
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 25th International Conference on
Pattern Recognition (ICPR).

Citation for the original published paper:

Partel, G., Wählby, C. (2020)
Graph-based image decoding for multiplexed in situ RNA detection
In:

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-419165



Graph-based image decoding for multiplexed in situ
RNA detection

Gabriele Partel
SciLifeLab, and

Dept. of Information Technology
Uppsala University
Uppsala, Sweden

Email: gabriele.partel@it.uu.se

Carolina Wählby
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Abstract—Image-based multiplexed in situ RNA detection
makes it possible to map the spatial gene expression of hundreds
to thousands of genes in parallel, and thus discern at the same
time a large numbers of different cell types to better understand
tissue development, heterogeneity, and disease. Fluorescent sig-
nals are detected over multiple fluorescent channels and imaging
rounds and decoded in order to identify RNA molecules in their
morphological context. Here we present a graph-based decoding
approach that models the decoding process as a network flow
problem jointly optimizing observation likelihoods and distances
of signal detections, thus achieving robustness with respect to
noise and spatial jitter of the fluorescent signals. We evaluated
our method on synthetic data generated at different experimental
conditions, and on real data of in situ RNA sequencing, compar-
ing results with respect to alternative and gold standard image
decoding pipelines.

I. INTRODUCTION

Recent technological advances in molecular profiling of
RNA transcripts in situ paved the way to unprecedented ex-
ploration of cells and tissues, uncovering the gene expression
heterogeneity and preserving the spatial morphological context
of targeted molecules. The advent of these new technologies
allowed a variety of novel studies and applications comprising
unsupervised molecular classification of tissue compartments
[1], generation of spatial atlases of tissues and entire organs
[2]–[4], and the discovery of spatio-temporal regulation of
gene expression networks in relation to development and
disease [5], [6]. The majority of these technologies rely on
different image-based RNA sequencing techniques [3], [4],
[7], [8] where RNA transcripts are targeted with fluorescent
probes and imaged in multiple channels and rounds. All
of these techniques produce a large amount of conceptually
similar image datasets that need to be processed and analyzed
in order to localize and map the gene expression into the
tissue samples. Image processing of multiplexed in situ RNA
detection data consists of decoding fluorescent signals across
fluorescent channels and imaging rounds, in order to identify
what gene transcript is present in a given spatial position. Each
targeted gene is typically identified by a unique sequence of
fluorescent signals called barcode (Figure 1).

The decoding process presents several challenges due to
image quality, transcript density and sequencing artifacts.

Signals typically appear as diffraction limited fluorescent spots
of 3-5 pixels diameter, whose detection efficiency depends
on image signal-to-noise ratio and tissue autofluorescence.
Transcript density is another limiting factor for image de-
coding, restraining the ability to optically discern overlapping
fluorescent molecules and track them between sequencing
rounds. At the same time, high signal density and large area
coverage is desirable as the purpose of the technique is to
explore spatial heterogeneity with high multiplexity. Moreover,
sequences of signals could be affected by small spatial jitter
that shifts their locations by a few pixels between imaging
rounds, and thus complicates the decoding process.

Here we present a graph-based approach for image decoding
of multiplexed in situ RNA detection that globally optimizes
signal candidate associations. In the proposed approach, the
image decoding problem is modeled as a maximum a posterior
probability (MAP) estimation problem. Where, given a set
of signal candidate detections of fluorescent signals across
sequencing channels and rounds (Figure 1), non-overlapping
signal traces of candidate detections are modeled as dis-
joint flow paths in a cost-flow network where flow costs
represent observation likelihoods and transition probabilities.
Solving the cost-flow network with the maximum flow of
minimum cost algorithm finds the globally optimal set of non-
overlapping signal traces that represents decoded barcodes of
targeted RNA molecules. We compare and validate our method
on synthetic data generated at different noise and jitter condi-
tions, with respect to two alternative and commonly adopted
decoding strategies presented in [4], [9]. We also validate
our approach on real data from in situ RNA sequencing [7],
comparing decoded results with respect to the assay’ gold
standard image decoding pipeline [9].

