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The Su-Schrieffer-Heeger model describes fermions that hop on a one-dimensional chain with staggered
hopping amplitude, where the unit cell contains two sites, or two sublattices. In this work we consider the
Su-Schrieffer-Heeger model with superconducting pairing and show that the sublattice index acts as an additional
quantum number in the classification of Cooper pairs, giving rise to inter- and intrasublattice odd-frequency
pair correlations in the bulk. Interestingly, this system behaves as a two-band superconductor where the
bulk odd-frequency correlations depend solely on the intrinsic staggering properties of the model. In general,
odd-frequency correlations coexist with even-frequency correlations in both the trivial and topological phases,
with comparable and even larger odd-frequency amplitudes at the topological phase transition points at low
frequencies, due to the closing of the energy gap at these points. Furthermore, we also discuss how bulk
odd-frequency amplitudes are correlated with pseudogaps in the density of states and also with a charge density
wave that appears due to the chemical potential imbalance between sublattices.
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I. INTRODUCTION

Superconducting properties are highly determined by the
symmetry of the Cooper pair wave function, or pair ampli-
tude. Due to the fermionic nature of electrons, Fermi-Dirac
statistics imposes antisymmetry on the pair amplitude under
the total exchange of all quantum numbers, which can include
spin, orbital, band, spatial, and time coordinates, etc. The
antisymmetry condition allows for electrons to pair at equal
times but, interestingly, also permits pairing at different times,
giving rise to temporally nonlocal pair amplitudes, which can
be odd under the exchange of time coordinates, or equiva-
lently odd in frequency (w) [1-5].

Odd-frequency (odd-w) pairing can emerge as a bulk or
induced phenomena and it has been shown that the main ingre-
dient in both cases relies on breaking the system symmetries
[2-5]. For instance, it has been shown that odd-w correlations
can be induced in normal-superconductor junctions [3,5-14],
where their emergence occurs because the spatial parity of
Cooper pairs is broken at the junction interface. Moreover,
under the presence of a spin field in such junctions, e.g.,
from a magnetic field or spin-orbit coupling, spins get mixed,
which then gives rise to even more exotic spin-triplet odd-w
correlations [2-5]. This has allowed for an understanding
of a number of exotic phenomena: long-range proximity
effect [2,15] and paramagnetic Meissner effect [16-20] in
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superconductor-ferromagnet junctions, anomalous proximity
effect in spin-triplet superconductor junctions [21-26], Ma-
jorana zero modes [3,5,27-42], and surface impedance in
topological superconductors [43]. Nowadays, induced odd-w
pairing in junctions is well established even experimentally
[44,45], which reflects the vast activity made towards the
understanding of this induced effect.

Odd-w pairing can also appear as a bulk effect in supercon-
ductors, without the need of interfaces. This occurs in systems
with multiple degrees of freedom such as multiband super-
conductors [46-49], double quantum dots [50,51], and double
nanowires [35,52], where the band, dot, or wire indices,
respectively, allow for a more broadened family of Cooper
pair symmetries where odd-w correlations can then emerge
without the need of interfaces as in junctions. In particular,
in multiband superconductors it has been shown that odd-w
pairing can be correlated with observable signatures such as
gaps in the density of states (DOS) at higher energies [47]
and the Kerr effect [53,54]. The higher energy gaps result
from the hybridization of normal bands [46], which can be
seen as an intrinsic symmetry-breaking phenomenon, unlike
the extrinsic interfaces present in junctions.

Another interesting route to bulk odd-w correlations is
through inherent staggered properties. For instance, it has
been shown that in buckled quantum spin Hall insulators
bulk odd-w correlations appear due to a staggered order
parameter but no sign of higher energy gaps in the DOS
was reported [55]. Even more interestingly, it has recently
been shown in nanowires with Rashba spin-orbit coupling
that intrinsic staggered hopping and spin-orbit coupling can
induce a topological superconducting phase that completely
repels the topological phase of the uniform nanowire [56].
Since these nanowires represent one of the most investigated
platforms for one-dimensional topological superconductivity
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[57-59], the reported staggered-induced topological phase is
within experimental reach and its fundamental understanding
is, therefore, important. Generally, this can be achieved by
a proper investigation of the emergent superconducting pair
correlations, which has not been carried out so far; odd-w
correlations are expected to play an important role due to
the topological nature of this exotic staggered phase, as has
been shown for other topological systems [3,5,28-42]. As a
consequence, a general exploration of systems with intrinsic
staggered properties is timely, can reveal the emergence of
exotic bulk superconducting properties, and add fundamental
understanding to these effects.

In this work we consider the possibly simplest staggered
superconducting system: the Su-Schrieffer-Heeger (SSH)
model with superconducting (SC) correlations, as shown in
Fig. 1, and study the emergence of bulk odd-w pair correla-
tions. The SSH model, initially proposed in the context of the
polymer polyacetylene [60,61], describes fermions that hop
on a one-dimensional chain with staggered hopping amplitude
and also exhibits a topological phase. Here, the unit cell
contains two sites, denoted as A and B and here referred
to as the A and B sublattices. The spin is absent in the
SSH model, which can then be interpreted as a spinless or
spin-polarized system [62]. We consider the simplest super-
conducting pairing in the SC SSH model, including intra-
and intercell nearest-neighbor pairing [63,64]. This system
has been shown to exhibit a one-dimensional topological
superconducting phase with Majorana zero modes (MZMs)
[63,64]. MZMs appear exponentially localized at the ends
and their pair amplitudes have been shown to exhibit odd-w
symmetry [3,5,28-42]. MZMs have attracted an enormous
amount of attention due to their potential use for building
topological protected qubits [57-59,65]. Interestingly, the SC
SSH model captures the main intrinsic staggered properties of
systems that are under active investigation [57-59,65], such as
in buckled quantum spin Hall insulators [55] and in nanowires
with Rashba spin-orbit coupling [56]. Therefore, the study of
pair correlations in the SC SSH model is expected to provide
fundamental understanding of superconducting correlations in
these systems.

We demonstrate that, under general conditions, there is a
coexistence of bulk even- and odd-w correlations in the trivial
and topological phases of the SC SSH model, where both
amplitudes develop intra- and intersublattice components. We
have performed this analysis both in momentum (infinite
system) and real space (finite system), where in the latter case
the bulk pair amplitudes are probed far from the edges. We
find that the bulk odd-w correlations emerge due to intrinsic
properties of the SC SSH model. In fact, while the bulk intra-
sublattice odd-w terms only depend on the staggered hopping
and pair potential, the bulk intersublattice odd-w component
necessitates both a finite chemical potential sublattice im-
balance and finite pair potential. Although the bulk odd-w
terms exhibit small values almost everywhere, interestingly,
its low-w components are enhanced at the topological phase
transition due to closing of the energy gap, acquiring values
comparable to those of the even-w amplitudes. Our findings
of bulk odd-w pair amplitudes in the SC SSH model are
consistent with Fermi-Dirac statistics, where the additional
degree of freedom, offered by the sublattice indices A and
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FIG. 1. Schematic illustration of the SC SSH model. Top: SSH
model with chemical potential imbalance between sublattices A and
B. Bottom: representation of the considered pair potential, which
includes pairing of states of the same cell (A-B intersublattice pair-
ing) and pairing of states in neighboring cells (A-B intersublattice
pairing).

