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Abstract—Characterizing the memory behaviour of SPEC
CPU benchmarks is critical to analyze bottlenecks in the ex-
ecution. Unfortunately, most prior characterizations are tied
to a particular system (e.g., via performance counters, fixed
configurations) and missing important time-based behaviour
(e.g., average over execution). While performance counters are
accurate for that particular system, the results are less accurate
for different micro-architectures and configurations. Most im-
portantly, aggregate statistics (e.g., average over full execution)
miss important time-based information which reveal transient
phases that have significant impact on the execution. This
work focuses on micro-architecturally independent, time-based
characterization and analysis of the memory system behavior of
SPEC CPU 2017. By collecting micro-architecturally independent
and time-based information, we provide reusable data for various
memory configurations.

I. INTRODUCTION

SPEC CPU benchmarks ( [1], [2]) are standard for computer
system performance evaluation. Characterizing their memory
system behaviour is critical for understanding the bottlenecks
present in current memory systems and direct future research.
However, prior works on workload characterization ( [3]–[8])
are either coupled to a particular system (via hardware perfor-
mance counters) and miss important time-based information
(e.g., via aggregate statistics over the full execution). Workload
characterization using hardware performance counters gives
the results for a specific system with fixed configurations.
While such results are accurate for that particular system
and easy to collect, they are not accurate for other micro-
architectures (e.g. Intel vs AMD) and not reusable for other
configurations (different cache sizes or prefetchers). In addi-
tion to architectural-dependence, previous works have looked
at aggregate statistics (average over full execution) which miss
important time (or phase) based information that is critical
in understanding bottlenecks of the execution. For example,
gcc 2017 at 1GB cache without prefetching has almost 9% of
execution (113B instructions) having an MPKI of >20 (Figure
2b Ã), which contributes to almost 80% of the total cache
misses, however the average MPKI of 4.5 reveals no such
insight.
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In this work, we provide micro-architecturally indepen-
dent, time-based memory behaviour of SPEC CPU 2017
benchmarks with 16 different cache sizes, with and without
prefetching. We first analyze the aggregate behaviour (average
over the full execution) to understand how sensitive the
applications are to different memory configurations and the
changes from SPEC CPU 2006 to 2017. We then analyze
applications time-based behaviour as a function of cache size
which shows distinct phases of the execution. To simplify
time-based analysis, we propose aggregating the data into
MPKI Bins, which shows what percentage of the execution
experience a certain MPKI as a function of cache size. MPKI
bins enable compact yet insightful representation by revealing
transient but memory intensive phases in the execution.

II. METHODOLOGY

We implemented a data cache simulator with a stride
prefecther which is fed by Intel’s Pin [9]. The prefetcher tracks
misses based on the Program Counter (PC) and fetches the
next 4 cache lines in the stride pattern. The simulator captures
statistics every 100M instruction window. Benchmarks longer
than 5T instructions were truncated. We collected data for 16
different cache sizes (32KB to 1GB, 8 way associativity), with
and without prefetching.

III. RESULTS

Aggregate Results: Aggregate results provide the average
behavior of the full application execution e.g. average MPKI
for a single cache level with or without prefetching. These re-
sults show the behaviour of the applications to various memory
configurations (cache size and prefetcher). We compared the
cache and prefetcher sensitivity of SPEC 2006 and 2017 suites.
The analysis shows larger cache working set size in the SPEC
2017 benchmarks (gcc, lbm, mcf, bwaves, cactuBSSN). But
it also reveals cases where the SPEC 2017 benchmarks have
improved cache and prefetcher behaviour (lower MPKI at the
same size cache or more reduction in misses with prefetching)
moving from 2006 to 2017 (wrf, xalancbmk, omnetpp, xz,
x264, leela).

Time Based Results Though the aggregate results show that
gcc with 1GB cache and prefetching has an average MPKI of
2.4, Figure 1a À shows that there are some phases where the
MPKI can be higher than 20. But that information is averaged
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(a) MPKI heatmap of the execution (with prefetching) over time as a function of cache size
(labels are in billions of instructions)
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(b) Aggregate MPKI as a function of cache
size

Fig. 1: Time-based analysis of gcc 2017 vs. an aggregate analysis. While both show the impact of varying the cache size, the
aggregate analysis hides the fact that there are phases of very intense activity (MPKIs over 50) across nearly all cache sizes.
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(a) With prefetching
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(b) Without prefetching
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(c) Difference of prefetching with no prefetching

Fig. 2: MPKI bins for gcc 2017: Percent of execution experiencing different MPKIs with (a) and without (b) prefetching, and
the impact (change) of enabling prefetching (c).

out in aggregate statistics. Time-based results not only show
the intensity of memory bottlenecks but also when they occur
and how frequently.

MPKI Bins Though Figure 1a À shows the phases which
are memory intensive at 1GB cache, it does not quantify
that almost 5.8% of the execution (almost 73B instructions)
is in those memory bound phases. The cache misses that
occur in these 73B instructions of high memory intensity
make up almost 57% of the total cache misses. To extract
further insight from time-based data we propose aggregating
the data by behaviour into MPKI Bins. MPKI Bins shows us
what percentage of the instructions experienced what range of
MPKI for each cache size (Figure 2). Figure 2a and 2b shows
MPKI bins distribution of gcc with and without prefetching
respectively, for various cache sizes. Figure 2a Â shows that
at 1GB with prefetching, 5.8% of the execution is in the high
MPKI region.

We can use Figure 2 to understand the effects of prefetching
on gcc 2017. Consider a 2MB cache where prefetching cause
a drop of 10 in MPKI (Figure 1b Á). Figure 2a shows that
at 2MB only 15% of the execution has an MPKI >20 while

without prefetching (Figure 2b), almost 60% of the execution
has an MPKI>20, which results in a difference of 10 in
MPKI. Figure 2c shows the difference in MPKI bins with
and without prefetching. Figure 2c shows quantitatively that
45% of the execution went from having an MPKI of >20 to
10-20 with prefetching enabled. The interesting thing to note
is that MPKI bins not only show how prefetching effects at a
single cache size (horizontally) but also across different cache
sizes (vertically).

IV. CONCLUSION

In this work we presented micro-architecturally indepen-
dent, time-based analysis and characterization of the SPEC
2017 benchmarks with various memory configurations. This
work enables reusable characterization as it is not tied to
a fixed micro-architecture and configuration. We analyzed
memory system behaviour over a range of cache sizes with
and without prefetching. To simplify time-based analysis, we
proposed aggregating the data by behaviour into MPKI bins
which enables compact yet insightful representation of the
time based data. With MPKI bins, we revealed that transient



phases can have significant impact on cache performance of
the overall execution.
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