II. ALTERNATIVE IMAGE DECODING STRATEGIES

A variety of approaches have been developed to decode mul-
tiplexed in situ RNA detection data and a team effort by CZI
(Chan Zuckerberg Initiative) engineers and scientists from the
SpaceTx consortium collected them in an open source frame-
work called starFISH (https://github.com/spacetx/starfish).

A typical workflow for decoding barcodes from multiplexed
in situ RNA detection images consists in a first alignment
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Fig. 1. Graph-based decoding of multiplexed in situ RNA detections. Upper
panel shows four imaging rounds in four fluorescent channels representing
bases of the genetic code (i.e. A, C, G, T), and displayed as composite
images with gray (i.e. A), magenta (i.e. C), cyan (i.e. G), yellow (i.e. T)
pseudo-colors. Signal detections in each imaging round are numerated and
highlighted with red bounding boxes. Lower panel shows a relative cost-
flow network of the given signal candidate detections, with decoded signal
traces that represent three decoded barcodes of RNA molecules expressed by
a total of two different genes. Specifically, τ1 : {s1, s4, s8, s11} (i.e. barcode
AGGG), τ2 : {s2, s5, s9, s12} (i.e. barcode CGGT), τ3 : {s3, s6, s10, s13}
(i.e. barcode AGGG). Note that signal candidate detection s7 is a false
detection with low quality, thus not selected to be part of any trace during
the optimization process.

step of imaging rounds and fluorescent channels to a com-
mon reference, followed by a preprocessing step for back-
ground attenuation and spot enhancement. Afterwards, two
possible decoding strategies, based on previously published
image analysis pipelines [4], [9] have been re-implemented
in starFISH. The first approach (exact match, EM) initially
detects fluorescent signals on a reference image (e.g. a ref-
erence fluorescent stain channel of all target barcodes, or an
artificial reference image produced by the maximum intensity
projection across all four fluorescent channels of each imaging
round). Successively, fluorescent intensities are extracted at the
exact same locations from the single fluorescent channels of
each imaging round. Thereafter, barcode sequences of RNA
molecules are decoded by selecting the fluorescent channel
with highest intensity from each imaging round. The second
approach (nearest neighbor search, NNS) instead consists of
detecting fluorescent signals in all fluorescent channels and
imaging rounds, and a complementary matching strategy based
on a nearest neighbor search within a maximum distance for
association of signal candidate detections across rounds.

III. GRAPH-BASED DECODING

We propose a graph-based decoding approach based on
global data association for multi-object tracking using network
flow [10] for matching signal candidate detections nominated
across fluorescent channels and sequencing rounds. Given an
input set of fluorescent signal detections, we define barcode
decoding as a MAP estimation problem. Where, the optimal
set of non-overlapping signal traces, representing decoded bar-
code sequences of RNA molecules, is defined as disjoint flow
paths in a cost-flow network. Signal observation likelihood
(i.e. signal quality) and matching probabilities are modeled as

flow costs. The decoding is then solved by the maximum flow
minimum cost algorithm.

A. MAP formulation

Given a set of signal candidate detections χ = {si},
such that each candidate detection is defined as si =
(xi, ci, ri, Ii, qi), where xi is its location in the image, ci
and ri are respectively the fluorescent channel and imaging
round it belongs to, Ii is the intensity value of the fluorescent
signal, and qi is an associated quality to the signal detection.
A possible signal trace is defined as an ordered list of signal
candidate detections, i.e. τk = {sk1 , sk2 , . . . , skn}, where
skr ∈ χ : r ∈ {1, 2, . . . , n}, and n is the number of
imaging rounds. And decoded barcodes are defined as a set
of non-overlapping signal traces, i.e. T = {τk}, such that
∀τk, τl ∈ T : τk ∩ τl = ∅, where k 6= l.