B, extends the classification of superconducting correlations.
This is similar to what has been reported in multiband super-
conductors [46—48], double quantum dots [50,51], and double
nanowires [35,52]. Moreover, when the system is of finite
length, we find that, at the edges, the low-frequency odd-w
components in the topological phase develop larger values
than the even-w terms due to MZMs [3,5,28-42], an effect
we explicitly associate with the topological bulk invariant
through the so-called spectral edge boundary correspondence
[66,67].

We also explore possible measurable signatures of the
obtained bulk odd-w correlations in the SC SSH model.
We find that the DOS develops higher energy pseudogaps,
whose existence correlates with the emergence of odd-w
amplitudes, similar to what has been reported for certain
multiband superconductors [46]. Furthermore, we discover
that the intersublattice odd-w amplitudes are finite when
each sublattice has a different chemical potential, an effect
that also gives rise to a finite charge density wave (CDW)
[68-71], whose nonzero value then automatically signals the
emergence of intersublattice odd-w correlations. Lastly, we
find that the emergence of MZMs, e.g., as a zero energy
peak in local density of states (LDOS), is a clear signal
of large inter- and intrasublattice odd-w amplitudes. Odd-w
correlations can thus provide a fundamental understanding of
specific features in the DOS and CDW state in the SC SSH
model.

The remainder of this article is organized as follows.
In Sec. I we present the model and outline the employed
method. In Sec. III we present our results demonstrating
the emergence of bulk odd-w pairing. We then, in the same
section, study the relation to superconducting fitness [72,73]
and show that it captures the conditions for odd-w pairing.
In Sec. IV, we discuss odd-w pairing in the finite length
SC SSH model. In Sec. V, we explore some of the possible
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signatures of bulk odd-w correlations. Finally, we present our
conclusions in Sec. VI.

II. MODEL AND METHOD

We consider the SC SSH model with intra- and intersublat-
tice superconducting pairing as schematically shown in Fig. 1
and modeled in real space by H = H; + Ha, with

Hi = — Z[MACLJ-CA,]‘ + pscy, jcp )1
J

—t Y [+ m)cf jea;+ A =n)ek ;. 08+ Hel,
J

Hy =AY [+ ey ;+ (1 =e) jyep, +Hel,
i

ey

where cam), j (C;(B), ;) is an annihilation (creation) operator on
the jth cell and A (B) sublattice. Note that Eq. (1) is in real
space and models the finite length SC SSH system. The first
and second lines in Eq. (1) correspond to the usual SSH model
in the normal state but where each sublattice A and B have a
different chemical potential 4 5, thus giving rise to a CDW
[70]. The hopping between sites/sublattices is represented by
t > 0, with n being the staggering parameter in the hopping
term. The third term is the superconducting pairing [63,64],
where pairing occurs between A and B sublattices both in
the same cell j and also between neighboring cells, with A
being the pair potential and 7 models the staggering in the
pair potential. This represents the simplest possible pairing
in the SC SSH model and has been shown to be relevant
in previous studies [63,64]. Here the staggering in the hop-
ping and pairing, caused by nonzero 1 and 7, assumed real
without loss of generality, is an intrinsic property of the SC
SSH model. Moreover, the imbalance of chemical potentials
between the A and B sublattices in Eq. (1) gives rise to
a CDW gap [70] of ua — pup in the normal energy versus
momentum dispersion (see below) which will be relevant
when looking at signatures of odd-w pairing in experimental
observables.

In order to visualize the emergence of bulk odd-w pair
correlations, we perform the analysis in momentum space,
as is common for bulk properties. We first Fourier transform
Eqg. (1) into momentum space, which in the Nambu basis
W, = (CcAk, CB.k» czﬁk, cgfk), then reads

A(k)
, 2
—HS‘(—k)> @

Hy (k)

= (A*(k)

where

wo- (G ) =0 %) o
and
T = —t[(1 4+ ) + (1 — e,
A =—=A[1+7) — (1 — e ™],

correspond to the staggered-momentum-dependent hopping
and staggered-momentum-dependent pairing, respectively.

“
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FIG. 2. (a) Energy versus momentum dispersion £E. for A = 0,
n=0,and upy = ug =t forn = 0 (blue) and n = 0.1 (red). (b) DOS
projected on the particle space for n = 0.1.

From Egs. (4), we write Ay =—-A{[(14+7)—(1—
n)cos(ka)] + i[(1 — i)sin(ka)]}, where the first (second)
term in square brackets is even (odd) in momentum
k, and can be seen as s- and p-wave components,
respectively.

A. Energy versus momentum dispersion

Before going further we inspect the energy versus momen-
tum dispersion of the SC SSH model in order to obtain an
understanding of its intrinsic properties, which we later use
when exploring detection schemes of odd-w correlations. By
diagonalizing Eq. (2) we obtain four energy bands given by
+FE., with

1
Eo0) =i 13 H2AREH2AME £ VR, )

where
Yo = 4T A} + T Arl* + 1A (ua — 18)°]

+ AT (a + me) + (1] — ud)™. 6)

In the normal state, i.e., A = 0, the energy bands are depicted
in Fig. 2(a). The electron (hole) energy bands Ei (—Ey)
cross at higher energies, Ey = E_, at k = +m/a when n = 0,
T, =0, and ua = up, as seen in blue curves in Fig. 2(a).
Interestingly, when either 7; # 0 or ua # up, the normal
electron (hole) bands hybridize and open higher energy gaps
of size E, — E_, at k = £ /a [see red curves in Fig. 2(a)].
In what follows we refer to these higher energy gaps as
hybridization gaps. In particular, if 7; = 0, the hybridization
gap is given by E; — E_ = (up — (ta), which corresponds
to the CDW gap [70] due to the chemical potential imbal-
ance between sublattices. On the other hand, when ua =
up, the hybridization gap is given by E. — E_ = 2|T| for
ua > |Tx] or Ey — E_ =2|ua| for ua < |Tx|. Remarkably,
the hybridization gaps seen in the energy bands [red curves in
(a)] manifest in the electronic DOS as higher energy gaps as
well, as seen in Fig. 2(b).

