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Abstract
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Multiorbital materials add a new intricacy to the already complex phenomenon of
superconductivity. The additional orbital degree of freedom requires leaving behind the
established band picture, but also opens the possibility of more complicated order parameters
with new properties. This thesis summarizes theoretical studies of two examples of multiorbital
superconductors.

The first part focuses on superconductivity in Kitaev materials. The unusual interactions in
these materials are shown to give rise to spin triplet superconducting pairing on both two-and
three-dimensional lattice structures. A symmetry characterization enables the analysis of the
stable superconducting order parameters, revealing several nodal states on the 3D harmonic
honeycomb lattices and a competition between nematic and chiral superconductivity on the 2D
honeycomb lattice. The following topological classification uncovers a number of topologically
non-trivial superconducting states protected by various symmetries, giving rise to flat bands,
Fermi arcs, or dispersing Majorana excitations on their surface.

The thesis’ second part spotlights odd-frequency superconductivity in a doped topological
insulator. An experimentally supported uncommon interorbital order parameter gives rise
to large intraorbital odd-frequency pairing. A calculation of the Meissner effect unveils an
unexpected diamagnetic odd-frequency Meissner response, stabilizing superconductivity.

The results of this thesis highlight the diverse nature of superconductivity in
multiorbitalmaterials and stimulate further research on its topological properties and stability.
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Summary in English

The exciting phenomenon of superconductivity, where a material loses its re-
sistance below a certain critical temperature, has been an active research field
for more than 100 years now. Thanks to breakthroughs in the 1950s, simple
superconductors in pure metals, such as aluminum or lead, are relatively well
understood. Superconductivity in these materials appears from two electrons
forming a so-called Cooper pair when a small attraction exists between them.
When a large number of Cooper pairs is created, they behave as if they are
all coordinated, such that they can be described mathematically by one single
wave function. In this sense, superconductivity is a macroscopic manifestation
of a microscopic quantum effect. Because all the Cooper pairs act in unison,
they can flow without resistance which would appear from the scattering of in-
dividual electrons. The combined Cooper pairs also expel an applied magnetic
field, something which is known as the Meissner effect. In simple metals, the
attraction between two electrons comes from interactions with the vibrations
of the crystal lattice, which can overcome the usual electrostatic repulsion. In
this case, the two electrons that form the Cooper pair have the same energy,
but opposite momentum and spin, which is the microscopic magnetic moment
of the electrons.

Things become more complicated in more complex materials. In the high-
temperature superconductors found in certain Copper ceramics, for example,
the Cooper pairs are believed to be formed by other interactions. Even fur-
ther complications appear when several orbitals or atomic shells contribute
the electrons making up the Cooper pairs, such as in iron-based superconduc-
tors. In these cases, the interactions that bind the Cooper pairs together need
to be described from a more local viewpoint and need to take into account the
orbitals of the electrons. The Cooper pairs arising from such interactions can
be more intricate: They will still have opposite momentum, but could involve
different orbitals and different combinations of spins. This leads to distinctive
properties of the superconductors, such as a special sensitivity to applied fields
or defects, or to higher critical temperatures.

When two electrons are bound together in a Cooper pair, a finite energy is
required to overcome that attraction and to excite a single electron. In physics,
this is called an energy gap, which can be mathematically described by a gap
function. The energy gap encompasses the properties of the Cooper pairs in
the superconductor and is therefore a key quantity in the physical and mathe-
matical description of superconductivity. In particular, classifying the symme-
tries of the gap function yields a lot of information about the superconducting
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order and the underlying interactions. Symmetries in physics are transforma-
tions that leave a system unchanged, just like a clover leaf looks the same
when rotated by 120 degrees. For a superconductor the key question is which
of the symmetries of the material that becomes superconducting does the gap
function retain, and which ones does it break. The breaking of symmetries can
have essential outcomes: The energy gap can disappear for certain directions,
it can have an angle dependence that is different from that of the underlying
material, or it can break time-reversal symmetry, giving rise to small magnetic
fields.

In addition to the symmetry of the gap function, recent developments have
highlighted the additional importance of the topology of the wave function de-
scribing the superconductor. Topology is a mathematical field which classifies
which objects can be transformed into each other, and which cannot. A classic
example is that a cube can be transformed into a sphere, simply by squeezing
it a little, but it cannot be transformed into a torus (the shape of a donut or
swim ring), without poking a hole or gluing together some ends. In terms of
topology, the cube and the sphere belong to the same class, whereas a cube
and a torus belong to different classes. Similarly, superconductors can be in
different topological classes, which means that the wave functions describing
them cannot be transformed into each other without closing the energy gap or
breaking a symmetry. This abstract mathematical concept leads to an impor-
tant effect: When two superconductors of different topological classes form
an interface, the energy gap needs to close on the boundary, because the wave
functions cannot be transformed into each other without closing the gap. The
same is true for a boundary of a superconductor with any other material in a
different topological class, like the vacuum or air. So even though it requires a
finite energy to excite a single electron inside a superconductor, topological su-
perconductors will have excitations on the surface that do not cost any energy,
because the energy gap is closed on the boundary. These excitations are in
some cases envisioned as building blocks for quantum computers insensitive
to disturbances, giving a technological motivation to the study of topological
superconductors.

In this thesis I theoretically modeled superconductivity arising in certain
multiorbital materials. I then analyzed what kind of Cooper pairs are formed,
what symmetries they break, and what their topological properties are. The
first part focuses on a material class called Kitaev materials. Their defining
feature is a special interaction between electrons, that depends strongly on
the direction in which two electrons interact. Such peculiar interactions can
arise, because some of the atoms in these materials (Iridium or Ruthenium)
are so heavy, that effects of the theory of relativity need to be taken into ac-
count. This leads to very complex magnetism in the Kitaev materials. Another
interesting aspect of Kitaev materials is that they can appear in a layered, ef-
fectively two-dimensional structure, or in complex three-dimensional crystals.
Together with my co-authors we found that Cooper pairs in Kitaev materials
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would be made up of electrons with the same spin of orbitals from neighboring
sites. In the three-dimensional lattice structures, the energy gap can disappear
for either a whole range of directions, forming so-called nodal lines, or only
for specific directions, in nodal points. In the layered two-dimensional struc-
tures we discovered a competition of two kinds of superconductivity. Either
the energy gap breaks a rotational symmetry (called nematic superconduc-
tivity), meaning the gap is larger in only one specific direction, or the gap
function breaks time-reversal symmetry (so-called chiral superconductivity),
where small magnetic fields would appear. Different topological classes can
be assigned to those two cases, giving rise to either pairwise or individual
excitations on the surface of the superconductor, respectively.

The second part of the thesis summarizes a work on the material Bi2Se3.
Experiments found that it becomes superconducting upon doping with certain
metals and that the Cooper pairs are most likely formed between two elec-
trons of equal spin coming from different orbitals. In this case we searched for
Cooper pairs that are formed between electrons separated in time and are for-
bidden to exist at equal time. These so-called odd-frequency pairs are known
to quite often exist in superconductors with several orbitals when there is also
superconductivity from Cooper pairs forming at equal times. Odd-frequency
Cooper pairs are in general more complicated than the equal time pairs. In
some situations, for example, odd-frequency pairs could form between elec-
trons of equal spins, when the equal time pairs are made from electrons of
opposite spin. In our work we predict odd-frequency Cooper pairs to appear
in Bi2Se3 which are formed between electrons of the same spin in the same
orbital, which would be in some sense simpler than the equal time pairs. An
unsolved question is how the odd-frequency pairs affect the superconducting
pairing of the equal time pairs. One proposal is the paramagnetic Meissner
effect, where an external magnetic field is not suppressed, but enhanced. This
would be detrimental to superconductivity, because strong magnetic fields
break up the Cooper pairs. In Bi2Se3 we find that the odd-frequency Cooper
pairs also suppress an external magnetic field, which means they are not as
bad for superconductivity as previously thought.
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Sammanfattning på svenska

Topologisk supraledning i multiorbitala material
Det fascinerande fenomenet supraledning, där ett material tappar sin resisti-
vitet under en viss kritisk temperatur, har varit ett aktivt forskningsfält i mer
än 100 år. Tack vare flera genombrott på 1950-talet är enkla supraledare i re-
na metaller, såsom aluminium eller bly, relativt väl förstådda. Supraledning i
dessa material uppstår när två elektroner bildar ett så kallat Cooper-par genom
att det finns en liten attraktion mellan dem. När ett stort antal Cooper-par ska-
pas, får de ett samordnat beteende så att de kan beskrivas matematiskt med
en enda vågfunktion. Supraledning är därmed en makroskopisk manifestation
av en mikroskopisk kvanteffekt. Eftersom alla Cooper-paren agerar ihop, kan
de flöda utan det motstånd som annars skulle uppstå vid spridning av enskilda
elektroner. De kombinerade Cooper-paren motverkar också ett applicerat mag-
netfält, något som kallas Meissner-effekten. I enkla metaller uppstår attraktio-
nen mellan två elektroner från interaktioner med kristallgitterets vibrationer,
vilket kan övervinna den vanliga elektrostatiska repulsionen. I detta fall har de
två elektronerna som bildar Cooper-paret samma energi, men motsatt momen-
tum och spinn, varav det senare är elektronernas mikroskopiska magnetiska
moment.

Saker blir mer komplicerade i mer komplexa material. I högtemperatur-
supraledare som bildas i kopparkeramik antas Cooper-paren till exempel bil-
das av andra interaktioner. Ytterligare komplikationer uppträder när flera or-
bitaler eller atomskal bidrar till de elektroner som utgör Cooper-paren, såsom
i järnbaserade supraledare. I dessa fall måste interaktionerna som binder ihop
Cooper-paren beskrivas från en mer lokal synvinkel och ta hänsyn till elektro-
nernas orbital. Cooper-paren som härrör från sådana interaktioner kan vara
mer invecklade: De kommer fortfarande att ha motsatt rörelsemängd, men kan
ha olika orbitaler och olika kombinationer av spinn. Detta leder till särskil-
jande egenskaper hos supraledaren, som exempelvis en annan känslighet för
applicerade fält eller defekter, eller högre kritiska temperaturer.

När två elektroner är sammanbundna i ett Cooper-par krävs en ändlig energi
för att övervinna denna attraktion och för att excitera en enstaka elektron. I fy-
sik kallas detta ett energigap, vilket matematiskt kan beskrivas av en gapfunk-
tion. Energigapet återspeglar Cooper-parens egenskaper i supraledaren och
är därför en huvudkomponent i den fysiska och matematiska beskrivningen
av supraledning. I synnerhet ger klassificering av gapfunktionens symmetri-
er mycket information om supraledningsförmågan och de underliggande in-
teraktionerna. Symmetrier i fysik är transformationer som lämnar ett system
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oförändrat, precis som ett klöverblad ser detsamma ut när det roteras 120 gra-
der. För en supraledare är det av stor vikt vad händer med materialets sym-
metrierna, vilka av dem behåller gapfunktionen och vilka bryter den. Brott av
symmetrier kan ha väsentliga resultat: Energigapet kan försvinna i vissa rikt-
ningar, det kan ha ett vinkelberoende som skiljer sig från det underliggande
materialet, eller det kan bryta tidsomvandlingssymmetrin, vilket ger upphov
till små magnetfält.

Förutom symmetrin för gapfunktionen har den senaste utvecklingen fram-
hävt den vikten av topologin för supraledarens vågfunktionen. Topologi är ett
matematiskt fält som klassificerar vilka objekt som kan omvandlas till varand-
ra och vilka inte. Ett klassiskt exempel är att en kub kan förvandlas till en sfär,
helt enkelt genom att pressa den lite, men den kan inte förvandlas till en torus
(formen på en munk eller simring) utan att sticka ett hål i den eller limma ihop
några ändar. När det gäller topologi tillhör kuben och sfären samma klass, me-
dan en kub och en torus tillhör olika klasser. På samma sätt kan supraledare ha
olika topologiska klasser, vilket innebär att vågfunktionenerna som beskriver
dem inte kan omvandlas till varandra utan att stänga energigapet eller bryta en
symmetri. Detta abstrakta matematiska koncept leder till en viktig effekt: När
två supraledare av olika topologiska klasser ligger bredvid varandra, måste
energigapet stängas på gränsen, eftersom de inte kan omvandlas till varand-
ra utan att gapet försvinner. Detsamma gäller för en supraledarens yta vilken
gränsar till vakuum eller luft, som är material av annan topologisk klass. Så
även om det kräver en ändlig energi för att excitera en enstaka elektron inu-
ti en supraledare, kommer topologiska supraledare att ha excitationer på ytan
som inte kostar energi eftersom energigapet är stängt på gränsen. Dessa ex-
citationer ses i vissa fall som byggstenar för kvantdatorer som är okänsliga
för störningar, vilket ger en teknologisk motivation för studien av topologiska
supraledare.

I denna avhandling modellerade jag teoretiskt supraledningsförmåga som
uppstår i vissa multiorbitala material. Jag analyserade sedan vilken typ av
Cooper-par som bildas, vilka symmetrier de bryter och vilka topologiska egen-
skaper de har. Den första delen fokuserar på en materialklass som kallas Kitaev-
material. Deras definierande kännetecknet är en speciell interaktion mellan
elektroner, som beror starkt på i vilken riktning två elektroner interagerar.
Sådana märkliga interaktioner kan uppstå på grund av att vissa av atomer-
na i dessa material (Iridium eller Ruthenium) är så tunga att effekterna av
relativitetsteorin måste iakttas. Detta leder till mycket komplex magnetism i
Kitaev-materialen. En annan intressant aspekt av Kitaev-material är att de kan
bildas i en skiktad, tvådimensionell struktur eller i komplexa tredimensionella
kristaller. Tillsammans med mina medförfattare upptäckte vi att Cooper-par i
Kitaev-material skulle bildas av elektroner med samma spinn mellan orbitaler
från olika atomer. I de tredimensionella gitterstrukturerna kan energigapet för-
svinna för en hel rad riktningar och bilda så kallade nod-linjer eller bara för
specifika riktningar i nod-punkter. I de skiktade tvådimensionella strukturerna
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upptäckte vi en konkurrens mellan två typer av supraledning. Antingen bryter
energigapet en rotationssymmetri (kallad nematisk supraledare), vilket bety-
der att gapet är större i endast en specifik riktning, eller tidsomvandlingssym-
metrin (så kallad kiral supraledare), där små magnetfält skulle bildas. I båda
fallen är supraledaren också i olika topologiska klasser, vilket ger upphov till
parvisa eller individuella excitationer på ytan.

Den andra delen av avhandlingen består av ett arbete om materialet Bi2Se3.
Experiment har visat att materialet blir supraledande och att Cooper-paren san-
nolikt bildas mellan två elektroner med samma spinn som kommer från olika
orbitaler. I det här fallet sökte vi efter Cooper-par som bildas mellan elektroner
vid olika tidpunkter vilka är förbjudna att existera vid samma tidpunkt. Dessa
så kallade udda-frekvens Cooper-par förekommer generellt i supraledare med
flera orbitaler när det också finns supraledningsförmåga från Cooper-par som
bildas vid lika tidpunkter. Udda-frekvens Cooper-par är i allmänhet mer kom-
plicerade än lika tidspar. I vissa situationer kan exempelvis udda-frekvenspar
bildas mellan elektroner med lika spinn, när lika tidspar bildas av elektroner
med motsatt spinn. I vårt arbete förutsäger vi att udda-frekvens Cooper-par
i Bi2Se3 ska bildas mellan elektroner av samma spinn i samma orbital, vil-
ket i någon mening skulle vara enklare än lika tidsparen. En olöst fråga är
hur udda-frekvenspar påverkar supraledningsförmågan. Ett förslag är den pa-
ramagnetiska Meissner-effekten, där ett yttre magnetfält inte motverkas utan
förstärks. Detta skulle vara skadligt för supraledningen, eftersom starka mag-
netfält bryter upp Cooper-paren. I Bi2Se3 upptäckte vi att de udda-frekvens
Cooper-paren också motverkar ett externt magnetfält, vilket innebär att de in-
te är så skadliga för supraledningen som tidigare trott.
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Deutsche Zusammenfassung

Topologische Supraleitung in multiorbitalen Materialien
Das ungewöhnliche Phänomen der Supraleitung, bei dem ein Material unter-
halb einer bestimmten kritischen Temperatur seinen Widerstand verliert, ist
seit mehr als 100 Jahren ein aktives Forschungsgebiet. Dank einiger bahnbre-
chender Forschungsergebnisse in den 1950er Jahren sind einfache Supraleiter
in reinen Metallen wie Aluminium oder Blei relativ gut erklärt. Die Supralei-
tung in diesen Materialien entsteht dadurch, dass zwei Elektronen ein soge-
nanntes Cooper-Paar bilden, wenn zwischen ihnen eine geringe Anziehungs-
kraft besteht. Wenn eine große Anzahl von Cooper-Paaren gebildet wird, ver-
halten diese sich so, als wären sie alle miteinander koordiniert. Sie können
dann durch eine einzige Wellenfunktion mathematisch beschrieben werden.
In diesem Sinne ist Supraleitung ein makroskopischer Quanteneffekt. Da al-
le Cooper-Paare gemeinsam wirken, können sie ohne Widerstand fließen, der
durch die Streuung einzelner Elektronen entstehen würde. Die kombinierten
Cooper-Paare wirken auch einem angelegten Magnetfeld entgegen, was als
Meissner-Effekt bekannt ist. Bei einfachen Metallen beruht die Anziehungs-
kraft zwischen zwei Elektronen auf Wechselwirkungen mit den Schwingungen
des Kristallgitters, wodurch die übliche elektrostatische Abstoßung überwun-
den werden kann. In diesem Fall haben die beiden Elektronen, die das Cooper-
Paar bilden, die gleiche Energie, aber entgegengesetzten Impuls und Spin, das
mikroskopische magnetische Moment der Elektronen.

In komplexeren Materialien ist die Situation nicht abschließend geklärt.
In den in Kupferkeramiken gebildeten Hochtemperatursupraleitern wird bei-
spielsweise angenommen, dass die Cooper-Paare durch andere Wechselwir-
kungen gebildet werden. Weitere Komplikationen treten beispielsweise in den
eisenhaltigen Supraleitern auf, wenn die Elektronen, aus denen die Cooper-
Paare bestehen, aus mehreren Orbitalen bzw. Atomschalen stammen. Dann
müssen die Wechselwirkungen, die die Elektronen aneinander binden, auf lo-
kaler Ebene beschrieben und das Orbital der Elektronen berücksichtigt wer-
den. Die Cooper-Paare, die sich aus solchen Wechselwirkungen ergeben, kön-
nen deutlich vielfältiger sein: Sie haben immer noch einen entgegengesetzten
Impuls, können jedoch unterschiedliche Orbitale und unterschiedliche Kombi-
nationen von Spins beinhalten. Dies führt zu charakteristischen Eigenschaften
der Supraleiter, wie zum Beispiel zu höheren kritischen Temperaturen oder
einer besonderen Empfindlichkeit gegenüber angelegten Feldern oder Kris-
talldefekten.
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Wenn zwei Elektronen in einem Cooper-Paar miteinander verbunden sind,
ist eine endliche Energie erforderlich, um diese Anziehung zu überwinden und
ein einzelnes Elektron anzuregen. In der Physik wird dies als Energielücke
bezeichnet, die durch eine Energielückenfunktion mathematisch beschrieben
werden kann. Die Energielücke spiegelt direkt die Cooper-Paare im Supra-
leiter wider und ist daher eine wichtige Größe für die physikalische und ma-
thematische Beschreibung der Supraleitung. Insbesondere die Klassifizierung
der Symmetrien der Lückenfunktion liefert viele Informationen über die Su-
praleitung und die zugrunde liegenden Wechselwirkungen. Symmetrien in der
Physik sind dabei Transformationen, die ein System unverändert lassen. Zum
Beispiel sieht ein Kleeblatt nach einer Drehung um 120 Grad unverändert aus.
Für einen Supraleiter ist dabei eine wichtige Frage, welche der Symmetrien
des Materials, das supraleitend wird, die Lückenfunktion beibehält und wel-
che sie bricht. Das Brechen von Symmetrien kann dabei wesentliche Folgen
haben: Die Energielücke kann für bestimmte Richtungen verschwinden, ei-
ne vom ursprünglichen Material abweichende Winkelabhängigkeit aufweisen
oder die Zeitumkehrsymmetrie aufbrechen, wodurch kleine Magnetfelder ent-
stehen.

Neben der Symmetrie der Lückenfunktion wurde in den letzten Jahren die
zusätzliche Bedeutung der Topologie der Supraleiterwellenfunktion entdeckt.
Die Topologie ist ein mathematisches Feld, das klassifiziert welche Objek-
te ineinander umgewandelt werden können und welche nicht. Ein klassisches
Beispiel ist, dass ein Würfel leicht in eine Kugel verformt werden kann, aber
nicht in einen Torus (die Form eines Schwimmrings) ohne ein Loch zu stechen
oder offene Enden zusammenzukleben. In Bezug auf die Topologie gehören
der Würfel und die Kugel der selben Klasse an, während ein Würfel und ein
Torus zu verschiedenen Klassen gehören. In ähnlicher Weise können Supra-
leiter in verschiedene topologische Klassen eingeteilt werden, in denen die
entsprechenden Wellenfunktionen nicht ineinander transformiert werden kön-
nen, ohne die Energielücke zu schließen oder eine Symmetrie zu brechen. Die-
ses abstrakte mathematische Konzept führt zu einem wichtigen Effekt: Wenn
zwei Supraleiter unterschiedlicher Klassen aneinander grenzen, muss sich die
Energielücke an der Grenzfläche schließen, da die Wellenfunktionen nicht in-
einander umgewandelt werden können, ohne die Lücke zu schließen. Glei-
ches gilt für die Grenze eines Supraleiters zum Vakuum oder zur Luft ist, also
seiner Oberfläche. Obwohl die Anregung eines einzelnen Elektrons innerhalb
des Supraleiters eine gewisse Energie erfordert, weisen topologische Supra-
leiter daher an der Oberfläche spezielle Anregungen auf, die keine Energie
kosten, da die Energielücke geschlossen ist. Einige dieser Anregungen gelten
als potenzielle Bausteine für Quantencomputer, da sie unempflindlich gegen-
über Störungen sind.

In dieser Arbeit habe ich Supraleitung in bestimmten multiorbitalen Ma-
terialien theoretisch modelliert. Ich habe analysiert, welche Art von Cooper-
Paaren gebildet werden, welche Symmetrien sie brechen und welche topo-
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logischen Eigenschaften sie haben. Der erste Teil konzentriert sich auf eine
Materialklasse namens Kitaev-Materialien. Ihr bestimmendes Merkmal ist ei-
ne spezielle Wechselwirkung zwischen Elektronen, die stark von der Richtung
abhängt, in der zwei Elektronen miteinander interagieren. Solche besonderen
Wechselwirkungen können auftreten, weil einige der Atome in diesen Mate-
rialien (Iridium oder Ruthenium) so schwer sind, dass die Auswirkungen der
Relativitätstheorie berücksichtigt werden müssen. Dies führt zu einem sehr
komplexen Magnetismus in den Kitaev-Materialien. Ein weiterer interessan-
ter Aspekt von Kitaev-Materialien ist, dass sie entweder in einer geschich-
teten, effektiv zweidimensionalen Struktur oder in komplexen dreidimensio-
nalen Kristallen auftreten können. Zusammen mit meinen Co-Autoren fand
ich heraus, dass Cooper-Paare in Kitaev-Materialien von Elektronen mit dem-
selben Spin aus Orbitalen benachbarter Gitteratome gebildet werden. In den
dreidimensionalen Gitterstrukturen kann die Energielücke dabei entweder für
eine ganze Reihe von Richtungen verschwinden und sogenannte Knotenlini-
en bilden, oder nur für bestimmte Richtungen in einzelnen Knotenpunkten. In
den geschichteten zweidimensionalen Strukturen entdeckten wir zwei Arten
von Supraleitung, die miteinander konkurrieren. Entweder bricht die Energie-
lücke die Rotationssymmetrie (sogenannte nematische Supraleitung), was be-
deutet, dass die Energielücke in einer bestimmten Richtung größer ist. Oder
die Lückenfunktion bricht die Zeitumkehrsymmetrie (sogenannte chirale Su-
praleitung), so dass kleine Magnetfelder auftreten würden. Die beiden Fälle
gehören zu unterschiedlichen topologischen Klassen, was entweder zu paar-
weisen oder zu einzelnen Anregungen auf der Oberfläche des Supraleiters
führt.

Der zweite Teil der Dissertation fasst eine Studie am Material Bi2Se3 zu-
sammen. Supraleitung wurde dort experimentell nachgewiesen und theore-
tische Betrachtungen ergaben, dass die Cooper-Paare höchstwahrscheinlich
zwischen zwei Elektronen gleichen Spins gebildet werden, die aus verschie-
denen Orbitalen stammen. In diesem Fall haben wir nach Cooper-Paaren ge-
sucht, in denen die beiden Elektronen zu unterschiedlichen Zeiten in das Paar
eingehen. Gleichzeitig verschwindet die Anziehung, wenn man beide Elektro-
nen zum gleichen Zeitpunkt betrachtet. Es ist bekannt, dass diese sogenannten
ungeraden Frequenzpaare häufig in Supraleitern mit mehreren Orbitalen exis-
tieren, wenn auch Supraleitung von gewöhnlichen Cooper-Paaren vorliegt, in
denen sich Elektronen zum gleichen Zeitpunkt verbinden. Cooper-Paare mit
ungerader Frequenz sind im Allgemeinen komplizierter als die gewöhnlichen
Paare. In einigen Situationen können sich beispielsweise ungerade Frequenz-
paare zwischen Elektronen mit gleichem Spin bilden, wenn die gewöhnlichen
Cooper-Paare aus Elektronen mit entgegengesetztem Spin bestehen. In unse-
rer Arbeit sagen wir voraus, dass Cooper-Paare mit ungerader Frequenz in
Bi2Se3 auftreten und sich aus Elektronen mit gleichen Spins im selben Orbi-
tal bilden. Sie wären damit in gewisser Weise einfacher als die gewöhnlichen
Cooper-Paare. Eine ungelöste Frage ist, wie die ungeraden Frequenzpaare die
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supraleitenden Eigenschaften beeinflussen. Eine in anderen Situationen bereits
nachgewiesene Auswirkung der ungeraden Frequenzpaare ist der paramagne-
tische Meißner-Effekt, bei dem ein angelegtes Magnetfeld nicht unterdrückt,
sondern verstärkt wird. Dies würde sich nachteilig auf die Supraleitung aus-
wirken, da starke Magnetfelder die Cooper-Paare aufbrechen. In Bi2Se3 ent-
deckten wir, dass die ungeraden Frequenzpaare überraschenderweise ein ex-
ternes Magnetfeld letztlich doch unterdrücken, und damit nicht so schädlich
für die Supraleitung sind wie bisher angenommen.
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1. Introduction

In the more than one hundred years since its discovery in ultracold mercury [1],
superconductivity has blossomed into a wide-ranging and diverse research
field. Even though a detailed understanding of the phenomenon has been
formed on the basis of BCS theory [2, 3], continued developments in exper-
imental and theoretical physics regularly shed new light on the limits of our
knowledge. The complexity of the field is built on the many different materials
that have been found to superconduct, which is consequently reflected in the
variety of interactions proposed to give rise to superconductivity, in the uncon-
ventional symmetries of the order parameter, and in the different combinations
of the properties of the electrons making up the Cooper pairs at the heart of the
superconducting state. Three rather recent developments in this field of study
and their interplay are touched on in this thesis: Superconductivity emerging
in multiorbital systems, the topological nature of the superconducting state,
and the appearance of odd-frequency pairing.

Superconductivity in multiorbital materials goes beyond the situation in
simple superconductors, which can usually be described by electrons with a
single band degree of freedom in addition to spin [4]. Having to involve in-
stead several orbitals contributing to the formation of the Cooper pairs leads
to distinct changes in the theoretical description of superconductivity. Most
importantly, it requires to abandon the band picture, where phonon interac-
tions are easily implemented and the energetics of different order parameters
are easily analyzed. Working in an orbital picture leads to a more local for-
mulation, which proves valuable when including for example strong local re-
pulsions. The additional orbital degree of freedom also allows the formation
of more complex order parameters, that go beyond the simple classification in
terms of parity and spin. Questions of stability and the influence of external
fields or defects, however, become harder to answer when leaving behind well
established results from the single band formulation [5, 6, 7, 8].

A second paradigm change during the past 15 years has been to include
the topological properties of the wave function describing the superconduc-
tor [9]. Classifying the topology of the superconductor adds another layer of
complexity on top of describing the symmetries of the order parameter, while
displaying completely new properties such as Majorana excitations appearing
on the surface or in vortex cores [10]. The extensive range of possible topo-
logical superconducting states has been meticulously studied and classified in
recent years [11, 12]. Nevertheless, the search for realizations of topological
superconductivity continues, aiming to find interactions in specific materials
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giving rise to topologically non-trivial superconducting order. The multiplic-
ity of possible order parameters arising in multiorbital materials could prove a
helpful ingredient for this endeavor.

The final development that underlies the works in this thesis, odd-frequency
pairing, can be argued to actually be very old, as it has been proposed for
the first time already in the 1970s [13] and has played an important role in
understanding superconducting heterostructures [14]. Its importance for the
description of multiorbital superconductors, however, has not been recognized
until rather recently [15, 16]. An important aspect of odd-frequency pairing
in heterostructures is the appearance of a paramagnetic Meissner effect [17,
18, 19], which does not suppress, but attract external magnetic fields [20].
The generalization of this effect to multiorbital superconductors could prove
detrimental to the formation of superconductivity [21, 16].

The articles summarized in this thesis are contributing to two research fields
relating these developments: Superconductivity in Kitaev materials and odd-
frequency superconductivity in the doped topological insulator Bi2Se3. The
Kitaev materials are characterized by the interplay of electronic interactions,
spin-orbit coupling, and crystal field of similar energy scale [22, 23]. The
combination of these effects gives rise to the namesake electronic interactions
described by the extended Kitaev-Heisenberg model [24, 25, 26]. These un-
usual, bond-dependent, highly frustrated interactions are known to underlie
complex magnetic ordering [27, 28, 29, 30, 31] and have been predicted to
lead to spin triplet topologically non-trivial superconducting states [32, 33].
Our work builds on previous results in several steps. First, we highlight the
influence of the complex 3D lattices of some of the Kitaev materials on the
superconducting states by using a simplified interaction in Paper I and III. In a
second stage, we analyze the role of the off-diagonal exchange in the extended
Kitaev-Heisenberg model in superconducting pairing on the 2D honeycomb
lattice in Paper II. Finally, the superconducting states appearing when com-
bining the extended Kitaev-Heisenberg model and the 3D hyperhoneycomb
lattice are discussed in Paper V. The findings are detailed in this thesis and in-
clude topologically protected nodal phases supported by the lattice symmetries
of the harmonic honeycomb lattices, and nematic, chiral, and time-reversal
symmetric superconducting states in several topological classes originating
from the unusual interactions on the honeycomb lattice.

