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Quantum Field Theory has been a dominating framework in elementary particle physics during
the last century. Within this framework, supersymmetric theories have attracted a lot of attention
due to their mathematical structure, simplicity and insight into the problems of unification,
dark matter and hierarchy. Even though the boundaries of our perturbative undestanding of
supersymmetric theories have been pushed far, there is generically no systematic way to obtain
exact results. Especially for strongly coupled theories, where perturbative techniques cannot
be applied, methods for exact computations are crucial. A powerful technique to obtain exact
results of partition functions and correlators of curtain protected operators is supersymmetric
localization. This thesis studies physical and geometrical properties of localization results in
different supersymmetric theories.

The first model considered is maximally supersymmetric Yang-Mills placed on a 7-
dimensional Sasaki-Einstein manifold. After redefining the fields to differential forms, the
cohomological complex is formed and a localization computation of the partition function
is performed using data from the moment map cone. This procedure and the factorization
properties reveal a strong structural dependence of the result on the geometry. A second part
discusses N=4 matter-multiplets in 3d. We identify BPS operators supported on a 1-dimensional
submanifold. Applying the localization formula, the partition function simplifies to a partition
function of a dual topological quantum mechanics. Lastly, we perform an equivariant twisting
on N=2 gauge theories with matter on 4-dimensional manifolds with a torus action. This is
achieved by a global field redefinition leading to differential forms or spinors that are defined
on a large class of manifolds. The resulting cohomological theory admits two kinds of fixed
points which are treated differently in a localization computation.

Keywords: Supersymmetry, Localization, Equivariant Cohomology, BPS Operators,
Topological Field Theory, Equivariant Twisting

Konstantina Polydorou, Department of Physics and Astronomy, Theoretical Physics, Box 516,
Uppsala University, SE-751 20 Uppsala, Sweden.

© Konstantina Polydorou 2020

ISSN 1651-6214
ISBN 978-91-513-1023-7
urn:nbn:se:uu:diva-421213 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-421213)



To my family





List of papers

This thesis is based on the following papers, which are referred to in the
text by their Roman numerals.

I K. Polydorou, A. Rocén and M. Zabzine, 7D supersymmetric
Yang-Mills on curved manifolds, JHEP 12 (2017) 152,
arXiv:1710.09653 [hep-th].

II R. Panerai, A. Pittelli, and K. Polydorou„ Topological Correlators
and Surface Defects from Equivariant Cohomology, JHEP 09
(2020) 185, arXiv:2006.06692 [hep-th].

III G. Festuccia, A. Gorantis, A. Pittelli, K. Polydorou, and L.
Ruggeri, Cohomological Localization of N = 2 Gauge Theories
with Matter, JHEP 09 (2020) 133, arXiv:2005.12944 [hep-th].

Reprints were made with permission from the publishers.





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Part I: Review of geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Symplectic and toric geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Contact geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Toric Sasaki-Einstein manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Equivariant cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Part II: Localization technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Finite dimensional integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Infinite dimensional integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Part III: N = 1 super Yang-Mills in 7d on Sasaki-Einstein manifolds 33

7 Instantons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1 4d case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 7d case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 Killing spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9 Localization in 7 dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1 Localization technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.2 S7 and factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Part IV: N=4 in 3d mapped to 1d TQM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10 SCFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.1 4d N = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.2 3d N = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

11 S2 × S1 Hypermultiplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

12 Partial localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
12.1 S2 × S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



Part V: N = 2 in 4d and equivariant twisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

13 Topological twisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.1 Review of topological field theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
13.2 Witten’s N = 2 twisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

14 Pestunization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
14.1 N = 2 supersymmetric theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Svensk sammanfattning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



1. Introduction

Quantum field theory has been an important framework in modern par-
ticle physics during the last century. It provides fundamental tools for
any theoretical physicist since it combines quantum mechanics, classical
field theory, and special relativity. Its most successful realization is the
so called Standard Model which is as yet the most accurate fundamen-
tal model of nature. An example is the prediction of the Higgs particle,
that was experimentally confirmed using the Large Hadron Collider at
CERN [1] 50 years after its existence was originally proposed in [2]. De-
spite the success of quantum field theory, it still poses serious challenges
on many fronts. There is a number of open problems such as the exis-
tence of a mass gap for Yang-Mills theory [3] or the luck of a rigorous
mathematical definition of path integrals, formally an infinite dimensional
integral.

Independently of the explicit model under consideration, there exist
two fundamentally different approaches for studying partition functions
or correlators. A widely used technique is perturbation theory, building
upon the idea of computing quantities order by order in a small parameter,
for example the coupling constant. Obviously, this approach is problem-
atic for strongly coupled theories, where the coupling constant is of order
one, preventing the perturbative expansion from converging.

On the other hand, the calculation of certain observables in some mod-
els can be performed exactly. Most often symmetry arguments have been
an important factor needed to obtain these results. One example is the
category of theories that possess conformal symmetry (CFT). Correla-
tion functions can be analytically or numerically bootstraped, see for ex-
ample [4]. The basic idea of Conformal Bootstrap is to use the confor-
mal symmetry of the theory to constrain the operator product expansion
(OPE) data, namely the anomalous dimensions and three point couplings.
In turn, this data can be used to reconstruct correlation functions, even
for theories lacking a Lagrangian formulation.

A different class of theories featuring exact results consists of theories
enhanced with supersymmetry. Supersymmetry was originally introduced
in [5, 6] in order to resolve problems in the Standard Model. One of
them is the hierarchy problem which is based on the guiding principle
of naturalness. The principle, formulated in [7], in short says that the
dimensionless ratio between physical constants appearing in a physical
theory should be of order one. Specifically, the 17 order of magnitude
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difference between the Higgs, which defines the weak scale, and the Planck
mass, the natural short-distance scale, would be considered unnatural.

In supersymmetric theories every particle has a partner of opposite
statistics. I.e. supersymmetry relates two superpartners, a boson and a
fermion. It is important to note that there is no experimental indication
of the existence of superpartners for Standard Model particles. However,
this can be explained by supersymmetry being spontaneously broken in a
higher than the currently reachable energy band. This furthermore pro-
vides an appealing argument to solve the hierarchy problem. As Witten
pointed out in [8], if supersymmetry is broken by small non-perturbative
effects (dynamically broken), the scale of the supersymmetry breaking is
naturally much smaller than the Planck mass.

An invaluable computational tool for supersymmetric quantum field
theories is called supersymmetric localization, a particular case of equiv-
ariant localization. The latter was first introduced by Atiyah-Bott [9] and
Berline-Vergne [10] in independent studies. They proved that for certain
integrals the saddle point approximation provides the exact result. Super-
symmetric localization uses the same technique to compute path integrals
in supersymmetric quantum field theories.

The first application of localization was presented by Witten in the
contexts of supersymmetric quantum mechanics [11] and later in the con-
text of topological field theories [12]. An important development was put
forward by Nekrasov using localization to compute the instanton parti-
tion function on the Omega background in [13], a continuation of the
work [14–17].

More recently Pestun placed an N = 2 gauge theory on a round sphere
in four dimensions [18]. His computation opened the door to a new ex-
citing research direction, see [19] for a review on the matter. His work
was generalized to the squashed sphere [20, 21]. Later studies have used
supersymmetric localization in different dimensions and manifolds, for
example [22–31]. However, this list is far from exhaustive.

The way of approaching a localization computation sometimes differs
from even to odd dimensions. Additionally, the structure of the answer
is different. For odd dimensions one can use geometrical data, such as
the moment map cone to obtain the result. Higher dimensional theories
living on e.g. compact 7-dimensional manifold are especially interesting
since there exist a whole variety of geometries one can study, such as
Sasaki-Einstein, 3-Sasaki, or G2-manifolds. All of them induce a different
structure of the partition function manifesting the important role of geom-
etry in the calculation of observables [32, 33]. We are going to elaborate
on this matter in Part III.

Localization is also a valuable tool to show duality relations between
different theories when considering some specific sector of local operators,
see for example [34, 35]. For submanifold with a fixed locus of dimen-
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sion higher than zero the partition function simplifies to one of a lower
dimensional theory. That, however, is not exclusive to partition function
but extends to some smooth protected operator supported on a subman-
ifold [36]. A detailed discussion thereof is given in Part IV.

Another important concept associated with localization is topological
twisting. Introduced in [12] for N = 2 super Yang-Mills, it was demon-
strated (using saddle point approximation) that the correlation function
and correlators compute Donaldson invariants [37]. These invariants are
of mathematical importance. As we will explain in Part V, the topological
twisting was generalized in an equivariant version [38] and Paper III. This
not only enables us to define N = 2 SQCD on a large class of manifolds
with a torus action, but also creates a natural regime for the localization
calculation.

