteraturen dir samma ckvation har analyserats men med annat fortecken pa
en parameter.

Vi flyttar sedan fokus till en fyrdimensionell N = 2 supersymmetrisk gauge-
teori med materia och generaliserar tidigare arbeten 1 litteraturen. Vi konstru-
erar teorin, kontrollerar att den dr globalt definierad och vrider den. Slutligen
lokaliserar vi den vridna teorin.

Till sist fokuserar vi pd& ' = 2 supersymmetriska gaugeteorier p& en annan
fyrdimensionell mangfald: en produkt av ett tredimensionellt hyperboliskt rum
och en cirkel. Vart syfte ar att finna om oandligdimensionella kirala algebror
kan existera i detta scenario. Efter att vi konstruerat teorierna och studerat
symmetrierna anvinder vi en lokaliseringsteknik for att studera mojligheten
till kirala algebror. Vi avslutar med att undersoka linjeoperatorer som passar in
i ramverket.
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