The second focus of the thesis is a study of the experimentally established
toological superconductivity in doped Bi2Se3 [34, 35]. The multiorbital nature
of this material, which leads to the unusual nematic superconductivity [36, 37],
also makes this material a likely example of an odd-frequency superconduc-
tor. In our work summarized in Paper IV we confirm the presence and impor-
tance of the odd-frequency pairing induced by the unusual interorbital order
parameter. We then proceed to calculate the Meissner response of the material
and discover that the odd-frequency contribution is actually diamagnetic and
thereby less detrimental than proposed.
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This thesis is made up of a comprehensive summary preceding the men-
tioned articles, which is meant to both introduce the relevant methods for the
studies and review the obtained results. To achieve this, I have decided to de-
viate from the usual structure of first exhaustively introducing all methods and
approaches before moving on to summarize the results for each work. Instead,
each chapter of this thesis contains the introduction of a specific method and
the results obtained from its application. The whole thesis is thus structured
as follows:

Part I of the thesis opens with an introduction of the Kitaev materials in
Chapter 2. I first discuss the characteristic interactions and then go over the
different lattices realized in the Kitaev materials. Thereafter, I introduce dif-
ferent approaches to model doping of the materials with strong correlations
before going over the existing literature on superconductivity in the Kitaev
materials.

Chapter 3 focuses on obtaining superconductivity from the Kitaev interac-
tions. After going over the generalized mean-field theory for a single band
superconductor, I review the intricacies added by abandoning the band pic-
ture and working instead with several orbitals. Applying these approaches, I
compile the derivations of the superconducting order parameters for the three
different Kitaev materials we studied. In Section 3.3 I derive the Hamiltonian
and self-consistency equations for spin singlet pairing on the harmonic hon-
eycomb lattices. Then I focus on the extended Kitaev-Heisenberg interactions
on the honeycomb lattice, before combining the two in the derivations for spin
triplet pairing arising from the extended Kitaev-Heisenberg interaction on the
hyperhoneycomb lattice.

The symmetry classification of the order parameter is at the center of Chap-
ter 4. After reviewing some mathematical background and introducing several
relevant symmetries, I present in more detail the derivation of the basis func-
tions of the irreducible representations needed to analyze the symmetries of
the order parameter. Working again system for system, I present the relevant
point group, obtain the basis functions, and then discuss the classification of
the solutions identified from the self-consistency equations. As in the previous
chapter, I begin with the singlet pairing on the harmonic honeycomb lattices,
before looking at triplet pairing on the honeycomb and hyperhoneycomb lat-
tice, respectively.

The final chapter of the first part is dedicated to discussing the topological
aspects of superconductivity in the Kitaev materials. It opens with a general
introduction to the topological classification of Hamiltonians, using an illus-
trative example. The next section, 5.2 discusses the importance of the symme-
tries on the topological classification, including the periodic table of topolog-
ical insulators and superconductors, and crystalline topological phases. I then
shift focus to the topological invariants, introducing them mathematically in
Sec. 5.3 before discussing ways to obtain them that we use in our studies in
Sec. 5.4. The introductory part of the chapter concludes with a short section on
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the bulk-boundary correspondence and Majorana fermions. The chapter then
goes over the detailed discussion of the results obtained in the papers making
up the thesis: The twist states obtained at the boundary of the d ± id′ states
on the harmonic honeycomb lattices, the time-reversal symmetric and time-
reversal breaking states on the honeycomb lattice, and the nodal phases found
in the triplet pairing on the hyperhoneycomb lattice.

The second part is based on the work on doped Bi2Se3 in Paper IV. Chap-
ter 6 introduces the concept of odd-frequency superconductivity first in general
terms and then highlights how multiorbital superconductors are found to gen-
erally host odd-frequency pairing. After introducing doped Bi2Se3 by sum-
marizing recent research results, I present the pairing correlations obtained by
determining the anomalous Green’s function.

The last chapter of the second part, Chapter 7, revolves around the Meissner
effect. A quick phenomenological introduction is followed by details on the
microscopic approach to calculating the Meissner response. This includes a
short overview of the role of the Meissner effect for odd-frequency pairing.
Thereafter, I present the calculations performed for doped Bi2Se3, detailing
the role of the linear dispersion, the splitting into intra- and interband processes
and the Matsubara summation. A short rundown of the calculated Meissner
response closes the chapter. The thesis then concludes with a summary.
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Part I:
Topological superconductivity in Kitaev
materials



2. Kitaev materials

The Kitaev materials are mostly known for promising spin-liquid physics [38,
39], but have also been demonstrated to host topologically non-trivial super-
conducting phases upon doping [32, 33]. The key ingredient are in both cases
the unusual bond-dependent interactions which appear from a complex inter-
play of crystal field, spin-orbit coupling, and electronic correlations, which
are all of about the same order of magnitude [23]. In this chapter I introduce
at first the interactions arising in these materials summarized in the extended
Kitaev-Heisenberg model and then detail how the different lattices of the Ki-
taev materials can be constructed in Sec. 2.2. Thereafter, Sec. 2.3 discusses
approaches to model doping while taking into account the strong correlations.
Finally, I review earlier studies on superconductivity in the Kitaev materials
and lay out how the works in Papers I-III, and V contribute to the field.

2.1 Extended Kitaev-Heisenberg interaction
The basic building block of all Kitaev materials consists of a d5 ion exposed to
the crystal field of a surrounding octahedral cage, as illustrated in Fig. 2.1 a).
The central ion can be iridium (5d5) or ruthenium (4d5), while the octahedral
cage is made up of oxygen (in the case of iridium) or chlorine (for ruthenium),
respectively. Fig. 2.1 b) shows a schematic level diagram detailing the influ-
ence of the crystal field and spin-orbit coupling in forming effective spin 1

2
degrees of freedom [40]. The crystal field splits the d-orbitals of the central
ion into a lower-lying t2g and a higher-energy eg manifold. All five electrons
then occupy the t2g states. The strong spin-orbit coupling further splits the t2g

manifold and forms jeff =
1
2 and jeff =

3
2 states. For an explicit expression,

the eigenstates of the L · S Hamiltonian are needed. The three t2g orbitals are
formed as linear combinations of the five l = 2 spherical harmonics Y m

l ,

dxy =− i√
2
(Y 2

2 −Y−2
2 ) (2.1)

dyz =
i√
2
(Y 1

2 +Y−1
2 ) (2.2)

dxz =− 1√
2
(Y 1

2 −Y−1
2 ), (2.3)
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Figure 2.1. a) The d5 ion (cyan sphere) surrounded by an octahedral cage (black
spheres) is the basic building block of the Kitaev materials and defines the spin quan-
tization axes. b) Schematic of the level splitting leading to the creation of the jeff
orbitals. The crystal field splits the d5 configuration into an eg and a t2g manifold.
Subsequently, the spin-orbit coupling leads to the formation of the jeff orbitals.

such that the angular momentum operators can be projected onto the t2g basis
(dyz,dxz,dxy) to give

L̂x =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠ , L̂y =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ , L̂z =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠ . (2.4)

The spin-orbit coupling is then implemented by calculating

L ·S =
1
2
(
L̂x · σ̂x + L̂y · σ̂y + L̂z · σ̂z

)
. (2.5)

Importantly, this fixes the spin quantization axes to the coordinate system de-
fined by the crystal field, which means the coordinate axes point to the corners
of the octahedral cage, as depicted in Fig. 2.1 a). The jeff =

1
2 and jeff =

3
2

states then correspond to the eigenvectors of the L ·S matrix, e.g.,

j↑ =
1√
3

(
−dyz↑ − idxz↑+dxy↓

)
(2.6)

j↓ =
1√
3

(
dyz↓ − idxz↓+dxy↑

)
, (2.7)

which are separated by a gap proportional to the size of the spin-orbit cou-
pling. Four of the five electrons then completely fill the lower-lying jeff =

3
2

states, which leaves one electron in the two isolated jeff =
1
2 states. For weak

interactions, a half-filled band of effective spin 1
2 would give rise to a metallic

configuration, but in the Kitaev materials, strong electronic correlations lead
to a Mott transition [40]. Because the jeff =

1
2 orbitals are a mixture of orbital

and spin degrees of freedom, interactions between the pseudo-spins can easily
become anisotropic.

The exact form of the interactions of the jeff =
1
2 moments are determined

by projecting the electronic correlations and the possible hopping to nearest
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Figure 2.2. An illustration of the two ways of arranging two neighboring octahedral
cages, which will lead to different interactions between the moments on the central
sites in the strong coupling limit. a) Corner-sharing octahedra. b) Edge-sharing oc-
tahedra with the spin component perpendicular to the nearest neighbor bond and the
shared edge pictured.

neighbor sites in the t2g manifold onto the new degrees of freedom. Hopping
between nearest neighbors involves direct overlaps of the d-orbitals and indi-
rect processes through the cage ions. Consequently, the form of the interaction
depends on how two nearest neighbors are arranged, specifically on whether
the octahedra share a corner or an edge [24, 25]. In the case of corner-sharing,
which is illustrated in Figure 2.2 a), there is only one corner ion, forming a
single indirect hopping path. Projecting the interactions onto the jeff =

1
2 de-

grees of freedom and taking a limit of strong interactions yields to frozen spins
SSSi, which interact through the isotropic Heisenberg interaction H = JSSSi · SSS j.
This situation is realized for example in Sr2IrO4 [40]. In the Kitaev materials,
adjacent octahedra share an edge. In this situation, depicted in Fig. 2.2 b),
neighboring central ions share two corners. There are then two indirect hop-
ping paths, which lead to a destructive interference when projecting onto the
jeff =

1
2 degrees of freedom and the resulting interaction in the strong coupling

limit is of Ising type H = ISγ
i Sγ

j [24, 25]. Only the spin component Sγ perpen-
dicular to both the shared edge and the vector connecting the central ions is
active in this exchange, as schematically presented in Fig. 2.2 b).

In all Kitaev materials the lattice structure is tricoordinated, formed by
arranging three edge-sharing octahedra around a central site as depicted in
Fig. 2.3 b). Each nearest neighbor bond then features one particular spin com-
ponent perpendicular to it, such that the Ising interaction involves different
spin components Sγ on different nearest neighbor bonds 〈i, j〉 connecting sites
i and j. This gives rise to the anisotropic Kitaev interaction [38]

HK = K ∑
〈i, j〉

Sγ(i, j)
i Sγ(i, j)

j , (2.8)
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which explains the name Kitaev materials. The function γ(i, j) encodes the
component active on each bond, correspondingly labeled as x,y,z-bond, re-
spectively. A common representation is to color the bonds (red, blue, green)
for an (x,y,z) bond, respectively, see Fig. 2.3.

The Kitaev interaction is, however, not the only interaction present in the
materials. The presence of further hopping terms in the t2g manifold, either
through direct overlap or involving the eg orbitals, leads to other interactions
beyond the Kitaev term HK, when projected onto the jeff =

1
2 states [26, 22].

The details will depend on a variety of parameters, such that a general ap-
proach is to include all interaction terms which are allowed by the local sym-
metry of two edge-sharing octahedra. This most generic nearest neighbor
Hamiltonian for Kitaev materials in the absence of deformations is called the
extended Kitaev-Heisenberg model and given by [26]

HJKΓ = J ∑
〈i, j〉

SSSi ·SSS j +K ∑
〈i, j〉

Sγ(i, j)
i Sγ(i, j)

j +Γ ∑
〈i, j〉

(
Sα(i, j)

i Sβ (i, j)
j +Sβ (i, j)

i Sα(i, j)
j

)
.

(2.9)

In addition to the Kitaev exchange K, this Hamiltonian also contains the iso-
tropic Heisenberg interaction J, and the symmetric off-diagonal exchange Γ.
The last interaction couples the two spin components not involved in the Ki-
taev exchange α(i, j) �= β (i, j) �= γ(i, j) whose sum is perpendicular to both
the bond and the Kitaev active spin component.

2.2 From honeycomb to harmonic honeycomb lattice
There are thus four ingredients for the appearance of the Hamiltonian Eq. (2.9):
An octahedral crystal field, strong spin-orbit coupling, electronic correlations,
and a tricoordinated lattice of edge-sharing octahedra. Three materials are
known to exhibit these characteristics: Na2IrO3 [25, 27], Li2IrO3 [41], and
α-RuCl3 [42]. Whereas Na2IrO3 and α-RuCl3 form structures consisting of
weakly coupled honeycomb layers, Li2IrO3 exists in three different crystal
structures labeled by α-,β -, and γ-Li2IrO3, respectively [43, 44]. The α poly-
morph is also of the layered honeycomb type, while β - and γ-Li2IrO3 form
3D tricoordinated lattices related to the honeycomb lattice. These lattices are
called hyperhoneycomb and stripyhoneycomb, respectively, and form the two
smallest members of the hypothetical harmonic honeycomb lattices. Here, I
will detail how the lattices are built up from the three nearest neighbor bonds
introduced in the previous section.

The easiest construction is the 2D honeycomb lattice. The three nearest
neighbor bonds span the 2D plane of the honeycomb lattice, which is com-
pactly expressed in terms of the lattice coordinate system (x̃, ỹ, z̃) specified in
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Figure 2.3. a) The three nearest neighbor bonds with the lattice coordinate system and
b) the same structure including the surrounding octahedral cage and the corresponding
local coordinate system. The spin component active in the Kitaev interaction on an
(x,y,z) bond is marked by the colors (red, blue, green), respectively.

Fig. 2.3 a). In this basis, the nearest neighbor bonds are expressed as

aaa1 = (1,0,0), aaa2 =

(
−1

2
,

√
3

2
,0

)
, aaa3 =

(
−1

2
,−

√
3

2
,0

)
, (2.10)

and the lattice is spanned by the vectors vvv1 =
1
2(3,

√
3,0) and vvv2 = (0,−

√
3,0),

all given in units of the nearest neighbor bond length. While this coordinate
system is convenient for defining the lattice, it leads to a complicated form of
the interaction, which is most easily expressed in terms of the local coordinate
system (x,y,z) pointing to the corners of the octahedra, as defined in the con-
struction of the jeff states in the previous section and pictured in Fig. 2.3 b). In
terms of the local coordinate system, the nearest neighbor vectors are given by

aaa1 = (0,−1,1)loc, aaa2 = (1,0,−1)loc, aaa3 = (−1,1,0)loc, (2.11)

where the subscript indicates the different coordinate system. In the local co-
ordinate system it also becomes clear which spin component is perpendicular
to the bonds and thus active in the Kitaev exchange: γ(i,1) = x, γ(i,2) = y, and
γ(i,3) = z. Correspondingly, the perpendicular spin components involved in
the off-diagonal exchange are α(i,1) = y, β (i,1) = z, α(i,2) = x, β (i,2) = z,
and α(i,3) = x, β (i,3) = y.

When constructing the nearest neighbor bonds in the local coordinate sys-
tem, a second possibility to arrange the octahedra becomes apparent. Inter-
changing which of the second and third neighbors sticks “backward” and “for-
ward”, respectively, results in the set

aaa′1 = (0,−1,1)loc, aaa′2 = (1,1,0)loc, aaa′3 = (−1,0,−1)loc. (2.12)
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Figure 2.4. An illustration of the two different choices of nearest neighbor vectors. a)
and c) show the unprimed vectors aaai while b) and d) show the structure arising from
the rotated vectors aaa′i. Front view in panels a) and b) and side view in panels c) and
d).

These three bonds can still be used to span a honeycomb lattice, but translate
to the rotated vectors

aaa′1 = (1,0,0), aaa′2 =
1
2

(
−1,

√
3cos(α),

√
3sin(α)

)
,

aaa′3 =
1
2

(
−1,−

√
3cos(α),−

√
3sin(α)

)
, (2.13)

in the lattice coordinate system. The angle α is defined by the geometry of the
octahedra and given by α = arccos

(1
3

)
≈ 70◦. Building a lattice from these

rotated nearest neighbor vectors results in a honeycomb lattice that is rotated
with respect to the unprimed nearest neighbor vectors. Figure 2.4 visualizes
the difference between the two different sets of nearest neighbor bonds by
showing both a front (panels a) and b)) and a side view (panels c) and d))
of them. An important aspect of the rotated nearest neighbor bonds is that
now different spin components are perpendicular to the bonds, such that we
have the following spin components active in the Kitaev exchange: γ(i,1′) =
x, γ(i,2′) = z, and γ(i,3′) = y. Correspondingly, the off-diagonal exchange
will also be interchanged and picks up minus signs on several of the bonds:
α(i,1′) = y, β (i,1′) = z, α(i,2′) =−x, β (i,2′) = y, and α(i,3′) = x, β (i,3′) =
−z.

29



Because both sets of nearest neighbor bonds are locally identical, it is pos-
sible to transition from one orientation to the other and construct 3D lattices.
The series of lattices that can in this way be constructed from connecting
stripes of consecutively rotated honeycomb lattices by a twist are then called
the harmonic honeycomb lattices [43] and illustrated in Fig. 2.5. They are la-
beled by the number of honeycombs n in between twists as H〈n〉. The lim-
iting case of H〈∞〉 corresponds to a stack of infinite 2D honeycomb planes,
as depicted in Fig. 2.5 a). Introducing a single twist, where the zigzag vectors
change from aaa2/3 to aaa′2/3, forms a true 3D lattice shown in Fig. 2.5 b). In the
harmonic honeycomb series, such a twist is repeatedly introduced after n full
honeycombs. The two smallest members are the structures realized in Li2IrO3
and are named the stripy- and hyperhoneycomb lattice and pictured in Fig. 2.5
c) and d), respectively. As the smallest member of the harmonic honeycomb
series, the hyperhoneycomb lattice is well suited to discuss the symmetries
of the 3D lattices. As illustrated in Fig. 2.6, its unit cell consists of four lat-
tice sites connected by six nearest neighbor bonds, of which three (aaa4−6) are
rotated:

(1 → 2) aaa1 = (1,0,0) (2.14)

(1 → 4) aaa2 =
1
2
(−1,

√
3,0) (2.15)

(1 → 4) aaa3 =
1
2
(−1,−

√
3,0) (2.16)

(3 → 4) aaa4 = (1,0,0) (2.17)

(3 → 2) aaa5 =
1
2
(−1,

√
3cos(α),

√
3sin(α)) (2.18)

(3 → 2) aaa6 =
1
2
(−1,−

√
3cos(α),−

√
3sin(α)). (2.19)

This leads to a series of zigzag chains rotated against each other and bound
together by the horizontal twist bonds aaa1 and aaa4. The symmetries of the lattice
can be summarized by placing the lattice into a third, Cartesian, coordinate
system (x̄, ȳ, z̄) (pictured in Fig. 2.6) and choosing the center of the twist bond
aaa1 as the center of symmetry C. Then the lattice is symmetric under three
C2 rotations about the Cartesian axes, inversion, and three glide reflections
with respect to the mirror planes perpendicular to the Cartesian axes. The
glides are thus a non-symmorphic symmetry. The point group generated by
these symmetries is D2h. All larger harmonic honeycombs share the same
symmetries.

2.3 Modeling doping
In their intrinsic form, the Kitaev materials are Mott insulators, where the
strong interactions lead to the opening of an energy gap. In order to achieve
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Figure 2.5. An illustration of the harmonic honeycomb lattice series. a) The H〈∞〉
strucure, an infinite stack of 2D honeycomb sheets with the three nearest neighbor
vectors aaa1, aaa2 and aaa3. b) Changing the zigzag nearest neighbor vectors from aaai (red)
to aaa′i (blue) creates the twist structure, which can be periodically repeated along the
direction of aaa1. The two smallest members of the harmonic honeycomb series are the
c) stripyhoneycomb (H〈1〉) and d) hyperhoneycomb (H〈0〉) lattices. In all structures
the zigzag bonds aaa2 and aaa3 are drawn in red, rotated zigzag bonds aaa′2 and aaa′3 in blue,
and additional honeycomb layers are depicted in grey. Figure taken from Paper I.

Figure 2.6. The hyperhoneycomb lattice placed in the cartesian coordinate system
(x̄, ȳ, z̄). The cyan spheres are the Ir ions making up the lattice where the four lattice
sites in the unit cell are labeled 1, . . . ,4. The bonds are again shaded in the colors (red,
blue, green) to mark an (x,y,z) bond, respectively. The center of symmetry C lies at
the center of the horizontal bond aaa1. The oxygen atoms (black) form the octahedral
cages shown in grey.
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superconductivity, doping has to introduce mobile charge carriers. At the same
time, the strong correlations giving rise to the extended Kitaev-Heisenberg in-
teractions will also influence these carriers. An intuitive approximation is that
the correlations lead to an additional energy cost of a doubly occupied site due
to a mutual on-site Coulomb repulsion U . In the limit of strong correlations
U → ∞, double occupancy of a site can be considered as forbidden.

A first approach to doping used in Paper I was to simply add fermionic car-
riers governed by a tight binding Hamiltonian without explicitly taking into
account the strong correlations. The doping level is set through the chemi-
cal potential μ . Possible effects of the strong correlations can then be taken
into account by considering the parameters of the model as phenomenolog-
ical, such that a possible rescaling is already absorbed into the parameters.
One downside of this simple approach is that it is not able to capture the Mott
insulating state at zero doping.

2.3.1 Slave-boson mean-field theory
In slave-boson mean-field theory, used in Paper II, strong correlations are treated
by enhancing the Hilbert space of the original problem through the introduc-
tion of the boson operators b†

i and d†
i . These represent the empty and double

occupation at site i, respectively. This gives the following four states for each
site [45, 46]

|0〉= b† |vac〉 |↑〉= f †
↑ |vac〉 |↓〉= f †

↓ |vac〉 |↑↓〉= d† |vac〉 , (2.20)

where |vac〉 is then the vacuum state of the extended Hilbert space. The cre-
ation operator of the original Hilbert space is then mapped to [47]

c†
iσ = f †

iσ bi + εσσ̄ d†
i fiσ̄ , (2.21)

where ε↑↓ = −ε↓↑ = 1 is the antisymmetric tensor. The action of adding a
particle of spin σ at site i is thus dependent on the state acted upon. For the
empty site, c†

iσ removes the empty site bi and adds a fermion f †
iσ . When acting

on a singly occupied site, it removes the fermion of opposite spin fiσ̄ and adds
the doubly occupied site d†

i . The mapping is completed by the constraint that
each site is either empty, singly occupied, or doubly occupied

b†
i bi + f †

i↑ fi↑+ f †
i↓ fi↓+d†

i di = 1. (2.22)

The constraint in Eq. (2.22) ensures that the operators in the enhanced Hilbert
space obey the same algebra as the original c operators [47]. Strong correla-
tions are taken into account by removing the possibility of double occupancy
by deleting the operators d†

i , di. This gives

c†
iσ = f †

iσ bi and b†
i bi + f †

i↑ fi↑+ f †
i↓ fi↓ = 1. (2.23)
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This is no longer an exact mapping, but rather the requirement that both ex-
pressions reproduce the same matrix elements in the Hilbert space without
double occupancy [47]. A further approximation is to assume a uniform mean-
field distribution of the bosons, which is appropriate for large enough dop-
ing, by replacing the remaining operators b† and b by their expectation values
〈b†

i 〉 = 〈bi〉 = b̄, where b̄ ∈� and site independent. Denoting the amount of
holes introduced by doping by δ = b̄2, the filling at each site is given by

f †
i↑ fi↑+ f †

i↓ fi↓ = 1−δ , (2.24)

which follows directly from Eq. (2.23). A hopping term of the form ti jc
†
iσ c jσ ′

will subsequently be replaced by

ti jc
†
iσ c jσ ′ = ti j f †

iσ bi f jσ ′b j ≈ ti jb̄2 f †
iσ f jσ ′ , (2.25)

which is equivalent to a rescaled hopping parameter t̃i j = δ ti j. In this way
slave-boson mean-field theory captures the Mott insulating state in the limit
of δ → 0 as the hopping term will vanish. The quartic terms appearing in
spin-spin interaction terms, however, can be rewritten completely in terms of
the new fermion operators f †

i , such that the interaction parameters are not
rescaled [48, 47]. Doping is then modeled by introducing a tight-binding
Hamiltonian which is solved in the full fermionic Hilbert space of the f opera-
tors and the strong correlations are taken into account by rescaling the hopping
amplitudes and adjusting the chemical potential accordingly to match the dop-
ing level set by δ .

Slave-boson theory can be further refined by using field-theoretical ap-
proaches to go beyond the mean-field approximation [46, 47] and by intro-
ducing more bosons capturing the symmetries of fluctuations [49, 47]. The
approach can also be extended to several orbitals by introducing a slave-boson
for each orbital [50].

2.3.2 Gutzwiller approximation
A third method, applied in Paper V, is the Gutzwiller approximation. In this
approach, the effect of strong correlations are incorporated by removing the
double occupancy through statistical weighing factors g. In this way an ex-
pectation value taken in a projected Hilbert space without double occupancy
〈. . .〉 is approximated by the expectation value in the full Hilbert space 〈. . .〉0
multiplied by the statistical weighing factor [51, 52]

〈Ô〉 ≈ gO 〈Ô〉0 . (2.26)

As a result, all calculations can be performed in the full Hilbert space with
the strong correlation accounted for by renormalized parameters that depend
on the doping level. The weighing factors g can be determined from counting
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Figure 2.7. Schematic drawing of the exchange process contributing to the off-
diagonal exchange. Both sites need to be singly occupied.

arguments, where the ratio between expectation values in the projected and
full Hilbert spaces is determined by considering the different probabilities of a
site being empty, singly, or doubly occupied. As an example, I want to present
the derivation of the weighing factor gΓ for the off-diagonal exchange

Γ
(

Sx
i Sy

j +Sy
i Sx

j

)
=

Γ
2i

(
S+i S+j −S−i S−j

)
. (2.27)

In the second equality the raising and lowering operators are given S±i =
Sx

i ± iSy
i . The off-diagonal exchange thus requires both sites to be singly occu-

pied by the same spin, as depicted in Fig. 2.7. The probability of a site i being
occupied by a single spin σ are then given by the density niσ in the projected
and by n0

iσ (1−n0
iσ̄ ) in the unprojected space. The difference arises from hav-

ing to explicitly rule out the double occupancy in the unprojected full Hilbert
space. The weighing factor gΓ is then given by

gΓ =
〈S+i S+j 〉
〈S+i S+j 〉0

=

(
ni↓n j↓ni↑ni↑

) 1
2(

n0
i↓(1−n0

i↑)n
0
j↓(1−n0

j↑)n
0
i↑(1−n0

i↓)n
0
j↑(1−n0

j↓)
) 1

2
,

(2.28)

where the square roots appear because expectation values only give a proba-
bility density. The case for S−i S−j actually gives the same probabilities, as it
is the same process in reverse. The expression is simplified by assuming a
homogeneous system without magnetic ordering, such that ni↑ = ni↓ =

n
2 and

n0
i↑ = n0

i↓ =
n
2 . This gives

gΓ =
1(

1− n
2

)2 =
4

(1+δ )2 , (2.29)

where the density has been written in terms of the doping at each site n= 1−δ
for the last equation. Repeating similar arguments, the same factor is obtained
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for the Heisenberg and Kitaev exchange, such that all interaction terms are
rescaled by gΓ = gK = gJ . The rescaling for the hopping terms for the mobile
carriers introduced by doping can similarly be determined to be [52]

gt =
2δ

1+δ
. (2.30)

The Gutzwiller approximation then captures the Mott insulating state in the
limit of δ → 0 by gt → 0 and gJ → 4, effectively freezing out mobile carriers
and enhancing the interactions.

2.4 Superconductivity in Kitaev materials
Before introducing the theoretical tools to determine and classify the super-
conducting phases found in Kitaev materials in the next chapters, I want to
review the existing literature and identify where our works contribute.

The main current focus of research on Kitaev materials is the search for a
quantum spin liquid [22, 53, 23]. The pure Kitaev model K �= 0, J = Γ = 0 on
the honeycomb lattice can be solved exactly by rewriting it in terms of Majo-
rana fermions and has a quantum spin liquid ground state [38]. The presence
of the other interactions terms in the Kitaev materials complicates the phase
diagram, with multiple magnetically ordered phases possible, depending on
the included interactions and the lattice in question [25, 26, 54, 55, 56, 57, 58,
59]. Experimentally, all known Kitaev materials display a magnetic ordering
at low temperatures [27, 28, 29, 30, 31]. The honeycomb materials α-RuCl3
and Na2IrO3 magnetize in an antiferromagnetic zigzag phase and Li2IrO3 dis-
plays complicated magnetic spiral phases both in the 2D honeycomb and 3D
hyper- and stripyhoneycomb lattices. While the Kitaev spin liquid itself has
not been found, unusual excitations seem to imply that the Kitaev materials are
relatively close to it [60, 61, 62], and several other spin liquid candidates have
been discovered by exchanging some Lithium in the hyperhoneycomb lattice
by hydrogen [63], or by applying a strong magnetic field to α-RuCl3 [64, 65,
66].

Considering that such prominent superconductors as the cuprates arise from
doping Mott insulators [52, 47, 67], studying superconducting phases in doped
Kitaev materials follows naturally. One of the main results of previous stud-
ies is that the Kitaev interaction leads to a spin triplet pairing [32, 33]. Both
a time-reversal symmetry breaking or a time-reversal symmetric solution can
be stabilized, depending on the doping level. The topological classification of
these solutions yields a non-trivial Chern number for the time-reversal break-
ing state [32]. The time-reversal symmetric state, on the other hand, can be
classified in terms of a �2 invariant. Above a critical doping level this in-
variant takes a non-trivial value [33]. Below this critical doping, a symmetry-
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protected topological state with finite spin Chern number appears [68]. A mag-
netic field can be used to tune between the different phases [68].

The extension to the Kitaev-Heisenberg model K �= 0, J �= 0, Γ= 0, has also
been studied using several theoretical approaches, including slave-boson and
functional renormalization group techniques [32, 33, 69, 70]. The spin triplet
states driven by the Kitaev exchange are in competition with a spin singlet
order caused by the Heisenberg interaction, where the spin triplet solution is
favorable for J � K

2 . The spin singlet state has been extensively studied in
the limit J �= 0, K = Γ = 0 and corresponds either to a chiral d ± id′-wave
state or to an extended s-wave solution, depending on the doping level [71].
An RPA analysis of the particle-hole fluctuations in the Kitaev-Heisenberg
model also supports spin singlet pairing [72]. Other possible superconducting
states include an FFLO state in a Kitaev-Heisenberg model with a spin-orbit
coupled nearest neighbor hopping [73]. Finally, in a complementary approach
to doping Kitaev materials, Kitaev-Kondo models have been proposed and
shown to host nematic spin triplet superconductivity with point nodes [74] in
addition to the previously mentioned spin triplet states [75].

So far, superconductivity has not been observed in any of the Kitaev mate-
rials, even though several attempts of doping have been made. Na2IrO3, for
example, displays a shift in the chemical potential when adding potassium to
cleaved surfaces [76]. The intercalation of potassium into RuCl3 only yields
one stable compound, K0.5RuCl3, which forms a static charge ordering [77].
The addition of potassium also gives rise to an additional density of states be-
low the Fermi energy, as does doping by Rb ions [78]. Attempts to introduce
non-magnetic Ir in place of Ru lead to a suppression of the magnetic order-
ing, but no mobile carriers [79, 80]. A study of hydrated and lithium interca-
lated RuCl3, LixRuCl3 · y H2O found a decreased resistance and signatures of
a charge ordering, but no superconductivity [81]. Theoretical calculations pro-
pose to make use of the layered structure of RuCl3 by proximitizing a 2D film
to graphene, which would lead to strong doping effects [82, 83]. This could
be a promising route, as single layers of RuCl3 have already been produced
successfully [84] and stacked on graphene [85, 86, 87].