A finite value of the pair potential, A # 0, opens a gap at
the Fermi points (zero-energy crossings between electron and
hole bands) in the normal spectrum, as shown in Figs. 3(a)—
3(c) for different values of the chemical potentials. Interest-
ingly, the higher energy hybridization gaps observed in the
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normal DOS are also partly captured in the DOS at finite A, as
seen in Fig. 4 for different values of the chemical potentials.
However, since the higher energy gaps in the DOS at finite
A are not fully developed, we refer to them as pseudogaps.
Further details of the energy bands and DOS at finite A are
discussed in Sec. II B.

B. Winding number

The SC SSH model also exhibits interesting topological
superconducting properties due to its intrinsic features. In
what follows we analyze the topological phases of the SC
SSH model given by Eq. (2) for a nonzero pair potential A. In
order to characterize the different topological phases in the SC
SSH model we calculate the winding number associated with
H (k) in Eq. (2). H (k) has chiral symmetry and anticommutes
with a chiral operator I' = o7, with the winding number [74]
defined as

w/a

i dk tr[TH ™ (k) H (k)], (7

W=—
4z —m/a

where o( and t; are Pauli matrices in sublattice and particle-
hole subspaces, respectively. In Fig. 3(d) we present the
winding number W as a function of  and up for A/t = 0.1,
up/t =1, 7 = 0.2. As can be seen, depending on the system
parameters, W takes the values O and £ 1, which correspond to
the trivial and topological phases, respectively. For instance,
the topological phase with W = 1 occurs for i, < pua < e,
for a given n, where p.,, correspond to critical values that
determine the phase boundary or topological phase transition
(TPT). For a finite length SC SSH model in the topological
phases with W = +£1, the system hosts MZMs at its end points
[63,64], as expected from the bulk-boundary correspondence.

Further insights to the different phases of the SC SSH
model are obtained from the fact that topological phases can
be distinguished by looking at the regimes where the band
gap closes. To see this, in Figs. 3(a)-3(c) we show the energy
dispersion at nonzero A, given by Eq. (5), where we fix the
parameters as in (d) and take n = 0.1 but vary ua such that
it captures the different phases shown in (d) at the filled
black circles. In the trivial phase (a), the energy gap at the
Fermi energy (E = 0) is larger than A since it opens even for
the normal state with A = 0. At the TPT in (b), the energy
gap closes and marks the topological transition point. The
condition for the closing of the gap can be obtained from
E_(k) = 0 leading to the following two conditions:

0= — paus + 2021+ n?) — A*(1 +7%)]
+2[22(1 — nH) + A%(1 — )] cos(ka),  (8)

0 = (I — ni)sin(ka), ©))

which have to be simultaneously satisfied. In the topological
phase (c) the energy gap is approximately given by A since
the SC gap now opens at the Fermi points.

The pseudogaps in the particle DOS at finite A, introduced
in the previous subsection, in the different phases of the
SC SSH model is visualized in Fig. 4. In the trivial phase,
Fig. 4(a), the pseudogaps appear at E /t ~ =1 due to the open-
ing of the hybridization gap in the energy bands at ka = £7

pa/t =—1

1A = He, pa/t =1

ey [t pa/t fhey [t

FIG. 3. Energy versus momentum dispersion for (a) trivial
(ua/t = —1), (b) topological phase transition (s = pc,), and
(c) topological regimes (ua/t = 1). (d) The winding number W as
a function of u, and n, with red and blue regions corresponding
to topological phases W = =1, respectively. Parameters: A/t = 0.1,
up/t =1,and ) = 0.2. In (a)—(c) n = 0.1 is depicted as filled circles
in (d).

in Fig. 3(a). At the topological phase transition (b), the lowest
energy gap closes at the Fermi energy and there is a pseudogap
at £/t ~ —0.5 due to the opening of a hybridization gap at
ka = £m reported in Fig. 3(b). In the topological phase (c),
a small pseudogap at E /t ~ —1 emerges as seen in Fig. 4(c),
which is again the result of a band hybridization in the energy
bands, presented in Fig. 3(c). Therefore, we conclude that
band hybridization gives rise to pseudogaps at higher energies

HA = fhey
A

) 1)

pa/t =
oA

E/t

FIG. 4. Particle DOS in the bulk of the SC SSH model as a func-
tion of E for (a) trivial (s /t = —1), (b) topological phase transition
(1A = I¢,), and (c) topological (s /t = 1) regimes. Parameters:
A/t =0.1, ug/t = 1,n=0.1,and 7 = 0.2.
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in the DOS of the SC SSH model, which is also similar to
what occurs in certain two-band superconductors [46—49].

C. Green’s function method

In this work we aim at investigating the pair correlations
in the SC SSH model. For this purpose we calculate the full
system Green’s function,

. (GO F) . -1
G(iw) = =({w—H) ", (10)

F Gy

where H is given by Eq. (2) in momentum space or by Eq. (1)
in real space. The matrix form of G represents the Nambu
space due to the electron-hole symmetry of H, where Gy and
F correspond to the regular and anomalous Green’s functions.
Due to the basis of H, the structure of the Green’s function
components is

Gar G Fan  F
Go(ia)):(G;:: ng) F(iw):(F:: FZE) (11)

where Faa g and Fappa correspond to intrasublattice and
intersublattice pair correlations, originated from the sublattice
indices A and B. Moreover, each element of the anomalous
term F,,(iw), represents a pair amplitude with momentum & or
spatial coordinates in real space, frequency w, and sublattice
dependence a, b = A, B. The sublattice index, therefore, ex-
tends the classification of Cooper pairs in this system, where
the symmetries of Faa pp ap determine the symmetries of
the superconducting correlations and play a crucial role for
the emergence of bulk odd-w correlations in the SC SSH
model, as discussed next. This view is further supported
by previous studies in multiband superconductors [46—48],
double quantum dots [51], and double nanowires [35] where
the band, dot, and wire indices, respectively, played the role
of the sublattice index discussed here in the SC SSH model.
We stress that the sublattice degree of freedom represents an
intrinsic property of the SC SSH model considered in Eq. (1)
and, therefore, does not depend on external considerations
such as, e.g., interfaces in junctions.

From the Green’s functions in Eq. (10) we can also calcu-
late experimental observables that are important for the char-
acterization of superconducting correlations. For instance, the
normal Green’s function Gy allows the calculation of the DOS
p(E) = pa(E) + ps(E), where

1 . .
paB)(E) = _;Im{GAA(BB)(la) =E +id)} (12)

represents the DOS at sublattice A(B), with E being the real
energy. We assume 8/A = 107> throughout this work and
verify that it is sufficiently small to not alter our calculations.