1.1 Thesis outline
The thesis is composed in five parts. The first two contain introductory
material and the rest are devoted to the separate works of Papers I-III.

Part I is an introduction to geometrical concepts needed throughout
the thesis. Specifically in Chapter 2 we are reviewing aspects of symplec-
tic geometry which is exhibited in even dimension, focusing on the case
of a torus group action. The analogue of symplectic geometry for odd di-
mensional spaces is called contact geometry which is reviewed in Chapter
3, with focus on Sasaki-Einstein manifolds which are used in Part III. In
Chapter 4, we explain the basic concepts of equivariant cohomology in
generic dimensions, which is crucial for the understanding of the proof of
equivariant localization.

Part II contains a pedagogical introduction to localization, the main
concept of the thesis. We start in Chapter 5 with a proof of the Atiya-
Bott formula of equivariant localization for a fixed point locus. This
concept is then extended for any higher dimensional fixed locus. Another
generalization of the result for the case of supersymmetric localization is
discussed in Chapter 6.

We then proceed in Part III with the review of Paper I which stu-
dies maximally supersymmetric Yang-Mills on a 7-dimensional Sasaki-
Einstein manifold. Chapter 7 introduces the concept of contact instan-
tons in parallel with the well known instantons in four dimension. In
Chapter 8, we motivate our choice of underlying geometry by studying
7-dimensional manifolds that admit at least one Killing spinor required
by our formulation of supersymmetry. In Chapter 9, we focus on Sasaki-
Einstein manifolds and review N = 2 super Yang-Mills in its original
and later in its cohomological formulation. The latter is then used in the
localization procedure. The localization locus is analysed and the com-
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putation of the 1-loop determinant is motivated. Finally, for the case of
the 7-sphere we comment on two different factorization properties of its
partition function.

The work of Paper II is reviewed in Part IV. Our main goal is to
explain the definition of certain protected operators in a co-dimension 2
submanifold after a twisting of the supersymmetric algebra using the R-
symmetry in 4 and 3 dimensions. Chapter 10 contains an introduction
of such operators for N = 2 in 4d and N = 4 in 3d in superconformal
field theories (SCFTs). Focusing on arguments using the superconformal
algebra, the twisting procedure as well as the natural existence of such
operators is demonstrated. The next Chapter 11 contains a discussion
of the non-conformal case of S2 × S1, where we present arguments for
the existence of such operators using the supersymmetric algebra. In
Chapter 12 a more field-theoretic point of view is adopted. Performing a
localization computation we obtain a partition function of a topological
quantum mechanics supported only on a 1-dimensional submanifold.

The final Part V is dedicated to summarize Paper III. Chapter 13 con-
tains the definition of a topological field theory followed by the procedure
of topological twisting in N = 2 theories in 4d. The resulting theories
are topological and can be defined on a large class of manifolds. The
technique of equivariant twisting is studied in the final Chapter 14. We
define killing vectors and spinors that have global solutions on general
spin manifolds accompanied with a torus action along the killing vectors.
These manifolds admit two different categories of fixed points of the torus
action. It is possible to perform a twist on the fields in such a way that
they become all singlets under the R-symmetry. The resulting vector
multiplet fields are differential forms whereas the hypermultiplet ones are
spinors. We find the cohomological complex and the localization locus. In
the end a localization computation is performed by adding contributions
around the different fixed points.
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Part I:
Review of geometry
This part serves as an introduction to the mathematical framework used
throughout the thesis. The main technique, localization, reviewed in Part
II, heavily uses notions from equivariant cohomology. Depending which
dimension is considered, symplectic or contact geometry are needed to
perform this technique.

We start by recalling basic concepts in geometry for even (symplectic)
and odd dimensions (contact) with a compact Lie group action. Special
attention is given to Sasaki-Einstein manifolds needed in Part III. Finally
we introduce the notion of equivariant cohomology in general dimensions.

We assume the reader is familiar with basic geometric notions such
as complex manifolds, differential forms and de Rham cohomology. [39]
is a thorough introduction on these notions. For symplectic or contact
geometry see also [40] and [41,42] respectively.





2. Symplectic and toric geometry

Let M be an even dimensional (2n) smooth manifold. This manifold is
said to be symplectic if there exists a closed non-degenerate 2-form on
M, ω ∈ Ω2(M). Since ω is non-degenerate, ωn �= 0, ωn is a top form and
it calculates the volume of M, thus it is considered a volume form. Then
ω is called symplectic form. Let us review some basic concepts related to
symplectic geometry. For a thorough review see e.g. [40].

A vector field XH is called Hamiltonian if there exists a function H
such that

ιXH
ω = dH , (2.1)

where ιXH
is the interior product with XH and d the differential. The

function H is also called Hamiltonian function.
A central result is the Darboux theorem which states that any two

symplectic manifolds of the same dimension are locally symplectomorphic
to each other. Its importance for our discussion is reflected in the corollary
that every symplectic manifold locally looks the same as flat space. Thus,
one can use the Darboux coordinates in local patches of M that bring
the symplectic form into its standard form

ω =
n∑

i=1
dqi ∧ dpi , (2.2)

where qi and pi are the coordinates in flat space. As a result the symplectic
form does not encode any global information.

Furthermore a Kähler manifold is a symplectic manifold with a com-
patible almost complex structure J , meaning

g(X, Y ) = ω(X, JY ) . (2.3)

Note that J2 = −1. If there exists such a structure the symplectic
form is also called Kähler form. One can compexify the tangent bun-
dle of the manifold using its decomposition into a holomorphic and anti-
holomorphic part, TM = TM+ ⊕ TM−. It is possible to decompose a
differential form α accordingly. To clarify, let us look for example at a
space with complex coordinates (zi , z̄i). The base for TM+ is dzi and
for TM− dz̄i. The differential form α can be expressed as

α = 1
p!q!αμ1...μpν1...νq dzμ1 ∧ . . . ∧ dzμp ∧ dz̄μ1 ∧ . . . ∧ dzμq . (2.4)
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That form is called a (p, q)-form, α ∈ Ω(p,q)(M). More generally, the
space of k-forms can be decomposed as

Ωk(M) =
∑

p+q=k

Ω(p,q)(M) (2.5)

due to the complex structure on M. It follows that one can separate the
differential into two Dolbeault operators d = ∂ + ∂̄, defined as maps:

∂ : Ω(p,q)(M) → Ω(p+1,q)(M) and ∂̄ : Ω(p,q)(M) → Ω(p,q+1)(M) . (2.6)

Using the Dolbeault operators one defines holomorphic k-forms α ∈
Ω(k,0)(M) satisfying ∂̄α = 0.

Now let us use these notions to introduce a group action.
Let G be a Lie group with a left group action on M, σ : G × M → M.

We are going to restrict ourselves to compact Lie groups since the relevant
cases for this thesis are toric Lie groups T n. Also, let g be the algebra of
G and X one of its elements X ∈ g. The vector field X� generated by X
({etX |t ∈ R}) is called fundamental vector field and it generates a flow in
the direction of X. We also denote by g∗ the dual Lie algebra and with
〈·, ·〉 : g × g∗ → R the pairing between them.

We call the left Lie group action Hamiltonian if there exist a map
μ : M → g∗ such that

d〈μ, X〉 = ιX�ω (2.7)

and it is equivariant with respect to the action σ. Such a map μ is called
moment map, and the group action G is Hamiltonian. For Abelian groups,
which are the ones we are interested in, equivariant means μ ◦ σ = μ.
Furthermore, by comparison with (2.1), the Hamiltonian function takes
the form H = 〈μ, X〉.

The moment map μ is helpful for analyzing the geometry. An espe-
cially useful tool is the moment map cone. According to [43], a connected
symplectic manifold (M, ω) with torus Hamiltonian action T n has a mo-
ment map μ whose image is a convex hull. The convex hull represents the
images of the fixed points of the action. This polytope is called moment
map cone.

Focusing on symplectic quotients, the moment map can be used to
reduce the original manifold M to a lower dimensional one. More specif-
ically, if G acts freely on μ−1(0) the manifold

M//G := μ−1(0)/G (2.8)

is a symplectic manifold that is also referred to as the symplectic quotient
of M. If the original manifold is also Kähler, the quotient is called Kähler
quotient and resulting manifold also inherits the complex structure, i.e. it
is also Kähler. It is worth mentioning that, even if the original space is flat,
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the resulting manifold, after quotiening out G, can be highly non-trivial.
An example are Sasaki-Einstein manifolds that we discuss in Section 3.1.
They can be viewed as Kähler quotients. A 7-dimensional example is
given in [44].

Finally, a Calabi-Yau manifold is Kähler manifold that has vanishing
Ricci tension, Rμν = 0. An example of such a manifold is flat space Cn.
For a more detailed review of toric geometry we refer the reader to [45].