The works in this thesis complement the research on superconductivity in
the Kitaev materials in two ways. First of all, we extend the study of super-
conductivity to the 3D Kitaev materials in Papers I, III, and V. We focus on the
influence of the lattice geometry on the pairing function by restricting at first
to spin singlet pairing from a Heisenberg interaction in Paper I and III. We then
include the full extended Kitaev-Heisenberg interaction to make closer contact
with the Kitaev materials in Paper V. Secondly, we augment earlier studies
by considering the effect of the off-diagonal exchange on the superconducting
pairing in the 2D honeycomb lattice (Paper II). The following chapters include
the detailed derivations and results from these works.
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3. Superconductivity

Having introduced the extended Kitaev-Heisenberg interaction in the previ-
ous chapter, in this chapter I present how to obtain the superconducting order
parameters arising upon doping. At first I introduce the general mean-field
framework of superconductivity for spin singlet and triplet pairing in the sin-
gle band case, following closely the presentation in a popular review article
by Sigrist and Ueda [4]. In Section 3.2, I extend this approach to the multior-
bital case relevant for the Kitaev materials and briefly introduce the concept
of superconducting fitness, useful for analyzing multiorbital pairing [5, 6]. In
the last three sections I outline how to obtain the pairing Hamiltonian and
the self-consistency equations necessary to calculate the superconducting or-
der parameters for spin singlet pairing in the harmonic honeycomb lattices
(Paper I), and spin triplet pairing from the extended Kitaev-Heisenberg inter-
actions on the honeycomb lattice (Paper II) and the hyperhoneycomb lattice
(Paper V).

3.1 Generalized mean-field theory
In the spirit of the original BCS discussion, I begin the derivation of the mean-
field theory from a model Hamiltonian that couples electrons of opposite mo-
menta, allowing, however, for a more general kkk-dependent interaction V and
Cooper pairs of arbitrary spins

H = ∑
kkk,σ

h0(kkk)c
†
kkkσ ckkkσ +∑

kkk,kkk′
∑

σσ̄ττ̄
Vσσ̄ττ̄(kkk,kkk′)c

†
kkkσ c†

−kkkσ̄ c−kkk′τckkk′τ̄ . (3.1)

The operator c†
kkkσ creates electrons of wave vector kkk and spin σ . At first I will

restrict to the single band picture, where the non-interacting or normal state
Hamiltonian is diagonal and given by the degenerate band dispersion of the
electrons ĥ0(kkk) = ξ (kkk)σ̂0, where σ̂0 is the 2×2 identity matrix. The scattering
matrix elements in the interaction term are defined via

Vσσ̄ττ̄(kkk,kkk′) = 〈kkk,σ ;−kkk, σ̄ |V̂ |kkk′, τ̄;−kkk′,τ〉 . (3.2)

The interaction must obey the fermionic anti-commutation relations, such that

Vσσ̄ττ̄(kkk,kkk′
′′) =−Vσ̄σττ̄(−kkk,kkk′) =−Vσσ̄ τ̄τ(kkk,−kkk′) =Vσ̄σ τ̄τ(−kkk,−kkk′) (3.3)
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As a next step, a mean-field decoupling is performed, which amounts to rewrit-
ing any general product of operators A and B with the help of their averages
〈. . .〉 as

AB = (A−〈A〉+ 〈A〉)(B−〈B〉+ 〈B〉)
= A〈B〉+ 〈A〉B−〈A〉〈B〉+(A−〈A〉)(B−〈B〉). (3.4)

The last term (A−〈A〉)(B−〈B〉) can be considered as a quadratic term of fluc-
tuations around the mean-field value and can be neglected if those fluctuations
are small, such that

AB ≈ A〈B〉+ 〈A〉B−〈A〉〈B〉 . (3.5)

The crucial step for studying superconductivity is to use this decoupling with
the pair operators, which amounts to assuming that there is a non-zero expec-
tation value of Cooper pairs

〈A〉= 〈c†
kkkσ c†

−kkkσ̄ 〉 〈B〉= 〈ckkk′τc−kkk′τ̄〉 . (3.6)

The resulting mean-field Hamiltonian is then

HMF = ∑
kkkσ

ξkkkc†
kkkσ ckkkσ −∑

kkk
∑
σσ̄

(
Δσσ̄ (kkk)c

†
kkkσ c†

−kkkσ̄ +Δ∗
σσ̄ (kkk)c−kkkσ̄ ckkkσ

)
+ const.

(3.7)

The constant term arises from the product of the expectation values and is
henceforth dropped, as it only shifts the overall energy. The gap function is
defined via the expectation value:

Δσσ̄ (kkk) =−∑
kkk′

∑
ττ̄

Vσσ̄ττ̄(kkk,kkk′)〈c−kkk′τckkk′τ̄〉 . (3.8)

As a result of this mean-field approximation, the Hamiltonian HMF is now
quadratic in fermion operators as opposed to the original Hamiltonian in Eq. (3.1),
which contained a quartic interaction term.

The gap function is a matrix in spin space

Δ̂ =

(
Δ↑↑ Δ↑↓
Δ↓↑ Δ↓↓

)
(3.9)

which has the property

Δ̂(kkk) =−Δ̂T (−kkk). (3.10)

As the gap function combines two spin-1
2 particles, it is useful to split it into

spin singlet and triplet combinations, in analogy to the addition of two spins
treated in quantum mechanics. The spin singlet gap function is

Δ =
1
2
(
Δ↑↓ −Δ↓↑

)
(3.11)
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and the spin triplet order parameters are usually written as x,y, and z-components
of the ddd-vector

dx =
1
2
(
Δ↓↓ −Δ↑↑

)
(3.12)

dy =
i
2
(
Δ↓↓+Δ↑↑

)
(3.13)

dz =
1
2
(
Δ↑↓+Δ↓↑

)
. (3.14)

With these definitions, the gap function can then be written in the more com-
pact form [88],

Δ̂(kkk) = (Δ(kkk)σ̂0 +ddd(kkk) · σ̂σσ) iσ̂y. (3.15)

σ̂σσ is the vector containing the three Pauli matrices σ̂x,y,z acting on spin.
An important aspect of the spin singlet and triplet classification is that the

transformation in Eq. (3.10) can be applied to spin singlet and triplet compo-
nents individually,

(Δ(kkk)σ̂0 +ddd(kkk) · σ̂σσ) iσ̂y =−iσ̂T
y

(
Δ(−kkk)σ̂T

0 +ddd(−kkk) · σ̂σσ T
)

= (Δ(−kkk)σ̂0 −ddd(−kkk) · σ̂σσ) iσ̂y, (3.16)

which implies that the spin singlet gap function is even in reciprocal space,
Δ(kkk) = Δ(−kkk), whereas the spin triplet order parameters are odd, ddd(kkk) =
−ddd(−kkk).

The mean-field Hamiltonian is quadratic in fermion operators, but it con-
tains pairs of creation or annihilation operators. It is therefore useful to go to
the Nambu basis and write down the Bogoliubov-de-Gennes (BdG) Hamilto-
nian in the form

HMF = ∑
kkk

1
2

ΨΨΨ†
kkk

(
ξ (kkk)σ̂0 Δ̂(kkk)
Δ̂†(kkk) −ξ (kkk)σ̂0

)
ΨΨΨkkk + const, (3.17)

with the four component Nambu spinor ΨΨΨkkk =
(

ckkk↑,ckkk↓,c
†
−kkk↑,c

†
−kkk↓

)T
. One can

consider this transformation as treating electron and hole degrees of freedom
explicitly, leading to a doubling of the degrees of freedom, which is compen-
sated by the requirement of particle-hole symmetry. Eq. (3.17) is then diago-
nalized by the Bogoliubov transformation

ΨΨΨkkk =

(
ûkkk v̂kkk

v̂∗−kkk û∗−kkk

)
AAAkkk, (3.18)

where ûkkk and v̂kkk are 2× 2 matrices in spin space. The new operators AAA†
kkk =(

γ†
kkk↑,γ

†
kkk↓,γ−kkk↑,γ−kkk↓

)
create and annihilate the Bogoliubov quasiparticles, which
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describe the excitations of the superconducting state. Inverting the unitary
transformation in Eq. (3.18) reveals that the quasiparticles are formed by a
linear combination of particles and holes. Their excitation energies E±(kkk) al-
ways come in pairs E±(kkk) and −E±(−kkk) due to particle-hole symmetry. The
spectrum of the Bogoliobov excitations is given by

E(kkk) =
√

ξ (kkk)2 + |Δ(kkk)|2, (3.19)

for spin singlet pairing and

E(kkk)± =
√

ξ (kkk)2 + |ddd(kkk)|2 ±|ddd(kkk)×ddd∗(kkk)| (3.20)

for spin triplet pairing. The degeneracy of the excitation energies in the spin
triplet case is lifted when ddd(kkk)× ddd∗(kkk) is nonzero, which requires ddd(kkk) �=
ddd∗(kkk). That case is called non-unitary pairing.

The unitary transformation matrix of the Bogoliubov transformation can be
determined by requiring that the γ operators obey the fermionic anti-commuta-
tion relations and that it actually diagonalizes the Hamiltonian. Restricting to
unitary pairing, the solution for ûkkk and v̂kkk takes the form:

ûkkk =
(E(kkk)+ξ (kkk))σ̂0√
2E(kkk)(E(kkk)+ξ (kkk))

v̂kkk =
−Δ̂(kkk)√

2E(kkk)(E(kkk)+ξ (kkk))
. (3.21)

To get a qualitative picture of the Bogoliubov quasiparticles and their exci-
tation spectrum, it is useful to first consider the transformation in the absence
of pairing. In that case, the Hamiltonian in Eq. (3.17) is already diagonal and
represents a doubling of the band dispersion ξ (kkk), where one copy is mirrored
at the chemical potential. One branch describes holes, the other one electrons,
and they cross at zero energy. The term v̂kkk is zero, and the Bogoliubov quasi-
particles γ†(γ) describe electrons (holes). A non-zero Δ̂(kkk) then plays the role
of a “hybridization” between the electron and hole bands and an excitation gap
opens at the crossing. This excitation gap leads to a finite energy cost to create
an excitation above the ground state. Inverting the Bogoliubov transformation
in Eq. (3.18) reveals that the Bogoliubov quasiparticles now mix electrons and
holes. When the band energy ξ (kkk) is much larger than the gap Δ(kkk), the mix-
ing is very small and the quasiparticles are almost purely electron- or hole-like.
Close to zero energy the mixing is more pronounced.

One of the main goals in Papers I, II, and V in this thesis is to determine
the gap function given a specific interaction. With the help of the quasiparticle
operators it is possible to do just that. Making use of the definition in Eq. (3.8)
and replacing the electron annihilation operators by the new quasiparticles
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yields

Δσσ̄ (kkk) =−∑
kkk′

∑
ττ̄

Vσσ̄ττ̄(kkk,kkk′)〈c−kkk′,τckkk′,τ̄〉

=−∑
kkk′

∑
ττ̄

Vσσ̄ττ̄(kkk,kkk′)×

∑
ss̄

(
−ukkk′τ̄sv−kkk′τ s̄ 〈γkkk′sγ

†
kkk′ s̄
〉+ v−kkk′τ s̄uvτ̄s 〈γ†

kkk′ s̄
γkkk′s〉

)
, (3.22)

The expectation values of the quasiparticles are evaluated based on their fermio-
nic nature. Using

〈γ†
kkk′s

γkkk′ s̄〉= nF(E(kkk′))δss̄, (3.23)

where nF(E) is the Fermi-Dirac distribution and δs,s̄ a Kronecker delta, the
expectation values can be evaluated to give

Δσσ̄ (kkk) =−∑
kkk′

∑
ττ̄

Vσσ̄ττ̄(kkk,kkk′)∑
s
−ukkk′τ̄sv−kkk′τs

(
1−2nF(E(kkk′))

)
(3.24)

=−∑
kkk′

∑
ττ̄

Vσσ̄ττ̄(kkk,kkk′)
(
−Δττ̄(−kkk′)

2E(kkk′)
tanh

(
E(kkk′)
2kBT

))
, (3.25)

where the solution for ûkkk and v̂kkk in the case of unitary pairing was used to
obtain Eq. (3.25).

This is the generalized gap equation that allows to solve for the order pa-
rameter. For numerical purposes, the order parameter is calculated from the
more general Eq. (3.24). Starting from an initial guess of Δ̂ it is possible to
diagonalize the mean-field Hamiltonian and obtain ûkkk,v̂kkk and E(kkk), which in
turn allows to calculate a new Δ̂(kkk), taking into account the specific form of
the interaction. This process can be iterated until the order parameter does no
longer change between iterations, signaling conversion. The obtained order
parameter then corresponds to a (possibly local) minimum of the free energy
and care needs to be taken to identify the global stable solution.

3.2 Multiorbital superconductivity
The previous derivation relies on an interaction written in the band picture,
where the normal state Hamiltonian ĥ0 is diagonal and only has spin degrees
of freedom. However, all the systems studied in this thesis are characterized by
possessing several orbital (or sublattice) degrees of freedom with interactions
V ll̄mm̄

σσ̄ττ̄kkk,kkk′ defined in an orbital basis with additional orbital labels l, l̄, m, and
m̄.

In such multiorbital systems, the BdG Hamiltonian has to be extended to
include orbital degrees of freedom in addition to the spin degrees of freedom.
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The normal state Hamiltonian ĥ0(kkk) and the gap function Δ̂(kkk) then consist of
2n×2n matrices, where n is the number of orbitals. The BdG Hamiltonian is
consequently written as

HMF = ∑
kkk

ΨΨΨ†
kkk

(
ĥ0(kkk) Δ̂(kkk)
Δ̂†(kkk) −ĥ∗0(−kkk)

)
ΨΨΨkkk, (3.26)

in terms of the multiorbital Nambu spinor ΨΨΨkkk =
(

ψψψkkk,ψψψ
†
−kkk

)T
with ψψψkkk =(

ckkk1↑,ckkk1↓, . . . ,ckkkn↑,ckkkn↓
)T , where the creation operators c†

kkkmσ gained an ad-
ditional orbital index m = 1, . . . ,n. One of the key differences to the band
basis is that the normal state Hamiltonian ĥ0 is no longer diagonal, but incor-
porates interorbital and spin-flip hopping terms. Likewise, the pairing matrix
Δ̂ can include intra- and interorbital pairing terms of either spin singlet or
triplet nature.

The gap functions are defined in a similar manner to Eq. (3.8),

Δll̄
σσ̄ (kkk) =−∑

kkk′
∑
ττ̄

∑
mm̄

V ll̄mm̄
σσ̄ττ̄(kkk,kkk

′)〈c−kkk′mτckkk′m̄τ̄〉 . (3.27)

Correspondingly, a generalization of the Bogoliubov transformation Ψkkk =
ÛkkkAkkk diagonalizes the multiorbital BdG Hamiltonian and allows to define
self-consistency equations of the form

Δll̄
σσ̄ (kkk) =−∑

kkk′
∑
ττ̄

V ll̄mm̄
σσ̄ττ̄(kkk,kkk

′)∑
s

∑
o
Umo

kkk′τsU
m̄o
kkk′τ̄s

∗ (1−nF(Eos(kkk′))
)
. (3.28)

In general, there exists another unitary transformation Ûkkk relating the orbital
to the band basis. This transformation diagonalizes the normal state Hamilto-
nian Ûkkkĥ0(kkk)Û

†
kkk = ĥB

0 (kkk), where the superscript B signifies the diagonal band
basis. It furthermore relates the spinors through the identity ψψψB

kkk = Ûkkkψψψkkk. The
same transformation does, however, not automatically diagonalize the pairing
matrix. Instead, the pairing matrix in the band basis

Δ̂B(kkk) = ÛkkkΔ̂(kkk)ÛT
−kkk (3.29)

generally features intra- and interband pairing.
Superconductivity arises as a Fermi surface instability where it is energet-

ically favorable to form Cooper pairs from electrons of opposite momentum
and small energies at the Fermi energy [2]. This is most naturally formulated
in the band basis and is expressed as a band pairing matrix without interband
terms. From a generic pairing matrix in the orbital basis it is not readily ap-
parent, if interband pairing is present or not. A simple criterion to check this
is the so-called superconducting fitness [89, 5, 6]. Here I want to present a
heuristic definition of the superconducting fitness first detailed by Ramires
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and Sigrist [5]. Given a simple spin degenerate two band model, defined by

ĥB
0 =

(
ε1σ̂0 0

0 ε2σ̂0

)
and Δ̂B =

(
Δ̂1 Δ̂12
Δ̂21 Δ̂2

)
, (3.30)

vanishing interband pairings Δ̂12 = Δ̂21 = 0 ensure that the normal state and
the pairing Hamiltonian commute for any ε1,2. Transforming this condition,

ĥB
0 (kkk)Δ̂

B(kkk) = Δ̂B(kkk)ĥB
0 (kkk), (3.31)

back into the orbital basis using the inverse transformation Û†
kkk gives for the

left hand side

Û†
kkk ĥB

0 (kkk)ÛkkkÛ
†
kkk Δ̂B(kkk)Û∗

−kkk = ĥ0(kkk)Δ̂(kkk). (3.32)

For the right hand side, the transformation relies on the fact that ĥB
0 is inversion

symmetric (otherwise the eigenvalues would not be double degenerate) and
that its eigenvalues are real to yield

Û†
kkk Δ̂B(kkk)Û∗

−kkkÛ
T
−kkkĥB

0 (kkk)Û
∗
−kkk = Δ̂(kkk)

(
Û†
−kkkĥB

0 (−kkk)Û−kkk

)∗
= Δ̂(kkk)ĥ∗0(−kkk).

(3.33)

Taken together, this gives the criterion that there exists no interband pairing, if
the modified commutator vanishes

ĥ0(kkk)Δ̂(kkk)− Δ̂(kkk)ĥ∗0(−kkk) =
[
ĥ0(kkk)Δ̂(kkk)

]∗
= 0. (3.34)

The superconducting fitness function F̂C(kkk) can be considered as a measure of
the deviation from this pure intraband pairing state[

ˆ̃h0(kkk), Δ̂(kkk)
]∗

= F̂C(kkk)iσ̂y, (3.35)

where the additional term iσ̂y is a convention to simplify calculations and ˜̂h0
includes some additional normalizations [6].

Beyond this heuristic approach it has been shown, first using a perturbative
approach [5] and later in a closed form [6], that a finite value of the super-
conducting fitness F̂C(kkk) leads to a suppression of the critical temperature TC
proportional to the Fermi surface average 〈Tr

(
|F̂C|2

)
〉FS. Furthermore, one

can also use the anti-commutator{
ˆ̃h0(kkk), Δ̂(kkk)

}∗
= F̂A(kkk)iσ̂y (3.36)

to define a second superconducting fitness function F̂A(kkk) which gives a non-
zero contribution 〈Tr

(
|F̂A|2

)
〉FS only in the presence of intraband pairing [6].

The superconducting fitness functions thereby allow to check the compati-
bility of a certain pairing state with the normal state Hamiltonian in the orbital
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basis. Any term in the normal state Hamiltonian that generates a non-zero
F̂C will be detrimental to pairing in that channel, whereas a finite F̂A favors a
certain pairing. Further extensions of the concept allow statements on the sta-
bility of a certain pairing state to disorder, even if the pairing generates nodes
in the band basis [7, 8].

3.3 A block Hamiltonian for spin singlet pairing on the
harmonic honeycomb lattices

In the harmonic honeycomb lattices studied in Paper I, we restrict the super-
conductivity to spin singlet pairing, which only leaves the sublattice degrees
of freedom in the Hamiltonian. To study the whole range of harmonic honey-
comb lattices on an equal footing, we consider only nearest neighbor hopping
and pairing, which allows to express the Hamiltonian for all lattices in a sim-
ilar block form. In this section, I present the mean-field decoupling of that
Hamiltonian and introduce the self-consistency equations for the order param-
eter.

The derivation of the block Hamiltonian relies on some concepts of the
lattice structure of the harmonic honeycomb lattices introduced in Sec. 2.2.
Those lattices, labeled H〈n〉, can be considered as a series of strips of n com-
plete honeycombs, or equivalently strips of n+ 1 zigzag chains, where the
strips are periodically rotated against each other around the connecting twist
bonds. The two different rotations of the honeycomb lattice correspond to the
two different choices of zigzag nearest neighbor vectors, aaa2/3 for an unrotated
and aaa′2/3 for a rotated honeycomb, as defined in Sec. 2.2. The horizontal bonds
stay the same throughout aaa1 = aaa′1. The unit cell of these structures contains
2(n+1)×2 sites, which is built up of two sites for n+1 zigzag strips of two
different rotations. The idea for the block Hamiltonian is then to group all
terms involving nearest neighbors vectors along one zigzag chain into a block,
which is connected to other chains by blocks involving the horizontal bonds.
To this end, the lattice sites are grouped into equally many a and b sites, where
all nearest neighbor vectors point from an a to a b site. By this construction,
each zigzag chain consists of exactly one a and one b site of the unit cell.

The Hamiltonian used as the starting point to model spin singlet supercon-
ductivity in the harmonic honeycomb lattices in Paper I consists of a nearest
neighbor hopping of strength t, a chemical potential μ , and a nearest neighbor
Heisenberg interaction of strength J,

H =− t ∑
〈i, j〉,σ

(
b†

j,σ ai,σ +h.c.
)
+μ ∑

i,σ

(
a†

i,σ ai,σ +b†
i,σ bi,σ

)

+ J ∑
〈i, j〉

(
SSSi ·SSS j −

1
4

nin j

)
, (3.37)
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where electrons of spin σ on an a (b) site at position rrri are created by a†
i,σ

(b†
i,σ ). 〈i, j〉 denotes a sum over nearest neighbors i and j. The interaction

term can be rewritten in terms of a nearest neighbor spin singlet

SSSi ·SSS j −
1
4

nin j =
1
2

(
−a†

i,↑ai,↑b†
j,↓b j,↓+a†

i,↑ai,↓b†
j,↓b j,↑

+a†
i,↓ai,↑b†

j,↑b j,↓ −a†
i,↓ai,↓b†

j,↑b j,↑
)

=− 1√
2

(
a†

i,↑b†
j,↓ −a†

i,↓b†
j,↑

) 1√
2

(
ai,↓b j,↑ −ai,↑b j,↓

)
=−s†

i jsi j (3.38)

The system is periodic in all three directions, which allows to perform a
Fourier transform with the convention

c†
rrri,σ =

1√
N ∑

kkk
eikkk·rrric†

l,kkk,σ δkkk,kkk′ =
1
N ∑

rrri

ei(kkk−kkk′)·rrri , (3.39)

where c is either a or b, depending on the site, and l labels the zigzag chains
within a unit cell, l = 1, . . . ,n+1. The normal state Hamiltonian then directly
decouples into intra-zigzag and inter-zigzag terms

H0
intra =− t ∑

kkk,l,σ
∑

j=2,3

(
b†

l,kkk,σ al,kkk,σ eikkk·aaa j +h.c.
)

+μ ∑
l,kkk,σ

(
a†

l,kkk,σ al,kkk,σ +b†
l,kkk,σ bl,kkk,σ

)
, (3.40)

H0
inter =− t ∑

kkk,l,σ

(
b†

l+1,kkk,σ al,kkk,σ eikkk·aaa1 +h.c.
)

(3.41)

where the nearest neighbor vectors aaa j need to be adjusted to be either unrotated
or rotated. The interaction Hamiltonian is simplified through the mean-field
decoupling by defining the order parameters

Δl, j =−J
2 ∑

kkk
eikkk·aaa j 〈al,kkk,↓bl+δ1, j,−kkk,↑ −al,kkk,↑bl+δ1, j,−kkk,↓〉 , (3.42)

with the Kronecker delta δi, j. Introducing the shorthand notations

t ′(kkk) =−t ∑
j=2,3

eikkk·aaa j t ′′(kkk) =−teikkk·aaa1 (3.43)

Δ̃l(kkk) = ∑
j=2,3

(
Δl, je−ikkk·aaa j

)
Δ̃l,1(kkk) =

(
Δl,1e−ikkk·aaa1

)
(3.44)
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then allows to define the full inter- and intra-zigzag Hamiltonians

Hintra
l = ψψψ†

l

⎛
⎜⎜⎝

μ t ′∗(kkk) 0 Δ̃l(kkk)
t ′(kkk) μ Δ̃l(−kkk) 0

0 Δ̃∗
l (−kkk) −μ −t ′∗(kkk)

Δ̃∗
l (kkk) 0 −t ′(kkk) −μ

⎞
⎟⎟⎠ψψψ l , (3.45)

Hinter
l = ψψψ†

l+1

⎛
⎜⎜⎝

0 0 0 0
−t ′′(kkk) 0 Δ̃l,1(−−−kkk) 0

0 0 0 0
Δ̃∗

l,1(kkk) 0 t ′′(kkk) 0

⎞
⎟⎟⎠ψψψ l , (3.46)

where the Nambu spinor ψψψ†
l =

(
a†

l,kkk,↑,b
†
l,kkk,↑,al,−kkk,↓,bl,−kkk,↓

)
runs over the two

sites making up each zigzag chain. Altogether, this achieves the aspired split-
ting of the full Hamiltonian into block form

HMF =
(

ψψψ†
1, . . . ,ψψψ

†
n+1

)
⎛
⎜⎜⎜⎜⎜⎜⎝

ĥintra
1 ĥinter†

1 0 · · · ĥinter
n+1

ĥinter
1 ĥintra

2 ĥinter†

2 0

0 ĥinter
2

. . .
...

... ĥintra
n ĥinter†

n

ĥinter†

n+1 0 · · · ĥinter
n ĥintra

n+1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

ψψψ1
...

ψψψn+1

⎞
⎟⎠ ,

(3.47)

where each ĥintra block corresponds to one of the n+ 1 zigzag chains within
each unit cell of the H〈n〉 lattice. In this way, the nearest neighbor vec-
tors that differ between unrotated and rotated zigzag chains only enter in the
ĥintra blocks, such that a twist at site i is easily implemented by just changing
the nearest neighbor vectors in the corresponding exponentials in ĥintra

l>i . The
Hamiltonian in Eq. (3.47) is thus adaptable to study trends along the whole
series of harmonic honeycomb lattices.

As detailed in section 3.2, the order parameter can be determined self-con-
sistently by diagonalizing ĥMF and expressing the expectation values in Eq. (3.42)
in terms of the quasiparticle operators with the help of the unitary transforma-
tion Û . As the order parameter splits into intra- and inter-zigzag chain pairing

Δl, j =− J
2 ∑

kkk
∑

j=2,3

(
e−ikkk·aaa j 〈al,−kkk,↓bl,kkk,↑〉− eikkk·aaa j 〈al,kkk,↑bl,−kkk,↓〉

)

+−J
2 ∑

kkk

(
e−ikkk·aaa1 〈al,−kkk,↓bl+1,kkk,↑〉− eikkk·aaa j 〈al,kkk,↑bl+1,−kkk,↓〉

)
, (3.48)
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the self-consistency equations require slightly different entries of the unitary
matrix. The intra-zigzag chain pairing on bonds j = 2,3 is calculated from

Δl, j =− J
2 ∑

kkk

(
e−ikkk·aaa j ∑

m
U∗

kkk(4l−1)+3,mUkkk(4l−1)+2,mnF(Em(kkk))

−eikkk·aaa j ∑
m
Ukkk(4l−1)+1,mU∗

kkk(4l−1)+4,m(1−nF(Em(kkk)))
)
, (3.49)

where m = 1, . . . ,4(n+ 1) runs over the full Hilbert space basis. The nearest
neighbor vectors aaa j must be adjusted depending on whether the zigzag chain
is part of an unrotated or rotated sheet. The inter-zigzag chain pairing only
involves bond j = 1, which requires no such considerations, such that

Δl,1 =−J
2 ∑

kkk

(
e−ikkk·aaa1 ∑

m
U∗

kkk(4l−1)+3,mUkkk((4l−1)+6) mod 2(n+1),mnF(Em(kkk))

− eikkk·aaa1 ∑
m
Ukkk(4l−1)+1,mU∗

kkk((4l−1)+8) mod 2(n+1),m(1−nF (Em(kkk)))
)
.

(3.50)

In total, there are therefore 3(n + 1) spin singlet nearest neighbor order
parameters on the H〈n〉 harmonic honeycomb lattice. When n is large, we
group the three nearest neighbor bonds around each a site in the form ΔΔΔl =
(Δl,1,Δl,2,Δl,3), similarly to the approach in describing superconductivity in
graphene [90, 91, 92]. For the two smallest members of the series, n = 0 and
n = 1, studied in more detail in Paper I, the number of zigzag chains is small
enough to consider the whole 3(n+1) order parameters together. In particular,
for the hyperhoneycomb lattice with n = 0, we group the order parameter as
ΔΔΔhyper = (Δ1,1,Δ1,2,Δ1,3,Δ2,1,Δ2,2,Δ2,3).

In summary, the block Hamiltonian in Eq. (3.47) can be easily adjusted to
describe spin singlet superconductivity on all of the harmonic honeycomb lat-
tices. This is possible due to the restriction to purely nearest neighbor hopping
and pairing. The order parameters can be self-consistently calculated from
equations Eqs. (3.49) and (3.50).

3.4 Spin triplet pairing from the extended
Kitaev-Heisenberg model

In Paper II, we study the spin triplet superconductivity arising from the ex-
tended Kitaev-Heisenberg model on the honeycomb lattice. This means that
while there are only two sublattice degrees of freedom, we now also include
spin. In this section I detail the derivation of the pairing Hamiltonian and the
self-consistency equations with a particular focus on the previously not con-
sidered off-diagonal exchange.
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The interacting Hamiltonian for the extended Kitaev-Heisenberg model on
the honeycomb lattice, as introduced in Sec. 2.1, reads

HJKΓ = ∑
〈i, j〉

{
J
(

SSSi ·SSS j −
1
4

nin j

)

+KSγ(i, j)
i Sγ(i, j)

j +Γ
(

Sα(i, j)
i Sβ (i, j)

j +Sβ (i, j)
i Sα(i, j)

j

)}
. (3.51)

SSSi represents the effective spin moment jeff =
1
2 present at every site i of the

honeycomb lattice. It can be written in terms of the fermionic creation and
annihilation operators as Sγ

i = c†
iσoσ̂ γ

σσ̄ ciσ̄o, where σ̂ γ represents the γ = x,y,z
Pauli matrices in spin space and c†

iσo creates an electron at site i on sublat-
tice o = a,b with (pseudo-)spin σ . The functions α(i, j), β (i, j), and γ(i, j)
can be {x,y,z}, depending on the bond between nearest neighbor sites 〈i, j〉,
where α(i, j) �= β (i, j) �= γ(i, j). This means that each bond 〈i, j〉 comes with
a specific γ ∈ {x,y,z} that enters in the Kitaev interaction. The off-diagonal
interaction term then features the other two elements of the spin vector α and
β , as detailed in Sec. 2.1.