Thus, the barcode decoding problem is solved by maximiz-
ing the posterior probability of T given the input set of signal
candidate detections χ. Assuming conditional independence of
likelihood probabilities:

T̂ = argmax
T

P (T|χ) (1)

= argmax
T

P (χ|T)P (T) (2)

= argmax
T

∏
i

P (si|T)
∏
τk∈T

P (τk). (3)

Where P (si|T) = qi is the observation likelihood of signal
detection si, defined as its quality. And,

P (τk) = P ({sk1 , sk2 , . . . , skn})
= P (sk2 |sk1)P (sk3 |sk2) . . . P (skn |skn−1

),

where P (ski+1
|ski) is the matching probability of signals

candidate detections ski+1
, ski ∈ τk.

B. Cost-flow network formulation

The respective cost-flow network formulation of the prob-
lem consists of a graph G(χ) with source w and sink z (Figure
1). Where signal candidate detections si ∈ χ are represented
in the graph as detection nodes di. Each di node is connected
to a transition node ti by an edge (orange arrows in Figure 1)
with cost εi equal to:

εi = − logP (si|T) = − log qi.

Possible matching hypotheses among signal candidate detec-
tions belonging to different imaging rounds are modeled as
edges connecting ti nodes of a given round to dj nodes of a
different round (blue edges in Figure 1). Each edge connecting
a pair of (ti, dj) nodes has a cost that depends on the Euclidean
distance between the signal candidate detections si, sj ∈ χ,
specifically:

εij = − logP (sj |si) = − log

(
1

1 + δdij

)
,

where dij is the euclidean distance between si and sj , and
δ is a parameter that weights the contribution of dij . Finally,



signal candidate detections belonging to the first and the last
imaging rounds are connected through edges with zero costs
respectively to the source w and the sink z (black edges in
Figure 1). In order to enforce the non-overlapping constraint
for signal traces we add the following flows to the graph edges:

f(w, di) = fw,i, (4)
f(ti, z) = fi,z, (5)
f(ti, dj) = fi,j , (6)
f(di, ti) = fi, (7)

with,

fw,i =

{
1 ∃τk ∈ T, s.t. τk start from si

0 otherwise
, (8)

fi,z =

{
1 ∃τk ∈ T, s.t. τk ends at si
0 otherwise

, (9)

fi,j =

{
1 ∃τk ∈ T, s.t. sj is right after si in τk
0 otherwise

, (10)

fi =

{
1 ∃τk ∈ T, s.t. si ∈ τk
0 otherwise

. (11)

Such that, T contains non-overlapping signal traces if and only
if:

fw,i +
∑
j

fi,j = fi = fi,z +
∑
j

fi,j ,∀si ∈ χ. (12)

Thanks to equation (12) all the nodes in the graph respect
the flow conservation property that allows to find a globally
optimal solution of the following objective function through
max flow min cost algorithm implementation:

T̂ = argmin
T

∑
i

− logP (si|T) +
∑
τk∈T

− logP (τk) (13)

= argmin
T

∑
i

εifi +
∑
i,j

εi,jfi,j . (14)

C. Practical implementation

An initial graph is built from a given set of signal candidate
detections by searching for connected components among
imaging rounds with a maximum connection distance dth
between candidate detection pairs. Successively, the graph is
refined by adding connections between nodes belonging to
consecutive imaging rounds and within the same connected
component that are closer than a maximum distance dmax.
The graph is next pruned of all connections between signal
candidate detections not belonging to consecutive imaging
rounds. Finally, signal candidate detections belonging to the
first and last imaging rounds of each connected component are
connected respectively to a source and a sink, and the cost-
flow networks derived from the graph are solved by iterating
a max flow min cost algorithm between sink and source of
each connected component.