Example
Let us go through an example to absorb these notions. We consider Cn

with a G = U(1) left action, U(1) × Cn → Cn.
The standard symplectic form is

ω = 1
2
∑

n

dzi ∧ dz̄i . (2.9)

The group action U(1) = S1 can be parametrized by eiθ where θ has the
interpretation of an angle. Then the group acts via the map σ : S1×Cn →
Cn as a rotation on the coordinates

(eiθ, (zi, z̄i)) 
→ (eiθzi, e−iθz̄i) . (2.10)

The angle θ is an element of the Lie algebra g � R. If we work with the
standard basis vectors of Cn, the fundamental vector field takes the form

X� =
n∑

i=1
(zi∂zi − z̄i∂z̄i) . (2.11)

The moment map can be found using (2.7). Since the algebra is R we
can use its standard basis, {e}, such that 〈μ, X〉 = 〈μ, e〉 = μe where
μ : C → R∗ � R. Then

dμe = ιX�ω = 1
2
∑

i

(zidz̄i + z̄idzi) = d

(
1
2
∑

i

|zi|2
)

. (2.12)

As a result, there exists a family of solutions for the moment map

μ(z) = 1
2
∑

i

|zi|2 + c , (2.13)

where c is an arbitrary constant. Note that the moment map is indeed
equivariant since μ(eiθ) = μ(z).

The image of μ is just R≥0 which itself is the moment map cone. Now
let us assume that c = 1/2. In order to find the symplectic quotient we
have to solve μ = 0 according to (2.8):∑

i

|zi|2 = 1 =⇒ μ−1(0) = S2n−1 , (2.14)
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corresponding to the (2n − 1)-dimensional unit sphere. The group S1

acts freely on the unit sphere such that the quotient S2n−1/S1 is also a
symplectic manifold and is equivalent to CP n−1. In other words, what
we just described is a principal U(1)-bundle

S2n−1 ← S1

↓ (2.15)
CP n−1

which is also called a Hopf fibration.
Let us consider a generalization of this example where we pick the

torus T n as the action group. The Lie algebra and its dual are both Rn.
One can pick the standard basis on Rn, {ea}, such that the Hamiltonian
function is μa = 〈μ, ea〉 and the moment map μ : Cn → Rn. Similarly to
the case above, both acquire a form depending on the specific action of
the group.

The realization of a torus action T k × Cn → Cn, k ≤ n, is

zi → eiQa
i θazi , a = 1, . . . k . (2.16)

The Qa
i are numbers which represent the charges of the torus action. For

the case where k = n and all Qa
i = 1, the moment map cone is of the

form

μ : Cn → Rn ,

μ = 1
2(|z1|2, . . . |zn|2) , (2.17)

where the image of the moment map is the cone Rn
≥0. The moment map

cone is non-compact since Cn is not compact. There is only one fixed
point, the corner of the polytope (μ = 0) which according to (2.17) is the
origin of Cn (zi = 0). In the case of a compact manifold we would end
up with the polygon as a moment map cone. To visualize see the case of
odd-dimensional spheres in Figure 3.1.
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3. Contact geometry

We review the most important concepts of contact geometry, the ana-
logue of symplectic geometry for odd dimensions. Specifically we focus
on Sasaki-Einstein manifolds with a toric action, since they allow for su-
persymmetry. A more apprehended review of the matter can be found in
the textbooks [46,47], or the lecture notes [48].

A contact manifold is a (2n+1)-dimensional manifold M equipped with
a contact form κ. A contact form is a 1-form that satisfies κ ∧ (dκ)n �= 0,
i.e. it provides the volume form on M. There exists a unique vector field
R associated with κ, such that

ιRdκ = 0 and ιRκ = 1 . (3.1)

This vector field R is called the Reeb vector.
The tangent bundle of M can be decomposed into the line tangential

to R or Reeb direction and the hyperplane that is defined by the kernel of
κ, also called horizontal space. It can be noted that dκ, when restricted on
the horizontal space, defines a symplectic form on it. This is a connection
between contact manifolds and symplectic manifolds in one dimension
lower.

If M is also Riemannian, i.e. it is equipped with a metric g, we define
a K-contact manifold by imposing that:

• The Reeb vector is also a Killing vector, i.e. LRg = 0.
• There exists a (1,1)-tensor J satisfying

J2 = −1 + κ ⊗ R ,

g(X, Y ) = dκ(X, JX) , (3.2)
g(JX, JY ) = g(X, Y ) − κ(X)κ(Y ) .

In that case the volume form of the manifold is given by

Vol = (−1)n

2nn! κ ∧ dκ . (3.3)

Similarly to the decomposition of the tangent bundle we discussed
above, there is a decomposition of differential forms that we make use
of in Part III. Using the contact form one defines the projectors

PV = κ ∧ ιR and PH = 1 − PV , (3.4)
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with the projection relation P 2
V/H = PV/H .

Such projectors decompose forms into a vertical and a horizontal part

Ωr = Ωr
V ⊕ Ωr

H . (3.5)

It is important to note that, since the horizontal space inherits the
complex structure it can be decomposed into (p, q)-forms where Dolbeault
operators act according to (2.6). As a result (3.5) can be further decom-
posed into

Ωr =
⊕

p+q=r

Ω(p,q)
H ⊕ Ω(r−1)

H κ . (3.6)

One may also want to decompose the form once more and extract dκ from
the horizontal forms This is showcased later on in Table 9.1.

3.1 Toric Sasaki-Einstein manifolds
An interesting subset of contact manifolds are Sasaki-Einstein manifolds
that admit a torus action. A comprehensive introduction can be found
for example in [40,42].

We start with the definition of a Sasaki manifold. A Sasaki manifold
M is a manifold with a metric cone C(M) that is a Kähler manifold.
This means that there exists a Kähler manifold C(M) which is of the
form C(M) = M × R≥0 with metric

ds2
C = dr2 + r2ds2

M . (3.7)

Here, r is the coordinate of R≥0 and M is the base of the cone. The
geometric data of the two manifolds are related as follows. The symplec-
tic form on C(M) is ωC = d(r2κ), with κ a contact form on M with
associated Reeb vector R. The almost complex structure on C(M) is
defined using the base contact manifold as JC(X) = J(X) − κ(X)r∂r,
where JC(r∂r) = R.

A Sasaki-Einstein manifold is a manifold whose cone is Calabi-Yau.
Equivalently, this means that a Sasaki-Einstein manifold is a Sasaki man-
ifold that admits an Einstein metric.1 I.e. the Ricci tensor is proportional
to the metric

Rμν = λgμν , (3.8)
for a cosmological constant λ. For a Sasaki-Einstein manifold of (2n − 1)
dimension, the cosmological constant is λ = 2n − 2.

As mentioned, the relevant manifolds for this thesis are the Sasaki-
Einstein manifolds. This means that the cone C(M) admits a Hamilto-
nian action that respects its complex structure. Furthermore, the Reeb
1It satisfies the Einstein vacuum equation.
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vector needs to lie on the algebra of the T n action. In that case, there exist
a moment map and a non-compact moment map cone. The basis of this
cone is a compact (n − 1)-dimensional polytope called Delzant polytope
and is associated to the Sasaki-Einstein manifold. Since the Reeb vector
is part of the toric algebra, it can be represented by a vector on the convex
cone. As in the case of the moment map cone the Delzant polytope gives
important information about the manifold and its action. In particular,
the Sasaki-Einstein manifold is a T n fibration over the Delzant polytope.
At each face a single S1 of the action degenerates. Since the polytope
is (n − 1) and the action is n-dimensional, a combination of circles never
degenerates at the vertices giving rise to a Hopf fibration,

There are multiple ways to extract geometric data from the moment
polytope, see e.g. [49]. One way is by specifying its inward pointing
normals v1, . . . , vm so that the moment map cone can be defined as

Cμ = {y ∈ Rn|y · vi ≥ 0, i = 1, . . . , m} ⊂ Rn (3.9)

We assume that vi ∈ Zn and that their set is minimal. An additional
assumption is that the cone considered is good, meaning every subset
{vi1 . . . vik

} that defines a codimension k face of the cone can be completed
into an SL(n,Z) matrix.2

The inward normals are related to the charges of the torus actions in
e.g. (2.16) by

m∑
i=1

viQ
a
i , ∀a . (3.10)

In the case where the metric cone is Calabi-Yau we have
∑

i Qa
i = 0 which

simplifies the above equation. In particular, it means that there exists a
vector ξ ∈ Zn, such that

ξ · vi = 1, ∀i . (3.11)

This is known as the 1-Gorenstein condition [42], and it implies that all
the normal vectors are coplanar.