The Heisenberg spin term can be rewritten in terms of a nearest neighbor
spin singlet as shown in Sec. 3.3. The other two interactions can similarly be
cast into a form involving the nearest neighbor spin singlet and triplet opera-
tors

s†
i j =

1√
2 ∑

σ ,σ̄
c†

iσac†
jσ̄bi(σ̂yσ̂0)σσ̄ , (3.52)

tα†

i j =
1√
2 ∑

σ ,σ̄
c†

iσac†
jσ̄bi(σ̂yσ̂α)σσ̄ , (3.53)

where i and j belong to neighboring sites. In terms of these operators, the
Kitaev term on a z-bond is written as [33]

−Sz
i S

z
j =

1
4

s†
i jsi j − tx†

i j tx
i j − ty†

i j ty
i j + tz†

i j tz
i j. (3.54)

The Kitaev terms for the other two bonds are of the same form, with the plus
sign in front of the corresponding spin triplet operators. The off-diagonal in-
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teraction can be reformulated purely in terms of the spin triplet operators:

Sx
i Sy

j +Sy
i Sx

j =
i
2

(
c†

j↑bc†
i↑aci↓ac j↓a − c†

j↓bc†
i↓aci↑ac j↑b

)
=

1
2

(
tx†

i j ty
i j + ty†

i j tx
i j

)
(3.55)

Sx
i Sz

j +Sz
i S

x
j =

1
4

(
c†

j↑bc†
i↑aci↓ac j↑b + c†

j↑bc†
i↓aci↑ac j↑b − c†

j↓bc†
i↑aci↓ac j↓b

− c†
j↓bc†

i↓aci↑ac j↓b + c†
j↑bc†

i↑aci↑ac j↓b + c†
j↓bc†

i↑aci↑ac j↑b

−c†
j↑bc†

i↓aci↓ac j↓b − c†
j↓bc†

i↓aci↓ac j↑b

)
=

1
2

(
tx†

i j tz
i j + tz†

i j tx
i j

)
(3.56)

Sy
i Sz

j +Sz
i S

y
j =

i
4

(
−c†

j↓bc†
i↓aci↑ac j↓b − c†

j↓bc†
i↓aci↓ac j↑b − c†

j↑bc†
i↑aci↑ac j↓b

− c†
j↑bc†

i↑aci↓ac j↑b − c†
j↓bc†

i↑aci↓ac j↓b − c†
j↑bc†

i↓aci↓ac j↓b

−c†
j↓bc†

i↑aci↑ac j↑b − c†
j↑bc†

i↓aci↑ac j↑b

)
=

1
2

(
tz†

i j ty
i j + ty†

i j tz
i j

)
. (3.57)

Combining Eqs. (3.54)-(3.57), the interacting Hamiltonian takes the form

HJKΓ =−J ∑
〈i, j〉

s†
i jsi j −

K
4 ∑

〈i, j〉

(
s†

i jsi j + ε j,1tx†

i j tx
i j + ε j,2ty†

i j ty
i j + ε j,3tz†

i j tz
i j

)

+
Γ
2 ∑

i

[(
tz†

i,aaa1
ty
i,aaa1

+ ty†

i,aaa1
tz
i,aaa1

)
+
(

tx†

i,aaa2
tz
i,aaa2

+ tz†

i,aaa2
tx
i,aaa2

)
+
(

ty†

i,aaa3
tx
i,aaa3

+ tx†

i,aaa3
ty
i,aaa3

)]
,

(3.58)

where ε j,k = 2δ j,k −1.
At half-filling, the ground state of the extended Kitaev-Heisenberg model

is a magnetically ordered state for most parameters [25, 26]. To induce super-
conductivity, we model doping by adding mobile carriers moving according
to the kinetic Hamiltonian

Hk =− t ∑
〈i, j〉,σ

(
c†

iσac jσb +H.c.
)
+μ ∑

iσo

(
c†

iσociσo

)
, (3.59)

which features nearest neighbor hopping t and a chemical potential μ . In a
second step, we also consider the influence of an additional spin-orbit coupled
hopping term tSO in the kinetic energy,

HSO = itSO ∑
〈〈i, j〉〉,σ ,σ̄ ,o

(
c†

iσo

(
σγ(i, j)

)
σ ,σ̄ c jσ̄o +H.c.

)
, (3.60)
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to complement the interaction emanating from spin-orbit coupling. This hop-
ping term is a second nearest neighbor Kane-Mele like term that involves dif-
ferent spin Pauli matrices σ̂γ(i, j) on the different bonds, similar to the Kitaev
interaction. The particular matrix γ(i, j) = x,y,z is equal to the local coordi-
nate axis whose projection onto the honeycomb plane aligns with the corre-
sponding second nearest neighbor vector 〈〈i, j〉〉 [93]. This term has first been
discussed in the context of Na2IrO3 [93], where it arises from projecting a sec-
ond nearest neighbor hopping between unlike t2g orbitals via the Na ions in
the center of the honeycombs onto the jeff =

1
2 states [94, 95]. The same un-

derlying hopping process is also relevant in the other materials realizing the
extended Kitaev-Heisenberg model [56]. The normal state Hamiltonian can
be Fourier transformed and written with the help of the shorthand notation
T (kkk) =−t ∑ j eikkk·aaa j , and T ′

j (kkk) = 2tSO sin(kkk ·bbb j), where the three second near-
est neighbor vectors are given by bbb1 = aaa2−aaa3, bbb2 = aaa3−aaa1, and bbb3 = aaa2−aaa1.
Writing ψψψ†

kkk =
(

c†
kkk↑a,c

†
kkk↓a,c

†
kkk↑b,c

†
kkk↓b

)
, the kinetic Hamiltonian takes the form

H0 = ∑
kkk

ψψψ†
kkkĥ0(kkk)ψψψkkk, (3.61)

ĥ0 =

⎛
⎜⎜⎝

μ +T ′
3 T ′

1 − iT ′
2 T ∗ 0

T ′
1 + iT ′

2 μ −T ′
3 0 T ∗

T 0 μ −T ′
3 −T ′

1 + iT ′
2

0 T −T ′
1 − iT ′

2 μ +T ′
3

⎞
⎟⎟⎠ , (3.62)

where the momentum dependence has been omitted for legibility reasons in
the last equation. Performing likewise a Fourier transform of the interac-
tion and introducing the mean-field approximation through nearest neighbor
spin singlet and triplet order parameters for each of the three nearest neighbor
bonds aaa j

〈s†
aaa j
〉= 1√

2 ∑
kkk

∑
σ ,σ̄

〈c†
kkkσac†

−kkkσ̄b〉eikkk·aaa j i(σ̂yσ̂0)σσ̄ , (3.63)

〈tα†

aaa j
〉= 1√

2 ∑
kkk

∑
σ ,σ̄

〈c†
kkkσac†

−kkkσ̄b〉eikkk·aaa j i(σ̂yσ̂α)σσ̄ . (3.64)

we can collect the spin triplet pairings in the ddd-vector and write the pairing
Hamiltonian

HΔ = ∑
kkk

ψψψ†
kkkΔ̂(kkk)ψψψ∗

−kkk, (3.65)

where ψψψ†
kkk =
(

c†
kkk↑a,c

†
kkk↓a,c

†
kkk↑b,c

†
kkk↓b

)
, and, using the shorthand expressions Δ(kkk)=

∑ j Δ je−ikkk·aaa j and di(kkk) = ∑ j di
je
−ikkk·aaa j , the pairing matrix with suppressed mo-
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mentum dependence finally takes the form

Δ̂(kkk) =

⎛
⎜⎜⎝

0 0 dx + idy Δ−dz

0 0 −Δ−dz −dx + idy

dx + idy Δ−dz 0 0
−Δ−dz −dx + idy 0 0

⎞
⎟⎟⎠ . (3.66)

With the help of another set of Pauli matrices ν̂i acting on the sublattice sub-
space, the pairing matrix can be conveniently written as Δ̂(kkk) = (Δ(kkk)σ̂0 +
ddd(kkk) · σ̂σσ)iσ̂y ⊗ ν̂x.

The self-consistency equations for the pairings are combined in a vector
over the three nearest neighbor bonds to yield

Δ =
1√
2

(
−J− K

4

)(
〈saaa1〉 ,〈saaa2〉 ,〈saaa3〉

)
, (3.67)

dddx =
1√
2

(
−K

4
〈tx

aaa1
〉 , K

4
〈tx

aaa2
〉+ Γ

2
〈tz

aaa2
〉 , K

4
〈tx

aaa3
〉+ Γ

2
〈ty

aaa3
〉
)
, (3.68)

dddy =
1√
2

(
K
4
〈ty

aaa1
〉+ Γ

2
〈tz

aaa1
〉 ,−K

4
〈ty

aaa2
〉 , K

4
〈ty

aaa3
〉+ Γ

2
〈tx

aaa3
〉
)
, (3.69)

dddz =
1√
2

(
K
4
〈tz

aaa1
〉+ Γ

2
〈ty

aaa1
〉 , K

4
〈tz

aaa2
〉+ Γ

2
〈tx

aaa2
〉 ,−K

4
〈tz

aaa3
〉
)
. (3.70)

In this form the role of the different interactions becomes clear. On the one
hand, the Heisenberg interaction drives a spin singlet pairing, which can be
enhanced by the Kitaev interaction. On the other hand, the same Kitaev in-
teraction also contributes to spin triplet pairing, with different sign depending
on the specific bond. The off-diagonal exchange, finally, supports solely spin
triplet pairing and mixes ddd-vector components between bonds.

Analogously to the discussion in prior sections, the self-consistency equa-
tions can be solved by invoking the unitary matrix Û that encapsulates the
Bogoliubov transformation. Terms involved in 〈saaa j〉 and 〈tz

aaa j
〉 are expressed as

〈ckkk↓ac−kkk↑b〉∓〈ckkk↑ac−kkk↓b〉= ∑
l

(
Ukkk2,lU∗

kkk7,l ∓Ukkk1,lU∗
kkk8,l

)
(1−nF(El(kkk))),

(3.71)

while the terms involved in 〈tx
aaa j
〉 and 〈ty

aaa j〉 can be calculated from

〈ckkk↓ac−kkk↓b〉∓〈ckkk↑ac−kkk↑b〉= ∑
l

(
Ukkk2,lU∗

kkk8,l ∓Ukkk1,lU∗
kkk7,l

)
(1−nF(El(kkk))).

(3.72)

Considering spin singlet and triplet pairing, there are in total 12 order pa-
rameters. For the analysis in Paper II we only focus on spin triplet pairing,
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as the spin singlet pairing is equivalent to the case of superconductivity in
graphene. We group the nine spin triplet order parameters in a matrix,

ddd =

⎛
⎝dx

1 dx
2 dx

3
dy

1 dy
2 dy

3
dz

1 dz
2 dz

3

⎞
⎠ , (3.73)

where the rows correspond to the x,y,z components of the ddd-vector and the
columns to the three nearest neighbor bonds aaa1,aaa2,aaa3

Because of the simple orbital structure it is possible to find an expression
for the conversion to the band basis mentioned in Sec. 3.2 in the case of pure
nearest neighbor hopping, something that we use in Paper II to visualize the
intraband order parameter. The necessary unitary transformation that diago-
nalizes the normal state Hamiltonian ĥ0(kkk)is given by(

ckkkσa
ckkkσb

)
=

1√
2

(
1 1

e−iφkkk −e−iφkkk

)(
bkkkσ1
bkkkσ2

)
. (3.74)

Here, bkkkσ l annihilates an electron in band l, while φkkk = arg(∑ j eikkk·aaa j). Intro-
ducing the shorthand notation εkkk =−t|∑ j eikkk·aaa j |, the kinetic part of the Hamil-
tonian in band space takes the diagonal form

Hk = ∑
kkk,σ

(
(εkkk +μ)b†

kkkσ1bkkkσ1 +(−εkkk +μ)b†
kkkσ2bkkkσ2

)
. (3.75)

Using the same transformation, the mean-field pairing Hamiltonian HΔ can be
transformed into the band basis, too. For the spin singlet order parameter this
has been worked out before [90]. Therefore I present here only the transforma-
tion of the spin triplet pairing terms. Starting from the product of annihilation
operators

c†
kkk,σ ,ac†

−kkk,σ̄ ,be−ikkk·aaa j

=
1
2 ∑

b1,b2

b†
kkk,σ ,b1

b†
−kkk,σ̄ ,b2

e−ikkk·aaa j eiφkkk(τz − iτy)b1,b2

=
1
2 ∑

b1,b2

1
2
(b†

kkk,σ ,b1
b†
−kkk,σ̄ ,b2

−b†
−kkk,σ̄ ,b2

b†
kkk,σ ,b1

)e−ikkk·aaa j eiφkkk(τz − iτy)b1,b2

=
1
2 ∑

b1,b2

b†
kkk,σ ,b1

b†
−kkk,σ̄ ,b2

1
2
(e−ikkk·aaa j eiφkkk +(−1)δb1,b2 eikkk·aaa j e−iφkkk)(τz − iτy)b1,b2

=
1
2 ∑

b1,b2

b†
kkk,σ ,b1

b†
−kkk,σ̄ ,b2

(−sin(kkk ·aaa j −φkkk)iτz − cos(kkk ·aaa j −φkkk)iτy)b1,b2 ,

(3.76)

where the matrices τγ act on band space and the indices bi run over the two
bands bi = 1,2. We can introduce the intra- and interband spin triplet order

52



parameters

dα
intra(kkk) =−i∑

j
dα

j sin(kkk ·aaa j −φkkk) (3.77)

dα
inter(kkk) =−∑

j
dα

j cos(kkk ·aaa j −φkkk) (3.78)

and rewrite the spin triplet pairing as(
∑

j
ddd j · σ̂σσ

)
iσ̂y ⊗ ν̂x = (dddintra · σ̂σσ) iσ̂y ⊗ τz +(dddinter · σ̂σσ) iσ̂y ⊗ iτy. (3.79)

As expected from the general discussion in Sec. 3.2, an interband pairing
is naturally generated upon the transformation, similarly to the spin singlet
case [90]. Notably, the sin and cos terms are exchanged between the spin sin-
glet and triplet case, which preserves the even- and oddness properties.

The extended Kitaev-Heisenberg interaction thus allows spin triplet pairing,
where the off-diagonal exchange, in particular, leads to a mixing of ddd-vector
components. The resulting order parameters transformed to the band basis
split into intra- and interband pairing, as expected from the multiorbital struc-
ture.

3.5 Combining interaction and lattice: Spin triplet
pairing on the hyperhoneycomb lattice

For Paper V we combine aspects of Sections 3.3 and 3.4 to study the spin
triplet superconductivity arising from extended Kitaev-Heisenberg interactions
on the hyperhoneycomb lattice. This extends the degrees of freedom to four
sublattice sites times spin. Because we focus on the hyperhoneycomb lattice
only, we use the four lattice sites in the unit cell, introduced in Sec. 2.2, as the
basis states and move away from the block form of the Hamiltonian derived in
Sec. 3.3.

For the doped carriers away from half-filling, we again include at first only
nearest neighbor hopping with a constant hopping amplitude t and a chemical
potential μ ,

Hk =−t ∑
〈i, j〉,σ ,〈o,o′〉

(
c†

jσociσo′ +h.c.
)
+μ ∑

i,σ ,o

(
c†

iσociσo

)
, (3.80)

where o = a,b,c,d. The system is periodic in all three directions, such that a
Fourier transform can be performed,

Hk(kkk) =−t ∑
kkk jσ〈o,o′〉

eikkk·aaa j
(

c†
kkkσockkkσo′ +h.c.

)
+μ ∑

kkk,σ ,o

(
c†

kkkσockkkσo

)
. (3.81)
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In the basis Ψ = (ckkkσa,ckkkσb,ckkkσc,ckkkσd)
T this takes the matrix form

Hk =

⎛
⎜⎜⎝

μ T 1 0 T 2,3

T 1∗ μ T 5,6∗ 0
0 T 5,6 μ T 4

T 2,3∗ 0 T 4∗ μ

⎞
⎟⎟⎠ , (3.82)

with the shorthand notation T j =−t ∑ j e−ikkk·aaa j . Apart from the nearest neigh-
bor hopping, there are further, second nearest neighbor spin-orbit coupled hop-
ping terms. Here we only consider the largest of these [96],

HSO = ∑
〈〈i, j〉〉

c†
iσ

(
itKM

r̂rrik × r̂rrk j

|r̂rrik × r̂rrk j|
· σ̂σσ
)

σσ̄
c jσ̄ , (3.83)

where r̂rrik and r̂rrk j are the normalized nearest neighbor vectors making up the
second nearest neighbor vector bbbi j. This hopping is another generalized Kane-
Mele type hopping, where now the active spin component is the one that is
perpendicular to the second nearest neighbor bond [96]. Due to the 3D nature
of the lattice there are two different cases. The active component is either the
(1,1,1) component for the six second nearest neighbor bonds involving aaa2,3,
or the (−1,1,1) component for the remaining six second nearest neighbor
bonds involving aaa5,6.

For the interaction, we are again considering the extended Kitaev-Heisenberg
model, so the interacting Hamiltonian looks very similar to that in Sec. 3.4

HJKΓ = ∑
〈i, j〉

{
J
(

SSSi ·SSS j −
1
4

nin j

)
+KSγ(i, j)

i Sγ(i, j)
j

+ε jΓ
(

Sα(i, j)
i Sβ (i, j)

j +Sβ (i, j)
i Sα(i, j)

j

)}
, (3.84)

except that there are now six nearest neighbor bonds 〈i, j〉 and that the sign of
Γ changes on bonds aaa5 and aaa6, such that ε j = 1 for j ∈ {1, . . .4} and ε j =−1
for j ∈ {5,6}. Also, γ(i, j) = {x,y,z,x,z,y}, as explained in Sec. 2.1. Nev-
ertheless, the interactions can be rewritten in terms of nearest neighbor spin
singlet and triplet operators as defined in Eq. (3.53). We can then write the
pairing matrix

HΔ = ψψψ†
kkk

⎛
⎜⎜⎝

0 Δ̂1(−kkk) 0 Δ̂2,3(−kkk)
Δ̂1(kkk) 0 Δ̂5,6(kkk) 0

0 Δ̂5,6(−kkk) 0 Δ̂4(−kkk)
Δ̂2,3(kkk) 0 Δ̂4(kkk) 0

⎞
⎟⎟⎠ψψψ∗

−kkk (3.85)

with ψψψ†
kkk =

(
c†

kkk↑1,c
†
kkk↓1,c

†
kkk↑2, . . . ,c

†
kkk↓4

)
and the pairing block matrices Δ̂ j(kkk) =

∑ j (Δ jσ̂0 +ddd j · σ̂σσ) iσ̂ye−ikkk·aaa j .
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The bond order parameters can be grouped into the horizontal bonds j = 1,4

Δ j =
1√
2

(
−J− K

4

)
〈saaa j〉 , dx

j =
1√
2

(
−K

4

)
〈tx

aaa j
〉 (3.86)

dx
j =

1√
2

(
K
4
〈ty

aaa j
〉+ Γ

2
〈tz

aaa j
〉
)
, dx

j =
1√
2

(
K
4
〈tz

aaa1
〉+ Γ

2
〈ty

aaa1
〉
)
, (3.87)

and the zigzag bonds

(Δ2,Δ3) =
1√
2

(
−J− K

4

)(
〈saaa2〉 ,〈saaa3〉

)
, (3.88)

(dx
2,d

x
3) =

1√
2

(
K
4
〈tx

aaa2
〉+ Γ

2
〈tz

aaa2
〉 , K

4
〈tx

aaa3
〉+ Γ

2
〈ty

aaa3
〉
)
, (3.89)

(dy
2,d

y
3) =

1√
2

(
−K

4
〈ty

aaa2
〉 , K

4
〈ty

aaa3
〉+ Γ

2
〈tx

aaa3
〉
)
, (3.90)

(dz
2,d

z
3) =

1√
2

(
K
4
〈tz

aaa2
〉+ Γ

2
〈tx

aaa2
〉 ,−K

4
〈tz

aaa3
〉
)
, (3.91)

and

(Δ5,Δ6) =
1√
2

(
−J− K

4

)(
〈saaa5〉 ,〈saaa6〉

)
, (3.92)

(dx
5,d

x
6) =

1√
2

(
K
4
〈tx

aaa5
〉− Γ

2
〈ty

aaa5
〉 , K

4
〈tx

aaa6
〉− Γ

2
〈tz

aaa6
〉
)
, (3.93)

(dy
5,d

y
6) =

1√
2

(
K
4
〈ty

aaa5
〉− Γ

2
〈tx

aaa5
〉 ,−K

4
〈ty

aaa6
〉
)
, (3.94)

(dz
5,d

z
6) =

1√
2

(
−K

4
〈tz

aaa5
〉 , K

4
〈tz

aaa6
〉− Γ

2
〈tx

aaa5
〉
)
. (3.95)

With the help of the Bogoliubov transformation matrix Û it is once more pos-
sible to calculate the expectation values self-consistently by using the expres-
sion

〈ckkkσoc−kkkσ̄ ō〉= ∑
l
Ukkk2(o−1)+σ ,lU∗

kkk2(o−1)+σ ,l(1−nF(El(kkk))), (3.96)

where o = 1, . . . ,4 and, on the right hand side, σ = 1,2 for ↑,↓.
The derivation thus follows straightforwardly from the case of the extended

Kitaev-Heisenberg interaction on the honeycomb lattice, but now involves a
larger number of order parameters.
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4. Symmetry classification

The self-consistency equations derived in the previous chapter allow to calcu-
late the superconducting order parameters. The next step is a characterization
of the obtained order in terms of its symmetries. In this chapter I compile
at first some of the mathematical concepts of group theory that are important
for the symmetry classification of superconductors. This is intended to only
be an excerpt of the full mathematical theory and no proofs are presented.
A more detailed introduction to group theory can be found in Refs. [97, 98].
Thereafter, in Sec. 4.2, I discuss some of the symmetries relevant for classi-
fying superconducting order parameters. Finally, I present how we apply the
symmetry classification to the order parameters obtained in Papers I-II, and V.

4.1 Background: Group theory
4.1.1 Groups, Subgroups, Classes
A symmetry operation is a transformation that returns the original state of a
specific system. The system is then said to be invariant under the operation.
Mirror symmetries, rotations, or translations are examples of such operations.
Some objects can have several of such symmetries, such as the triangle de-
picted in Figure 4.1. It has the following symmetries: A rotation by 2π

3 in
either direction around a perpendicular axis, and rotations by π around the
axes connecting the end points of the triangle with the centers of the opposite
sides. Since each individual operation returns the initial object, it becomes
clear that symmetries can be combined, i.e. applied after each other. The re-
sult will be another symmetry operation, since the sequential application also
returns the system in its original state. This motivates the use of groups to
describe symmetry operations. A group is defined as follows.

Definition 1. A group is a set G of objects together with a multiplication,
which fulfills the following axioms:

1. The group is closed under the application of the multiplication:

∀g1,g2 ∈ G : g1g2 ∈ G (4.1)

2. The multiplication is associative:

∀g1,g2,g3 ∈ G : g1(g2g3) = (g1g2)g3 (4.2)
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Figure 4.1. An illustration of the symmetries of an equilateral triangle. There is a
three-fold rotation C3 around the principal axis perpendicular to the triangle. The
three two-fold rotations C′

2 are around axes perpendicular to the principal axis. The
symmetry elements form the group D3.

3. The identity element E is part of the group:

∃E ∈ G : ∀g ∈ G,Eg = gE = g (4.3)

4. Every group element has an inverse that is also part of the group:

∀g ∈ G,∃g−1 ∈ G : gg−1 = g−1g = E (4.4)

In a finite group, the number of elements in the group is called the order of the
group and denoted by |G|.

The definition of a group is general and does not only apply for symmetry
operations, but it is easy to check that the symmetry operations of an object
fulfill all the axioms. It is noteworthy that the definition of a group does not at
all specify what the group objects act on. This will be of importance later on,
when mapping different groups to each other is discussed.

The definition has several consequences and extensions. For example, the
product of two operations g1g2 does not need to be commutative. If g1g2 =
g2g1 for any two group elements, the group is called abelian. Furthermore, the
identity element and the inverse of an element are unique. Finally, the inverse
of the inverse returns the original object, (g−1)−1 = g, as one might expect.

The group of the equilateral triangle contains the following elements: D3 =
{E,C3,C2

3 ,C
′
2,a,C

′
2,b,C

′
2,c}, as pictured in Fig. 4.1. Here the notation Cn for an

n-fold rotation is used. The axis with the highest-fold rotation is called the
principal axis. The symbol C′ specifies a rotation around an axis perpendic-
ular to this principal axis. It is clear that the two-fold rotations are their own
inverses, whereas the two three-fold rotations are each others inverse.
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Some of the elements of the group can form a group by themselves, this is
called a subgroup.

Definition 2. A subgroup H of G is a subset of G, that together with the
multiplication of G forms a group in itself.

As an implication of this the identity E is part of every subgroup. In fact,
the identity element by itself forms a so-called trivial subgroup. The group G
itself is also a trivial subgroup of itself. All other subgroups are called proper
subgroups. For the D3 group, the set C3 = {E,C3,C2

3} makes up a proper
subgroup.

Some group elements naturally resemble each other, like the C′
2,i rotations

of the example. Formally, this resemblance is captured by the equivalence
relation conjugacy.

Definition 3. Two group elements g1,g2 are conjugate to each other if for

g1,g2 ∈ G,∃h ∈ G : g1 = hg2h−1. (4.5)

The set of all elements that are conjugate to each other is called a (conjugacy)
class.

One can prove that all classes are disjoint and that every group element is
in some class of the group. The classes of the example group D3 are

{E},{C3,C2
3},{C′

2,a,C
′
2,bC′

2,c}. (4.6)

For example, a forward rotation by 2π
3 is equal to a backward rotation around

that angle, if it is preceded by a π rotation around a perpendicular axis and
succeeded by the inverse π rotation: C3 =C′

2,aC2
3(C

′
2,a)

−1.
Since groups are so general, it can be tricky to deal with the multiplication

of group elements. An important kind of groups are therefore matrix groups,
which allow for convenient algebraic expressions. In particular, n× n square
matrices with non-zero determinants (such that the inverse matrix exists) allow
for translation of multiplication, identity, and inverse into the corresponding
matrix operations. Some of the most important matrix groups are listed below:

• The general linear group GL(n,�) denotes the group of invertible n×n
matrices with real (�=�) or complex entries (�=�).

• The special linear group SL(n,�) is a subgroup of GL(n,�), with the
additional requirement that the determinant is always 1.

• The group of orthogonal matrices O(n,�) requires that ∀Ô ∈ O, ÔT Ô =
ÔÔT = �̂

• The special orthogonal group SO(n,�) contains all orthogonal matrices
with determinant 1.

• The unitary group U(n) is the group of n× n matrices with complex
entries that fulfills ∀Û ∈U(n),Û†Û = ÛÛ† = �̂
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• The special unitary group SU(n) is the subgroup of the unitary group
that contains unitary matrices with determinant 1.

With matrix groups it also becomes clearer what the group elements are ap-
plied to, because an n× n matrix requires some sort of n-dimensional vector
space to act on.

4.1.2 Representations
An important concept in dealing with groups are mappings between different
groups: f : G → G′ maps an element from from group G to an element of
G′, i.e. g′ = f (g) for g ∈ G,g′ ∈ G′. These mappings can be categorized as
injective (one-to-one) and surjective (onto) like any other mapping. Important
for mappings between groups is the preservation of the group multiplication:

Definition 4. A mapping f : G → G′ is called a homomorphism, if it preserves
the group multiplication:

∀g1,g2 ∈ G, f (g1) f (g2) = f (g1g2). (4.7)

A homomorphism that is bijective (both in- and surjective) is called an iso-
morphism.

The groups G and G′ that are connected by an isomorphism are then said to
be isomorphic and share their properties, such as classes and subgroups. As a
consequence, an abstract group can be mapped to a matrix group, which allows
for convenient calculations, instead of dealing with the abstract operations.
This mapping is called a representation.

Definition 5. A representation ρ̂ of a finite group G is a homomorphism from
G to the general linear group of matrices: ρ̂ : G → GL(n,�). The dimension
of the matrices n is called the dimension of the representation.

A specific mapping to some representation is coupled to a choice of vector
space that the matrices act on. An example of a homomorphic representation
of D3 is the mapping onto the following 1×1 matrices:

E → (1), C3 → (1), C2
3 → (1),

C′
2,a → (−1), C′

2,b → (−1), C′
2,c → (−1). (4.8)

The group multiplication is preserved, but the mapping is not bijective, since
several group elements are mapped onto the same matrix. An isomorphic
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representation would be

E →
(

1 0
0 1

)
, C3 →

(
−1

2 −
√

3
2√

3
2 −1

2

)
, C2

3 →
(

−1
2

√
3

2
−

√
3

2 −1
2

)
,

C′
2,a →

(
1 0
0 −1

)
, C′

2,b →
(

−1
2 −

√
3

2
−

√
3

2
1
2

)
, C′

2,c →
(
−1

2

√
3

2√
3

2
1
2

)
.

(4.9)

It is possible to check that both of these mappings reproduce the same classes
discussed earlier. A general result apparent in these examples is that the rep-
resentation of the identity element is always the n×n identity matrix.

Having a particular representation ρ̂ , it is possible to construct a new rep-
resentation ρ̂ ′, simply by defining ρ̂ ′(g) = Âρ̂(g)(Â)−1 with some matrix
Â ∈ GL(n,�). Obviously, the new representation is in some sense equivalent
to the original one.

Definition 6. A representation ρ̂ ′ is similar to another representation ρ̂ , if

∃Â ∈ GL(n,�) : ρ̂ ′(g) = Âρ̂(g)(Â)−1. (4.10)

This corresponds to expressing the representation in another basis, where Â
is the transformation matrix. Another way of constructing a new representa-
tion is taking the direct sum

(ρ̂ ⊕ ρ̂ ′)(g) =
(

ρ̂(g) 0̂
0̂ ρ̂ ′(g)

)
. (4.11)

The choice of representations is thus not unique. The notion of irreducible
representation (irrep) allows to define the most basic representations.

Definition 7. A representation is called irreducible, if it is not similar to a
direct product of representations. All other representations are reducible.

This definition is not easy to work with, since it is hard to see similarity of
representations. A powerful tool in figuring out irreducibility is the character.

Definition 8. The character χρ(g) of a representation ρ̂ is given by the trace
over the representation

χρ(g) = Trρ̂(g). (4.12)

Due to the cyclic character of the trace, the character is the same for similar
representations. All conjugate group elements also share the same character.
It is also clear that the character of the identity operation is equal to the dimen-
sion of the irreducible representation. Finally, the character of the inverse of a
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Irreducible Representation E 2C3 3C′
2

A1 1 1 1
A2 1 1 -1
E 2 -1 0

Table 4.1. The character table for the group D3. The first column contains the different
irreducible representations. The header lists all conjugacy classes and the number
of elements of each class. The table is filled with the characters of the irreducible
representations.

group element is the complex conjugate of the character of the group element
for all applications within the scope of this thesis.

With the help of the character, it is possible to define an inner product of
two representations.

Definition 9. The inner product of two representations ρ̂ and ρ̂ ′ is given by

〈ρ|ρ ′〉= 1
|G| ∑

g∈G
χρ(g)χρ ′(g)∗ . (4.13)

It can be shown that irreducible representations are orthonormal under this
inner product. Thus the inner product of an irreducible representation with
itself gives one, whereas the inner product of two different irreducible repre-
sentations gives zero. The inner product can also be used to show that the
number of irreducible representations is equal to the number of classes of the
group.

For the example of the D3 group, two representations have been presented
in Eqs. (4.8) and (4.9) and their characters can be calculated. Using the inner
product, it becomes clear that these representations of the D3 group presented
are, in fact, irreducible representations. Since there are three classes, there
must be a third irreducible representation. Using the orthonormality of the
irreducible representations, one can construct the missing irreducible repre-
sentation, which turns out to have character 1 for all group elements. This
so-called trivial irreducible representation is actually present for any group.

Even when no representation is constructed, the orthonormality of the irre-
ducible representations allows to establish the characters of the group elements
and to construct a so-called character table, which contains the most vital in-
formation about a group. Character tables contain the conjugacy classes of the
group, the irreducible representations and their characters. The character table
for the D3 group is presented in Table 4.1.
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4.1.3 Basis functions
Using a representation of a group, it is possible to consider the symmetry as
acting on a particular vector space. For each vector space, there exist basis
functions of the different irreducible representations.