D. Quality of decoded sequences

Each decoded signal trace τk ∈ T is supplemented with
a quality score Qk used to asses the reliability of decoded
barcodes during post processing analyses. The quality score
Qk encodes quality information qkr and pairwise distances
from each signal candidate detection skr of the decoded signal
trace τk, such that:

Qk = µk ·
n∑
r=1

qkr , (15)

where µk is a function that depends on the maximum distance
between signal candidate detections {sk1 , sk2 , . . . , skn} of the
decoded signal trace τk. The function µk penalizes signal
traces composed of signal candidate detections far apart from
each other, and is defined as:

µk = 1− log(1 + dijmax)

σ
, (16)

and clipped to the interval [0, 1], where dijmax denotes the max-
imum distance between pairs of signal candidate detections
{sk1 , sk2 , . . . , skn} of the decoded signal trace τk, and σ is a
parameter weighting the penalty.

We propose two alternative options for defining the quality
qi of each signal candidate detection si ∈ χ. In the first case
we use a signal/noise classifier (e.g as a convolutional neural
network) trained on a subset of signal candidate detections to
predict for each candidate the probability pi of being signal
or noise, and we define the signal quality as:

qi = pi.

Then, if multiple candidates {sl} ∈ χ have been detected in
the same location of a candidate detection skr ∈ τk, such that:

(rkr = rl) ∧ (xkr = xl) ∧ (ckr 6= cl) ∧ (pl > 0.5),

their intensities and probability prediction are combined, such
as:

qkr =
Ikrpkr

Ikrpkr +max{Ilpl}
. (17)

Otherwise the quality of each signal candidate detection skr
of the decoded signal trace τk is equal to its probability
prediction:

qkr = qi = pkr . (18)

If a training set is not available and the quality of signal
candidate detections can not be assessed by a signal/noise
classifier, then fluorescent intensities can be exploited for
assessing the quality. Specifically, the fluorescent intensity
of the signal candidate detection can be divided by the l2
norm of the vector of fluorescent intensities extracted from all
the channels in the same signal location and imaging round,
J(xi, ri):

qkr = qi =
Ii

‖J(xi, ri)‖2
. (19)



IV. EVALUATIONS

We evaluated the graph based decoding approach on both
synthetic data, and real in situ sequencing data [7], comparing
with alternative and gold standard decoding approaches [4],
[9].

A. Quantitative evaluation on synthetic data

We used the starFISH synthetic data generation framework
to evaluate the graph-based decoding (GRAPH) using flu-
orescent intensities as observation likelihoods (eq. 19), and
two other alternative image decoding strategies (EM and
NNS, described in paragraph II). We generated synthetic data
with three increasing background noise conditions (Figure
2). And, additionally, we incorporated simulation of spatial
jitter of fluorescent signals between imaging rounds. Thus,
we further evaluated the different decoding strategies on three
different spatial jitter conditions at fixed background noise
(Figure 2). All the simulations were run on image datasets
generated as in typical in situ sequencing experiments with
four fluorescent channels and five imaging rounds, for a total
of 1024 targeted barcodes sequences . A Gaussian kernel with
1.8, 1.2, 1.2 standard deviations for z, y, x axes was used
for modelling the point spread function. For each of the noise
and jitter condition we generated 50x50 px image datasets at
five increasing density level of RNA molecules (i.e. 10, 20,
40, 70, 100 RNA molecules per image dataset) in 2D and
3D with 10 depth levels. We then detected signal candidate
detections in each generated image dataset with the h-maxima
transform using three different threshold levels to simulate
several false positive - true positive signal detection rates. The
same set of signal candidate detections derived by applying
the h-maxima transform to all image channels and rounds of
each datasets was given as input to the NNS and GRAPH
decoding approaches. For the EM approach, signal candidate
detections were instead extracted from the maximum intensity
projections of the fluorescent image channels belonging to the
first imaging round of each dataset, using the same h-maxima
thresholds.