Example
A simple example of a Sasaki-Einstein manifold is the sphere S2n−1. Its
cone is Cn. We will consider a T n action as in the example in Section
2. The torus acts according to (2.16). As a result the moment map of
the cone C(M) is of the form (2.17). We recall that the image of the
moment map is Rn

≥0, where the axes are |zi|2, see Figure 3.1. Since the
Reeb vector lies on the Lie algebra of the Torus action, we can represent
it with the vector R = (1, . . . , 1).
2For a rigorous definition see Appendix B of [50].
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S3 S5 S7

Figure 3.1. Examples of moment map cones together with the polytopes of the
odd-spheres (blue filling).

The image of the moment map of the Sasaki-Einstein manifold S2n−1

can be viewed as a hypersurface of the cone C(M) when r = 1.
In the case of S3 the cone is C2 with T 2 action. The polytope is a

simple interval as shown in Figure 3.1. Therefore one can think of S3 as
a T 2 fibration over the interval where, as we go closer to the boundaries,
one of the circles degenerates. At the neighbourhood of the boundaries
the local geometry is S1 × C. Also, there exists a linear combination of
the two circles which does not degenerate at any point on the interval.
This gives rise to the usual Hopf fibration S1 → S3 → CP 1.

For more interesting examples the polytope’s shape distorts but there
exists tools to read out geometric data from these polytopes. We refer
the interested reader to [49].
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4. Equivariant cohomology

We consider a smooth n-dimensional manifold M with action G. The
idea of equivariant cohomology is to take into consideration the group
action on the de Rham cohomology.

In the case of a free action G the quotient space M/G is a smooth
manifold and we can define a de Rham cohomology H ·(M/G). If the
action is not free and there exist fixed points the quotient is not a smooth
manifold and the situation is more complicated, see e.g. [51].

In order to understand this better we continue using the Cartan model
[52].1 We follow the review [53].

Let us consider a Lie algebra g with elements φ = φaTa, where φa can
be thought of an element of the dual algebra g∗ and Ta are generators of
the algebra. For the Cartan model we need the symmetric algebra of g∗

denoted as S(g∗) ≈ R[g], where we called R[g] the commutative ring of
polynomial functions on the vector space underlying g. Its elements are
polynomials of {φa}.

We introduce a form α ∈ Ω•(M) ⊗ R[g] which is invariant under the
G-action. This form is not homogeneous with respect to the degree of
the form but rather it is a sum of forms of various degrees

α =
n∑

k=0
αk , (4.1)

where αk is a k-form. For every generator Ta, the group action on M
induces a vector field va on M, which points in the direction of the flow of
that group element. The vector field v = φaεa is the fundamental vector
field that points in the direction of the flow of the full group.

The following Cartan differential can be defined which acts on α

dv : Ω•(M) ⊗ R[g] → Ω•(M) ⊗ R[g] ,

dv = d + ιv , (4.2)

where d : Ω•(M) → Ω•+1(M) is the de Rham differential and ιv :
Ω•(M) → Ω•−1(M) is the contraction of the differential form and the
fundamental vector field. We refer to this differential as the equivariant

1It should also be noted that there exist other models, such as the Weil model. We
will not consider those in this manuscript.
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differential along v. An important property of the equivariant differential
is that it squares to the Lie derivative along the vector field v

d2
v = Lv . (4.3)

As it is argued in [53], if the form α is G-invariant it follows that
d2

vα = Lvα = 0. This defines the Cartan model of equivariant coho-
mology H•

G(M) = H((Ω•(M) ⊗ R[g])G, dv). The invariant form α is
called equivariantly closed, i.e. d2

vα = 0. In the case of α = dvλ, where
λ ∈ Ω•(M) ⊗ R[g], α is called equivariantly exact.

As mentioned in (4.1) α is actually a polyform. This means that the
constraint that it is equivariantly closed is actually a relation between the
different degrees of α

d2
vα = 0 =⇒ dαk−2 + ιvαk = 0 ∀ k ∈ [0, n] . (4.4)

A final remark is that when we integrate a polyform α over the full
manifold only the top-form gives a contribution∫

M
α =

∫
M

αn . (4.5)

Supersymmetric example
In order to make contact with Part II we will use the Cartan model in
the context of supergeometry.

Let xμ be the coordinates on M. We also introduce the Grassmann
coordinates ψμ. These coordinates are anti-commuting , i.e. ψμψν =
−ψνψμ. They are fermionic degrees of freedom, whereas the even coordi-
nates xμ represent the bosonic degrees of freedom.

The fermionic coordinates have the following integration rules

I =
∫

dnψ

⎛⎝ k∏
μ=1

ψμ

⎞⎠ = 1 , if k = n ; otherwise I = 0 , (4.6)

which mimics the way the equivariant form is manipulated.
In the specific case the super-manifold is the odd tangent bundle ΠTM,

the odd coordinates correspond to the 1-forms dxμ. Multiplication corre-
sponds to the wedge product between forms. The equivariant differential
is represented as a transformation on the coordinates

dvxμ = dxμ = ψμ ,

dvψμ = vμ . (4.7)

We will use the notation common in physics literature in the following
parts and denote the transformation by δ.
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Part II:
Localization technique
Localization is a way to compute partition functions and certain protected
correlators. In a mathematical language: it helps computing integrals of
equivariant closed forms in terms of the fixed locus of the group action.
We will first derive the mathematical formula of Berline-Verne-Atiayh-
Bott by performing equivariant localization on finite dimensional integrals.
Then, we look at the supersymmetric localization technique in a generic
supersymmetric field theory. The difference there is that we apply the
localization technique on path integrals which are defined on an infinite
dimensional space.

A comprehensive review about the subject is [19], another pedagogical
introduction can for example be found in [54].





5. Finite dimensional integrals

For simplicity we restrict ourselves to the case of a U(1) action. However,
the method can be generalized to more complicated group actions.

Let M be a compact n-dimensional manifold with a U(1) action that
has isolated fixed points. Therefore, let v be the vector field associated
with this U(1).

Consider an equivariant closed polyform α, i.e. (d + ιv)α = 0. A
polyform is a form of mixed degrees α = αn+αn−1+. . .+α0 as introduced
in (4.1). The Berlin-Vergne-Atiyah-Bott formula states∫

M
α =

∑
i

(2π)n α0(xi)√
det(∂μvν(xi))

, (5.1)

where the sum goes over all the fixed points of U(1). In the following, we
will review the derivation of this formula. For a thorough review we refer
the reader to [55].

We consider the odd tangent bundle ΠTM with coordinates (xμ, ψμ),
as it was introduced in Section 4. Using a supergeometric approach, xμ

are coordinates on M and ψμ are Grassmann coordinates on the fibre.
We define the following supersymmetric-like transformations, similar to
(4.7)

dvxμ = ψμ , (5.2)
dvψμ = vμ . (5.3)

The polyform α is a polynomial in the Grassmann coordinates. In
particular, monomials of the same degree k in ψμ correspond to the same
degree of the polyform αk. The integral of α over M becomes

Z =
∫

ΠT M
dnx dnψ α(x, ψ) . (5.4)

Note that the equivariant differential acts the same way as a supersym-
metric transformation: it squares to d2

v = Lv, and since α is equivariantly
closed it can be interpreted as a supersymmetric observable, for example
the exponential of a supersymmetric action.

We consider the deformation of (5.4) with respect to a real parameter,
t ∈ R,

Z(t) =
∫

ΠT M
dnx dnψ α(x, ψ) e−tdvW (x,ψ) , (5.5)
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where W (x, ψ) is a function such that d2
vW = LvW = 0. It follows that

Z(t) is independent of t

d

dt
Z(t) =

∫
ΠT M

dnx dnψ
[
dvW (x, ψ)

]
α(x, ψ) e−t dvW (x,ψ) (5.6)

=
∫

ΠT M
dnx dnψ dv

[
W (x, ψ) α(x, ψ) e−t dvW (x,ψ)] = 0 , (5.7)

where in the second line we have integrated by parts and used that α and
dvW are equivariantly closed. Finally, since M is a compact manifold,
we use Stokes theorem to conclude that the integral vanishes. This conve-
niently will allow us to compute the original integral in (5.4) by a clever
choice of t in (5.5). Consider the limit t → ∞. From the saddle point
approximation the main contribution will arise from dvW = 0.

Let us investigate this limit using the following convenient choice of W :

W = gμνψμ(dvψ)ν , (5.8)

with g being the metric on M which is invariant under the group action,
i.e Lvg = 0. Here, v is a Killing vector. For this choice of W , we have

dvW = |v|2 + ∂λ(gμνvμ)ψνψλ . (5.9)

Notice that the first term is a zero form and it is semi-positive definite.
As a result the exponential in (5.5) is dominated at t → ∞ by the fixed
points xi of the U(1) action, v(xi) = 0.