Definition 10. The basis functions of an (irreducible) representation ρ̂ of di-
mension n are the functions fi, with i = 1, . . . ,n, that are mapped onto a linear
combination of themselves under the application of the group elements

g( fi) =
n

∑
j=1

(ρ(g))n, j f j. (4.14)

The coefficients correspond to the matrix elements of the representation. In
particular, for a one-dimensional irreducible representation, f is mapped onto
itself, multiplied by the character of the representation. It is said that f trans-
forms according to the (irreducible) representation ρ̂ .

The precise form of basis function depends on the vector space chosen, i.e.
on the representation used. Important examples are the coordinate functions x,
y, z or wave functions in quantum mechanics. But they can be vectors in any
other kind of vector space, as well.

An important feature of these basis functions is that they inherit the or-
thogonality of the irreducible representations under the corresponding inner
product of the vector space. This can be used to project out the different basis
functions from an arbitrary function with the help of the projection operators.

Definition 11. The projection operator of an irreducible representation ρ̂ of
dimension n of a group G is defined as

Pρ =
n
|G| ∑

g∈G
χ∗

ρ(g)g. (4.15)

Importantly, these projection operators only involve the character and the
group elements. This way it is possible to construct the projection operator
without having to find an irreducible representation first. The basis functions
of all the different irreducible representations of a group in a given vector
space can then be projected out by applying the corresponding projection op-
erators on an arbitrary vector f . The resulting vector Pρ f will then transform
according to the irreducible representation ρ̂ . To obtain a set of orthonormal
basis vectors of an n-dimensional irreducible representation, this procedure
has to be repeated and the resulting vectors need to be orthonormalized by e.g.
a standard Gram-Schmidt algorithm.

As an example, the basis functions for the D3 group in the coordinate vector
space can be constructed. The first step is to obtain the projection operators.
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The effect of the group elements of the group D3 on the coordinate functions
can be figured out by placing the C3 rotation axis along the z-axis of the co-
ordinate system. The characters of the different irreducible representations is
given in the character table in Tab. 4.1. Applying the projection operator PA2
to the function z maps it onto itself. It remains invariant under the C3 rotations,
but changes sign under the application of any of the C′

2 operations, which is
compensated by the character. This means the function z transforms according
to the irreducible representation A2 which was given in Eq. (4.8) and forms a
basis function of this 1D irreducible representation. The functions x and y are
mixed by the application of the group elements, with the exact action given by
the representation presented in Eq. (4.9). x and y thus form two basis functions
of the two-dimensional E irreducible representation.

4.2 Physical symmetries relevant for superconductors
After this general introduction to symmetry groups, I introduce the non-spatial
and spatial symmetries important for classifying superconducting order pa-
rameters and determining the topological properties. Given a BdG Hamilto-
nian of the general form

H =
1
2

ΨΨΨ†ĥΨΨΨ, (4.16)

where ΨΨΨ are the Nambu spinors containing all essential degrees of freedom
(spin, orbital, lattice site), in general symmetries act by transforming the Nam-
bu spinor

gΨΨΨ = ΨΨΨ′ = ÛgΨΨΨ (4.17)

through a matrix representation of the symmetry Ûg. This implies that the
system described by the Hamiltonian is invariant under the symmetry g, if

Û†
g ĥÛg = ĥ. (4.18)

Furthermore, Ûg needs to preserve the norm of expectation values, which is
the case if it is a unitary matrix. However, the norm can also be preserved
by an anti-unitary symmetry, which can be represented by a combination of a
unitary matrix and complex conjugation K.

4.2.1 Time-reversal symmetry (TRS)
Time-reversal symmetry T is an example of an anti-unitary symmetry. Ex-
pressing it as T = ÛT K, a Hamiltonian is time-reversal symmetric, if [12]

Û†
T ĥ∗(kkk)ÛT = ĥ(−kkk), (4.19)
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which has two implications. If the system is time-reversal invariant, a state at
kkk is accompanied by a state at −kkk with the same energy. If inversion symmetry
is also present, this will lead to a double degeneracy of eigenstates at kkk. More-
over, the transformation of the pairing matrix Δ̂ implies that a time-reversal
invariant pairing must obey Δ∗

kkk = Δ−kkk and ddd∗
kkk = ddd−kkk. This means that a system

that is both inversion symmetric and time-reversal symmetric, must have a real
pairing up to a phase that can be gauged away. Such a pairing will always be
unitary. Only when the superconducting pairing also breaks the time-reversal
symmetry can non-unitary pairing be present.

Time-reversal symmetry corresponds to inverting the arrow of time. Apply-
ing time-reversal twice should thus return the initial state (up to a phase), such
that [99]

eiφ !
= T 2 = ÛTÛ∗

T , (4.20)

implying ÛT = eiφ (ÛT
)T and

(
ÛT
)T

= ÛT eiφ . Combining these two yields
ÛT = e2iφÛT . The time-reversal symmetry operator T thus squares to either
plus or minus one, T 2 = ±1. The time-reversal operator for spinful systems,
usually represented by T = iσ̂yK, is an example that squares to −1, while the
time-reversal for spinless systems T = K squares to +1.

4.2.2 Particle-hole symmetry (PHS)
Another anti-unitary symmetry is particle-hole or charge conjugacy symmetry
C = ÛCK, which relates the creation and annihilation operators through [12]

ΨΨΨ′ = Û∗
CΨΨΨ†. (4.21)

A system is said to be particle-hole symmetric, if the Hamiltonian obeys

Û†
Cĥ(kkk)∗ÛC =−ĥ(−kkk). (4.22)

This implies that the Hamiltonian is traceless Trĥ = 0 and that the spectrum is
symmetric around zero. Similarly to time-reversal, the particle-hole operator
squares to plus or minus one: C2 =±1.

The introduction of the Nambu spinor in Eq. (3.17) is coupled to an intrin-
sic particle-hole symmetry C of the superconducting state. The particle-hole
symmetry can be implemented through

C = t̂xK, (4.23)

where t̂i are the Pauli matrices acting on the particle-hole space. C thus ex-
changes creation and annihilation operators and connects the interdependent
degrees of freedom. A quick check reveals that this implementation of PHS
fulfills C2 = 1
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4.2.3 Chiral symmetry
The combination of TRS and PHS S = T C is called chiral or sublattice sym-
metry and is represented by a unitary matrix [12]

ÛS = Û∗
TÛ∗

C. (4.24)

This implies that the chiral symmetry always squares to plus one S2 =+1. A
Hamiltonian that is chiral symmetric obeys

Û†
S ĥ(kkk)ÛS =−ĥ(kkk) (4.25)

and can be written in the block off-diagonal form

ĥ =

(
0 D̂

D̂† 0

)
, (4.26)

in the basis where the chiral operator ÛS is diagonal. A Hamiltonian is au-
tomatically symmetric under chiral symmetry, if it is both time-reversal and
particle-hole symmetric. However, a Hamiltonian can also be chiral symmet-
ric, if TRS and PHS are no symmetries of the Hamiltonian.

4.2.4 Point groups
The point group contains the set of all spatial symmetry operations of a lattice
that leave one specific point unchanged. That means it includes all spatial
symmetries of the lattice, excluding translations. Any point group element
acts in two ways. Firstly, it transforms the kkk dependence of the Hamiltonian
according to the representation ρ̂(g) of the group element g, and secondly it
can act on the orbital structure of the Hamiltonian through a unitary matrix
Ûg. A Hamiltonian that is invariant under a certain point group symmetry thus
obeys

ĥ(kkk) = Û†
g ĥ(ρ̂(g)kkk)Ûg. (4.27)

For a particular momentum kkk0 invariant under g, the Hamiltonian thus com-
mutes with the symmetry operator[

ĥ(kkk0),Ûg
]
= 0, (4.28)

which means that the Hamiltonian can be block diagonalized in the eigenspaces
of the symmetry operator.

When the studied Hamiltonian is characterized by strong spin-orbit cou-
pling, the operations of the point group do not only act on the lattice degrees
of freedom, but must be combined with a rotation of the spin degrees of free-
dom [4]. This has a particular consequence for the pairing matrix. Whereas
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the spin singlet is invariant under such spin transformations, the ddd-vector will
transform as

gddd(kkk) = Ûgddd(ρ̂(g)kkk), (4.29)

where Ûg(kkk) is the representation of the group element in spin space. The
symmetries of the point group are of importance when calculating the su-
perconducting order from the self-consistency equation Eq. (3.25), which is
essentially an eigenvalue equation. Such an eigenvalue equation exhibits the
property that its eigenfunctions form basis functions of the irreducible repre-
sentations of the symmetry group of the equation. For the case of the order
parameter, this means that at TC any superconducting order will transform
according to certain irreducible representations of the point group of the lat-
tice [4].

It is hence useful to construct the basis functions of the irreducible repre-
sentations Δ̂ρ in the vector space of choice. At the critical temperature Tc, any
solution of the gap equation Eq. (3.22) will then be a linear combination of
basis functions of a particular irreducible representation:

Δ̂ =
n

∑
i

ηiΔ̂ρ , (4.30)

where n is the dimension of the irreducible representation. For one-dimensional
irreducible representations, there is thus only one superconducting state pos-
sible. In higher-dimensional irreducible representations, there can be different
linear combinations of the basis functions. A mixing of irreducible representa-
tions can only occur, if the superconducting state breaks several symmetries in
a series of transitions or if two irreducible representations share an accidental
degeneracy.

A main focus of Papers I-II and V contained in this thesis is to find basis
functions for the relevant point groups to identify the symmetry of the super-
conducting order. For that purpose I first construct a representation of the point
group elements suitable for the chosen vector space by considering the action
of the group elements on the pairing matrix Δ̂, by transforming the spin singlet
and triplet order parameters Δ and ddd, respectively. Then I use the character ta-
ble to build the projection operator P̂ρ for all irreducible representations of the
point group as defined in Eq. (4.15). Next, there are two ways to proceed. In
some cases I subsequently apply the projectors of all irreducible operations
Pρ on a general function ΔΔΔ = (Δ1, . . . ,Δn) and extract the basis functions by
requiring

P̂ρΔΔΔρ
!
= ΔΔΔρ . (4.31)

Another approach builds on identifying Eq. (4.31) as an eigenvalue equation.
This way calculating the eigenfunctions of the projection operators and identi-
fying those with eigenvalue one also allows to retrieve the basis functions. For

66



a given order parameter, it is then useful to calculate the overlap with these
basis functions

ΔΔΔ ·ΔΔΔρ

|ΔΔΔ| (4.32)

to identify the symmetry. In the following sections I present the constructions
in more detail and discuss how the basis functions shape the phase diagrams
of superconductivity in the Kitaev materials.

4.3 Approximate six-fold symmetry on the large
harmonic honeycomb lattices

In Paper I we first study the superconducting spin singlet pairing on the large
members of the harmonic honeycomb series. Even though the point group of
the harmonic honeycomb lattices is D2h, at least the larger members of the
series can be analyzed by using the point group of the hexagonal lattice D6h
instead. Because the irreducible representations of D6h are not irreducible
representations of the proper symmetry D2h, the superconducting order will in
general mix basis functions of different irreducible representations. At large
enough spacing between twists, however, the additional six-fold symmetry
will be almost recovered such that the mixing should be small. Another ben-
efit is that the classification in terms of D6h is well known from the case of
superconducting graphene [90].

As we only take into account spin singlet pairing, we can further simplify
the calculation by considering the group C6v instead. It contains all the infor-
mation apart from the even- or oddness under inversion. The character table
of C6v is given in Table 4.2. The order parameters of the three nearest neighbor
bonds around an a site in the harmonic honeycomb lattice can be grouped into
the vector ΔΔΔ = (Δ1,Δ2,Δ3). Choosing this as the vector space, a representation
of C6v is given by

E = �, C6 = (1 → 3,2 → 1,3 → 2), C3 = (1 → 2,2 → 3,3 → 1),
C2 = �, σv = (1 → 1,2 → 3,3 → 2), σd = (1 → 1,2 → 3,3 → 2),

(4.33)

where � is the identity and i → j means that Δi is mapped onto Δ j. There are
only two projection operators that have an eigenvalue of one,

P̂A1 =
1
6

⎛
⎝4 1 1

1 1 4
1 4 1

⎞
⎠ , and P̂E2 =

1
3

⎛
⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞
⎠ . (4.34)

The corresponding normalized eigenfunctions are given by the extended s-
wave solution ΔΔΔs =

1√
3
(1,1,1) for the A1 irreducible representation, and the
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Irrep E 2C6 2C3 C2 3σv 3σd

A1 1 1 1 1 1 1
A2 1 1 1 1 -1 -1
B1 1 -1 1 -1 1 -1
B2 1 -1 1 -1 -1 1
E1 2 1 -1 -2 0 0
E2 2 1 -1 -2 0 0

Table 4.2. The character table for the group C6v used to construct the basis functions
on the hexagonal lattice.

two d-waves ΔΔΔx2−y2 = 1√
6
(2,−1,−1) and ΔΔΔxy = 1√

2
(0,1,−1) for the two-

dimensional E2 irreducible representation.
At large enough distance between twists, we expect the spin singlet order

parameter in the harmonic honeycomb lattices to be of the same form as in su-
perconducting graphene, where the extended s-wave is found at high doping
levels and a complex d ± id′ linear combination ΔΔΔx2−y2 ± iΔΔΔxy at lower dop-
ing [90, 91]. From plotting the overlap of the calculated order parameter with
the basis functions in Figure 4.2 this expectation is supported by the calcula-
tions. The twist acts as a boundary between d ± id′ regions, where the sign
of the linear combination can be chosen independently on either side. Close
to the twist the six-fold symmetry is no longer realized even approximately
and the order parameter mixes all basis functions. This is very similar to the
behavior close to a zigzag edge of the honeycomb lattice [100].

Starting from this solution, we study the superconducting state with chang-
ing distance between twists. The influence of the twist becomes apparent when
tracking the overlap with the two d-wave basis functions at the center of the
honeycomb region between twists, as shown in Fig. 4.3. As long as the six-
fold symmetry is approximately fulfilled, the two d-waves are degenerate and
form a d ± id′ state. As the symmetry is destroyed by the approaching twist,
the dxy solution is suppressed and finally vanishes completely. Even though
the remaining order parameter in these lattices has a large overlap with the
dx2−y2 solution, it should instead be considered in terms of the basis functions
of D2h, as the six-fold symmetry is no longer realized even approximately.

The superconducting spin singlet state on the large members of the har-
monic honeycomb series is thus reasonably close to that of single layer graphene,
as long as the distance to the twist is large enough to approximately preserve
a six-fold symmetry.
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Figure 4.2. Plot of the overlap of the superconducting order parameter at each atomic
site of a large harmonic honeycomb lattice with the d + id′, d − id′, and extended s-
wave basis functions. The results known from the honeycomb lattice are recovered far
away from the twist where the six-fold symmetry is approximately fulfilled. Figure
taken from Paper I.

Irrep E C2(z) C2(y) C2(x)

A 1 1 1 1
B1 1 1 -1 -1
B2 1 -1 1 -1
B3 1 -1 -1 1

Table 4.3. Character table for the group D2 used to construct the basis functions on
the smaller harmonic honeycomb lattices.

4.4 Taking into account the accurate symmetries of the
hyper- and stripyhoneycomb lattices

Similar to the the case for the large harmonic honeycomb lattices, classifying
the spin singlet basis functions on the hyper- and stripyhoneycomb lattices is
simplified by using a smaller point group. Instead of D2h, which is the full
point group, here I present the classification based on D2. This is possible,
because the behavior under inversion is already known. However, there is a
small caveat in that the mirror symmetries of the harmonic honeycomb lattices
are non-symmorphic symmetries. I will detail what this means for the basis
functions below.

For the hyperhoneycomb lattice, the six nearest neighbor spin singlet order
parameters can be grouped in the vector ΔΔΔ = (Δ1,Δ2,Δ3,Δ4,Δ5,Δ6). The char-
acter table of D2 is given in Tab. 4.3 and the action of the group elements of
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Figure 4.3. A decreasing distance between twists influences the overlap of the or-
der parameter in the center of the regions between the twists with the two d-wave
solutions. A perfect d ± id′ state of degenerate d-waves is formed for large enough
distances between twists. For smaller distances, the dxy-state is suppressed. Figure
taken from Paper I.

D2 is captured by

E = �, (4.35)
C2(z) = (1 → 1,2 → 3,3 → 2,4 → 4,5 → 6,6 → 5), (4.36)
C2(y) = (1 → 1,2 → 6,3 → 5,4 → 4,5 → 3,6 → 2), (4.37)
C2(x) = (1 → 1,2 → 5,3 → 6,4 → 4,5 → 2,6 → 3). (4.38)

Notably, the C2 rotations leave the horizontal bonds untouched and project the
zigzag bonds onto each other. This means the two groups of bonds decouple,
which will lead to independent basis functions for the horizontal and zigzag
bonds. Indeed, the projection operators for the four irreducible representations
show the same behavior, forming block matrices of the form

P̂A =
1
4

⎛
⎜⎜⎜⎜⎜⎜⎝

4 0 0 0 0 0
0 1 1 0 1 1
0 1 1 0 1 1
0 0 0 4 0 0
0 1 1 0 1 1
0 1 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠
, P̂B1 =

1
4

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1 1 0 −1 −1
0 1 1 0 −1 −1
0 0 0 0 0 0
0 −1 −1 0 1 1
0 −1 −1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠
,

(4.39)

with similar projection operators for B2 and B3, which I omit here. The con-
struction of the basis functions can be performed by applying the projection
operators on the general function ΔΔΔ and requiring that Eq. (4.31) holds. For
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the A irreducible representation this is fulfilled by the basis functions

ΔΔΔ1a
A = (1,0,0,0,0,0), (4.40)

ΔΔΔ1b
A = (0,0,0,1,0,0), (4.41)

ΔΔΔ2
Ag = (0,1,1,0,1,1). (4.42)

As expected, the horizontal and zigzag bonds decouple. In fact, there are inde-
pendent basis functions for each of the two horizontal bonds. However, when
taking into account the non-symmorphic mirror symmetries, the horizontal
bonds will be mapped onto each other. A basis function that is also even under
those mirror symmetries should therefore be the linear combination

ΔΔΔ1
Ag = ΔΔΔ1a

A +ΔΔΔ1b
A = (1,0,0,1,0,0), (4.43)

where the Ag label indicates a spin singlet basis function for the D2h point
group, which are the basis functions listed in Paper I and III. Because there are
no symmetries relating the two remaining basis functions of the A irreducible
representation, they can form a linear combination with arbitrary coefficient.
The basis functions for the remaining irreducible representations only involve
the zigzag bonds and are given by

ΔΔΔB1g = (0,1,−1,0,1,−1), (4.44)

ΔΔΔB2g = (0,1,−1,0,−1,1), (4.45)

ΔΔΔB3g = (0,1,1,0,−1,−1). (4.46)

In Paper I we identify four different superconducting phases in the J-μ
phase diagram of the hyperhoneycomb lattice pictured in Figure 4.4. At large
doping, the two basis functions of the A irreducible representation form a lin-
ear combination of the form

ΔΔΔg = aΔΔΔ1
Ag +bΔΔΔ2

Ag

= (a,b,b,a,b,b), (4.47)

where a and b are positive real numbers. The horizontal and zigzag bonds
thus have different magnitude but the same phase. This state is related to an
extended s-wave pairing at a = b and leads to a fully gapped density of states
(DOS) as shown in Figure 4.5. Another solution is found at lower doping
levels, which is characterized by the linear combination

ΔΔΔn = aΔΔΔ1
Ag −bΔΔΔ2

Ag

= (a,−b,−b,a,−b,−b). (4.48)

In this solution the order parameter obtains a phase of π on the zigzag bonds.
Such a sign change hints at a nodal DOS, as is verified in Fig. 4.5. In Paper III
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Figure 4.4. Phase diagram of spin singlet superconductivity on the hyperhoneycomb
lattice at zero temperature. A nodal state ΔΔΔn (blue region) is stabilized at low doping,
while the system is in the completely gapped state ΔΔΔg (red region) at higher doping.
In between these two regions we find a completely gapped time-reversal symmetry
breaking state ΔΔΔt1 (green region). A fourth solution ΔΔΔt2 breaks time-reversal symmetry
and is characterized by nodal points (orange region). The stars mark the positions
where the DOS in Fig. 4.5 is obtained. Figure taken from Paper I.
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Figure 4.5. Normalized DOS as a function of energy taken at the four different points
in the phase diagram marked by stars in Fig. 4.4. The characteristic behavior of each
of the four solutions, fully gapped, nodal points or lines, is clearly visible. Figure
taken from Paper I.

we explicitly identify the nodes as two lines of zeros. Both the extended s-
wave and the nodal phase obey time-reversal symmetry. The two remain-
ing solutions on the other hain turn form explicitly complex linear combina-
tions which break time-reversal. An intermediate phase at larger interaction
strengths is characterized by

ΔΔΔt1 = aΔΔΔ1
Ag +beiφ ΔΔΔ2

Ag

= (a,beiφ ,beiφ ,a,beiφ ,beiφ ), (4.49)

where the relative phase φ is different from 0 and π . The DOS in Fig. 4.5
highlights that this state completely gaps out the Fermi surface, too. All three
phases transform according to the trivial irreducible representation and the di-
verse structure of the solutions is enabled by the independence of horizontal
and zigzag bonds. The final solution located in the zero temperature phase
diagram at low doping values mixes the A and B1 or B2 irreducible represen-
tations

ΔΔΔt2 = aΔΔΔ1
Ag −bΔΔΔ2

Ag + icΔΔΔB1/2g

= (a,−b+ ic,−b− ic,a,−b∓ ic,−b± ic), (4.50)

which is equivalent to a linear combination of the form ΔΔΔn + icΔΔΔB1/2g , where
c is also real and positive. This solutions gaps out the nodes of ΔΔΔn except for
four points. This gives rise to the quadratic DOS evident in Fig. 4.5.

A similar classification can be performed for the stripyhoneycomb lattice.
The results are very similar to the hyperhoneycomb lattice, so here I high-
light only the differences. In the stripyhoneycomb lattice, the bonds split into
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Irrep E 2C3 3C′
2 I 2S6 3σd

A1g 1 1 1 1 1 1
A2g 1 1 -1 1 1 -1
Eg 2 -1 0 2 -1 0
A1u 1 1 1 -1 -1 -1
A2u 1 1 -1 -1 -1 1
Eu 2 -1 0 -2 1 0

Table 4.4. Character table for the group D3d applicable for determining the basis
functions for pairing arising from the extended Kitaev-Heisenberg model on the hon-
eycomb lattice.

three groups, as there are now two different kinds of horizontal bonds: Those
at a twist and those within a honeycomb sheet. This gives rise to three ba-
sis functions for the trivial irreducible representation, while the B irreducible
representations still have only one basis function governing solely the zigzag
bonds. The phase diagram shares many features with the hyperhoneycomb
lattice and is extensively discussed in Paper I.

The symmetry classification of the spin singlet pairing on the small mem-
bers of the harmonic honeycomb lattices thus reveals a rich phase diagram
which is very similar for both members. It includes superconducting states
giving rise to nodal lines that are connected to sign changes of the bond order
parameters. The phase diagram furthermore displays some similarities to that
of single layer graphene, like the extended s-wave phase stabilized at large
doping.

4.5 The role of spin-orbit coupling in the classification
of spin triplet pairing on the honeycomb lattice

In the extended Kitaev-Heisenberg model on the honeycomb lattice, the sym-
metry is reduced compared to the spin singlet pairing. Instead of a D6h sym-
metry, the additional Kitaev and off-diagonal exchanges reduce the symmetry
to D3d , whose character table is shown in Tab. 4.4. A way to visualize the
lowered symmetry is to embed the honeycomb lattice in the octahedral cages
present in the material realizations of the model. While the classification of
the spin singlet pairing for this point group is essentially analogous to that in
the harmonic honeycomb lattices presented in Sec. 4.3, the basis functions for
the spin triplet pairing determined in Paper II are more intricate.

As detailed in Sec. 3.4, the spin triplet order parameters are grouped into
the ddd-vector. Each component dγ (γ = x,y,z) has three bond order parameters
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dγ
i (i = 1,2,3). For visualization, they are grouped in a matrix of the form

ddd =

⎛
⎝dx

1 dx
2 dx

3
dy

1 dy
2 dy

3
dz

1 dz
2 dz

3

⎞
⎠ . (4.51)

When considering spin and orbital degrees of freedom independently, the ac-
tion of symmetry operations in the point group leave the spin, and therefore
the ddd-vector, untouched. Then the three ddd-vector components can be treated
individually. This classification has been performed in the context of the pure
Kitaev-Heisenberg model without the off-diagonal exchange [33] and yields
three basis functions for each component of the ddd-vector

dγ
A1u

= (1,1,1) , dγ
Eu,1 = (−1,0,1) , dγ

Eu,2 = (−1,1,0) . (4.52)

When grouping the basis functions by irreducible representation, there are thus
three basis functions for the one-dimensional A1u irreducible representation
and six basis functions for the two-dimensional Eu irreducible representation.
This is similar to the situation in the harmonic honeycomb lattices, where
there were several order parameter groups, that were not related by symmetry.
In this case these groups correspond to the ddd-vector components. This again
allows for linear combinations of the basis functions of a certain irreducible
representation, which is indeed what has been found in the Kitaev-Heisenberg
model [33].

When including the strong spin-orbit coupling of the Kitaev materials in
the classification, a rotation of the lattice must be coupled to a rotation of the
ddd-vector, as if it were frozen in the lattice. This will connect the different com-
ponents and they are no longer independently classifiable. A representation of
the D3d point group is then characterized by

E = �s ⊗�o, (4.53)
C3 = (x → y,y → z,z → x)⊗ (1 → 2,2 → 3,3 → 1), (4.54)
C′

2 = (x →−x,y →−z,z →−y)⊗ (1 → 1,2 → 3,3 → 2), (4.55)
I =−�s ⊗�o, (4.56)

S6 = (x → z,y → x,z → y)⊗ (1 →−3,2 →−1,3 →−2), (4.57)
σd = (x →−x,y →−z,z →−y)⊗ (1 →−1,2 →−3,3 →−2), (4.58)

where the first entry acts on the components of the ddd-vector and the second
transforms the nearest neighbor spin triplet order parameters. This means, for
example, that the 2π

3 rotation around the axis perpendicular to the honeycomb
lattice is combined with a rotation around the (1,1,1) axis in spin space, such
that the three ddd-vector components are cyclically permuted. The projection
operators can be computed in accordance with Eq. (4.15) and mix the ddd-vector
components as expected. Calculating the eigenvectors with eigenvalue one
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yields the following nine basis functions

dddA1u =

⎛
⎝ 0 −1 1

1 0 −1
−1 1 0

⎞
⎠ , (4.59)

dddA2u,1 =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , dddA2u,2 =

⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠ , (4.60)

dddEu,1 =
1√
6

⎛
⎝2 0 0

0 −1 0
0 0 −1

⎞
⎠ , dddEu,2 =

1√
2

⎛
⎝0 0 0

0 −1 0
0 0 1

⎞
⎠ , (4.61)

dddEu,3 =
1√
6

⎛
⎝ 0 2 0

0 0 −1
−1 0 0

⎞
⎠ , dddEu,4 =

1√
2

⎛
⎝0 0 0

0 0 −1
1 0 0

⎞
⎠ , (4.62)

dddEu,5 =
1√
6

⎛
⎝ 0 0 −1
−1 0 0
0 2 0

⎞
⎠ , dddEu,6 =

1√
2

⎛
⎝ 0 0 1
−1 0 0
0 0 0

⎞
⎠ , (4.63)

where I present a specific orthonomal form of the Eu basis functions that dif-
fers from that included in Paper II. Again, the six Eu basis functions consist
of three different sets ({1,2},{3,4},{5,6}) that are not related by symme-
try. These do not correspond directly to the ddd-vector components anymore.
Instead, the different sets are made up from the diagonal and the two off-
diagonals of the matrix presentation,

⎛
⎝dx

1 0 0
0 dy

2 0
0 0 dz

3

⎞
⎠ ,

⎛
⎝ 0 dx

2 0
0 0 dy

3
dz

1 0 0

⎞
⎠ ,

⎛
⎝ 0 0 dx

3
dy

1 0 0
0 dz

2 0

⎞
⎠ . (4.64)

Notably, the C3 operator, which simultaneously rotates the ddd-vector in spin
space and the three nearest-neighbor bonds, links the elements of each of these
(off-)diagonals, which explains intuitively why the resulting basis functions
mix the components of the ddd-vector.

Having obtained the basis functions, it is possible to characterize the spin
triplet phase diagram of the extended Kitaev-Heisenberg model calculated in
Paper II and shown in Fig. 4.6. With only Kitaev and Heisenberg exchange, the
spin triplet order parameters identified in self-consistency calculations trans-
form according to the Eu irreducible representation of the classification with-
out SOC [33]. Each ddd-vector component is made up of a linear combination
of the two Eu basis functions for that component

dx = (0,−1,1) , dy = (1,0,−1) , dz = (−1,1,0) . (4.65)
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Figure 4.6. The phase diagram of the spin triplet order parameters arising from doping
the extended Kitaev-Heisenberg model displays a multitude of phases. For K = −t,
there is a clear distinction between positive and negative values of the symmetric off-
diagonal exchange term Γ. A time-reversal symmetric solution dddΓ>0 (cyan) is stable
at all doping levels for Γ > 0. Another time-reversal symmetric solution that also
breaks the C3 symmetry, dddnematic (purple), is found for Γ < 0 at large doping. In the
orange region at intermediate doping and Γ < 0 an order parameter dddchiral breaking
time-reversal symmetry appears. Figure taken from Paper II

The total ddd-vector is then formed by four different linear combinations of the
individual components, which are all found to be degenerate

dddΓ=0 = |ddd|(dxêeex ±dyêeey ±dzêeez). (4.66)

The degeneracy is due to a four-fold symmetry in choosing the spin quanti-
zation axes for the Kitaev interaction. As soon as a finite value of the off-
diagonal exchange Γ > 0 is added, the quantization axes are fixed, the degen-
eracy is lifted, and only one self-consistent solution remains. It corresponds
to the basis function of the A1u irreducible representation of the classification
with SOC

dddΓ>0 = |ddd|dddA1u = |ddd|

⎛
⎝ 0 −1 1

1 0 −1
−1 1 0

⎞
⎠ , (4.67)

which is equivalent to the linear combination with only plus signs ddd ∝ dxêeex +
dyêeey + dzêeez observed at Γ = 0 in Eq. (4.66). A finite positive value of Γ thus
locks the ddd-vector along the (1,1,1) direction, which is perpendicular to the
honeycomb layer.

At negative values of Γ, there are two different solutions that each break fur-
ther symmetries. For lower doping, we find a time-reversal symmetry breaking
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solution of the form

dddchiral = |ddd|
{
(dddEu,3 +dddEu,5)± i(dddEu,4 −dddEu,6)

}
= |ddd|

⎛
⎝ 0 1 e±i2π/3

e∓i2π/3 0 e±i2π/3

e∓i2π/3 1 0

⎞
⎠ , (4.68)

where the two solutions ± are degenerate and of opposite chirality. We note
directly that this order parameter is non-unitary as dddchiral∗ �= dddchiral [4]. At
higher doping levels, the order parameter preserves time-reversal symmetry,
but breaks the rotational symmetry of the lattice by forming the real linear
combination

dddnematic = |ddd|
{
(cos(α)dddEu,3 + sin(α)dddEu,4)± (cos(β )dddEu,5 + sin(β )dddEu,6)

}
.