Next, we estimated optimal parameter settings for the three
evaluated decoding approaches (i.e. maximum distance for
signal candidate detections association between imaging round
for NNS decoding strategy, and dth for the GRAPH decoding
approach with dmax set to dth + 2). We ran a grid search
between probable parameter intervals to find the best param-
eter setting that optimized the f1 score of decoded sequences
for each simulated condition. Specifically, for each decoding
result we optimized the best possible match between de-
coded sequences and ground truth sequences, within euclidean
distance equal to 2, through the Hungarian algorithm. And
we computed f1 scores considering perfect matches as true
positives, ground truth sequences without a matching decoded
sequence as false negatives, and all the remaining decoded
sequences as false positives.

We ran the grid search parameter estimation on 100 syn-
thetic image datasets for each experimental condition dis-
cussed previously, thus selecting the median values of esti-

mated parameter settings for each experimental condition. Fi-
nally, we compared each decoding strategy on an independent
test set of 100 image stacks for each experimental condition
using the selected parameter settings (showing results in
section V).

B. Quantitative evaluation on in situ sequencing data

We evaluated an image analysis pipeline (described in
section IV-C) with an implementation of the graph-based
decoding approach (ISS-GRAPH) with respect to the gold
standard in situ sequencing image analysis pipeline imple-
mentation (ISS-EM) [9] based on the exact match decoding
algorithm on in situ sequencing mouse brain data. As in
many microscopy applications, ground-truth data for methods
evaluation is difficult to obtain unless one has access to alterna-
tive detection methods. Hence, we compared decoding results
obtained at two different image resolutions – thus pushing the
signal size and signal-to-noise ratio of detections at the lower
resolution samples. Specifically, we performed and compared
ISS-GRAPH and ISS-EM analyses of approximately 1.79mm
x 1.46mm mouse brain section imaged with 40x and 20x
magnification objective to assess precision and recall of image
decoding strategies. We first decoded the 40x image dataset
in 3D and 2D with the ISS-GRAPH pipeline and 3D analysis
was chosen as reference for the validation of 20x decoding
analyses due to higher recall and better discriminatory power
between true targeted sequences and false positives (Figure
3a).

We then ran analyses on the 20x image dataset (after
aligning fluorescent channels and imaging rounds). First, we
applied ISS-EM and ISS-GRAPH on a maximum intensity
projection (MIP) of the image stacks. And second, we also
applied image decoding in 3D, only applicable for the ISS-
GRAPH pipeline.

Afterwards, for evaluating each of the 20x decoding result,
we spatially aligned decoded RNA detections to the 40x refer-
ence by applying an affine transformation estimated with SIFT
[11] feature based landmark registration in Fiji [12] between
maximum intensity projected reference stain images of the 20x
and 40x first imaging rounds. We then performed a second
alignment based on locally affine point cloud registration of
decoded barcodes. Where decoded sequences are divided into
1120x1376 px patches based on their spatial location and
an affine transformation is estimated and applied for each
patch using iterative-closest point algorithm with matches
further than 5 pixels away excluded [2]. Aligned decoded
barcodes were then paired with their nearest neighbor in the
reference within a maximum euclidean distance of 3. For each
pair of barcodes, we evaluated the number of mismatches in
their decoded sequences. Due to the presence of a consistent
amount of false positive sequences in the reference (caused by
computational and biological noise) whose majority present
one base mismatch with respect to one of targeted barcode
(Figure 3a), we exploit the fact that targeted barcode sequences
are encoded with one base redundancy allowing to detect
one base errors. Thus, in order for the evaluations to be less



affected by errors in the reference, we considered as perfect
matches (i.e. 0 mismatches) decoded sequences that are true
targeted barcodes but present one base mismatch with the
paired reference sequence.