Let us concentrate on the contribution of a single isolated fixed point
xf.p. and rescale the coordinates

x → x̃ =
√

t x, ψ → ψ̃ =
√

t ψ , (5.10)

so that the measure of the integral (5.5) stays invariant. The exponent
becomes after rescaling

t dvW = Hμνδx̃μδx̃ν + Sμνψ̃μψ̃ν + O(1
t
) , (5.11)

where δx̃ = x̃ − xf.p. denotes the distance from the fixed point. The
functions H and S are of the form

Hμν =gλρ(∂μvλ ∂νvρ)|xf.p.
, (5.12)

Sμν =gμλ ∂νvλ|xf.p.
. (5.13)

Hence, the exponent is quadratic and does not depend on t. The
integral is only supported on the fixed point because all the other points
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give exponentially suppressed contributions. In particular we have

Z[0] = lim
t→∞ Z[t] = lim

t→∞

∫
dnxdnψ α

(
x̃√
t
,

ψ̃√
t

)
e−Hμνδx̃μδx̃ν−Sμν ψ̃μψ̃ν+O( 1

t )

= (2π)nα(0, 0) Pf(S)√
det(H)

, (5.14)

where the integral separates into two Gaussian integrals, one with real
and one with Grassmann integration parameters. In the last step we
used that the higher forms (ψ monomials) of α will come with factors of
1/

√
t. Thus, only the its 0-form part will contribute and the Grassmann

integration is only the Gaussian integral. The form of the integral is

Z[0] = (2π)nα0|xf.p.

Pf(S)√
det(H)

. (5.15)

By substituting S and H and summing over all the fixed points we get
the Berlin-Vergne-Atiyah-Bott formula (5.1).

One can follow the same steps and find a similar formula for a fixed
submanifold locus. If F ⊂ M is the submanifold fixed locus it is easy to
guess that the integral will have only contributions of the top component
from the restriction of α on F . Indeed, the formula reads [9, 18]∫

M
α =

∫
F

ι∗
F α

e(N ) , (5.16)

where ι∗
F α is the pullback of α onto F and N is the normal bundle.
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6. Infinite dimensional integrals

Let us explain next how the argument is modified in the case of QFTs.
Consider a supersymmetric quantum field theory with supersymmetry

transformation δ (usually Grassmann odd). The goal is to calculate ob-
servables of the theory such as the partition function or correlators of
local operators.

We will start with the path integral representation of a partition func-
tion

Z =
∫

[Dφ]e−S[φ] , (6.1)

where we represent all the fields of the theory by φ. The difference
to the previous case is that we are integrating over the space of field-
configurations, which is infinite dimensional.

The square of the supersymmetry transformations on the fields φ con-
sists of symmetries of the theory. In the case where a torus action is
acting on the manifold the usual operator takes a form like (14.41) used
in a specific example discussed later in the thesis. This supersymmetry
transformations will play the role of the equivariant differential dv.

Let us follow the same steps as before and deform the action using a
δ-exact term

Zt =
∫

[Dφ]e−S[φ]−tδV . (6.2)

As before, Zt is independent of the parameter t.
The canonical choice of the deformation term V is

V =
∑
Ψ

(δΨ)†Ψ , (6.3)

where Ψ refers to fermionic terms. The bosonic part of the deformed
action is

(δV )bos =
∑
Ψ

|δΨ|2 , (6.4)

which is positive semi-definite. The main contribution to the partition
function is given by (δV )bos = 0, which results in a localization locus

δΨ = 0 . (6.5)

Note that for the case where the number of fermionic terms summed over
is less than the number of fermionic degrees of freedom, the localization
locus might be higher dimensional.
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As before, one expands the fields around their localization locus value
φ0 as φ → φ0 + t−1/2φ′, where φ′ is the fluctuation of the field.

In the limit where t → ∞ the only terms surviving will be the classical
part, containing only φ0 terms, and a one-loop contribution

Z =
∫

[Dφ0]e−S[φ0] 1
sdet(δ2) , (6.6)

where the superdeterminant, sdet, is to interpreted such that the contri-
bution of the bosonic fields are in the denominator and the contribution
of the fermions in the numerator.

Apart from the partition function, localization allows the exact com-
putation of correlation functions of certain gauge invariant operators O.
In order for the above argument to go through, these operators need to
be δ-closed, i.e δO = 0. Such operators are called protected operators and
therefore are interesting objects to study since their correlators can be
exactly computed.

A challenging part of finding an explicit form for (6.6) is the calcula-
tion of the 1-loop contribution. There are many ways of performing the
superdeterminant as we will hint to in the following chapters. One way is
by explicitly finding the spectrum of the fluctuations under the δ2 action.
Examples of this approach in three, five, and generic dimensions are given
in [23], [28] and [56] respectively.

Another way is using an index theorem [9], whereof an finite dimen-
sional example was shown in the previous section. For some specific
manifold in odd dimensions one can prove that the index is associated
to counting points on the moment map cone of your manifold. We will
discuss this in Section 9.1 in the context of 7-dimensional Sasaki-Einstein
manifolds. This additional simplification does not exist for all cases. Re-
lated work in the 5-dimensional case can be found in [50]. Another way
is to explicitly calculate the index under the torus action as we explain
in Section 14.1.4.

Finally, we want to stress some points. Firstly, for gauge theories
the action needs to be gauge fixed. We can then consider as the appro-
priate operator the supersymmetric variation together with the BRST-
transformation. Another consideration is that there is freedom in the
choice of the localizing supercharge and the deformation term used. Dif-
ferent deformation terms result in different localization schemes. Results
obtained by different schemes need to be the same after algebraic manip-
ulations. Finally, there is the need for regularization. There exist many
different regularization schemes as we will also briefly discuss in Section
9.1. The choice of the regularization scheme is not an easy task. For all
these reasons, there exist many different representations of the partition
function and correlators of the same theory.
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Part III:
N = 1 super Yang-Mills in 7d on
Sasaki-Einstein manifolds
There is a variety of exact results for partition functions in the literature
considering many different dimensions and geometries. In the following
three sections we are going to summarize a systematic way of deriving
the partition function for certain odd dimensional manifolds using the
example of N = 1 super Yang-Mills in 7d on Sasaki-Einstein manifolds
from Paper I, which was first considered in [22]. This example is an
excellent toy model since it showcases how the geometry is encoded in
the structure of the partition function.

We will start by looking at instanton contributions we are going to
stumble over during the localization computation. A discussion of con-
tact instantons in 7d is given with a simultaneous introduction of the
more common 4d instantons. We are going to give a motivation for su-
persymmetric theories on Sasaki-Einstein manifolds by studying the set of
7d manifolds that allow killing spinors. Afterwards, we introduce N = 1
super Yang-Mills in 7d on Sasaki-Einstein manifolds. We will use the
localization technique described in Section 5 to calculate its partition
function. Finally, we are going to discuss the geometrical structure of the
result and its interpretation using fibrations.





7. Instantons

7.1 4d case
Let us first discuss the case of Yang-Mills on a 4-dimensional manifold
M, introduced in [57], before we generalize it. In this discussion we will
use some of the concepts of Section 2.1

The Yang-Mills action is

S =
∫

F ∧ ∗F = 1
2

∫
d4xFμνF μν , (7.1)

where ∗F is the Hodge dual form of the Lie algebra valued 2-form F . The
Euler-Lagrange equation and the Bianchi identity take the form

DμF μν = 0 → dA ∗ F = 0 , (7.2)
D[μFνρ] = 0 → dAF = 0 , (7.3)

with Dμ = ∂μ + [Aμ, ·] the covariant derivative with respect to the gauge
field Aμ. This covariant derivative can be rewritten as the de Rham
differential twisted by the gauge field dA acting on a form ω ∈ Ωk(M) as
dAω = dω + [A, ω].

In 4-dimensions one defines the projectors P ± that act on 2-forms

P ± = 1
2(1 ± ∗) . (7.4)

They satisfy (P ±)2 = P ± and P − = 1 − P +. Using these projectors 2-
forms can be decomposed as Ω2(M) = Ω2+(M)⊕Ω2−(M). For example,
the field strength becomes

F = F + + F −, where ∗ F ± = ±F ± . (7.5)

These are the self-dual and anti-self-dual components of the field strength.
We can use this decomposition in the action (7.1) to rewrite it as

S =
∫

F + ∧ ∗F + +
∫

F − ∧ ∗F − . (7.6)

Thus, we have the following bound

S ≥
∣∣∣∣ ∫ F + ∧ ∗F + −

∫
F − ∧ ∗F −

∣∣∣∣ =
∣∣∣∣ ∫ F ∧ F

∣∣∣∣ , (7.7)

1We assume a general semi-simple group G but we not use it explicitly. We will omit
to write explicitly the trace over the Lie algebra g in the integrals.
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where we substituted the Hodge-dual fields according to (7.5). This lower
bound is saturated only if F is self- or anti-self-dual, i.e F = F + or
F = F −. These solutions can be summarized as

F = ± ∗ F . (7.8)

These equations are called instanton equations and their solutions, de-
pending on the sign, are called instantons and anti-instantons respectively.
The bound is also interesting since it involves a topological invariant. The
integral

c2 = − 1
8π2

∫
F ∧ F (7.9)

is the instanton number. It furthermore contains the second Chern class
which is a topological invariant quantity [39].