(4.69)

We find that the pairs (α,β ) = (20◦+n60◦,−40◦+n60◦) with n ∈ {1, . . . ,6}
and the different ± solutions are degenerate (up to numerical accuracy). They
give an order parameter of the form

dddnematic = |ddd|

⎛
⎝ 0 a ∓a
∓b 0 ∓c
b c 0

⎞
⎠ , (4.70)

where a,b,c ∈�. This particular choice of the angles breaks the C3 symmetry
of the lattice, but remains symmetric under C′

2. Superconductors exhibiting
this rotational symmetry breaking in their order parameter have been named
“nematic” superconductors [101, 37]. The symmetry breaking is clearly visi-
ble when transforming the order parameter into the band picture, as detailed
in Sec. 3.4. The intraband order parameter for the choice (80◦,20◦) is plotted
in Fig. 4.7 and clearly demonstrates the nematicity.

In summary, the phase diagram of spin triplet pairing arising from the dop-
ing the extended Kitaev-Heisenberg model features a time-reversal symmetric
solution transforming according to the A1u irreducible representation of the
point group D3d at Γ ≥ 0 and two solutions forming linear combinations of
the basis functions of the Eu irreducible representation at Γ < 0. The complex
linear combination stable at intermediate doping breaks time-reversal symme-
try, while the real linear combination formed at larger doping levels leads to a
nematic superconducting state that breaks the rotation symmetry of the lattice.

4.6 A first attempt at classifying spin triplet pairing on
the hyperhoneycomb lattice

For Paper V, we perform a classification of the spin triplet pairing on the hy-
perhoneycomb lattice. Several results from the previous sections can be used
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Figure 4.7. Plot of the square of the absolute value of the intraband spin triplet order
parameter |dddintra(kkk)|2 in the first Brillouin zone for the time-reversal symmetric ne-
matic order. The breaking of the C3 symmetry is clearly visible. Figure taken from
Paper II.

as stepping stones. First of all, it is reasonable to perform a classification with
and without spin-orbit coupling, as in Sec. 4.5. Secondly, the classification
can be based on the D2 point group instead of the full D2h group, taking into
account the role of the non-symmorphic mirror symmetries, as discussed in
Sec. 4.3. This section also contains the character table of D2 in Tab. 4.3.

Without spin-orbit coupling, the group elements of the D2 point group act
on the individual ddd-vector components and are summarized by

Eo = �o, (4.71)
C2(z)o = (1 → 1,2 → 3,3 → 2,4 → 4,5 → 6,6 → 5), (4.72)
C2(y)o = (1 →−1,2 →−5,3 →−6,4 →−4,5 →−2,6 →−3), (4.73)
C2(x)o = (1 →−1,2 →−6,3 →−5,4 →−4,5 →−3,6 →−2), (4.74)

using the same notation as Eq. (4.38). In difference to the spin singlet classi-
fication in Sec. 4.4, some of the order parameters obtain a minus sign under
some of the transformations due to the oddness of the order parameter. The
choice of x, y, and z axes for the symmetry operators is also slightly different
compared to the singlet classification, but consistent with the definitions in
Sec. 2.2 and Fig. 2.6 to ensure the simple form of the Kitaev and off-diagonal
exchanges. The projection operators are constructed as previously described
and are very similar to the projection operators for the spin singlet classifi-
cation. The basis functions correspond to the eigenvectors of the projection
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operators with eigenvalue one, which are

dAu =
1
2
(0,−1,−1,0,1,1), d1

B1u
= (1,0,0,0,0,0), (4.75)

dB2u =
1
2
(0,−1,1,0,−1,1), d2

B1u
= (0,0,0,1,0,0), (4.76)

dB3u =
1
2
(0,1,−1,0,−1,1), d3

B1u
=

1
2
(0,1,1,0,1,1), (4.77)

Because these are spin triplet basis functions, which are odd under inversion,
I added the corresponding u label to the basis functions. The basis functions
d1

B1u
and d2

B1u
are no longer as easily combined under the action of the non-

symmorphic symmetries as the spin singlet basis functions ΔΔΔ1a
A and ΔΔΔ1b

A in
Sec. 4.4, because they do not belong to the trivial irreducible representation.

Once spin-orbit coupling is included, the group elements again act on both
the sublattice degrees of freedom and spin. While the action on the sublattice
degrees is the same as given above, the group elements act on spin in the
following way

Es = �s, (4.78)
C2(z)s = (x →−x,y →−z,z →−y), (4.79)
C2(y)s = (x →−x,y → z,z → y), (4.80)
C2(x)s = (x → x,y →−y,z →−z). (4.81)

In total, the action of the group elements is then given by gs ⊗ go. While the
x-axis of the local and Cartesian coordinate systems are identical, the y- and
z-axes are rotated. The rotations then map the y and z-components of the ddd-
vector onto each other. As in the discussion of the spin triplet pairing on the
honeycomb lattice, this leads to basis functions mixing ddd-vector components,
such that the ddd-vector is pinned along the symmetry axes of the three rotations.
There are 18 different order parameters, which leads to a large number of basis
functions. They are too lengthy to print here, particularly as I have not yet
been able to use them to express the solutions discussed below in a concise
way. Instead, I will attempt to classify all solutions found at zero temperature
in terms of the non-spin-orbit coupled basis functions.

In the absence of the spin-orbit coupled hopping tKM , we identify two differ-
ent solutions. For small values of |Γ|, the ddd-vector points along the ŷ direction,
taking the form

ddd1 = (a,0,−b,a,−b,0)êeey, (4.82)

with a,b ∈� and a > b > 0. In terms of the basis functions this can be repre-
sented as a linear combination of the form

dy
1 = a(d1

B1u
+d2

B1u
)+b(d3

B1u
+dB3u). (4.83)
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Figure 4.8. The off-diagonal exchange Γ drives a crossover between the two solu-
tions ddd1 and ddd2 in the absence of the spin-orbit coupled hopping. The ddd1 solution is
dominant at Γ = 0, as can be seen by the large y-component of the order parameter
(yellow). Increasing Γ, it is rapidly decreased, while the x-component (blue) grows.
Γ � 0.08 gives rise to a stable ddd2 solution. The doping level is set to δ = 0.25.

The solution thus mixes basis functions from different irreducible represen-
tations, which would be possible if the irreducible representations B1u and
B3u are accidentally degenerate in the Γ = 0 limit at the critical temperature.
This is supported by the observation that the state is strongest at Γ = 0 and
decreases in size when increasing Γ. The ratio a

b is furthermore strongly in-
creased when adding an anisotropy between the horizontal and zigzag bonds
in the interaction ΔK = Kz

Kx,y
, which could also lift the accidental degeneracy.

A second solution is found to be stable for |Γ| � 0.08, where the ddd-vector
gradually rotates into the x̂-direction,

ddd2 = (c,0,0,c,0,0)êeex, (4.84)

where again c ∈� and c > 0. This state corresponds to the linear combination

dx
2 = c(d1

B1u
+d2

B1u
), (4.85)

when using the classification without spin-orbit coupling and there is thus no
mixing of irreducible representations in this solution. This supports the theory
of accidental degeneracy at Γ = 0 supporting the ddd1 state, as increasing |Γ|
yields a slow crossover between the two solutions, as shown in Fig. 4.8. The y
component of the ddd vector attributed to the ddd1 solutions is decreased, while the
x component transforming as the ddd2 solution increases. This transition causes
the overall size of the order parameter to be largest at Γ = 0, to decrease until
the crossover to the ddd2 solution, and to finally plateau for further increase in
Γ.
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Figure 4.9. Suppression of the y component of the ddd-vector by the off-diagonal ex-
change Γ when the spin-orbit coupled hopping is large, here tKM = 0.8. The doping
level is tuned to δ = 0.15.

Even though the two solutions are different from their symmetry classifi-
cation, both solutions are characterized by a nodal line, which gives rise to a
characteristic v-shaped density of states.

Including a sizable spin-orbit coupled hopping tKM > 0.5t yields a different
superconducting state, which includes all three components of the ddd-vector

dddSO = (a,0,0,a,0,0)êeex +(0,0,b,0,−b,0)êeey +(0,0,−c,0,c,0)êeez, (4.86)

where again, a, b, and c are positive real numbers. In terms of the basis func-
tions, this can be expressed as

dddSO = a(d1
B1u

+d2
B1u

)êeex +b(dBAu
−dB2u)êeey − c(dBAu

−dB2u)êeez, (4.87)

which mixes three irreducible representations, Au, B1u and B2u. This is highly
unusual and an indication that the classification without spin-orbit coupling
might not be enough to characterize the order parameter. The individual
strength of the three ddd-vector components are dependent on the off-diagonal
exchange Γ. Fig. 4.9 shows especially how the parameter b is strongly sup-
pressed for increasing Γ, here for δ = 0.15 and tKM = 0.8. This has the strange
effect, that the overall size of the order parameter decreases when the interac-
tion strength increases, as observed also without the spin-orbit coupled hop-
ping. Both positive and negative values of Γ preserve the overall symmetry of
the order parameter and only change the direction of the ddd-vector.

The nodal lines characteristic for the solutions discussed in the absence of
the spin-orbit coupled hopping are gapped out by the additional terms in dddSO
in favor of individual point nodes.

The extended Kitaev-Heisenberg interactions on the hyperhoneycomb lat-
tice thus give rise to distinct superconducting states in the absence or presence
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of the spin-orbit coupled hopping. At tKM = 0, we find a competition between
two line nodal states, which can be tuned by the off-diagonal exchange or an
anisotropy in the interactions. A possible explanation would be an acciden-
tal degeneracy in the limit of Γ = 0, although a more complete explanation
might require an understanding in terms of the basis functions obtained when
taking spin-orbit coupling into account. Similarly, the point nodal state found
throughout for large values of the spin-orbit coupled hopping appears to be
mixing several irreducible representations, which would require a series of
transitions. It is more likely that a more thorough understanding of the basis
functions in the presence of spin-orbit coupling will reveal a simpler explana-
tion, as in the case on the honeycomb lattice discussed in Sec. 4.5.
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5. Topological superconductors

Apart from the classification in terms of symmetries, superconducting states
can also be studied from the viewpoint of topology. Indeed, several of the
superconducting order parameters identified in the Kitaev materials display
topologically non-trivial behavior, as discussed in Papers I-III and V. In this
chapter I present an introduction to the topological classification of super-
conductors, in large parts based on a number of reviews on the topic [9, 12,
99, 102]. To get a general idea of the concept, I introduce an example of
topological phases outside of superconductors, before introducing the basics
of classifying gapped Hamiltonians. The next section focuses on the role of
symmetries on the classification, introducing the periodic table of topological
insulators and superconductors as well as discussing symmetry-protected and
nodal states. The topological invariants characterizing a number of topological
phases in superconductors are introduced at first generally in Sec. 5.3, before
actual approaches to calculate the invariants are presented in Sec. 5.4. After a
brief discussion of bulk-boundary correspondence and Majorana fermions the
chapter is concluded by presenting the results obtained in papers I-II and V.

5.1 General idea
An intuitive example of the kind of mapping that can be classified by topology
is a one-dimensional chain of spins as pictured in Figure 5.1. Each position
in real space r along the chain is assigned a spin of unit length that is con-
strained to a plane that includes the direction of the chain and winds continu-
ously along the chain. Essentially, this corresponds to assigning each position
an angle θ(r) between 0 and 2π . Considering periodic boundary conditions

Figure 5.1. Two 1D spin chains to illustrate the concept of nontrivial topological
mappings. The chain in a) does not wind around the unit circle c) and is therefore
topologically trivial, while the chain in b) winds once, as shown in d), and is therefore
classified by a finite winding number.
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and a continuous version of the chain, this is a mapping from the unit circle
to the unit circle θ : S1 → S1. The different topological phases of this map-
ping distinguish different windings of the spin while going along the chain that
cannot be continuously transformed into each other. The spins in the chain in
Fig. 5.1 begin to rotate clockwise from the upwards state to the downwards
state and then wind back counterclockwise. They thus only trace out the an-
gles [0,π] and do not wind around the full circle, as illustrated in Fig 5.1 c). It
is possible to find a continuous mapping that rotates all spins into the upwards
position, meaning this state is topologically trivial. The spins in the chain in
Fig. 5.1 b), on the other hand, perform one full rotation when going along the
chain and thereby trace out the full circle [0,2π], winding once (see Fig. 5.1
d)). A mapping that would transform this chain into the all up chain must have
a discontinuity, for example at the center spin, where the spin on the left of
it would need to be rotated by an angle of π and the angle to the right of it
by −π . This chain is therefore representative of a different topological phase,
where the spins wind once when going along the chain. It is directly clear
that there must be an integer number of different phases, corresponding to the
amount of windings the spins perform. These different topological phases or
equivalence classes of the mapping θ : S1 → S1 are captured in the homotopy
group π1(S1) = �. Another noteworthy fact is that this classification requires
the spins to lie in the plane. As soon as they are allowed to point out of the
plane, the two chains in Fig. 5.1 can be transformed into each other by winding
into the third dimension.

Topologically classifying insulators and superconductors is less intuitive
than the example of the spin chain. The classification is based on mappings
from reciprocal space instead of real space and the target spaces are not as
obvious. The principle can nevertheless be understood from a simple exam-
ple [99, 9]: The starting point is a Hamiltonian defined in reciprocal space
ĥ(kkk) giving rise to a gapped spectrum at each momentum kkk in the periodic
first Brillouin zone through the diagonalization

Û†(kkk)ĥ(kkk)Û(kkk) = diag(εm+n(kkk), . . . ,εn+1(kkk),εn, . . . ,ε1(kkk)) , (5.1)

with the n+m=N total energy bands εi sorted in descending order. Assuming
a gap between the bands at n and n+ 1, εn+1(kkk) > 0 > εn(kkk) throughout the
whole Brillouin zone, and the Hamiltonian can be to continuously transformed
into the flat band form

ˆ̃h(kkk) = ˆ̃U†(kkk)ĥ(kkk) ˆ̃U(kkk) =
(
�m 0
0 −�n

)
. (5.2)

All bands below (above) the gap are thus assigned an energy +1(−1), reflect-
ing the splitting of the Hilbert space of ĥ(kkk) by the gap. The flat band Hamilto-
nian ˆ̃h(kkk) comes with an extra gauge symmetry: The (n+m)× (n+m) matrix
ˆ̃U(kkk) that diagonalizes the Hamiltonian is an element of the unitary group
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U(n+m). However, the upper or lower band can be freely transformed by
another U(n) and U(m) transformation, respectively. This means that ĥ(kkk)
defines a mapping from the Brillouin zone, which is a d dimensional torus T d ,
to the space C0 :=U(n+m)/(U(n)×U(m))

ĥ : T d →C0. (5.3)

The group of equivalence classes or topological phases of this mapping are
then given by the homotopy group πd(C0) [99, 9],

πd(C0) =

{
0, d = 1,3
�, d = 2. (5.4)

This makes the importance of the dimensionality obvious. For two dimen-
sions, similar to the case of the winding spin chain, there are an infinite amount
of classes of Hamiltonians that cannot be continuously transformed into each
other. In one and three dimensions, in contrast, all general gapped Hamil-
tonians are topologically trivial. It is also apparent that once the energy gap
closes, the mapping is to a different target space and the classification is no
longer valid, similarly to allowing the spins to rotate out of the plane. This
implies that phase transitions between different topological phases require a
gap closing somewhere in the Brillouin zone.

5.2 Role of symmetries
Another key ingredient when discussing topological phases are the symme-
tries of the Hamiltonian, as they can constrain the mapping to a different tar-
get space and thereby alter the topological classification. Hamiltonians be-
longing to different topological phases can then not be transformed into each
other by a continuous transformation that obeys the symmetry, giving rise to
the name symmetry-protected topological phases. Following Bernevig and
Neupert [99], the example of a gapped Hamiltonian with an additional chiral
symmetry can illustrate how the mappings are constrained. If the Hamilto-
nian ĥ(kkk) commutes with the chiral symmetry operator Ĉ, the spectrum must
be symmetric and consists of N = 2n bands with the gap in the middle. The
flat band Hamiltonian ˆ̃h(kkk) can be expressed in the eigenbasis of the chiral
symmetry operator C as

ˆ̃h(kkk) =
(

0 q̂(kkk)
q̂†(kkk) 0

)
. (5.5)

From the flat band form we get that ˆ̃h(kkk)2 = �, implying that q̂(kkk) can be any
arbitrary unitary matrix, which defines the mapping

q̂ : T d →U(n). (5.6)
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AZ class TRS PHS C 1D 2D 3D

A 0 0 0 0 � 0
AIII 0 0 1 � 0 �

AI 1 0 0 0 0 0
BDI 1 1 1 � 0 0

D 0 1 0 �2 � 0
DIII -1 1 1 �2 �2 �

AII -1 0 0 0 �2 �2
CII -1 -1 1 2� 0 �2
C 0 -1 0 0 2� 0
CI 1 -1 1 0 0 2�

Table 5.1. The periodic table of topological insulators and superconductors for up to
three dimensions. The first row specifies the Altland-Zirnbauer class, which is defined
by the square of the operators implementing the time-reversal (TRS), particle-hole
(PHS), and chiral (C) symmetry, respectively, presented in the next three columns.
Finally, the group structure of the topological phases in 1, 2, and 3 spatial dimensions
are given.

The homotopy group πd(U(n)) classifying this mapping now gives for three
dimensions π3(U(n)) = � [99]. Gapped Hamiltonians obeying (only) a chiral
symmetry can therefore be topologically nontrivial in three dimensions, while
all gapped Hamiltonians without it cannot.

The example of the chiral symmetry can similarly be extended to include
the other non spatial symmetries discussed in Sec. 4.2, giving rise to the so-
called periodic table of topological insulators and superconductors [11, 103,
104, 12]. This table, shown in Tab. 5.1, lists the different topological classes
a Hamiltonian obeying certain symmetries can have in certain dimensions.
Based on the behavior under time-reversal, particle-hole, and chiral symmetry,
the Hamiltonian can be part of one of ten Altland-Zirnbauer (AZ) classes [105,
11, 104]. The behavior under the symmetries is specified by the square of the
operator implementing the symmetry, which is ±1. The examples discussed
above belong to the class A (no symmetries) and AIII (only a chiral symme-
try).

Of particular interest for superconductors are the classes with particle-hole
symmetry. Given that the particle-hole symmetry introduced through the Nam-
bu spinors squares to +1 as detailed in Sec. 4.2.2, superconductors with spinful
time-reversal symmetry squaring to −1 belong to class DIII. A time-reversal
breaking superconductor is a member of class D, and will, for example, always
be topologically trivial in 3D. When a superconductor possesses an additional
SU(2) spin symmetry, a rotation around the x or y axis in spin space can be
formulated as a particle-hole transformation which squares to −1. The classes
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in the periodic table with such a particle-hole symmetry are then C and CI for
systems without and with time-reversal symmetry, respectively [11].

In addition to the general symmetries such as time-reversal, particle-hole
or chiral symmetry, the presence of spatial symmetries also influences which
topological invariants can be used to classify the system [12]. Writing the
Hamiltonian in a block diagonal form corresponding to the eigenspaces of the
point group symmetry, as introduced in Sec. 4.2.4, allows to perform a classifi-
cation of each individual block. The general symmetries such as TRS and PHS
can then either act within each of the blocks, or relate different eigenspaces to
each other. The new block Hamiltonian can thus belong to a different symme-
try class than the whole Hamiltonian. The resulting topological classification
is then said to be protected by the crystalline symmetry. As the decomposition
is only possible for values kkk0 that are invariant under the point group symme-
try, some of the invariants are only defined on the subplanes of the Brillouin
zone that are invariant under the symmetry operation.

So far, the topological classification has relied on fully gapped Hamiltoni-
ans, however, several of the superconducting states discussed in the papers in
this thesis are nodal. While this rules out bulk topological phases, the nodes
themselves can be topologically protected [12]. The corresponding mappings
are then performed on gapped surfaces enclosing the nodes, which are of lower
dimension than the Brillouin zone. For a nodal point in 3D, this would be
a sphere, while a nodal line in 3D can be enclosed by a circle. Topologi-
cally protected nodes always appear in pairs, such that the sum of their invari-
ants gives zero, and can thus be gapped out by hybridization with each other.
Nodes where the partners are mapped onto each other by the symmetries of
the Hamiltonian are then classified differently from nodes that are mapped
onto themselves by those symmetries. Another difference in the classification
is whether the nodes appear at arbitrary positions of the Brillouin zone, when
they are not protected by symmetry and also called accidental nodes, or on
high symmetry lines or planes, when they are protected by symmetries. Acci-
dental nodes can be classified according to the periodic table up to a dimen-
sional shift corresponding to the reduced dimension of the enclosing space
and depending on the behavior under the non-spatial symmetries [12]. The
classification of nodes protected by spatial symmetries also proceeds analo-
gously to the gapless phases protected by spatial symmetries, where invariants
are only defined for the symmetry eigensectors of the Hamiltonian and on the
high symmetric lines and planes [12].

5.3 Introducing topological invariants
Using the periodic table it is possible to determine how many different topo-
logical phases a Hamiltonian with certain symmetries can have. However, it
contains no information whether a given Hamiltonian actually is topologically
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nontrivial or not. This can be determined by calculating the corresponding
topological invariant labeling the different phases.

As illustrated in the example of the spin chains in Sec. 5.1, the topological
classification is based on some global properties (the winding) of the physical
system made up of local degrees of freedom (the spins). This mirrors the
mathematical distinction between topology, which is the global structure, and
geometry, which denotes the local makeup of objects [99]. The two are linked
by the Gauss-Bonnet theorem in differential geometry,

2−2g =
1

2π

∫
M

d2xF(x), (5.7)

which states that the integral over the Gaussian curvature F(x) of a 2D Rie-
mannian manifold M with boundary is integer and a topological invariant. The
global topological property is given by the genus of the manifold g, which is
g = 0 for a sphere and g = 1 for a torus. The local geometrical information is
contained in the Gaussian curvature F(x), which is a measure of how much a
tangent vector to the plane is changed along an infinitesimal loop on M.

A similar concept can be constructed for a fully-gapped Hamiltonian de-
fined in reciprocal space ĥ(kkk) [9]. Diagonalization of the Hamiltonian yields
the eigenenergies En,kkk and eigenvectors |un,kkk〉 obeying the relation

ĥ(kkk) |un,kkk〉= En,kkk |un,kkk〉 . (5.8)

where the eigenvectors and -states are considered functions of the parameter kkk.
They correspond to the tangent vectors on the manifold. Changing the param-
eter kkk, i.e. going along some path in reciprocal space, the Berry connection of
band n

A(n)
kkk = 〈un,kkk|∂∂∂ kkkun,kkk〉 (5.9)

measures a change of the wave function along such a path. It is well defined,
as long as the band is non-degenerate. Equation 5.8 leaves a gauge freedom in
the definition of the wave function

|un,kkk〉 → eiφn,kkk |un,kkk〉 , (5.10)

which requires that the Berry connection transforms as

A(n)
kkk →A(n)

kkk −∂∂∂ kkkφn,kkk. (5.11)

This implies that the Berry connection cannot be a physical quantity, since
it is not gauge invariant. A gauge invariant expression constructed from the
connection is the Berry curvature, or field strength

F (n)
kkk,i, j = ∂kiA

(n)
kkk, j −∂k jA

(n)
kkk,i . (5.12)
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The Berry connection measures the change of the eigenstates along a closed
infinitesimal path, similar to the Gaussian curvature in differential geometry.
A physical interpretation is that the Berry connections acts like a vector po-
tential, hence also the label A. The Berry curvature corresponds then to the
curl of the Berry connection, which makes it similar to a magnetic field.

A second gauge invariant quantity that can be defined is the Berry phase γ .
It is given by a line integral along a closed contour in momentum space.

γ(C) = arg
(

e−
∮
C dkkk·A(n)

kkk

)
. (5.13)

Under a gauge transformation the Berry connection still transforms as detailed
in Eq. 5.11. However, an integration over ∂∂∂ kkkφn,kkk along a closed path gives an
integer multiple of 2π , such that the Berry phase is indeed gauge invariant.

Even though the Berry curvature and Berry phase are gauge invariant, they
are not in general quantized, but can take also non-integer values. They are
thus not suited as topological invariants. However, topological invariants can
be constructed from integrals over these quantities, just like from the integral
over the Gaussian curvature, or by introducing additional symmetries. The
most important invariant constructed like this is the Chern number of a band
in 2D

Cn =
i

2π

∫
BZ

dkxdkyF (n)
kkk,x,y. (5.14)

It is possible to ascertain that the Chern number indeed takes integer values [9].
If the Berry connection has no singularity in the first Brillouin zone, then the
integral vanishes. If there is a point kkk0, where A(n)

kkk has a singularity, a gauge
transformation according to Eq. 5.11 can be performed in the region R that
contains kkk0 to remove the singularity from that region. The integral over the
Brillouin zone can then be translated into a contour integral along the boundary
∂R of the region R with the help of Stokes’ theorem to give

Cn =
i

2π

∫
∂R

dkkk ·∂∂∂ kkkφn,kkk. (5.15)

Again, the closed contour integral yields 2πN, such that the Chern number in
2D indeed is an integer number N ∈ �. For several occupied bands, it is thus
useful to evaluate the Chern number for all occupied bands C = ∑En<0Cn.

Even though no additional symmetries were assumed in this discussion,
the results hold for superconductors with particle-hole symmetry in 2D, i.e.
classes D and C. If the superconductor also obeys time-reversal symmetry, the
Berry connection and curvature of the occupied bands transform as

∑
En<0

A(n)
kkk → ∑

En<0
A(n)

−kkk (5.16)

∑
En<0

F (n)
kkk,i, j → ∑

En<0
−F (n)

−kkk,i, j, (5.17)
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which is in line with the interpretation in terms of vector potential and mag-
netic field, respectively. This in turn implies for the Chern number

C =
i

2π ∑
En<0

∫
BZ

dkxdkyF (n)
kkk,x,y

=− i
2π ∑

En<0

∫
BZ

dkxdkyF (n)
−kkk,x,y =−C, (5.18)

which necessarily requires C = 0. Thus, time-reversal needs to be broken to
have a non-zero Chern number in 2D. However, the presence of time-reversal
symmetry allows to define another topological invariant instead, the �2 invari-
ant. The definition introduced here is based on the Kramers degeneracy and
follows the presentation by Sato and Ando [9, 106]. For a time-reversal sym-
metric Hamiltonian, each eigenstate |uI

n,kkk〉 has a Kramers partner |uII
n,kkk〉. They

are related by the time-reversal operation T via

|uI
n,kkk〉= eiφn,kkkT |uII

n,−kkk〉 . (5.19)

It is then possible to define a Berry connection of the occupied states for each
of the two Kramers partners,

AI
kkk = ∑

En<0
〈uI

n,kkk|∂∂∂ kkkuI
n,kkk〉 (5.20)

AII
kkk = ∑

En<0
〈uII

n,kkk|∂∂∂ kkkuII
n,kkk〉 . (5.21)

Similar to the general case, the Chern number for each of the Kramers partners
is then given by

CI/II =
i

2π ∑
En<0

∫
BZ

dkxdkyF I/II
x,y,kkk, (5.22)

where the definition of the Berry curvature of the Kramers partners F I/II
x,y,kkk fol-

lows straightforwardly from Eq. 5.12. Each of the two Kramers partner Chern
numbers takes an integer value, but since the sum of the Chern numbers of the
two Kramers pairs CI +CII = C must be zero, it also holds CI = −CII. Now
the definition of the two Kramers partners is in general not unique, since there
is no a priori distinction between the two Kramers partners. It is therefore not
possible to use CI/II as a topological invariant. However, the parity (−1)C

I/II
is

well-defined, since both Kramers partner Chern numbers are the same up to a
minus sign. This introduces a �2 invariant in 2D classifying superconductors
in class DIII.

Another �2 index can be introduced for a 1D superconductor without time-
reversal symmetry [107, 9]. Starting again from the eigenstates of the Hamil-
tonian |un,k〉 with eigenvalue En,k > 0, PHS dictates that C |un,−k〉 is also an
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eigenstate with eigenvalue En,−k < 0. Labeling the positive (negative) eigen-
states by a positive (negative) integer allows to write the action of particle-hole
symmetry as

|un,k〉= C |u−n,−k〉 . (5.23)

The �2 index is based on the Berry connections of the positive and negative
bands

A(+)
k = ∑

n>0
〈un,k|∂kun,k〉 (5.24)

A(−)
k = ∑

n<0
〈un,k|∂kun,k〉 , (5.25)

and their sum Ak = A(+)
k +A(−)

k . They are related by the particle-hole sym-
metry through

A(+)
k =A(−)

−k . (5.26)

Representing the eigenvectors |un,k〉 in a matrix Û(k), the Berry connection
takes on the form

Ak = ∑
n
〈un,k|∂kun,k〉

= Tr
[
Û(k)†∂kÛ(k)

]
= ∂k

(
lndetÛ(k)

)
. (5.27)

The Berry phase obtained from the occupied bands along the 1D Brillouin
zone is then given by

γ =

∫ π

−π
dkA(−)

k

=
1
2

∫ π

−π
dkAk

=
1
2

∫ π

−π
dk∂k

(
lndetÛ(k)

)
=− 1

2
θ
∣∣∣∣
π

−π
, (5.28)

where θ is the phase angle of detÛ(k), which is 2π-periodic in k. Conse-
quently the Berry phase is quantized as eiγ = eiπN = ±1, defining the 1D �2
index for class D. The addition of time-reversal symmetry trivializes this in-
dex, but using again the Kramers degeneracy of the occupied bands, it is pos-
sible to define a new 1D �2 topological invariant for class DIII based on the
Berry phase of one of the Kramers partners [9].
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5.4 How to calculate topological invariants
While the equations given in the previous section are useful to define the dif-
ferent topological invariants, it is hard to use the definitions to calculate the
actual invariant numerically. That is because of difficulties stemming from a
discretized Brillouin zone, like defining a phase of the numerically evaluated
eigenvalues, and continuously identifying the Kramers partners. To determine
the topological invariants in the papers making up this thesis, we instead apply
several different approaches suited for numerical purposes.

In Papers I and II, the Chern number is evaluated by a method based on a
lattice field strength [108]. Introducing a discretized 2D Brillouin zone of Nx×
Ny discrete points kkki = (kix,kiy), regularly spaced by δδδ x and δδδ y, respectively,
one can define a link variable from the eigenstates |un,kkki〉:

Uj(kkki) =
〈un,kkki |un,kkki+δδδ j

〉
| 〈un,kkki |un,kkki+δδδ j

|〉 . (5.29)

A possible singularity of the link variable at | 〈un,kkki |un,kkki+δδδ j
〉 | = 0 can always

be avoided by a small shift of the Brillouin zone grid. The lattice field strength
is then given by

F̃12(kkki) = ln
(
Ux(kkki)Uy(kkki +δδδxxx)U−1

x (kkki +δδδyyy)U−1
y (kkki)

)
. (5.30)

As the lattice field strength combines bra- and ket-vectors at the same point,
it is invariant under the random phases appearing during numerical diagonal-
ization. The Chern number of the n-th band is then the sum of the lattice field
strength over the discretized Brillouin zone

C̃n =
1

2πi ∑i
F̃12(kkki). (5.31)

This discretized Chern number converges to the continuum version in the limit
of Nx ×Ny → ∞ and requires a relatively small number of points in practical
applications.