C. Image analysis pipeline for graph-based decoding (ISS-
GRAPH)

Images from all fluorescent channels and imaging rounds
are first normalized independently. The intensities values are
scaled between the background level and the signal level
estimated respectively as the mode and the 98th percentile of
the image. Successively, fluorescent signals are enanched with
top-hat filtering and signal candidates are extracted from each
fluorescent channel and imaging round applying the h-maxima
transform. A merging step is then performed to aggregate
signal candidates from the same imaging round but detected
at the same location in multiple fluorescent channels. This
is a necessary step to filter spurious signal candidate detec-
tions caused by fluorescent bleed-through between channels.
Qualities of signal candidate detections are then assessed as
probability predictions (eq. 17, 18) of a convolutional neural
network trained in-house on a subset of 5x5 px windows
centered on annotated candidate detections from multiple
in situ sequencing experiments. Signal candidate detections
together with signal qualities are then modeled in a cost-flow
network as described previously and barcode sequences are
finally decoded together with sequence quality scores.

V. RESULTS AND DISCUSSION

Results of quantitative evaluation on synthetic data for each
experimental condition are presented in Figure 2 in terms of
precision, recall and f1 scores for 2D and 3D analyses.

All three evaluated decoding approaches (EM, NNS,
GRAPH) show a general decrease in performance in terms
of f1 score at increasing levels of signal density, noise,
and spatial jitter. A critical factor that greatly impacts the
precision and recall of decoded sequences is the false pos-
itive - true positive and miss-detection rates of input signal
candidate detections given as input to the evaluated decoding
approaches. The proposed GRAPH decoding approach shows
better robustness in relation to noisy detections as compared
to NNS both in terms of recall and precision since it can
exploit quality observations for signal candidate detections
other than spatial distances when assessing signal candidate
associations between imaging rounds. Instead, methods like
NNS and GRAPH that base their decoding strategies on
signal associations between fluorescent channels and imaging
rounds are more prone to have lower recall respect to the
EM method at the same miss-detection rate, despite of being
able to better resolve barcodes of overlapping RNA molecules.
Indeed, EM does not require (as NNS and GRAPH) detection
of all fluorescent signals of a given barcode, but instead a
single detection of the fluorescent signal in the reference
image is sufficient to decode a barcode sequence. On the
other hand, NNS can partially compensate for miss-detections
exploiting association of signal detections to multiple barcodes

(increasing recall), since it does not impose a constraint
of non-overlapping barcode sequences. This could show an
advantage when decoding barcode sequences of spatially close
RNA molecules presenting overlapping fluorescent signals
with a shared peak and consequently generating a single
candidate detection. But at the same time, this could also have
a negative impact on the results increasing the number of false
decoded sequences, arising from the erroneous association of
the same fluorescent signals to multiple barcode sequences,
and consequently decreasing precision. Instead, the proposed
GRAPH decoding approach models barcode sequences as non
overlapping signal traces preventing a single signal candidates
detection to be included in multiple barcode sequences during
the decoding process.

When the effect of spatial jitter is also evaluated, EM
shows considerably lower f1 scores for experimental condi-
tions where jitter is greater than 2 as compared to GRAPH
and NNS, noticeable in 2D and even more in 3D. Specifically,
when the shift of fluorescent signal peaks caused by the spatial
jitter is smaller than their point spread function, EM could still
decode the right sequences looking only at the intensity values
of the different fluorescent channels.

Performing analyses in 3D rather than in 2D generally does
not improve results in terms of f1 score. Despite the fact that
overlapping fluorescent signals could be better discerned in
3D, the additional dimension introduces a higher order of
complexity in the decoding process that could lead to lower
recall and precision of the results in dense and noisy experi-
mental conditions. The proposed GRAPH decoding approach
preserves high precision in most of the evaluated experimental
conditions as compared to the other two alternative decoding
strategies, showing that jointly optimizing quality and distance
information of signal candidate detections can achieve a better
robustness to noise.