II1. BULK PAIR CORRELATIONS

In this part we investigate the bulk pair correlations in
the SC SSH model. By using Eq. (10) we obtain the pair

amplitudes,
AT, — A TF) — iw(A*T, AT
FAA(ia),k)ZMB( rLk kk). io( Je + kk)’
P(iw, k)
AT, — AT (AT, AT
FBB(iw,k):MA( it kk)'+la)( I+ kk)’
Pliw, k)
1
Fapliow, k) = ——[iwA —
aB(iw, k) Pl k) [iwAr(up — 1a)
+ AL(TE = A}) — Aw(@® + paps)],
: 1 . 2
Fpalio, k) = m[w}AZ(MB — pa) — A(T)
— (AD1A (@ + pams)], (13)

where P(iw, k) is a frequency- and momentum-dependent
real polynomial in even powers of w and k whose explicit
expression is not important for our discussion here but is for
completeness given in Appendix A.

The main observation from Egs. (13) is that there is a
linear frequency-dependent term in both the intrasublattice
Faa s (second term) and intersublattice Fap pa (first term)
pair amplitudes. These linear frequency components represent
the odd-w pair correlations. The odd-w amplitudes describe
a pair of electrons at different times, which vanish at equal
times, thus reflecting that odd-w pairing is an intrinsically
dynamical phenomenon [2-5] that differs from the standard
even-w pairing. Further understanding of the pair correlations
in the SC SSH model is given by analyzing the symmetries
of the pair amplitudes in Eqs. (13) in terms of its frequency,
momentum, and sublattice indices.

In the case of intrasublattice amplitudes, given by the first
two relations in Eqs. (13), we notice that Faa g have two
clear components, with the first term being even in @ and
the second term being odd in w. The even-w term, (A;T; —
AT = 4it A(1 — nip) sin(ka), is clearly odd in momentum
k where we have used the expressions for A; and 7; given by
Egs. (4). On the other hand, the odd-w term, A7 Ty + AT =
4t Aln + 1 + (7 — n) cos(ka)], is even in momentum k. Note
that the intrasublattice odd-w amplitudes Faa g are finite
when either 7 or 5 is nonzero (+ and A are always assumed
to be nonzero), and thus a consequence of the intrinsic
sublattice symmetry breaking in the SC SSH model [63,64]
but also predicted to appear in other systems such as in
buckled quantum spin Hall insulators [55], or in nanowires
with Rashba spin-orbit coupling [56]. For n = 7 = 0 the intra-
sublattice odd-w amplitudes vanish. At ni) = 1, however, the
even-w component is zero, leaving only finite intrasublattice
odd-w correlations. Furthermore, the intrasublattice pairing
is automatically even (E) under the exchange of sublattice
indices. This, together with the discussion above, implies
that the intrasublattice pair amplitudes given in Egs. (13)
can be classified as EEO and OEE symmetry classes in the
frequency-sublattice-momentum nomenclature.

For the intersublattice pair symmetries we proceed as
in the previous paragraph, but before continuing we write
the even and odd combinations under the exchange of A,B:
Fi(iw, k) = [Fap(iw, k) £ Fga(iw, k)]/2. Then, by a close
inspection, we obtain that each, F; and F_, has even- and
odd-w components whose symmetries are classified as
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OO0 and OEE in the frequency-sublattice-momentum
nomenclature. Their explicit expressions are FfEE(iw, k) =
—2iw(ug — ua)A[l + 7+ () — 1) cos(ka)]/P(iw, k)  and
FO%0(iw, k) =2w(ug — pua)A — 1) sin(ka)/P(iw, k), with
an evident even and odd momentum dependence, respectively,
in order to fulfill Fermi-Dirac statistics. To obtain the
expressions for OOO and OEE amplitudes we have used the
expression for Ay given in Eq. (4). Importantly, the nonzero
value of intersublattice odd-w terms, FPFE and FO°°,
is conditioned to the finite chemical potential imbalance
between sublattices A and B, whose size corresponds to the
CDW gap [70]. In addition, also nonzero values of 7, A are
needed.

Following a similar inspection as discussed above, we find
that the intersublattice pair amplitudes Fy also have even-w
components, corresponding to FFE© and FEF, and noticeable
from the second and third terms in the last two expressions of
Egs. (13). These even-w amplitudes represent a more standard
type of superconducting pairing [2-5], which can account
for pairing of electrons at equal times, unlike the odd-w
correlations.

In order to visualize the discussion made in the previous
few paragraphs, we define the “s wave,” which is even in
k, and the “p-wave,” which is odd in k, components of the
anomalous Green’s function, as

w/a
B2 (i) = % f dk Fy(io, k).
—m/a

_ a /a (19
FP(iw) = pr / dk Fp(iw, k) sin(ka),

w/a

where a and b denote sublattices A or B and F,;, correspond
to the pair amplitudes given by Egs. (13). Then, in order to
account for the symmetries discussed above, we also define

Forn)(io) = ImF}, g (iw),
FORR (iw) = ImF 54 (io),
FEOF(iw) = ReFiy_palio),

AABB)UW) = 1MLy 5 gR)IW),
F™0(>iw) = ImFJ;, 5, (i),

FO%(iw) = ReFly 5, (iw),

(15)

with ) (iw) = [FAP (iw) £ B (i0)]/2. In writing
Egs. (15) we have utilized that F{{}5 xp,ipa and Fay’ s
solely exhibit imaginary and real values, respectively, as
shown in Appendix B. Note also that, by using Eqgs. (13), we
can show that FOFE(iw) = —FFE(iw), and, therefore, it is
only necessary to investigate and plot one of them.

In Fig. 5 we plot the pair amplitudes given by Egs. (15)
as a function of the chemical potential s at w/A = 1072
[(a), (b)] and frequency w [(c)-(h)], where in the former
we also detect the different topological phases. The even-w
components develop generally larger values in the topological
phase than in the trivial phase, as seen in (a). These even-w
correlations usually exhibit also larger amplitudes than the
odd-w terms in both the trivial and topological phases, as

seen by comparing (a) and (b). However, at the TPTs (u,

and pu., marked with dashed vertical lines) both the intra- and
intersublattice amplitudes Fi kg, and FOFF have divergent
profiles with comparable or even larger values than their even-
o counterparts. The intersublattice OOO component also ex-
hibits its maximum value at TPTs but with an overall smaller
amplitude than the even-w terms. The divergent values at the
TPTs occur because the denominator of the pair amplitudes,
P(iw, k) in Eq. (13), has a singularity at the energy gap
closing. Furthermore, at ua = up (vertical dot-dashed gray
line in Figs. 5(a) and 5(b)], the intersublattice amplitudes
FOEE and FO90 vanish, leaving only nonzero intrasublattice
odd-w correlations with OEE symmetry. This can be also
directly seen in Eqgs. (13).