A similar algorithm can be used to calculate the 2D �2 index [109]. How-
ever, there also exists a simple theorem about odd-parity superconductors that
allows to make statements about the topology of the superconducting state
based on the Fermi surface of the normal state [35, 110, 111]. The relevant
statement, used for the 2D �2 invariant in class DIII in Paper II, is: A weak
coupling, odd-parity, time-reversal invariant superconductor has a nontrivial
�2 index in 2D, if the normal state Fermi surface encloses an odd number of
time-reversal invariant momenta (TRIM) [110, 9]. The TRIM points are de-
fined as those kkk-points ΓΓΓi that satisfy ΓΓΓi = −ΓΓΓi +GGG, where GGG is a reciprocal
lattice vector. Similar statements can be made for time-reversal breaking su-
perconductors and all dimensions d = 1,2,3 [110, 111, 9]. The theorems make
use of the parity eigenvalues of the normal state Hamiltonian. This approach
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can be extended to include other symmetries, which allows to determine the
topology from so-called symmetry indicators [112, 113, 114, 115].

Finally, we evaluate 1D Berry phases using a numerical discretization of
the Wilson loop operator in Papers III and V. The Wilson loop generalizes
the integral over the Berry connection to the case of multiple occupied bands
M with possible degeneracies [102]. It is defined as the path ordered matrix
exponential

W[C] = Pe−
∫
C dkkk·Akkk (5.32)

over the non-Abelian Berry connection

(Akkk)mn = 〈um,kkk|∂∂∂ kkk|un,kkk〉 , (5.33)

where m,n = 1, . . . ,M run over the occupied bands. The path ordering oper-
ator P ensures that operators at the beginning of the path occur to the right.
I will reproduce how the Wilson loop can be evaluated numerically by dis-
cretizing the path C into L momenta kkki, i = 1, . . . ,L, as shown by Neupert and
Schindler [102]. Choosing a closed loop, kkk1 = kkkL+1, the integral can be re-
placed by the product

W̃nL+1,n1 [C] =
M

∑
n2,...,nL=1

1

∏
i=L

(
exp(−(kkki+1 − kkki) ·Akkki+1)

)
ni+1,ni

. (5.34)

Expanding the exponential to first order

W̃nL+1,n1 [C] =
M

∑
n2,...,nL=1

1

∏
i=L

(
δni+1,ni − (kkki+1 − kkki) ·

(Akkki+1

)
ni+1,ni

)
,

=
M

∑
n2,...,nL=1

1

∏
i=L

(
〈uni+1,kkki+1 |uni,kkki+1〉− (kkki+1 − kkki)〈uni+1,kkki+1 |∂∂∂ kkk|uni,kkki+1〉

)
,

(5.35)

and using the definition of the derivative gives

W̃nL+1,n1 [C] = 〈un1,kkk1 |
2

∏
i=L

(
M

∑
ni=1

|uni,kkki〉〈uni,kkki |
)
|un1,kkk1〉 , (5.36)

which can be simplified to the matrix form

W̃[C] =
L

∏
i=1

Û†
occ(kkki+1) ·Ûocc(kkki), (5.37)

where Ûocc(kkk) is the column matrix containing the eigenvectors of the occu-
pied bands. As each matrix is always multiplied by its Hermitian conjugate,
the random phases obtained during numerical evaluation vanish, which allows
for efficient numerical computation of the Wilson loop. The total Berry phase
of the occupied bands is then obtained from [116]

γ(C) = arg(detW[C]). (5.38)
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5.5 Bulk-boundary correspondence and Majorana
fermions

When a gapped Hamiltonian is classified by a non-trivial topological invari-
ant, it cannot be smoothly transformed into a different topological phase. A
special case of this argument happens when two systems with different topo-
logical invariants are put side by side, such that one can continuously move
from one to the other. A particular example of this is a boundary between
a topological superconductor and the vacuum, which is topologically trivial.
Transforming a gapped Hamiltonian from one topological phase to another
by some parameter requires that the band gap closes, as discussed in Sec. 5.1.
Using the position as this parameter, a boundary between two systems of dif-
ferent topological invariants, that respects the protecting symmetry, in general
has to yield a gap closing somewhere in between. This means that a bound-
ary between a topological superconductor and the vacuum also guarantees the
existence of a state crossing the gap. This principle is called bulk-boundary
correspondence and yields some of the most important physical implications
of the study of topology in condensed matter. It allows to study the topology
of a system, which is a rather theoretical and abstract concept, through the ap-
pearance of gapless states on the surface. In fact, the number of surface states
is equal to the difference of the topological indices [117]. For a boundary to
the topologically trivial vacuum, the number of surface modes is therefore
given by the topological invariant.

In topological superconductors, the excitations appearing in such gap clos-
ings can be realizations of Majorana fermions. Two conditions need to be
satisfied [9]: The excitation needs to be described by the Dirac equation and it
needs to be its own antiparticle,

γ† = γ. (5.39)

Both conditions can be met in topological superconductors. As the bound-
ary states appear from a band crossing, its low-energy Hamiltonian can be
naturally expressed in terms of a massless Dirac equation in terms of band
indices. And based on the expressions derived in Chapter 3, the Bogoliubov
quasiparticles at zero energy are equal superpositions of particles and holes,
which are transformed into each other under conjugation. However, not all
zero energy Bogoliubov quasiparticles fulfill Eq. (5.39). The excitation needs
to be non-degenerate to be mapped onto itself and spatially well-separated
from other Majorana states. Nevertheless, all these conditions can be fulfilled
for example in spinless 2D px + ipy superconductors [118], or 1D p-wave su-
perconductors [119], and possible experimental signatures of Majorana quasi-
particles have been detected [120]. In addition to the general interest in realiz-
ing Majorana quasiparticles, they have also been proposed as building blocks
for quantum computation, since they exhibit non-trivial statistics [121, 10, 9,
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122]. This yields a strong technological motivation to explore topological su-
perconductors and to find new materials hosting Majoranas.

5.6 Twist states between d± id′ regions on the harmonic
honeycomb lattices

In the following sections, I discuss the topological classification of the order
parameters obtained on the different Kitaev materials, beginning with the large
harmonic honeycomb lattices discussed in Paper I. When the honeycomb re-
gions in between twists are large enough to approximately restore the six-fold
rotational symmetry, the d ± id′ superconducting state is stable in the har-
monic honeycomb lattices. On a single graphene layer, the d ± id′ supercon-
ducting state belongs to AZ class C, characterized by a broken time-reversal
symmetry and SU(2) spin rotation, as detailed in Sec. 5.2. It is therefore char-
acterized by even Chern numbers. Indeed, the d ± id′ is known to be yield a
Chern number of ±2, due to the winding of the superconducting order param-
eter. All edges should therefore host a pair of co-propagating, or chiral, edge
states [117, 100]. In the large harmonic honeycomb lattices, which are actu-
ally 3D structures, the honeycomb sheets can be approximated as stacks of 2D
layers, which should lead to the appearance of edge states. And indeed, the
local density of states (LDOS) of a harmonic honeycomb with a single twist in
the center shown in Figure 5.2 as a function of position features states appear-
ing on the edges and at the twist. The edge states on the open outer boundaries
behave as expected, but there are also subgap states visible at the twist, inde-
pendently of the chiralities of the two joined regions. This can be motivated
by the fact, that the twist connects two quasi 2D regions with different spatial
orientations only in isolated points. As the d ± id′ state is characterized by a
Chern number of ±2, there should be in total eight chiral edge states for such
a slab with a single twist: two appearing at the left edge, two to the left and
two to the right of twist, and two more at the right edge. Figure 5.3 displays
the dispersion of the edge states along two cuts parallel to one of the reciprocal
lattice vectors of the Brillouin zone shown in the inset. For both cuts there are
four states crossing the gap. Two of them are the same for both parallel cuts,
meaning that they only disperse along the edges corresponding to the direction
of the cut. They must be located at the left outer edge. The corresponding edge
states from the right outer edge should then not disperse along the cut, which
means the horizontal line in the black spectrum is one of these edge states.
The remaining states on the twist, however, have the possibility to hybridize
and therefore disperse in both kkk-space directions, forming a 2D band localized
at the twist. These are the two states crossing the gap that change between the
two cuts.

In summary, the twist acts similar to an outer edge of the 2D honeycomb
sheets, without enforcing a preference on the chirality of the two regions
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Figure 5.2. Local density of states as a function of position for an isolated twist in
the in the center of a 150 sites long slab with open boundary conditions. The high
densities shown in red and black reveal the existence of edge states near the open outer
boundaries and along the twist that appear within the superconducting gap. Figure
taken from Paper I.

joined at the twist. The four chiral edge states appearing at the twist are al-
lowed to hybridize such that they form 2D bands localized to the twist, clearly
different from regular 1D zigzag edges.

5.7 A multitude of topological phases from the extended
Kitaev-Heisenberg interaction

The extended Kitaev-Heisenberg model on the 2D honeycomb lattice hosts
several different superconducting phases, as discussed in Sec. 4.5. Here I
present the relevant topological classification for those phases, beginning with
the time-reversal symmetry breaking phase dddchiral. As time-reversal is broken,
the only remaining non-spatial symmetry is particle-hole symmetry, which in
the absence of SU(2) symmetry squares to +1. The chiral state therefore be-
longs to class D in the periodic table and is characterized by a Chern number
C ∈ . Using the numerical algorithm for the Chern number discussed in
Sec. 5.4, we determine the Chern number of the chiral state to be non-zero
throughout the whole region in which the state is found self-consistently. We
also determine the Chern number as a function of the order parameter strength
|ddd| for a fixed doping level. As plotted in Fig. 5.4 a), the Chern number evolves
as a function of the strength of the order parameter, going from C = ∓4 to
C = ∓1 and finally to C = ±2, where the two signs corresponds to the de-
generate chiralities. In between each jump in the Chern number, the band gap
closes at the three M points of the first Brillouin zone, explaining the jump
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Figure 5.3. Quasiparticle spectrum of a single twist structure evaluated along two
parallel cuts through the 2D Brillouin zone formed by the twist region (see inset for
cuts). Four gapless states connecting the conduction and valence band appear for
both cuts. The edge states along the open outer boundaries do not disperse along the
direction perpendicular to the cuts and therefore do not change between them. The 2D
band formed by hybridization of the edge states at the twist, however, clearly changes
between the cuts. Figure taken from Paper I.

Figure 5.4. Topological properties of the chiral superconducting state dddchiral found
at intermediate doping levels at Γ < 0. (a) Chern number C for non-self-consistently
determined order parameter strength |ddd| at doping level δ = 0.14. The topological
phase transitions as a function of order parameter strength are clearly visible by the
jumps in the Chern number ΔC = 3. (b) Quasiparticle spectrum of a honeycomb lattice
with open boundary conditions along the zigzag edges for |ddd| = 0.4t and δ = 0.14.
Each open boundary hosts a chiral mode crossing the band gap. Figure taken from
Paper II.
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by ΔC = 3. The exact value of the order parameter strength for the topolog-
ical phase transitions depends on the doping level. For the self-consistently
determined solutions at K = −t, only the solution with C = ∓1 is realized
and the phase transition to the nematic superconducting phase happens simul-
taneously to the topological phase transition. However, this appears to be a
fine-tuned effect, as the two transitions split when using smaller values of K.
The finite Chern number of the chiral state should manifest in the appearance
of chiral edge states due to the bulk-boundary correspondence. As Fig. 5.4(b)
illustrates, the state with |C| = 1 indeed produces one chiral mode crossing
the band gap on a finite strip with open boundary conditions along the zigzag
edge. The same is found for the armchair edge.

The two time-reversal symmetric states dddΓ>0 and dddnematic found for positive
and negative values of the off-diagonal exchange Γ, respectively, are actually
topologically equivalent, even though they differ in the symmetry classifica-
tion. Both states obey the spinful time-reversal symmetry squaring to −1 and
the particle-hole symmetry squaring to +1. This means they are also chiral
symmetric and belong to class DIII, which is characterized by a �2 invariant
in 2D. Referring to the theorem discussed in Sec. 5.4, the invariant is trivial
for low doping, when the Fermi surface encloses the K and K′ points of the
Brillouin zone [33]. When the doping exceeds δ = 0.25, the Fermi surface un-
dergoes a Lifshitz transition and now forms a circle around the Γ point. This
means only a single TRIM point is enclosed by the normal state Fermi surface
and the �2 index is then non-trivial, as long as the state is continuously con-
nected to a weak pairing state as shown by Hyart et al. [33]. Below this critical
doping, both states actually belong to a topological phase protected by a spin
rotation [68]. Using this symmetry, the Hamiltonian can be block diagonalized
into the form

ĥ(kkk) =
(

ĥ↑(kkk) 0
0 ĥ↓(kkk)

)
. (5.40)

While particle-hole symmetry acts within each block, time-reversal relates the
two blocks to each other. Each subblock is thus in class C (characterized by
particle-hole symmetry and SU(2) symmetry) and can be classified by an even
spin Chern number, which turns out to be nonzero C↑/↓ = ±2. The whole
situation changes when including the spin-orbit coupled hopping introduced
in Sec. 3.4. The symmetry protecting the spin Chern number is immediately
broken for any finite value of tSO, which gaps out the edge states appearing in
this phase, as illustrated in Fig. 5.5 a) for parameters deep in the dddΓ>0 phase.
However, the effect of the spin-orbit hopping on the band structure leads to
a new topological phase transition into the �2 nontrivial phase even below
δ = 0.25. Fig. 5.5 b) shows the evolution of the Fermi surface at δ = 0.2 as a
function of the spin-orbit hopping strength. The Fermi pockets around the K
and K′ points at tSO = 0 evolve into first a circle enclosing the Γ point and then
further into pockets around the three M points. During the first of these two
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Figure 5.5. The spin-orbit hopping term HSO influences the topological classification
of the time-reversal symmetric superconducting states, illustrated by the state dddΓ>0.
(a) Quasiparticle spectrum of a zigzag nanoribbon including tSO = 0.02t at δ = 0.2.
The edge states no longer cross the gap and are gapped, see zoom-in inset. (b) Normal
state Fermi surface for three different values of the spin-orbit hopping plotted within
one Brillouin zone. Two Lifshitz transitions occur at constant filling δ = 0.2 when
tuning the spin-orbit hopping tSO. (c) Helical edge states visible in the quasiparticle
spectrum of dddΓ>0 at Γ = 0.5, δ = 0.2, and tSO = 0.3 are a signature that the system is
in a �2 non-trivial state driven by tSO even at δ < 0.25. Figure taken from Paper II.
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sequential Lifshitz transitions the number of enclosed TRIM points changes
from even to odd. Because the order parameter stays the same for all values of
tSO along this evolution, the criterion discussed above remains valid and dddΓ>0
is characterized by a non-trivial �2 invariant for large enough tSO, even below
the threshold of δ = 0.25. This is illustrated by the appearance of a pair of
helical edge modes crossing the superconducting gap in Fig. 5.5 c). The same
argument can be made for the topologically equivalent dddnematic state.

The superconducting phase diagram of the doped extended Kitaev-Heisen-
berg interaction on the honeycomb lattice thus features several topological
phases. The time-reversal breaking state is characterized by a non-zero Chern
number that changes as a function of order parameter strength. The time-
reversal symmetric states, regardless of their behavior under the lattice sym-
metries, feature non-trivial �2 indices at large doping or strong spin-orbit cou-
pling or symmetry-protected finite spin Chern numbers at low doping in the
absence of spin-orbit coupling. Each topological phase gives rise to a distinct
edge spectrum that leaves a specific experimental fingerprint.

5.8 Nodal phases on the hyperhoneycomb lattice
The topological classification of the superconducting phases on the hyperhon-
eycomb lattice focuses on possible topological protection of the spin triplet
nodal phases presented in Paper V and discussed in Sec. 4.6. The classification
of the nodes appearing in the spin singlet phases in Paper III is not presented
here, because it was carried out by my co-author.

In the absence of spin-orbit coupling, the two spin triplet superconducting
phases discussed in Sec. 4.6 feature a pair of line nodes away from high sym-
metry planes, i.e. accidental nodes, as shown in Fig. 5.6 a). The first step to
the topological classification is then to identify the relevant non-spatial sym-
metries of the Hamiltonian. Each of the nodes is spin degenerate, and the
superconducting pairing giving rise to the nodes is of equal spin pairing type
(dddx/y), such that the Hamiltonian is already block diagonalized into spin up
and spin down blocks

H =

(
H↑ 0
0 H↓

)
. (5.41)

Each block obeys a spinless time-reversal symmetry squaring to +1 and a
particle-hole plus SU(2) symmetry, such that the relevant AZ class is class
CI. A topological stability of nodal lines in 3D is then inherited from class
AIII, because time-reversal does not trivialize it [12, 116]. The classification
for each spin block is thus identical to that of the line nodes in the spin singlet
superconducting state discussed in Paper III. The nodes are found to be topo-
logically protected by virtue of a Berry phase of π picked up along a loop L
enclosing one of the nodes, as pictured in Fig. 5.6 a), and calculated using the
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Figure 5.6. Topological classification of the nodes appearing in the spin triplet su-
perconducting states on the hyperhoneycomb lattice. The Fermi surface of each case
is shown in opaque yellow and the boundary of the first Brillouin zone is sketched
with black lines. a) The pair of nodal lines (red) is protected by spin-symmetry and
classified by a non-trivial Berry phase of π along the loop L circling a node. b) Two
of the nodal points (red) on the ky = 0 mirror plane (blue) are protected by the mirror
σxz and the loops L1 and L2 surrounding the nodes gives rise to a Berry phase of ±π ,
respectively. The remaining two nodal points are not topologically protected. Figure
taken from Paper V.

Wilson loop technique presented in Sec. 5.4. The two nodes are then partners
of opposite topological charge, which can annihilate each other. Furthermore,
the classification relies on the block diagonalization into spin sectors, which
means that any finite spin-orbit coupled hopping or pairing in the equal spin
triplet channel lifts the topological protection and should gap out the nodes.

Indeed, in the presence of strong spin-orbit coupled hopping, the supercon-
ducting state characterized by dddSO features point nodes, as shown in Fig. 5.6
b). In contrast to the point nodal spin singlet state discussed in Sec. 4.4, and
Papers I and III, this state preserves time-reversal symmetry and the nodes are
therefore not characterized by a non-zero Chern number. Instead, the point
nodes occur along the ky = 0 plane of the Brillouin zone, so the nodes are pro-
tected by the σxz mirror symmetry. The symmetry operator acting on the BdG
Hamiltonian can be constructed from

σ̂xz = (1 → 3,2 → 4,3 → 1,4 → 2)⊗ σ̂x ⊗ t̂0, (5.42)

where i → j means that orbital i is mapped onto orbital j due to the non-
symmorphic action of the mirror operator, and σ̂i and t̂i are Pauli matrices
acting on spin and particle-hole space, respectively. Using the unitary matrix
Ûxz that diagonalizes the mirror operator, the BdG Hamiltonian can be decom-
posed into a block diagonal form for ky = 0,

H =

(
H+ 0
0 H−

)
, (5.43)
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where each block ± corresponds to an eigensector of the mirror operator. The
classification of the mirror protected point nodes is then in terms of a mirror
Chern number according to class DIII with mirror symmetry, and the topologi-
cal nature of the point nodes can be determined by calculating the Berry phase
along a 1D loop in the ky = 0 plane enclosing the nodal points [12]. Fig. 5.6
b) shows the loops L1 and L2, enclosing two of the nodal points in the Bril-
louin zone, which give rise to a non-trivial Berry phase of ±π around them.
The remaining two nodes are topologically trivial and can be gapped out by
additional terms in the Hamiltonian. The topological nature of the point nodes
can also be determined by calculating the Berry phase along a family of loops
L‖(kz) running parallel to the kx axis. These loops are closed due to the pe-
riodic nature of the Brillouin zone. For |kz| < k0

z (|kz| > k0
z ), where ±k0

z is
the position of the two point nodes, the Berry phase evaluates to 0 (π). This
confirms the topological protection and also implies the appearance of Fermi
arc states on a (001) surface, that connect the projections of the topologically
protected nodal points [12].

The hyperhoneycomb lattice is thus a natural host for topologically pro-
tected line and point nodes. Notably, the classification of the line nodes falls
into the same topological class for both spin singlet and triplet pairing, while
the point nodes are protected by different symmetries.
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Part II:
Odd-frequency pairing and the Meissner effect
in doped Bi2Se3



6. Odd-frequency superconductivity in doped
Bi2Se3

Leaving behind the Kitaev materials, this second part of the thesis focuses on
odd-frequency superconductivity in Bi2Se3 and its manifestation in the Meiss-
ner effect, as presented in Paper IV. In this chapter, I focus on a general intro-
duction to odd-frequency pairing and its appearance in the nematic or chiral
superconducting state of doped Bi2Se3. I begin by presenting the general idea
and discussing the possible symmetry classes of odd-frequency pairing, which
is based on a symmetry classification of the superconducting pairing corre-
lations, going beyond the superconducting order parameter discussed in the
first part of the thesis. Thereafter, I detail how odd-frequency pairing appears
ubiquitously in multiorbital superconductors, following the argumentation in
a recent review [16]. Thereafter I briefly review previous research on super-
conductivity in doped Bi2Se3, before the section concludes with a summary of
the odd-frequency pairing in this material.

6.1 Symmetry classification of odd-frequency pairing
In addition to the symmetry classification of the superconducting order pa-
rameter presented in Chapter 4, a more general analysis of the symmetries of a
superconductor can be formulated in terms of the pairing correlations. These
are encoded in the anomalous Green’s function, which for a generic multior-
bital superconductor is given by the time-ordered expectation value

Fσ1σ2,rrr1rrr2,o1o2(t1, t2) =−〈T ψσ1,rrr1,o1(t1)ψσ2,rrr2,o2(t2)〉 , (6.1)

where T is the time-ordering operator and σi, rrri, oi, and ti label the spin,
position, orbital, and time degrees of freedom of the two electrons ψ forming
a Cooper pair. As the expectation value is made up of fermions, the Pauli
exclusion principle restricts the symmetry properties of the anomalous Green’s
function at equal times t1 = t2. In particular, it requires that the wave function
describing the state of two identical fermions must be odd under exchange of
the particles at equal times [19]

Fσ1σ2,rrr1rrr2,o1o2(t1, t1) =−Fσ2σ1,rrr2rrr1,o2o1(t1, t1). (6.2)

A key idea behind odd-frequency pairing is to postulate an extension of this to
pairing at unequal times [13, 19]. Introducing the generalized parity operators

105



Parity 1 2 3 4 5 6 7 8

Spin S - + + - + - - +
Parity P + - + - + - + -
Orbital O + + - - + + - -
Time T + + + + - - - -

Table 6.1. Complete list of the eight symmetry classes of the anomalous Green’s func-
tion obeying Eq. (6.3) required by Fermi statistics. The behaviour under the general-
ized parity operations S, P, O, and T for spin, position, orbital, and time exchange,
respectively, is characterized by the acquired sign ±.

S, P, O, and T , exchanging spin, position, band, and time coordinates of the
two particles, respectively, interchanging the two particles can be considered
as a combined exchange of all individual degrees of freedom. The extension
of the Pauli principle then requires the combined action

SPOT Fσ1σ2,rrr1rrr2,o1o2(t1, t2) =−Fσ1σ2,rrr1rrr2,o1o2(t1, t2), (6.3)

which can be symbolically captured by the expression SPOT = −1. Con-
sidering that the anomalous Green’s function can be even or odd under each
individual parity operation, there are in total eight combinations that satisfy
Eq. (6.3) [15], which are listed in Table 6.1. The first two classes include the
cases of single band spin singlet even parity and spin triplet odd parity pairing,
respectively, that were already discussed in Sec. 3.1. The four classes 5−8 that
pick up a minus sign under the time exchange operation T ,

T Fσ1σ2,rrr1rrr2,o1o2(t1, t2) =−Fσ1σ2,rrr1rrr2,o1o2(t2, t1), (6.4)

are called odd-frequency (odd-ω) pairing. This constraint immediately re-
quires that the anomalous Green’s function vanishes at equal times t1 = t2.

The nomenclature becomes clearer, if the superconductor described by the
anomalous Green’s function only depends on the relative position and time
coordinates

rrr = rrr1 − rrr2 and t = t1 − t2, (6.5)

and can therefore be Fourier transformed in both coordinates to obtain the
frequency dependent anomalous Green’s function

Fσ1σ2,kkk,o1o2(ω) =
∫ ∞

−∞
drrre−ikkk·rrr

∫ ∞

−∞
dte−iωtFσ1σ2,rrr,o1o2(t). (6.6)

The Pauli principle at equal times t1 = t2 then corresponds to t = 0, dictating∫ ∞

−∞
dωFσ1σ2,kkk,o1o2(ω) =−

∫ ∞

−∞
dωFσ2σ1,−kkk,o2o1(ω). (6.7)
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This equation is satisfied by either even-frequency correlations obeying

Fσ1σ2,kkk,o1o2(ω) =−Fσ2σ1,−kkk,o2o1(ω) (6.8)

or by odd-frequency pairing transforming as

Fσ1σ2,kkk,o1o2(ω) =−Fσ2σ1,−kkk,o2o1(−ω). (6.9)

From the definition of the Fourier transform in Eq. (6.6) it is clear that an
anomalous Green’s function that is odd under the exchange of time T is also
odd under the inversion of frequency, motivating the nomenclature. Instead
of working with real frequencies, the anomalous Green’s functions can be
obtained in Matsubara representation, as well. The connection between the
two is then made via analytical continuation. It can then be shown that the
constraint in Eq. (6.7) yields a similar restriction for the Matsubara Green’s
functions [19],

Fσ1σ2,o1o2(kkk, iω) =−Fσ2σ1,o2o1(−kkk,−iω), (6.10)

where iω are the imaginary Matsubara frequencies.

6.2 Odd-frequency pairing in multiorbital
superconductors

Even though odd-frequency superconductivity was first discussed in the con-
text of He3 [13] and later in terms of an odd-frequency order parameter [123,
124, 125], odd-frequency anomalous Green’s functions appear ubiquitously in
multiorbital systems described by standard BCS Hamiltonians. This can be
illustrated by a simple two-band model [15, 16]

HMF =
1
2 ∑

kkk
ΨΨΨ†

kkk

(
ĥ0(kkk) Δ̂(kkk)
Δ̂†(kkk) −ĥ∗0(−kkk)

)
ΨΨΨkkk, (6.11)

with the Nambu spinor ΨΨΨkkk =
(

ψψψkkk,ψψψ
†
−kkk

)T
, where ψψψkkk =

(
ckkk1↑,ckkk1↓,ckkk2↑,ckkk2↓

)T ,
as defined in Sec. 3.2. The normal state and gap function are given by

ĥ0(kkk) =
(

ξ1(kkk) Γ
Γ∗ ξ2(kkk)

)
⊗ σ̂0 and Δ̂(kkk) =

(
Δ1(kkk) 0

0 Δ2(kkk)

)
⊗ iσ̂y,

(6.12)

respectively. Here, ξi(kkk) is the dispersion of band i, Γ describes a band hy-
bridization and Δi(kkk) is a (spin singlet) superconducting order parameter in
band i. ξ and Γ can also be considered in terms of an orbital basis, describing
intra- and interorbital processes, respectively.
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The anomalous Green’s functions containing the information about even
and odd-frequency pairing can be obtained from the equation of motion

(
iω − ĥ0(kkk) −Δ̂(kkk)
−Δ̂†(kkk) iω + ĥ∗0(−kkk)

)
·
(

Ĝ(kkk, iω) F̂(kkk, iω)
ˆ̄F(kkk, iω) ˆ̄G(kkk, iω)

)
= �, (6.13)

where Ĝ(kkk, iω) and F̂(kkk, iω) are the normal and anomalous Matsubara Green’s
functions, respectively, and a bar marks the corresponding hole Green’s func-
tion. Assuming an inversion symmetric dispersion, ξi(−kkk)= ξi(kkk), and Γ∈�,
the anomalous Green’s function is given by

F̂(iω) =
1

D [kkk,(iω)2]
iσ̂y⊗(

Δ1
(
(iω)2 −E2

2
)
−Δ2Γ2 Γ(−iω(Δ1 −Δ2)+Δ1ξ2 +Δ2ξ1)

Γ(iω(Δ1 −Δ2)+Δ1ξ2 +Δ2ξ1) Δ2
(
(iω)2 −E2

1
)
−Δ1Γ2

)
.

(6.14)

The denominator D
[
(iω)2

]
is an even polynomial in the Matsubara frequen-

cies, Ei =
√

ξ 2
i +Δ2

i is the quasiparticle dispersion, and all momentum de-
pendencies have been suppressed for legibility. While the intraband pairing
in F̂(iω) is proportional to (iω)2 and (iω)0 and therefore completely even in
frequency, the interband pairing contains the odd-frequency term [15, 16]

F̂odd(kkk, iω) =
iω

D(kkk,(iω)2)
Γ(Δ1(kkk)−Δ2(kkk))iτ̂y ⊗ iσ̂y, (6.15)

belonging to class 7 in Tab. 6.1. This simple two-band model thus gives rise
to odd-frequency pairing as long as there is a finite interband hybridization Γ
and a difference between the two superconducting gaps Δ1 �= Δ2. Relaxing
the condition on the interband hybridization and allowing complex terms Γ =
|Γ|eiφ , the odd-frequency pairing term appears even more generically [21, 16].

A more rigorous result signaling the presence of odd-frequency pairing in
multiorbital superconductors, that generalizes the results of the simple two-
band model, can be obtained from the generic multiorbital Hamiltonian

HMF =
1
2 ∑

kkk
ΨΨΨ†

kkk

(
ĥ0(kkk) Δ̂(kkk)
Δ̂†(kkk) −ĥ∗0(−kkk)

)
ΨΨΨkkk, (6.16)

where now the multiorbital Nambu spinor ΨΨΨkkk =
(

ψψψkkk,ψψψ
†
−kkk

)T
includes a num-

ber of orbitals n, ψψψkkk =
(
ckkk1↑,ckkk1↓, . . . ,ckkkn↑,ckkkn↓

)T , and the normal state and
gap function contain arbitrary intra- and interorbital terms. Generalizing the
equations of motion in Eq. (6.13), the anomalous Green’s function can be ob-
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tained from [126]

F̂(iω) =
((

iω − ĥ0(kkk)
)
− Δ̂(kkk)

(
iω + ĥ∗0(−kkk)

)−1 Δ̂(kkk)†
)−1

×

Δ̂
(
kkk)(iω + ĥ∗0(−kkk)

)−1
. (6.17)

The anomalous Green’s function will then generically contain several even-
and odd-frequency terms. Linearizing the right hand side in terms of Δ̂, the
even- and odd-frequency pair amplitudes are given by [16]

F̂even(iω) =−
(
ω2 + ĥ0(kkk)2)−1×([

ĥ0(kkk), Δ̂(kkk)
]∗

ĥ∗0(−kkk)
(
ω2 + ĥ∗0(−kkk)2)−1 − Δ̂(kkk)

)
, (6.18)

F̂odd(iω) = iω
(
ω2 + ĥ0(kkk)2)−1 [

ĥ0(kkk), Δ̂(kkk)
]∗ (ω2 + ĥ∗0(−kkk)2)−1

, (6.19)

where
[
ĥ0(kkk), Δ̂(kkk)

]∗
has been defined as the superconducting fitness F̂Ciσ̂y in

Sec. 3.2. Clearly, the odd-frequency component vanishes, when F̂C vanishes.
Odd-frequency pairing thus appears generally in multiorbital superconductors
as soon as there is a finite interband pairing in the band basis, as signaled
by a finite superconducting fitness, and is therefore connected to a suppres-
sion of the critical temperature [16]. Nevertheless, a superconducting order
parameter giving rise to finite odd-frequency pairing can be the most stable
solution, depending on the specific interaction and orbital structure of a cer-
tain material. Correspondingly, finite odd-frequency pairing has been found
in Sr2RuO4 [127], UPt3 [126], and buckled honeycomb materials, such as Sil-
icene [15, 128].