7.2 7d case
We are going to discuss the 7d Yang-Mills action in the context of contact
geometry, which we introduced in Section 3.

We start with the same action as before on a smooth 7-dimensional
manifold M

S =
∫

F ∧ ∗F , (7.10)

where the fields are Lie algebra valued which we omit here for convenience.
The field strength F is a 2-form. As it was discussed in Section 3 one can
utilize the contact form κ and the Reeb vector R associated to it to define
the projectors (3.4) that decompose forms into a vertical and a horizontal
part.

We further decompose the horizontal part by restricting ourselves to
2-forms for the purpose of the instanton equation. As it was explained in
Paper I, the projector

P̌F = 1
12[∗(F ∧ ∗dκ)]dκ (7.11)

extracts the part which is proportional to dκ. Then, the 2-form F becomes

F = F̂ + F̌ = F̂ + 1
24 F̃ dκ , (7.12)

where F̂μν(dκ)μν = 0 and F̃ = Fμν(dκ)μν . Similar to the case before, the
horizontal part of F̂ can be decomposed using the projector

P ±F = 1
2(F ± 1

2 ιR ∗ (dκ ∧ F )) . (7.13)
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The decomposition of F becomes

F = FV + FH = FV + F̂ +
H + F̂ +

H + F̌H , (7.14)

where the last term also reads F̌H = 1
24 F̃ dκ.

The Yang-Mills action is finally decomposed into

S =
∫

FV ∧ ∗FV +
∫

F̂ +
H ∧ ∗F̂ −

H +
∫

F̂ −
H ∧ ∗F̂ −

H +
∫

F̌H ∧ ∗F̌H . (7.15)

A bound on the action is obtained as

S ≥
∫

F̂ +
H ∧ ∗F̂ −

H +
∫

F̂ −
H ∧ ∗F̂ −

H =⇒ (7.16)

S ≥
∣∣∣∣ ∫ F̂ +

H ∧ ∗F̂ −
H −

∫
F̂ −

H ∧ ∗F̂ −
H

∣∣∣∣ = 1
2

∣∣∣∣ ∫ κ ∧ dκ ∧ F̂ ∧ F̂

∣∣∣∣ . (7.17)

The first inequality is satisfied whenever FV = 0 and F̌H = 0 and the
second one if F̂ +

H = 0 or F̂ −
H = 0. One can combine these restrictions

into one equation which is referred to as contact instanton equation in
7 dimensions,

∗F = ±1
2κ ∧ dκ ∧ F . (7.18)

It is also important to note that contact instantons and anti-instantons
are automatically solutions of the Yang-Mills equation since

dA ∗ F = ±1
2dκ ∧ dκ ∧ F = 0 , (7.19)

due to the orthogonality of F̂H and dκ.
It is worth mentioning that the instanton equation was first written

down for the case of five dimensions in [27] and further studied in [58].
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8. Killing spinors

From now on we will restrict ourselves to the case of 7d manifolds. The
idea of this Section is to motivate the restriction to Sasaki-Einstein man-
ifolds following Paper I.

We will revise some facts about Killing spinors and refer the reader to
[59–61] for further reading. Let us start from a n-dimensional Riemannian
manifold (M, g) which admits a spin structure. A spinor ζ is Killing if
there exists a constant α ∈ C such that for all tangent vectors X,

∇Xζ = αX · ζ (8.1)

is satisfied. Here, ∇ denotes the covariantized derivative with respect to
the spin connection and X · ζ the Clifford multiplication. In the case of
α ∈ R, ζ is called real Killing spinor.

If there exists a Killing spinor on M the manifold is Einstein with Ricci
scalar

R = −4n(n − 1)α2 . (8.2)
If we restrict our attention to positive curvature then for a given man-
ifold there are two sign possibilities for α. Putting these back into the
Killing spinor equation (8.1) there are several independent solutions for
the Killing spinors ζ. For the familiar formulation of supersymmetric
theories (and for localization) we require at least one Killing spinor.

Seven dimensional manifolds with positive curvature admitting Killing
spinors were classified by [61]. The 7-dimensional complete simply-con-
nected Riemannian spin manifolds with positive curvature that admit a
non-trivial Killing spinor are

• the 7-sphere S7 with 16 Killing spinors,
• 3-Sasaki manifolds with 3 Killing spinors,
• Sasaki-Einstein manifolds with 2 Killing spinors,
• and proper G2-manifolds with 1 Killing spinor,

as was also explained in Paper I. In this thesis we are going to mainly
focus on the first and the third case. In Paper I there is also a short
discussion about the 3-Sasaki manifolds.

The second and last cases are out of the scope of this thesis. However,
let us say a few words about these manifolds.

A 3-Sasaki manifold is a Sasakian manifold that admits an su(2) triplet
of Sasaki structures {Ra, κa, Ja}, such as

ιRaκb = δab , (8.3)
[Ra, Rb] = εabcR

c . (8.4)
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It is important to note that the cone over a 3-Sasaki manifold is a hyper-
kähler manifold which has three complex structures. Localization results
for the 3-Sasaki manifolds can be found partially in Paper I but for a
more in depth work one should look into [32] and [33].

The proper G2 manifold admits a 3-form Φ associated to the G2 struc-
ture, which satisfies dΦ = −8λ(∗Φ) for some λ �= 0. For more information
about such manifolds we refer the reader to [62]. There have been devel-
opments adding supersymmetric theories onto them, for example [63,64].
It is interesting that one can find a minimization of the action, called
G2-instanton. It is different that the contact instanton in (7.18) since
these manifolds do not have a contact structure. The instanton equation
then is ∗F = Φ ∧ F . These manifolds have not yet been discussed in the
context of localization due to the lack of contact structure on which the
formalism heavily relies.
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9. Localization in 7 dimensions

We proceed by placing supersymmetric theories on 7-dimensional Sasaki-
Einstein manifolds following mainly Paper I and [22].

The starting point is N = 1 super Yang-Mills on ten-dimensional R9,1.
The theory contains a gauge field AM , M = 0, . . . , 9, with its field strength
and a Majorana-Weyl fermion Ψα, with α = 1, . . . , 16, transforming under
the adjoint representation of the gauge group G. Finally, ΓM denote the
10-dimensional Dirac matrices. The 10-dimensional action is [65]

S10 = 1
g2

10

∫
d10xTr(1

2F MN FMN − ΨΓM DM Ψ) , (9.1)

where DM is the 10 dimensional covariant derivative with respect to the
gauge field. This action is invariant under the supersymmetry transfor-
mations

δAM = εΓM Ψ , (9.2)

δΨ = 1
2ΓMN FMN ε . (9.3)

where the parameter ε is a constant Majorana-Weyl spinor.
We are going to dimensionally reduce in order to get a supersymmetric

theory in a lower dimensional curved manifold. This reduction is called
Scherk-Schwart reduction and it was performed first in [59] for on-shell
supersymmetry and in [66,67] for the off-shell version.

We separate the gauge field into the 7-dimensional one Aμ, μ = 1 . . . 7
and scalars φA, A = 0, 8, 9, arising from the compactified directions. The
derivative in the compactified dimensions vanishes.

In order to have consistent supersymmetry on the 7-dimensional man-
ifold, the 10-dimensional Majorana-Weyl spinor needs to satisfy a gener-
alized Killing spinor equation,

∇με = 1
2r

Γ̃μΛε . (9.4)

The matrix Λ = Γ8Γ̃9Γ0 and r is a dimensionful parameter corresponding
to the size of the manifold. We will drop r for convenience. It can be
restored at any point using dimensional analysis. It follows that such a
7-dimensional manifold has to be in the set discussed in Section 8.
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In order to perform localization we need off-shell supersymmetry. Thus,
we also need to introduce an auxiliary field Km, m = 1 . . . 7 and a bosonic
pure spinor νm associated to it. We are going to briefly review the theory
however we refer the reader to Paper I for more details.

Following [18,22] and Paper I, the pure spinors νm satisfy the relations

εΓM νm = 0 , (9.5)
νmΓM νn = δmnvM , (9.6)

νm
α νm

β + εαεβ = 1
2vM Γ̃Mαβ .

Note that these relations only determine the ν’s up to an internal so(7)
symmetry.