Results from quantitative evaluation of in situ sequencing
data are presented in Figure 3 with respect to quality of
the decoded barcode sequences. The proposed ISS-GRAPH
pipeline allows to resolve and decode barcodes in 2D and in
3D. Where, 2D analysis of maximum projected images of 3D
focal planes are usually preferred for faster processing time.
The proposed ISS-GRAPH pipeline achieves higher recall
of decoded barcode sequences without losing precision with
respect to the gold standard ISS-EM pipeline (Figure 3b,c),
decoding a total of 59236 and 58873 true positives for 3D
and 2D analysis, compared to 42283 true positives for the ISS
pipeline.

VI. CONCLUSION

We presented an alternative approach for decoding barcode
sequences for multiplexed in situ RNA detections based on
global data association for multi-object tracking using network
flow. We evaluated the proposed approach on generated syn-
thetic data at different experimental conditions in relation to
signal density, noise level and spatial jitter, and we compared
it with two alternative commonly used decoding strategies.
We also evaluated an image analysis pipeline based on the
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Fig. 2. Quantitative evaluation on synthetic data generated at different experimental conditions. Each column shows results of evaluated decoding approaches
at different signal-to-noise ratios (snr) and spatial jitters (jitter). An example dataset of each experimental condition with three RNA molecules is shown at the
top of each column as composite images of maximum projected fluorescent channels of five imaging rounds (with red, green, blue, gray, cyan pseudo-colors).
Rows show 2D (MIP) and 3D decoding results at different false positive - true positive and miss-detection rates given by setting different threshold levels (h
values) for the signal candidate detection algorithm (h-maxima transform). For a given threshold level and experimental condition, signal detections counts
together with ground truth signal counts are shown on top of decoding results from the three evaluated approaches (EM, NNS, GRAPH). Note that both
the NNS and the GRAPH methods match candidate detections across channels and imaging rounds, and thus share the same input set of signals. The EM
method, on the other hand, detects signal candidates in the reference image, and therefore has a lower number of ground truth signals. Each decoding result
is presented in terms of recall, precision and f1 score (bottom) with 95% confidence intervals at increasing number of RNA molecules.



Fig. 3. Quantitative evaluation on in situ sequencing data. a) Receiver operating characteristic of the proposed graph-based decoding pipeline (ISS-GRAPH)
for 3D and MIP (maximum intensity projection) analysis of 40x data using list of targeted barcode sequences to evaluate false positive rate (FPR) and true
positive rate (TPR) (upper panel). And histograms showing number of decoded sequences (i.e. reads) versus quality for each distribution of decoded sequences
with number of mismatch respect to a target sequence from 0 to the number of sequencing rounds (lower panel). b) Precision versus recall for 20x decoding
results of 3D and MIP analyses of ISS-GRAPH, and MIP results of the gold standard in situ sequencing pipeline (ISS-EM) [9]. Precision and recall are
evaluated on four equally sized parts of the image dataset at decreasing values of quality threshold, and mean and standard deviation are plotted for each of
the three analyses. c) Pair of histograms showing for each 20x analysis the distribution of read counts with respect to read quality and to the distance from
the reference matching read. Colors shown in legend represent number of mismatches with respect to the reference matching read. Specifically, zero is equal
to perfect match, one to five represent the number of mismatches between the two sequences, and seven represents decoded false positive reads without a
matching reference read.

proposed graph-based decoding approach on real data from
in situ RNA sequencing and compared to the gold standard
image analysis pipeline of the assay.

The proposed graph-based decoding is robust to noise and
spatial jitter improving precision and preserving recall of
decoded results by jointly optimizing quality and distances
of signal candidate detections. Overlapping fluorescent signals
are the main reason for miss-detections that greatly affects
recall of decoding results due to the non-overlapping constraint
for signal traces in the network flow model. Therefore, extend-
ing the proposed decoding method for modelling occlusions of
signal candidate detections (as formulated in [10] for person
tracking) could greatly benefit the decoding and defines a
promising direction for improvement.
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