6.3 Application to doped Bi2Se3
In Paper IV, we analyze the odd-frequency pairing in the prominent multior-
bital superconductor, MxBi2Se3, where the dopant M can be Cu, Sr, or Nb.
The undoped compound Bi2Se3 is a 3D topological insulator [129, 130] made
up of Se-Bi-Se-Bi-Se quintuple layers that are weakly van der Waals cou-
pled. The quintuple layers feature a three fold rotation symmetry about the
stacking direction, and the full symmetry is described by the point group D3d .
Bulk superconductivity with a critical temperature of about 3 K was first dis-
covered upon doping with Cu [34]. Later studies revealed superconductivity
with similar critical temperatures also for doping with Sr and Nb [131, 132].
A symmetry classification of possible kkk-independent superconducting pairing
states yields a number of odd-parity order parameters that could be realized
even with simple pair interactions due to the nontrivial topology of the nor-
mal state [35]. One particular possibility is the pairing transforming according
to the two-dimensional Eu irreducible representation, often labeled (Δ4x,Δ4x),
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which consists of unconventional interorbital spin triplet pairing. All odd-
parity pairing states would give rise to topological superconductivity due to
the structure of the normal state Fermi surface [35], as discussed in Sec. 5.4.
Experimental support for the Δ4 pairing state has come from the appearance of
nematic superconductivity in doped Bi2Se3 [36, 133, 134, 135, 37]. The rota-
tional symmetry breaking of the order parameter manifested in strong two-fold
symmetric behavior as a function of in-plane angle of, among others, specific
heat, Knight shift, or magnetoresistance, can be explained by the formation of
a real linear combination of the two basis functions of the two-dimensional ir-
reducible representation [101, 136]. Doped Bi2Se3 therefore represents an ex-
perimentally verified multiorbital superconductor with unconventional interor-
bital spin triplet pairing. Based on the discussion in Sec. 6.2, odd-frequency
pairing should naturally appear in the anomalous Green’s function.

The normal state Hamiltonian of doped Bi2Se3 can be based on the un-
doped compound, as ARPES measurements show that the band structure of
Bi2Se3 remains unchanged under doping [130, 137] and features conduction
and valence band separated by a band gap of around 0.3eV. The bands are
formed by two p orbitals of Se (with intermixing of Bi p orbitals) at the top
and bottom of the quintuple layer [129]. This allows to introduce a two orbital
continuum model describing the bands near the Γ point [35, 138, 139]

H0 = ∑
kkk

ψψψ†
kkkĥ0(kkk)ψψψkkk, (6.20)

with

ĥ0(kkk) = mσ̂x + v(kxŝy − kyŝx)⊗ σ̂z + vzkzσ̂y −μ

=

⎛
⎜⎜⎝

−μ −i(kx − iky)v m− ikzvz 0
i(kx − iky)v −μ 0 m− ikzvz
m+ ikzvz 0 −μ i(kx − iky)v

0 m+ ikzvz −i(kx + iky)v −μ

⎞
⎟⎟⎠ (6.21)

in the basis ψψψkkk =
(
ckkk1↑,ckkk1↓,ckkk2↑,ckkk2↓

)T . Here, ckkkiσ annihilates an electron in
orbital i of spin σ . The Pauli matrices σ̂i and ŝi act in orbital and spin spaces,
respectively, v and vz denote the in- and out-of-plane Fermi velocities of the
electrons, respectively, m is an interorbital hybridization, and μ is the chemical
potential. Diagonalizing the Hamiltonian yields a gapped 3D Dirac dispersion
of the form ε0

± = ±
√

m2 + v2(k2
x + k2

y)+ v2
z k2

z − μ . The two-fold degenerate
valence and conductions bands are separated by a band gap of 2m, such that
the doping regime relevant for superconductivity is given by μ ≥ m [137].

To reproduce the experimentally verified nematic superconductivity, the
pairing matrix Δ̂ is made up of a linear combination Δ̂ = AxΔ̂4x +AyΔ̂4y of
the kkk-independent basis functions of the aforementioned two-dimensional Eu
irreducible representation of the D3d point group, (Δ̂4x, Δ̂4y) = Δ(s0⊗ iσy,sz⊗
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iσy) [35, 101]. The complex coefficients Ax/y allow to form a nematic super-
conducting state for the choice of real coefficients (Ax,Ay) = (cos(θ),sin(θ)),
where θ determines the angle of the headless nematic vector, or a chiral super-
conducting state for the coefficients (Ax,Ay) =

(
1/
√

2, i/
√

2
)

. The full BdG

Hamiltonian is then written in terms of the Nambu spinor ΨΨΨkkk =
(

ψψψkkk,ψψψ
†
−kkk

)T

as

H = ΨΨΨ†
kkk

(
ĥ0(kkk) Δ̂

Δ̂† −ĥ∗0(−kkk)

)
ΨΨΨ†

kkk, (6.22)

where

Δ̂ =

⎛
⎜⎜⎝

0 0 (iAx +Ay)Δ 0
0 0 0 (−iAx +Ay)Δ

(−iAx −Ay)Δ 0 0 0
0 (iAx −Ay)Δ 0 0

⎞
⎟⎟⎠ . (6.23)

As described in Sec. 6.2, the even- and odd-frequency pair amplitudes are
determined by calculating the Matsubara anomalous Green’s function from
Eq. (6.13). Assuming a nematic pairing state Ax,Ay ∈� yields the following
odd- and even-frequency parts F̂(iω) = F̂o(iω)+ F̂e(iω)

F̂o(iω) =
2ωΔ0

D−D+

⎛
⎜⎜⎝

A−m 0 0 −A× k
0 −A+m A× k 0
0 −A× k −A−m 0

A× k 0 0 A+m

⎞
⎟⎟⎠ , (6.24)

and

F̂e(iω) =
2Δ0

D−D+
×⎛

⎜⎜⎝
A−kzμ mA · k+ kzA× k i

2(A−γ−−A+k2
−) μA · k

mA · k− kzA× k −A+kzμ μA · k − i
2(A+γ−−A−k2

+)
− i

2(A−γ+−A+k2
−) μA · k A−kzμ mA · k− kzA× k

μA · k i
2(A+γ+−A−k2

+) mA · k+ kzA× k −A+kzμ

⎞
⎟⎟⎠ ,

(6.25)

where kx,y ≡ vkx,y, kz ≡ vzkz, γ±=
(
(m± ikz)

2 −μ2 −ω2 −Δ2
)
, A±=Ax± iAy,

A× k = Axky − Aykx, and A · k = Axkx + Ayky. The denominator is even in
frequency and given by D± =

(
(iω)2 −ξ 2

±
)
, with the eigenvalues of the BdG

Hamiltonian ξ± =
√

ε2 +Δ2 +μ2 ±
√

Δ2(m2 +(A× k)2)+ ε2μ2. To also ob-
tain expressions for chiral pairing, the anomalous Green’s function has to be
determined perturbatively. Treating the superconducting order parameter Δ
as a small quantity, the anomalous Green’s function can be expanded to first
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# Pairing
(

F̂(1)/D
)

Spin Parity Orbital Frequency

1 2iA±mωΔ ↑↑,↓↓ s intra odd

2 2i(A× k)vωΔ ↑↓ − ↓↑ px,y even-inter odd

3 2A±kzvzμΔ ↑↑,↓↓ pz intra even

4 2(A · k)vmΔ ↑↓+ ↓↑ px,y intra even

5 2(A× k)vkzvzΔ ↑↓ − ↓↑ d intra even

6 iA±(m2 −μ2 +ω2)Δ ↑↑,↓↓ s odd-inter even

7 iA±k2
z v2

z Δ ↑↑,↓↓ d odd-inter even

8 2A±kzvzΔ ↑↑,↓↓ pz even-inter even

9 2(A · k)vμΔ ↑↓+ ↓↑ px,y even-inter even

Table 6.2. Symmetry classification of the full pairing correlations in F̂(1) for general
(Ax,Ay) according to spin, parity, orbital, and frequency, using the shorthand nota-
tions A± = Ax ± iAy, A · k = Axkx +Ayky, A× k = Axky −Aykx, and D = ∏i((iω)2 −
(ε0

i )
2), with ε0

i the eigenvalues of ĥ0. Table adapted from Paper IV.

order in Δ

F̂(1) = Ĝ0Δ̂ ˆ̄G0, (6.26)

where Ĝ0 is the Green’s functions of the normal state Hamiltonian ĥ0. The
structure of F̂(1) is identical to that of Eqs. 6.24 and 6.25, with the replace-
ments γ± →

(
(m± ikz)

2 −μ2 −ω2
)

and ξ± → ε0
±.

All the pairing correlations contained in F̂(1) then appear for both chiral
and nematic pairing and are summarized in Tab. 6.2. The table also lists the
classification according to spin, parity, orbital, and frequency. In total, there
are eight different terms, one of which shares the same spin triplet, s-wave,
interorbital, even-frequency symmetry as the order parameter (# 6 in Tab. 6.2).
The only other s-wave pairing is of odd-frequency: A spin triplet, s-wave, in-
traorbital, odd-frequency pairing proportional to the interorbital hybridization
m, labeled by # 1 in Tab. 6.2. Odd-frequency pairing therefore allows for a
rather conventional s-wave intraorbital pairing, even though the superconduct-
ing order parameter is of unconventional interorbital type. The second odd-
frequency pairing identified in F̂o, # 2 in Tab. 6.2, is a spin singlet, p-wave,
even interorbital, odd-frequency pairing. Comparing odd- and even-frequency
pairing amplitudes shows that odd-frequency pairing dominates over even-
frequency pairing of the same parity for a large range of frequencies. In the
relevant regime of bulk doping, i.e. μ > |m|, the s-wave odd-frequency pairing
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Figure 6.1. Comparison between the absolute value |F̂(ω)| integrated over kkk as a
function of frequency for odd- and even-frequency pairing in the nematic state for a)
s-wave and b) in-plane p-wave pairing. The shaded areas mark the frequency windows
at which the odd-frequency exceeds the even-frequency pairing obtained analytically
to first order. The nematic angle is set to π/6. Figure taken from Paper IV.

is larger than the even-frequency s-wave pairing for m+ μ < |ω| < −m+ μ .
Performing a similar comparison of the odd- and even-frequency in plane p-
wave (px,y) pairing correlations (# 2, 4, and 9 in Tab. 6.2) , the odd-frequency
term exceeds the even-frequency pair amplitudes for |ω| > m, and |ω| > μ ,
respectively. Figure 6.1 shows numerical data to infinite order in Δ supporting
the perturbative analytical results. Using parameters obtained from fitting to
DFT and STM [138, 140], the pair amplitudes can be integrated over kkk using
the usual replacement iω → ω ± i0+. The p-wave pairing correlations are
multiplied by the corresponding form factors to give a finite value after in-
tegration. The frequency ranges in which the odd-frequency pair amplitudes
dominate the respective even-frequency ones are clearly visible and in good
agreement with the analytical results marked by the shading in Fig. 6.1 a) and
b).

In summary, the multiorbital superconductivity in doped Bi2Se3 is charac-
terized by dominant odd-frequency pairing. The odd-frequency pairing allows
for s-wave, intraorbital pairing, even though the superconducting order param-
eter unconventionally forms interorbital Cooper pairs.
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7. Meissner effect

Given the appearance of large odd-frequency pairing correlations in doped
Bi2Se3, the question for an experimental signature arises. A commonly pro-
posed detectable signature of odd-frequency pairing is a paramagnetic Meiss-
ner effect, which would be detrimental to the superconducting order by attract-
ing instead of expelling external magnetic fields. In this chapter, I present how
the Meissner response of the odd-frequency pairing in doped Bi2Se3 is actually
diamagnetic, opening a possibility for designing stable odd-frequency super-
conductors. I begin by reviewing the phenomenological picture of the Meiss-
ner effect, based on the London equation. After that, I introduce the micro-
scopic approach based on calculating response functions in linear response and
recapitulate some of the evidence for a paramagnetic odd-frequency Meissner
response. Finally, I discuss the complications arising for doped Bi2Se3 and
summarize the results obtained in Paper IV.

7.1 Phenomenological equations
The Meissner effect is one of the core properties of a superconductor. It de-
scribes the suppression of an external magnetic field in the bulk of a supercon-
ductor. A phenomenological description of the Meissner effect can be derived
from the London equation,

jjj =−nse2

m
AAA, (7.1)

which relates the superconducting current density jjj to an external vector po-
tential AAA. Here, ns is the superconducting particle density, m and e are the
mass and charge of the electron, respectively. Applying a curl and using the
definition of the vector potential ∇∇∇×AAA = BBB yields ∇∇∇× jjj = −nse2

m BBB, which
together with Ampere’s law ∇∇∇×BBB = μ0 jjj can be used to derive a differential
equation for the magnetic field in the bulk of the superconductor

∇∇∇2BBB =
1

λ 2 BBB. (7.2)

The constant λ =
√

m
nse2μ0

is called the London penetration depth. For a ge-

ometry where the superconductor has a boundary at z = 0 and is infinite in all
other directions, Eq. (7.2) has the solution

BBB(z) = BBB0e−
z
λ , (7.3)
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which describes an exponentially decaying field inside the superconductor,
where the London penetration depth sets the characteristic length scale of the
decay. An external magnetic field therefore only penetrates the superconductor
along the surface, but is expelled from the bulk. Essential for the expulsion is
the minus sign in front of the positive coefficient nse2

m in the London equation
Eq. (7.1).

7.2 Microscopic theory
In a microscopic approach, the London equation is replaced by [141]

jμ(qqq,ωe) =−Kμν(qqq,ωe)Aν(qqq,ωe), (7.4)

where the response of the current jjj to the external vector potential AAA(qqq,ωe)
with wave vector qqq and angular frequency ωe is described by the response
function Kμν(qqq,ωe). The response function is not guaranteed to be positive,
opening the possibility for a paramagnetic Meissner effect, which attracts a
magnetic field, for the case that K < 0. The traditional Meissner effect, as
derived from the London equation and recovered for K > 0, is then called
diamagnetic Meissner effect to highlight the suppression of the magnetic field.

A paramagnetic Meissner effect is considered a possible experimental ev-
idence for odd-frequency superconductivity [19]. Quasiclassical calculations
have predicted a paramagnetic Meissner response for proximity induced odd-
frequency pairing in heterostructures [17, 18, 19], which has even been exper-
imentally observed in Nb/Ho/Au heterostructures [20] and recently in Bi2Se3
in proximity to Nb [142]. A paramagnetic Meissner response has also been
predicted for odd-frequency pairing arising in a general multiband supercon-
ductor [21]. The appearance of a paramagnetic Meissner response leads to
questions of thermodynamic stability of an odd-frequency superconducting
order [125, 143, 19] and would also prove detrimental for the even-frequency
order inducing odd-frequency pairing in multiorbital superconductors [21, 16].

The response function determining the Meissner response can be calculated
in linear response theory by treating the vector potential as a perturbation [141,
144],

Kμν(qqq,ωe) = 〈 jP
μ(qqq,ωe) jP

ν (−qqq,ωe)〉+ 〈 jD
μν(qqq,ωe)〉 , (7.5)

where all expectation values are taken with respect to the unperturbed Hamil-
tonian. The operators jP and jD are the second quantized paramagnetic and
diamagnetic current operators, which are obtained from including the vector
potential in the Hamiltonian through the Peierl’s substitution kkk → kkk−AAA. After
expanding to second order in AAA and differentiating with respect to the vector
potential, the constant and linear terms in AAA can be identified with the param-
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agnetic and diamagnetic current, respectively [141, 144]:

−∂H0(AAA)
∂Aμ

= jP
μ + jD

μνAν +O(A2). (7.6)

The Meissner effect is the response to a static, uniform field, which is ex-
pressed through the limit limqqq→0 limωe→0 Kμν(qqq,ωe), where the order of the
limits is of importance [141]. The expectation values of the second quantized
operators can be rewritten with the help of the Green’s functions and the first
quantized current operators as

Kμν = lim
qqq→0

lim
ωe→0

Kμν(qqq,ωe) = T ∑
kkk,iω

Tr[Ĝ ĵP
μĜ ĵP

ν + F̂ ˆ̄jP
μ

ˆ̄F ĵP
ν ]+T ∑

kkk,iω
Tr[Ĝ ĵD

μ ],

(7.7)

where the frequency and momentum dependence are suppressed for legibility.
In the limit of Δ → 0, the diamagnetic and paramagnetic contributions cancel
and the Meissner response disappears, as can be demonstrated for a simple
quadratic band h0(k) = k2 − μ . The anomalous Green’s function vanishes in
the normal state and the normal Green’s function reduces to

G = G0 = (iω −h0(k))
−1 =

1
iω − k2 +μ

. (7.8)

The currents are determined from

jμ =−∂h0(k−A)
∂Aμ

= 2k−2A, (7.9)

such that jP = 2k and jD =−2. The Meissner kernel then reduces to

Kμν = T ∑
kkk,iω

4k2

(iω − k2 +μ)2 −T ∑
kkk,iω

2
iω − k2 +μ

. (7.10)

Performing the Matsubara summation and taking the zero temperature limit
T → 0 yields

Kμν =
∫ ∞

−∞
dk 4k2δ (k2 −μ)−2

∫ ∞

−∞
dk
(
1−θ(k2 −μ)

)
, (7.11)

where δ (ε) is the Dirac-Delta function and θ(ε) is the Heaviside function.
The Delta function can be split in two and the Heaviside function can be used
to limit the integration boundaries, giving

Kμν =
∫ ∞

−∞
dk 4k2

(
δ (k−√μ)

2
√μ

+
δ (k+√μ)

2
√μ

)
−2

∫ √μ

−√μ
dk

= 4
√

μ −4
√

μ = 0, (7.12)

and the Meissner effect indeed vanishes in the normal state.
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7.3 Meissner effect in doped Bi2Se3
In the case of Bi2Se3 discussed in Paper IV, the Hamiltonian presented in
Sec. 6.3 is only linear in kkk. Introducing the vector potential thus also does
not yield a term quadratic in AAA. This means that the current operator for the
Hamiltonian, given by

ĵμ =−δ ĥ0(AAA)
δAμ

, (7.13)

ĵx =− ˆ̄j∗x = vsy ⊗σz ĵy =− ˆ̄j∗y =−vsx ⊗σz ĵz =− ˆ̄j∗z = vzσy, (7.14)

only consists of a paramagnetic current. The vanishing diamagnetic current
operator means that the Meissner kernel then reduces to

Kμν = lim
qqq→0

lim
ωe→0

Kμν(qqq,ωe) = T ∑
kkk,iω

Tr[Ĝ ĵP
μĜ ĵP

ν + F̂ ˆ̄jP
μ

ˆ̄F ĵP
ν ], (7.15)

which does not vanish in the limit Δ → 0, giving rise to a non-physical non-
zero Meissner response in the normal state. Furthermore, due to the linear
dispersion, the first term in Eq. (7.15) even diverges at high energies. Both
problems are caused by the unphysical assumption of a linear spectrum at
higher energies, as actual materials will have a finite bandwidth with terms of
higher powers in kkk. However, introducing a regularization through subtracting
the normal state response Tr[Ĝ0 ĵμĜ0 ĵν ] circumvents these issues [145, 146]
and yields the same results as adding a small k2 term to allow cancellation
from the diamagnetic current [146]. In our case, we checked that the difference
Tr[Ĝ ĵμĜ ĵν ]−Tr[Ĝ0 ĵμĜ0 ĵν ] numerically vanishes for the parameters used in
our model, even if Δ is small, but non-zero. The remaining superconducting
contribution to the Meissner kernel is then given by

K(S)
μν = T ∑

kkk,ωn

Tr[F̂ ˆ̄jμ
ˆ̄F ĵν ], (7.16)

which contains the full influence from the even- and odd-frequency correla-
tions in the anomalous Green’s function. Recalling the splitting F̂ = F̂e + F̂o,
the Meissner kernel can be separated into even and odd-frequency contribu-
tions

K(S)
μν = Ke

μν +Ko
μν = T ∑

kkk,ωn

Tr[F̂e ˆ̄jμ
ˆ̄Fe ĵν ]+T ∑

kkk,ωn

Tr[F̂o ˆ̄jμ
ˆ̄Fo ĵν ], (7.17)

where the mixed terms F̂e ˆ̄jμ
ˆ̄Fo ĵμ and F̂o ˆ̄jμ

ˆ̄Fe ĵμ both are traceless and there-
fore do not contribute. Assuming nematic pairing, the expressions for the
anomalous Green’s functions Eqs. (6.24) and (6.24) and the paramagnetic cur-
rent operators in Eq. (7.14) can be used to derive the following odd-frequency
contribution the the Meissner kernel

Ko
xx = T ∑

kkk,ωn

8Δ2
0ω2

D2
−D2

+

(
2(A× k)2 +(A2

++A2
−)m

2) , (7.18)
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making use of the shorthand notations introduced in Sec. 6.3. The even-frequency
contributions are very lengthy expressions, so that I will not reproduce them
here. Importantly, all the Meissner kernels for the nematic pairing follow the
general form

K = T ∑
kkk,ωn

a+b(iω)2 + c(iω)4

(iω −ξ+)2(iω +ξ+)2(iω −ξ−)2(iω +ξ−)2 , (7.19)

where a, b, and c are different frequency independent coefficients depending
on the parameters of the model, and therefore functions of kkk. The energies ξ±
are the eigenvalues of the full BdG Hamiltonian as expressed in Sec. 6.3. The
product of two anomalous Green’s functions in the Meissner kernel guarantees
that the expressions do not contain odd powers of iω , but the coefficient a is
necessarily zero for the odd-frequency combination. The kernel can be split
into intra- and interband processes as

K = Kintra +Kinter, (7.20)

Kintra = T ∑
kkk,ωn

{
α(

(iω)2 −ξ 2
+

)2 +
β(

(iω)2 −ξ 2
−
)2

}
, (7.21)

Kinter = T ∑
kkk,ωn

{
γ(

(iω)2 −ξ 2
+

)(
(iω)2 −ξ 2

−
)
}
. (7.22)

The new coefficients α ,β , and γ are written in terms of a, b, c, and the band
energies as

α =
a+bξ 2

++ cξ 4
+

(ξ 2
+−ξ 2

−)
2 , β =

a+bξ 2
−+ cξ 4

−
(ξ 2

+−ξ 2
−)

2 , (7.23)

γ =−2a+b(ξ 2
++ξ 2

−)+2c(ξ 2
+ξ 2

−)

(ξ 2
+−ξ 2

−)
2 . (7.24)

The Matsubara summation of the intra and interband kernels can be performed
using the identities

T ∑
iω

1

((iω)2 −ξ 2)2 =
1

2ξ 2

(
C(ξ )+n′(ξ )

)
, (7.25)

T ∑
iω

1(
(iω)2 −ξ 2

1

)(
(iω)2 −ξ 2

2

) =−C(ξ1)−C(ξ2)

ξ 2
1 −ξ 2

2
, (7.26)

with the Fermi-Dirac distribution n(ξ ), its derivative n′(ξ ), and the combi-
nation C(ξ ) = (n(−ξ )−n(ξ ))/2ξ . At finite temperature, these are given by
n(ξ ) = 1

2

(
1− tanh

(
βξ
2

))
, n′(ξ ) =−β

4 sech
(

βξ
2

)
, and C(ξ ) = 1

2ξ tanh
(

βξ
2

)
.

The Meissner response from intra and interband processes is then determined
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from the kkk integrals

Kintra =
∫

dkkk

{
a+bξ 2

++ cξ 4
+

2
(
ξ 2
+−ξ 2

−
)2 ξ 2

+

(
C (ξ+)+n′ (ξ+)

)

+
a+bξ 2

−+ cξ 4
−

2
(
ξ 2
+−ξ 2

−
)2 ξ 2

−

(
C (ξ−)+n′ (ξ−)

)}
(7.27)

Kinter =
∫

dkkk

{
2a+b

(
ξ 2
++ξ 2

−
)
+2c

(
ξ 2
+ξ 2

−
)

(
ξ 2
+−ξ 2

−
)3 (C (ξ+)−C (ξ−))

}
. (7.28)

The resulting Meissner response after integration for odd- and even-frequency
pairing in the nematic state is presented in panels a) and b) of Figure 7.1. The
total Meissner response is dominated by the even-frequency pairing and dia-
magnetic. The much smaller odd-frequency contribution is, however, not para-
magnetic as expected, but diamagnetic, too. This is the result of a cancellation
of the intra- and interband contributions, whose magnitude close to the onset
of the conduction band and sign are displayed in Fig. 7.1 c) and d), respec-
tively. Panel d) shows that the intraband processes contribute as expected,
with a diamagnetic even-frequency and a paramagnetic odd-frequency contri-
bution. The interband processes, however, come with the opposite sign, such
that the total Meissner response is the result of a competition between intra-
and interband processes. The even-frequency pairing is dominated by the in-
traband contribution, as clearly visible in Fig. 7.1 c), which is driven by the
frequency independent coefficient a. For the odd-frequency pairing, intra- and
interband processes are of the same order of magnitude, yielding the reduced,
but diamagnetic odd-frequency Meissner response shown in Fig. 7.1 b).

In summary, the odd-frequency pairing in doped Bi2Se3 gives rise to a re-
duced, but diamagnetic Meissner response. Even though the contribution is
small and therefore not likely to be experimentally detectable, the competi-
tion between intra- and interband processes could in principle be used to tune
or discover other odd-frequency materials with a stable diamagnetic Meissner
response.
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Figure 7.1. Even- and odd-frequency contributions to the Meissner effect in the ne-
matic state as a function of chemical potential. a) and b) show the K(S)

xx , K(S)
yy , and K(S)

zz
Meissner responses from even- and odd-frequency pairing, respectively. The even-
frequency pairing gives rise to the dominant diamagnetic Meissner response, while the
odd-frequency contributions are smaller, but also diamagnetic for most parameters. c)
The intra- and interband processes for even- and odd-frequency contributions near
the onset of the conduction band. Intraband processes dominate the even-frequency
response, while intra- and interband processes are of equal order of magnitude for odd-
frequency pairing. d) Overview over the different signs of even- and odd-frequency
intra- and interband contributions to K(S)

xx displayed in c). The signs of the intraband
processes are as expected, but opposite to those of the interband processes. The ne-
matic angle is set to π/6 throughout. Figure reproduced from Paper IV.
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8. Conclusion and Outlook

This thesis contributes to the study of superconductivity in multiorbital materi-
als by studying two exemplary systems. Investigating superconductivity in the
Kitaev materials, which made up the first part of the thesis, we try to answer
two main questions: What is the influence of the 3D lattice structures in the
harmonic honeycomb lattices? And what role does the off-diagonal exchange
play for the arising order parameters? The first question can be answered from
the symmetry analysis of the spin singlet superconductivity originating from
the simplified interactions we used in Paper I. The fact that the bond order
parameters split into groups, which transform independently under the sym-
metries of the lattice, allows for sign changes between these groups of bonds
even in the trivial irreducible representation. This leads to the appearance of
nodal superconducting phases. The topological protection of these nodal states
subsequently gives rise to surface excitations, such as flat bands or Fermi arcs.
The off-diagonal exchange, in turn, enriches the spin triplet pairing appearing
in the Kitaev materials. On the 2D honeycomb lattice, a simple change of the
sign of Γ discriminates between distinct superconducting states with different
symmetries. Negative values of the off-diagonal exchange, in particular, give
rise to chiral superconductivity at higher doping than previously observed for
the experimentally relevant ferromagnetic Kitaev interaction. They also sup-
port the formation of nematic superconductivity, which had previously only
been discussed in 3D systems. When combining the two effects by studying
the extended Kitaev-Heisenberg model on the hyperhoneycomb lattice, the
role of the lattice structure is more pronounced and again gives rise to topolog-
ically protected nodal phases. The off-diagonal exchange is not as influential
as in the 2D case, although it drives a competition between different super-
conducting states in the absence of spin-orbit coupling by apparently lifting
an accidental degeneracy.

Nevertheless, there are still several open questions for future research. First
of all, a proper symmetry classification of the basis functions for spin triplet
superconductivity in the presence of spin-orbit coupling is needed to fully
understand the pairing obtained on the hyperhoneycomb lattice. The results
could then also give possible trends for spin triplet pairing on the whole har-
monic honeycomb series, similar to the spin singlet case. Another future re-
search direction would be to study the competition between chiral and nematic
superconductivity observed on the honeycomb lattice. The question why ne-
matic superconductivity is stabilized at all is not fully understood and the situ-
ation seems to be rather intricate in the case of the extended Kitaev-Heisenberg
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interaction. While the connection to the topological transition appears to be
due to a fine-tuning of the parameters, the phase diagram in Paper II already
reveals that the competition can be driven by doping and interaction strength.
There are also hints that temperature could also lead to a transition between
the two different topological states. Finally, it might be worthwhile to analyze
the interplay of the superconducting states with other ordered states, such as
the complex magnetic orderings observed in experiments, and the connection
to the spin liquid phases present in certain limits of the model. This might
require using more involved slave-boson approaches and going beyond mean-
field theory [32, 69, 70].

Our work on the doped topological insulator Bi2Se3 summarized in Part II
of this thesis reveals the importance of odd-frequency pairing for the already
intricate superconductivity emerging upon doping. The odd-frequency pair-
ing correlations are actually dominant in specific frequency ranges and are
therefore expected to influence the superconducting properties. Bi2Se3 is also
the first instance of an intraorbital odd-frequency pairing, which is possible
due to the proposed interorbital order parameter. Finally, our calculations of
the Meissner response show that the observed small, but diamagnetic odd-
frequency Meissner response actually stabilizes superconductivity. This also
implies that the assumption of a paramagnetic Meissner effect caused by odd-
frequency pairing needs to be revisited and cannot be considered as a unique
smoking gun for odd-frequency superconductivity in multiorbital supercon-
ductors.

To further clarify this situation, a first step would be to use a model beyond
the linear dispersion for Bi2Se3 to understand the role of the diamagnetic cur-
rent operator. Another question is whether the diamagnetic odd-frequency
Meissner response is specific for Bi2Se3 or if it can be extended to other mul-
tiorbital odd-frequency superconductors. In particular, what is the difference
to the generic multiband model that gives rise to a paramagnetic Meissner re-
sponse [21]? On more general terms, what is the connection between a detri-
mental paramagnetic Meissner effect and the superconducting fitness function
F̂C discussed in Sec. 3.2 [5] and can the superconducting fitness be used to
uncover trends in the Meissner response? Finally, the general search to find
clear signatures of odd-frequency pairing, both in doped Bi2Se3 and in general
multiorbital superconductors, remains a future challenge.

Altogether, the articles compiled and summarized in this thesis offer a
glimpse into the complexity of the superconducting states arising at the inter-
section of multiorbital, topological, and odd-frequency superconductivity. In
the Kitaev materials complex strong interactions yield superconducting orders
that break a variety of different symmetries and belong to a several distinct
topological classes. The multiorbital nature of superconductivity in Bi2Se3
leads to odd-frequency pairing with unexpected consequences on the Meiss-
ner response. Even though the underlying materials play an important role in
the observed diversity, it is still possible to draw generalizations beyond them.
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Overall, the study of topological superconductivity in multiorbital materials is
still in its beginning and many new discoveries are going to extend the research
field of superconductivity even further in the next one hundred years.
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