Next we investigate the frequency dependence of the pair
amplitudes in Figs. 5(c)-5(h). As expected, F 155833)’ FEEO,
and FEOF exhibit an even frequency dependence with their
maximum absolute value occurring at @ = 0 in the trivial,
TPT, and topological phases, as seen in (c)—(e). Likewise,
the odd-w components, F BE(%B), FOEE and FOOO_display the
expected odd frequency dependence. However, unlike all the
even-w terms, the intrasublattice OEE and intersublattice OEE
amplitudes develop a discontinuous profile with a maximum
magnitude around w =0 only at the TPT, which can be
understood as a result of the energy gap closing at the TPT;
the intersublattice OOO component at the TPT is instead very
small and with smooth profile across w = 0. In the trivial
(f) and topological (h) phases all odd-w components have a
smooth and approximate linear frequency dependence at low
frequencies.

We thus find that intra- and intersublattice odd-w ampli-
tudes, given by Eqs. (13), do not vanish when 7; # 0 and
Ua # Up, respectively, provided Ay # 0. Interestingly, the
presence of these bulk odd-w correlations can be correlated
with experimental observables as well. In fact, in Sec. II B we
show that either 7; # 0 or ua # wp induce a hybridization of
the normal electron (hole) bands in the SC SSH model which
then give rise to pseudogaps in the DOS, as seen in Fig. 4.
Therefore, this allows us to conclude that the pseudogaps in
the DOS indicate the presence of either intra- or intersublattice
odd-w correlations, as the conditions for these two effects
to emerge coincide. We point out that these features are
similar to what occurs in certain two-band superconductors
[46-49].

To summarize this part, we stress that the SC SSH model
hosts bulk dynamic odd-w correlations, due to its intrinsic
properties, namely, staggered hopping, staggered pair poten-
tial, and chemical potential imbalance. While even-w corre-
lations develop larger values than the odd-w amplitudes in
the trivial and topological phases, at the TPTs the odd-w
amplitudes exhibit a discontinuous profile with maximum
magnitude whose values are comparable or even larger than
even-w amplitudes. Our findings, therefore, suggest that both
even- and odd-w correlations must be considered when study-
ing superconductivity in the SC SSH model.

Superconducting fitness

All the conditions that we have identified so far for the
emergence of finite odd-w correlations can be elegantly ob-
tained by calculating the superconducting fitness [72,73],

214507-6



BULK ODD-FREQUENCY PAIRING IN THE ...

PHYSICAL REVIEW B 101, 214507 (2020)

EEO FE]I;DO

AA

tF (iw)

tF(iw) [1073]

[ trivial | topological !

!

-9 | . | | . . |
—2 0 / 2 4 6
pa =pB  pa/t
trjvial phase ‘ __TPT topological ph@se
0.05 | (c) | 1 05F (@ | 105 () LT .
3 Lo T iz
=0 0
EE \/
—0.05 —0.5 | | | .
0.05 0.05 [ (h) | .
2 0 0 N\
= N
—0.05 —0.05 - | 8
-5 0 5

w/A

FIG. 5. Bulk pair amplitudes as a function of p, at w/A = 1072 [(a),(b)] and w [(c)—(h)] for A/t = 0.1, ug/t = 1,7 = 0.1, and 5 = 0.2.
Vertical dashed lines in (a) and(b) indicate the TPTs pi, ,, Where i, < ja < [, is the topological phase. Dot-dashed vertical lines in
(b) mark the points where intersublattice OEE and OOQO vanish. Panels (c)—(e) and (f)—(h) represent the frequency-dependent even- and odd-w
pair amplitudes, respectively, with w, as in Fig. 3, namely, ua/t = —1, s = pi¢,, and ua = t for the trivial, topological phase transition, and

topological regimes, respectively.

C = Ho(k)A(k) — A(k)Hy(—k). It was demonstrated in
Ref. [49] that it is possible to determine the presence of
odd-w pairing in multiband superconductors when C # 0. By
plugging Egs. (3) into C, we obtain the following conditions:

(ua — uB)Ap # 0,

. . (16)
Y}cAk + Aka # 0,

where only one of these expressions needs to be satisfied in
order for odd-w pairing to appear.

The finite value of the odd-w amplitudes, obtained from
Egs. (13), is fully consistent with the expressions derived
from the superconducting fitness in Egs. (16). In fact, the first
condition in Eqgs. (16), clearly reflects the need of a chemical
potential imbalance, which is indeed the necessary condition
for finite intersublattice odd-w correlations, Fap pa, as can
be seen in Eqgs. (13). Similarly, the second condition cap-
tures the nonzero intrasublattice odd-w correlations, Faa sg
in Egs. (13).

IV. PAIR CORRELATIONS IN THE FINITE-SIZE SC SSH
MODEL

After showing that bulk odd-w correlations emerge in the
SC SSH model, we next explore the odd-w amplitudes when
the system has a finite size and is modeled in real space by
Eq. (1). This is particularly motivated because it has been
shown that, in the topological phase, the SC SSH model hosts
MZMs [63,64], and MZMs have been predicted to enhance
odd-w amplitudes at the edges of topological superconductors
[3,5,28-42], although they have not yet been investigated in
the context of the SC SSH model.

We use a tight-binding representation for the SC SSH
Hamiltonian, given by Eq. (1), in Nambu space with
N lattice unit cells and lattice spacing a in the basis
(caa, CL 1» CB, 1, cg s> CBN, cg ~)- The position coordinate
is then denoted as x = ja with unit cell index j, being 1 <
j < N, and system size L = 100a. We then obtain the pair
amplitudes from the anomalous component of the Green’s
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function g;, ;,(iw) = (iw — H);sz, where jj, corresponds
to two lattice sites in the tight-binding representation. The
Green’s function g has 4N x 4N elements due to the sublattice
and particle-hole symmetries. Similarly, as for the discussion
of the bulk pair amplitudes in Sec. III, in what follows we
decompose the anomalous term of g into the symmetry classes
defined in Egs. (15), which can be written as

SRR o, j) = Im s (o, /), (17)
O (o, j) = Imfygtg, (i, j), (18)
[P (o, j) = Refygpa i, j), (19)

Fintsm (i@, j) = ImfRgg (o, j), (20)
[P, j) =ImfRg pa (o, j), 1)
9%, j) =Refrp palio, ), (22)

where

intra s . .
an (i, J) = gaj-34j2(iw),

B (0, ) = gaj—1.4;(iw),

; . 1 ) )
fagtoalio, j) = E[g4j—3,4j(lw) =+ g4j-1.4j—2(iw)],
. 1 ) )
o, j) = E[84_,‘—3,4,j+2(lw) — gaj41.4j—2(w)],
. 1 : .
fip (o, j) = 5[841‘—1,8]'(160) — g4j43.4j(iw)],

.. 1 . .
Frpepa (io, j) = 2—@{[84]‘—3,8]‘(1&)) — 84jt1.4j(iw)]

* [gaj-1.4j12(i®) — gaj13,4;2(iw)]} (23)

correspond to intra- and nearestneighbor (NN) unitcell com-
ponents. We have checked that Egs. (17), (18), (20), and (21)
have only imaginary parts, while Egs. (19) and (22) only real,
which is taken into account when discussing them next. These
pair amplitudes allow us to make a direct comparison with the
results found in the bulk system in the previous section and
displayed in Fig. 5. In fact, we have verified that in the bulk,
at x = L/2 with sufficiently large L, i.e., far from both edges,
the amplitudes obtained from Egs. (17)—(22) coincide with the
amplitudes obtained with Egs. (15), respectively.