Here vM denotes the vector field

vM = εΓM ε , (9.7)

which is a Killing vector since ε is a Killing spinor. Note that we are free
to choose v0 = 1 and v8 = v9 = 0 resulting in vμvμ = 1.1

The off-shell supersymmetric transformations read

δAM = εΓM Ψ ,

δ Ψ = 1
2FMN ΓMN ε + 8

7ΓμBφB∇με + Kmνm , (9.8)

δKm = −νmΓM DM Ψ + 3
2νmΛΨ .

It can be shown, see [18,22] or Paper I, that this off-shell supersymme-
try transformation squares to bosonic symmetries of the theory. Schemat-
ically this reads

δ2 = −L − G − R − S , (9.9)
where L is a Lie derivative along the vector field v, G is a gauge trans-
formation, R is the R-symmetry, and S are the so(7) rotations of the
auxiliary fields Km.

The reduced action becomes

S = 1
g2

7D

∫
d7x

√−gTr
(1

2F MN FMN − ΨΓM DM Ψ + 8φAφA + 3
2ΨΛΨ

− 2[φA, φB]φCεABC − KmKm

)
. (9.10)

Nonetheless one can simplify the transformations by a redefinition of
fields. This leads to a clever geometric interpretation. Thus, we are going
1For useful identities containing the Γ matrices we refer the reader to Appendix A of
Paper I.
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to map these fields to differential forms. One starts by identifying as Reeb
vector Rμ = vμ from (9.7) and as contact form κμ = gμνRν . Note that
the condition vμvμ = 1 corresponds to the definition of the Reeb vector
(3.1).2

We make the following redefinitions of the fermionic degrees of freedom

ψμ = εΓμΨ , (9.11)
Υμν = (νmΓ0Ψ)(νμΓμν0ε) , (9.12)

and of the bosonic fields

Φμνλ = 1
2φA(εΓμνλΓA0ε) , (9.13)

φ0 = σ . (9.14)

It is important to note that φ0 is special since it comes from compactifying
the time-like direction. All these maps are invertible.

Additional to these redefinitions we introduce η = 1
2εΓAΨ(εΓμνλΓA0ε),

the superpartner of Φ, and Hμ = (νmΓμν0ε)(Km + . . .), the superpartner
of Υ.

The result is the cohomological complex

δA = ψ ,

δψ = −ιRF + iGσA ,

δσ = iιRψ ,

δΦ = η ,

δη = −LA
RΦ + iGσΦ ,

δΥ = H ,

δH = −LA
RΥ + iGσΥ , (9.15)

where dA is the de Rham differential coupled to the connection A and LA
R

the corresponding Lie derivative along the Reeb vector field covariantized
with respect to the connection A, LA

R = ιRdA + dAιR. The gauge trans-
formation Gσ is given by GσA = dAσ on the gauge field and Gσ = −[σ, ·]
on all other fields.

It is important to point out that the fields above are now differential
forms and can also be decomposed using projectors. In Table 9.1 we list
the fields in the cohomological complex together with their superpartners.
Note that we have decomposed the 2-forms using the decomposition (3.6).

2In Paper I all the components of the contact structure are identified.
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Bosons Fermions
A connection ψ ∈ Ω1

H ∈ Ω(2,0)
H ⊕ Ω(0,2)

H ⊕ Ω0dκ Υ ∈ Ω(2,0)
H ⊕ Ω(0,2)

H ⊕ Ω0dκ

Φ ∈ Ω(3,0)
H ⊕ Ω(0,3)

H η ∈ Ω(3,0)
H ⊕ Ω(0,3)

H

σ ∈ Ω0

Table 9.1. The bosonic and fermionic fields of the cohomological complex are
presented. (X, X ′)-pairs of bosons and fermions appearing in the transformations
(9.16) are written on the same line. Note that we have suppressed the Lie algebra
dependence.

Redefining the field σ → −σ + iιRA, the above transformations can be
written in the compact form

δX = X ′ ,

δX ′ = −LRX − iGσX , (9.16)
δσ = 0 ,

where the (X, X ′) pairs are given by (A, ψ), (H, Υ), and (Φ, η). We see
that δ2 = −LR − iGσ are once more symmetries of the theory.

Off-shellness is not the only requirement in order to get a correct
localization result. It is necessary to gauge fix to theory by introduc-
ing Faddeev-Popov ghosts c, c̄, a Lagrange multiplier b, and zero modes
(a0, ā0, b0) and (c0, c̄0) which are bosonic and fermionic respectively. We
also use the standard BRST transformation δB [18] which we combine
with supersymmetry into a new transformation Q = δ + δB. It squares
to Q2 = −LR + iGa0 . The field transformations have the same form as
(9.16) with the replacement σ → a0.

9.1 Localization technique
In order to perform localization one requires the localization locus. In [68]
and Paper I it was found to take the form

ιRF = 0 ,

ιRdAΦ = 0 ,

dAσ = 0 , (9.17)
F̂ −

H = −d†
AΦ ,

F̌H ∧ dκ ∧ dκ = 4[Φ−, Φ+] .
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In the case where Φ = 0 3 the localization locus is equivalent to the
contact instanton F̂ + we discussed in Chapter 7.2.

The action (9.10) on the BPS locus takes the form

Sf.p. = 1
g2

7

[∫
24 V7Tr(σ2) + 1

2

∫
Tr (κ ∧ dκ ∧ F ∧ F )

]
, (9.18)

where V7 denotes the volume form with respect to the metric g. The
second term gives a contribution from the contact instanton. In practice,
the instanton contribution is complicated. We will continue our discussion
by concentrating on contributions from flat connections following [22] and
Paper I.

The localization term that is added is of the usual form (6.6). This
results in the following full perturbative partition function

∫
g

dσe
− 24

g2
7

V7Tr(σ2)

Υ︷ ︸︸ ︷√
detΩ(2,0)

H

(S)detΩ(0,2)
H

(S)detΩ0(S)

c︷ ︸︸ ︷√
detΩ0(S)

c̄︷ ︸︸ ︷√
detΩ0(S)√

detΩ1(S)︸ ︷︷ ︸
A

√
detΩ(3,0)

H

(S)detΩ(0,3)
H

(S)︸ ︷︷ ︸
Φ

√
detH0(S)︸ ︷︷ ︸

b0

√
detH0(S)︸ ︷︷ ︸

ā0

(9.19)
where we have replaced Q2 = S. H0 refers to harmonic 0-forms. Since
they are constant on a compact manifold we can safely discard them
(using that they stay unchanged under Q2). A discussion of Paper I
analyzes individual contributions of each field. By ignoring phases and
decomposing all forms the result after cancellations is found:

Z =
∫
g

dσe
− 24

g2
7

V7Tr(σ2)
det′

adj sdetΩ(0,•)
H

(−LR + iGa0) , (9.20)

where det′
adj is the determinant over the adjoint representation of the Lie

algebra. Note that the superdeterminant means that even forms appear
in the numerator and odd forms in the denominator. The next step is to
calculate this superdeterminant.

For Sasaki-Einstein manifolds with metric cone C(X), it was first
pointed out by Schmude in [41] that the superdeterminant can be ob-
tained by counting holomorphic function on the metric cone, see also
[69,70]. On the horizontal space, as described in [42], due to the complex
structure we can define Dolbeault operators; most importantly the opera-
tor ∂̄H which gives rise to the Kohn-Rossi cohomology groups, Hp,q

KR [71].
More specifically, consider the part of the determinant that does not

contain the gauge transformation. Since the Lie derivative LR commutes
3One can also set σ = 0. However, that is not strictly necessary since they are
decoupled.
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with ∂̄H the superdeterminant can be evaluated over H0,•
KR instead. In

a similar fashion as [50] there is a pairing between H0,1
KR and H0,2

KR. But
since the latter is zero from simple connectness both vanish. Additionally,
there is a pairing between the (0,0)-forms and the (0,3)-forms. As it was
argued in [72] the same exists for the Kohn-Rossi cohomology. As a result,
the only factor remaining is of the form H0,0

KR ≡ H0(C(M)). I.e. the
computation reduces to counting holomorphic functions on the moment
map cone which we discussed in Chapter 3.1.

Ignoring the Lie algebra part for the moment and using the 1-Goren-
stein condition, �ξ · �ui = 1 [42] or (3.11), we write our superdeterminant
in terms of the moment map cone:

sdetΩ(0,•)
H

(−LR + x) =

∏
n∈Cμ(X)∩Z4\{0}

(
�n · �R + x

)
∏

n∈C◦
μ(X)∩Z4

(
�n · �R − x

) , (9.21)

where C◦
μ(X) denotes the interior of the moment map cone. We absorbed

the minus signs into the denominator since they do not matter after reg-
ularization.