To proceed we concentrate on the topological phase where
MZMs emerge at both edges. In Fig. 6 we present the pair
amplitudes as a function of space and frequency. Here, the
superconducting coherence length is approximately 4a, which
then indicates that the system size is much larger than the
coherence length. At low frequencies, all the even-w ampli-
tudes show roughly constant values in the bulk away from
the edges for x 2 10a [75], while at the edges they exhibit
reduced but finite values, as seen in (a). On the other hand,
the low-frequency odd-w components develop a huge increase
near the edges, from where they decay, but do not vanish,
towards the bulk of the system in an exponentially oscillatory
fashion [(b)]. We attribute this enhancement to the emergence
of MZMs in the topological phase, in a similar way as in
other topological systems [3,5,28-42]. Moreover, in order to
identify the emergence of odd-w amplitudes in the bulk as well

as compare with the results presented in the previous section,
we present in the inset of Fig. 6(b), a magnified view. This
probes the pair amplitudes for small /A = 1072 in the center
of the system, at x ~ 50a. Notice that the values of the odd-w
components are almost the same as those shown in Fig. 5(b)
with pua/t = 1. Likewise, we have verified that the even-w
terms at x = 50a coincide with those obtained using Egs. (15).
Moreover, we stress that fOFE = — fOFE i only satisfied far
from both edges, in agreement with what we discuss after
Egs. (15).

Next we turn our discussion to the frequency dependence
of the pair amplitudes, presented in Figs. 6(c)—6(h) for differ-
ent locations in space. First, all the pair amplitudes have the
expected even- or odd-w dependence but the odd-w correla-
tions exhibit a dramatic change of behavior depending on if
they are calculated in the center of the system at x = L/2 or at
the edge at x = la. At the edge, all the odd-w terms develop a
drastic increase at low frequencies with a divergent profile,
supporting the idea that their huge values originate due to
the presence of a MZM [3,5,28-42]. At x = 10a the odd-w
amplitudes acquire smaller values but still large variations
in their frequency dependence. This is more clearly seen at
x = 20a where the huge values of odd-w amplitudes around
w ~ 0, seen at the edge, is more narrow but still large. We
have checked that deep in the bulk, x = 50a for this case, the
odd-w correlations in the finite-size SC SSH model recover
the behavior presented in Fig. 5(h). On the contrary, the even-
o terms at x = la exhibit a smooth behavior as a function of
frequency with nonzero values and a maximum value around
low frequencies, as seen in (c). Moving towards the bulk,
at x = 10a, 20a, the frequency dependence of the even-w
amplitudes is preserved, but they acquire larger values, as
presented in (d) and (e).

Spectral bulk-boundary correspondence

Further understanding of the relation between odd-w cor-
relations and the topological phase can be obtained from
a spectral bulk-boundary correspondence (SBBC) [66,67].
The SBBC tells us that some components of the anomalous
Green’s function are related to an extended version of the
winding number defined in the bulk for chiral symmetric
systems. For the SC SSH model, which is chiral symmetric,
with open boundary conditions, the amount of intrasublattice
odd-w components at the edge is given by

N/2
Fioya(io) =2i Y [frF (o, ) + fo5 (o, )] (24)

j=1

We point out that it is due to the special form of the chiral
operator for the SC SSH model, discussed in Appendix C, that
only the intrasublattice components OEE appear in the previ-
ous expression. Then, following Refs. [66,67], we numerically
find that, at small w, the previous expression can be written as

limFy_ya(io) = W/(io) + ixo + O?), (25

where W is the winding number, given by Eq. (7), and x is a
real number. Details about the derivation can also be found in
Appendix C.
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FIG. 6. Pair amplitudes in the topological phase of the finite length SC SSH model with L = 100a as a function of (a), (b) spatial coordinate
x = ja and (c)—(h) frequency. In (a) and (b) @/ A = 1072, The inset in (b) magnifies the view of the odd-w amplitudes in the bulk. In panels (c),
1), (d), (g), and (e), (h) the frequency dependence of the pair amplitudes is plotted for x = 1a, x = 10a, and x = 20a, respectively. Parameters:

A/t =0.1, uag =t,n =0.1,and § = 0.2 [see Fig. 3(c)].

By a simple inspection of Eq. (25), we notice that
F;_nq(iw) diverges at low frequencies in the topological phase
(W = +£1), while it is a linear function of w in the trivial
phase (W = 0). This frequency dependence is in agreement
with the divergent behavior in the topological phase of the
low-frequency intrasublattice pair correlations at the edge in
Fig. 6(f). Interestingly, Eq. (25) indicates that it is possible to
calculate some of the odd-w correlations at the edge of the SC
SSH model, which is an edge property, simply by calculating
the winding number W by Eq. (7), which is a bulk property
of the system. Moreover, even though both topological phases
(W = £1) host MZMs at the system ends, their associated
odd-frequency pair amplitudes exhibit opposite sign, as seen
in Eq. (25).

V. FURTHER EXPERIMENTAL CONSEQUENCES

As we mentioned in Sec. II, the imbalance between the
chemical potentials in sublattices A and B allow for a CDW
[70]. In order to characterize the CDW, which is due to a
chemical potential imbalance, we define the CDW Green’s
function as the imbalance between regular Green’s functions

at sublattices A and B, namely, Gcpw = Gaa — Ggg, Where
Gaa s are obtained from Egs. (10) and (11). Then, we obtain

Gepw (io, k) = (ua — up)[—(iw)* + (ua + pp)ie
+ (ITi* — | Ak — paps)l/Plio, k), (26)

where P(iw, k) is the same real polynomial as in Egs. (13)
with even powers of w and k. Interestingly, Eq. (26) is nonzero
if ua # g, the condition that also allows for finite intersub-
lattice odd-w amplitudes, as seen in Eqgs. (13) and (16). Thus, a
finite CDW is a good indicator of nonzero intersublattice odd-
w amplitudes. For a further interpretation and understanding,
we define

Gepy (i®) = ReGepw (io),

Gopw (iw) = ImGepw (iw), @
a w/a
Gepw (iw) = o / dk Gepw (iw, k),

—m/a

where Glég)\,{, are even and odd functions of w, respectively.

The behavior of these two quantities is shown in Figs. 7(a)—
7(c). In panel (a) Ggg)\,?, is presented at low frequencies
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FIG. 7. (a) Gy (iw) and GOhy(iw) as a function of s at
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of (a) shows a magnified view of GOy, (iw). (b),(c) Frequency
dependence of GE‘[?W(Iw) for pua/t = =1, pc, /t, and 1 with A/t =
0.1, ug/t =1,n=0.1,and 7 = 0.2.

(w/A = 1072) as a function of u,. The main feature here is
that both GE}S)W take large values at the TPTs at ua = p,
and fip = Uc,. As we move away from the TPTs, G2y
acquires very small values since it is an odd function of w
and we are here also at small w. On the other hand, GEDW
in the trivial phase develops smaller, but finite, values than in
the topological phase. The frequency dependence of Ggig)w is
shown in panels (b) and (c) for ua/t = —1, 0, and 1, values
that correspond to the trivial phase, TPT, and topological
phase, respectively, also used in Figs. 3(a)-3(c). These two
panels allow us to conclude that ngw indeed represent even-
and odd-w CDWs, respectively, where the latter was also
predicted to appear in other systems [76,77].

Although the condition ua # up simultaneously allows
for finite CDW and intersublattice odd-w correlations, F FE,
it is important to disentangle which of the CDWs captures the
behavior of FSEE. The dependence on w4 can be observed in
the inset of Fig. 7(a) and it has to be compared with Fig. 5(b),
where we see that both quantities exhibit large values at the
TPTs and sign change at ua = up. Moreover, the frequency
dependence of the odd-w CDW and FEEE at the TPT is also
similar, with a maximum and sharp sign change at w = 0,
as seen by comparing Figs. 7(c) and 5(g). We, therefore,
conclude that FOF and the odd-w CDW exhibit a similar
qualitative behavior. We can, therefore, conclude that the

emergence of a CDW signals the presence of intersublattice
odd-w correlations, as both occur due to a chemical potential
imbalance between sublattices in the SC SSH model. This
chemical potential imbalance is due to modulations of the
chemical potentials [69], obtained, e.g., via electrically tun-
able gates [68,71]. We argue that the CDW can be measured
as an imbalance of DOSs between sublattices, thus allowing a
way to obtain the intersublattice odd-w correlations.

VI. CONCLUSIONS

We investigated the superconducting pair symmetries
in the superconducting Su-Schrieffer-Heeger model and
demonstrated that this system hosts bulk odd-frequency
pair correlations in the trivial and topological phases,
due to its intrinsic staggered properties. In particular, we
found that the sublattice degree of freedom is responsible
for extending the classification of pair correlations, thus
allowing a coexistence of inter- and intrasublattice even- and
odd-frequency amplitudes. The odd-frequency correlations
depend on the staggered hopping and chemical potential
imbalance between sublattices, provided there is a nonzero
pair potential, conditions that are also consistent with the
nonzero value of the superconducting fitness.

In the topological phase in finite length systems we showed
that the low-frequency odd-frequency amplitudes are en-
hanced at the edges of the system due to the presence of
Majorana zero modes. Furthermore, we demonstrated that the
spectral bulk-boundary correspondence reveals the relation
between intrasublattice odd-frequency correlations and wind-
ing number, thus extending previous studies [66,67] to sys-
tems with intrinsic staggering, such as the SC SSH model. Our
results highlight odd-frequency pairing as a bulk phenomenon
that goes beyond the induced effect in junctions and does not
require any external actor, such as interfaces in junctions, but
instead, this bulk effect solely relies on the intrinsic staggered
nature of the system.

Lastly, we analyzed some of the possible experimental
signals that can be correlated with odd-frequency amplitudes.
First, we showed that a finite staggered hopping or chemical
potential imbalance gives rise to pseudogaps in the DOS,
which then signal the presence of intra- or intersublattice odd-
frequency amplitudes, respectively. Second, we found that
the finite chemical potential imbalance between sublattices
gives rise to a charge density wave whose odd-frequency
component develops a qualitatively equivalent behavior as the
intersublattice odd-frequency amplitude. These modulations
in the chemical potential can be induced via, e.g., electrically
tunable gates [68,69,71], where the charge density wave can
be measured as the imbalance of DOSs between sublattices.
Finally, for a finite system length, the zero-energy peak in the
LDOS, which reflects the emergence of a Majorana zero mode
at the edges of the system, directly indicates the presence of
large inter- and intrasublattice odd-frequency correlations.
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APPENDIX A: DENOMINATOR OF THE BULK
GREEN’S FUNCTION

The denominator of the bulk Green’s function in Eq. (13)
is given by

Plio, k) = (iw)* — [20Til* + |AkP) + 1 + w1} ](iw)?
2
+ |12 — A" = 2T — | AP ams
(Al)
|

+ (amB)’.

ReA[T, = 2t Al(n + i) + (—n + 1) cos(ka)],
ImA;T, = —2iAt[1 — 57 sin(ka)],
ReA, = —A[(1 4+ 7) — (1 — i) cos(ka)l,
ImA; = —iA(1 — ) sin(ka),

By simple inspection, we verify that P(iw, k) is a real number
for real w and an even function of w. Moreover, it is also even
in k since T2, A2, and |T2 — A;| are all even in k. This can
be seen by writing the following expressions:

ITel* = [0+ n)* + (1 = n)* +2(1 — n*) cos(ka)], (A2)

[A? = A1+ 7)* + (1 — 7)* = 2(1 — 77) cos(ka)],
(A3)

2 *
12— A" = 1T + Al = 2Re(TA]?, (Ad)

where we have used the definitions of 7; and Aj given by
Egs. (4) in the main text. Then, we conclude that P(iw, k) sat-
isfies P(—iw, —k) = P(iw, k), conditions that are used when
discussing the properties of the Green’s function given by
Eq. (13) in the main text.

APPENDIX B: REAL AND IMAGINARY PARTS OF THE
BULK PAIR AMPLITUDES

In this Appendix we explain why we take the real and
imaginary parts of the bulk pair amplitudes given in Egs. (15).
In Egs. (13), the real and imaginary parts of A;T;, A, and
A} (T2 — A?) are given by

ReAf (T — A7) = Al*(1+n)* — A2(L+ )2 I[=(1 + 1) + (1 — 7) cos(ka)] + 2A[2(1 — n*) + A*(1 — 77)]
x [—(1 + ) cos(ka) + (1 — @) + 2A[t*(1 — n)* — A*(1 — 7)*1[—(1 + 7) cos(2ka)+(1 — 7)) cos(ka)],
ImAL (T — A7) = iA(1 — D)1+ n)* — A2(1 + 7)*sin(ka) + 2iA(1 + D1 — ) + A% (1 = 7?)]

x sin(ka) — iA[t*(1 — n)* — A2(1 — 7)*1[—(1 + 7) sin(2ka) + (1 — 7) sin(ka)).

First, by using previous equations, FQA(BB)(iw) from
Egs. (14) is given by
Fi\(iw) = — Fgg(iw)
ca [T (AT + AT

R Pliw, k)

. (B2

where we can see that Fj,pp)(iw) is an odd function
of w, since P(iw,k) is real, and an even function of
o and RngA(BB)(iw) = 0. Hence, we set FISE(%B)(iw)z
ImFy, g, (iw), which is the first equation written in Egs. (15).
Second, similarly as before, Fip g, (iw) is given by

Fipipalio) =—— (B3)

iwa /”/“ (A + AD (1B — 1a)
2 —n/a P(la)a k)

By using Eqgs. (B1), we obtain that this quantity is purely
imaginary and an odd function of w. Then, we set FOFE (iw) =
ImFp , ga(iw), which is the second equation in Egs. (15).

B

(
Third, Fip_pa(iw) is given by

Fip_palio)
_a [ Re[AL(TE = AF) — Aw(@” + pans)]
B P(iw, k)

T —m/a

’

(B4)

which is purely real and an even function of w. Then, we
set FEOE(jp) = ReF, AB+BA (i®), giving rise to the third line in
Egs. (15).

Fourth, F:A(BB) (iw) is

F:A(BB)(iw)
_a m/a dkMB(A)(Asz—.Aka*)Sin(ka)' (B5)
27 ) nja P(iw, k)
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FEEO

Then, F{, g, (iw) is purely imaginary with an even dependence in w. Therefore, we set FX\ g, (i®) = ImF, ) (iw), which is

the fourth expression in Egs. (15).
Fifth, F , A (iw) is given by

p SN
Fipipalio) = - ,
—/a

which is purely imaginary and an even function of w. Then,
we set FEEO(jw) = ImF:BmA(ia)), leading to the fifth line in
Egs. (15).

Sixth, for F{y 5, (iw) we get

Fip_pa(i®)
wa [T Im(Ap)(up — pa) sin(ka) B7)

= - dk 9
4 —/a P(lw’ k)

which is purely real and has an odd dependence on w. Then,
we denote FO9°(jw) = ReF :B_B A (iw), which corresponds to
the last expression in Egs. (15).

APPENDIX C: SPECTRAL BULK-BOUNDARY
CORRESPONDENCE

The relation between odd-w pair amplitudes and the topo-
logical number for a chiral symmetric system is given by
the spectral bulk-boundary correspondence [66,67]. For chi-
ral symmetric systems, following the spectral bulk-boundary
correspondence, we can write [66,67]

w(iw)/(iw) = lim Fi_ya(io), (CI)

with

. w/a
w(ia)):# [ dk tr[TGiw, k)3, G (iw, k)],  (C2)

—r/a

2N
Fina(io) =Y [yglio)];,
=1

N2
= 2[84173,41'72(1'0)) + 84j—2.4j-3(iw)

J=1

+ 84j—2.4j(iw) + g4j4j-2(iw)]
N/2
intra /- . intra , » .\1T
ZZ {fAA (la)v ]) + [fAA (la), ])]
j=1

+ oo, )+ [ oo, )]}
N2
=20 Y[/ oo, )+ S, )], (C3)
j=1

where I' = oyt is the chiral operator for the SC SSH model,
y =diag(T', T, ...), w(iw) is defined in a system with pe-
riodic boundary conditions, Fy_y, is_ defined in a system
with open boundary conditions, and g, and fox(sg, are

given by Eqgs. (23) and (17), respectively. In the last line

ia /n/a dklm[A;(T,f — A?) — Ap(@? + paps)] sin(ka)

P(iw, k) (B6)

(

of Eq. (C3), we use the fact that all matrix elements of the
Hamiltonian in the real-space basis is purely real and then the
Green’s function satisfies g' = g. Note that the components
of the Green’s function that are related to F;_y,(iw) depend
on the chiral operator y. Interestingly, the bulk value of
FOEE (i, j) 4 fOEE(iw, j) is zero due to Eq. (13) with j =
N/2 is sufficiently far from both edges. This can be seen from
the following:

lim [fORE G, j = N/2) + fit (o, j = N/2)]
N—o00

a w/a
=— dk[Faa(iw, k) + Fpp(iw, k)]

2 —n/a

a w/a
= — k——— AT, — AT

27 ) Pl (uB + na)(ALT; I
=0, (4

since A7Ty — AT = 4it A(1 — n) sin(ka) is an odd func-

tion of k. Thus, even though the individual terms fOrF and

OFE are nonzero in the bulk (N/2), the summation of them
becomes zero as shown above.

By comparing Eqgs. (7) and (C2), in the limit w — 0, w(iw)
reduces to the winding number W, namely, lim,,_,¢ w(iw) =
W, where W is given by Eq. (7). In Eq. (C3), the summation
runs from j =1 to j = N/2 in order to extract the odd-w
amplitudes bounded close to the surface j = 1. The reason
why the summation is stopped at N/2 is that the signs of
FOEE 4 fOEE are opposite at the left and the right edges. A
summation from j = 1 to N then vanishes. From the definition
given by Eq. (C3), the total amount of intrasublattice odd-w

(b) Im[FL—png(iw)]

9 9
I [ [ [ I I [ [ [ I
|102
0
L i L 4
3 |
L H 1072 L |
0
20 2 4 6 20 2 4 6
pa/t pa/t

FIG. 8. (a) Im[w(iw)/(iw)] and (b) Im[F;_y,(Iw)] with N =
1000 are plotted as functions of s and w for A/t = 0.1, ug/t =1,
n =0.1,and 7 = 0.2. Re[w(iw)/(iw)] and Re[F;_y,(iw)] are zero if
w is a real number. Here the color bar is common for (a) and (b).
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pairing fix(sg, accumulated close to the surface is connected
to the generalized winding number w(iw) through Eq. (C1).
In order to provide further evidence of the relation be-
tween boundary odd-w amplitudes and topological number, in
Figs. 8(a) and 8(b) we present numerical results of w(iw)/(iw)
and F; ;o004 We have verified (not shown) that the normal-
ized difference between w(iw)/(iw) and Fy—_jgp0, 1S smaller
than 10~°. These figures demonstrate that w(iw)/(iw) and
F1—1000 are the same within numerical error. In particular, we
can observe that w(iw)/iw and Fy 100, (iw) have large values
in the topological phase for small w. This can be understood
as follows. Fy—_y, is an odd function of w and it can be

expanded as

lim Fy(iw) = W/(i) + ixo + O(w*) (C5)

for small value of w, where W is the winding number. From
Eq. (C1), x is obtained from the second derivative of w(iw)
and we can confirm that x is a real number. From this
expansion, the total amount of the odd-w correlations Fy_y,
diverges in the topological phase (W # 0) and it is a linear
function of w in the trivial phase (W = 0) for small w. This is
summarized in Eq. (25) of the main text.
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