As a result the final action takes the form

Zpert
X =

∫
t

dσ e
− 24

g2
7

V7Tr(σ2) ∏
β

i〈σ, β〉

∏
n∈Cμ(X)∩Z4\{0}

(
�n · �R + i〈σ, β〉

)
∏

n∈C◦
μ(X)∩Z4

(
�n · �R − i〈σ, β〉

)
=

∫
t

dσ e
− 24

g2
7

V7Tr(σ2) ∏
β

S
Cμ(X)
4 (i〈σ, β〉|�R) , (9.22)

where

S
Cμ(X)
4 (x|�R) =

∏
n∈Cμ(X)∩Z4

(
�n · �R + x

)
∏

n∈C◦
μ(X)∩Z4

(
�n · �R − x

) . (9.23)

The function S
Cμ(X)
4 is known as the generalized quadruple sine function

associated to the cone Cμ(X) [49,73]. See Paper I in Appendix C for more
information on the multiple sine functions. Note that β is the non-zero
root of the Lie algebra g and t the Cartan subalgebra.

9.2 S7 and factorization
Let us decode the partition function (9.22) for the example of S7. Let
T 4 be the torus action that acts according to (2.16). The cone over S7 is
simply C4. The moment map cone will have aform similar to (2.17)
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μ : C4 → R4
≥0 (9.24)

μ =1
2
(
|z1|2, |z2|2, |z3|2, |z4|2

)
. (9.25)

The polytope restricted to
∑

i |zi|2 = 1 is a pyramid as shown in Figures
9.1 and 9.2. The holomorphic functions on C4 correspond to the lattice
points in the moment map.

We will denote the lattice points �n = (n1, n2, n3, n4) where ni ∈ Z≥0
since the moment map cone is Cμ = R. Its interior is C◦

μ = R≥0. If we
set ei to be the basis vector associated to each U(1) the associated Reeb
vector is of the form R = ωie

i on the moment map cone. In the case
of the round sphere ωi = 1. However we are mostly interested in the
squashed sphere in what follows. We have �n · �R = ωin

i which is a factor
that enters the superdeterminant.

This means that the generalized quadruple sine takes the form

S4(x|�R) =

∏
n1,n2,n3,n4≥0

(n1ω1 + n2ω2 + n3ω3 + n4ω4 + x)∏
n1,n2,n3,n4≥1

(n1ω1 + n2ω2 + n3ω3 + n4ω4 − x) , (9.26)

which is an ordinary quadruple sine function.
This result encodes part of the geometry. We will illustrate this follow-

ing Paper I. The S7 has two different Hopf fibrations depicted in Figures
9.1 and 9.2.

S7 S1

CP 3

Figure 9.1. This figure presents the S1 fibration of S7 which can be visualized
by performing a cut on the polytope that gives four pieces of S1 × C3.

Let us start with the first S1 fibration. The result factorizes according
to

S4(x|�R) ≈
4∏

k=1
(zk|qk)∞ , (9.27)

where zk = e
2πi x

ωk and qk =
(

e
2πi

ω1
ωk , . . . , e

2πi
ωk−1

ωk , e
2πi

ωk+1
ωk , . . . , e

2πi
ω4
ωk

)
.
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The individual functions are called q-shifted factorials [73]. The pro-
portionality factor is associated to Bernoulli polynomials and out of the
scope of this discussion. For further details refer to Paper I and [73].

It is worth mentioning that the q-shifted factorial corresponds to a
perturbative Nekrasov partition function on S1 ×ε C

3 [74]. This hints to
the Hopf decomposition of S7 into four pieces around the closed Reeb
orbits, similar to 5d [50, 75]. Locally, in the neighbourhoods of the Reeb
orbits, the geometry is S1 ×ε C

3. We have imposed some twisted periodic
boundary condition on S1 corresponding to C3.

We argue that the full partition function on S7 can be factorized into
four Nekrasov partition functions corresponding to the four closed Reeb
orbits

Z full
S7 =

4∏
i=1

Z full
S1×C3(βi, ε1i, ε2i , ε3i) , (9.28)

This can be also seen from the polytope in Figure 9.1. Each vertex cor-
responds only to one Reeb orbit being non-degenerate, as discussed in
Section 3.1. The local geometry is S1 × C3.

Also note that every Sasaki-Einstein manifold admits a similar factor-
ization which can be found in Paper I.

S7 allows for a second Hopf fibration, associated to the fact that, in
contrast to S5, the 7-sphere is also a 3-Sasaki manifold. This SU(2)-Hopf
fibration does not pick only one complex structure but it preserves the
properties of the SU(2) ≈ S3 complex structure.4

S7 S3

S4

Figure 9.2. This figure shows the S1 fibration of S7 visualized by performing a
cut on the polytope that locally gives two copies of S3 × C2.

Following the same thought process as before we find a second factor-
ization of the quadruple sine, see Paper I,

S4(x|�ω) =
∞∏

ji=0
S2(x+j1ω3+j2ω4|ω1, ω2)S2(x−(j1+1)ω1−(j2+1)ω2|ω3, ω4).

(9.29)
It is argued in Paper I that the double sine in the above factorization

is the perturbative part of the partition function on S3 × C2. Hence, the

4For a short introduction on 3-Sasaki manifolds see Section 8 and the references within.
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perturbative part of the full partition function is

Zpert
S7 =

2∏
i=1

Zpert
S3×C2(ai1, ai2, εi1, εi2) . (9.30)

A relation exists between the parameters a1, a2, which are associated with
the S3 and ε1, ε2 which are associated with the rotations in C2 as it is
clear from (9.29).

This factorization can be also visualized in the polytope, see Figure
9.2. Each of the two parts after the cut has a S3 × C2 local geometry.
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Part IV:
N=4 in 3d mapped to 1d TQM
Localization is a powerful tool for the computation of exact partition
functions and correlators of certain local operators in supersymmetric
theories. These operators have to be δ-closed, or in other words, in a
protected sector with respect to the localizing supercharge, see Section
6. This is one of the reasons why [36] has attracted a lot of interest.
This work studied N = 2 SCFT in 4d, and defined new operators that
are supported only on a 2-dimensional plane and lie in the cohomology
of a specific supercharge. Most importantly, the correlation functions of
such operators define an associated chiral algebra. This means that these
unconventional operators create a map between N = 2 SCFT in 4d and
2d chiral algebras.

In this part we are going to briefly review the work of [36], focusing
mostly on the algebra. We will then turn our attention to three dimen-
sions where the same trick was applied for the first time in flat space [76].
We extend the formulation to S2 × S1 following Paper II. We also con-
sider a field theoretic approach, initially introduced by [34]. Finally we
will make some comments on the importance of the results of Paper II.





10. SCFT

Before discussing explicit cases we would like to explain the general strat-
egy put forward by the authors in [36]. It can be summarized by the
following steps:

• First pick a hyperplane of codimension two.
• Consider the subalgebra that acts on the hyperplane.
• Choose a nilpotent supercharge Q with certain desirable properties.
• If the subalgebra on the plane is not commuting with Q, a twisted

algebra is derived whose generators either commute with Q or are
Q-commutators.

• Consider an operator in the Q-cohomology that is supported only
on a point.

• Use the subalgebra to (twist-)translate the operator on the hyper-
plane.

10.1 4d N = 2
The superconformal algebra of N = 2 on 4-dimensional flat space is
sl(4|2). The authors of [36] identified a subalgebra sl(2)⊕ ŝl(2) ⊂ sl(4|2),
where a specific nilpotent supercharge Q, Q2 = 0, acts in a specific way
on a bosonic subalgebra. This is performed as follows:

• A plane C ⊂ R4 is chosen.
• The bosonic subalgebra on C is sl(2) ⊕ sl(2), with holomorphic and

anti-holomorphic generators is identified.
• A nilpotent supercharge Q, which commutes with the holomorphic

part of the subalgebra, is picked.
• The R-symmetry generators are used in order to twist the anti-

holomorphic sl(2) → ŝl(2) to become Q-exact.
• The operator in the Q-cohomology at the origin of C is identified

using constraints provided by the algebra.
• The operator is translated along C using the twisted algebra sl(2)⊕

ŝl(2) which preserve the cohomology. These are twisted-translated
operators that are supported on C and live in the Q-cohomology.

Let us now expand this strategy and identify the algebra. The N =
2 superconformal algebra in 4d has as a maximal bosonic subalgebra

51



so(6) ⊕ sl(2)R ⊕ U(1).1 The so(6) is the conformal algebra in four di-
mensions with generators: the translations P , Lorentz transformation M ,
dilatation D, and special conformal transformations K. The R-symmetry
generators consists of an Abelian factor r and the generators R± and R
in the Chevalley basis [77]. Finally, there are 16 fermionic generators, 8
Poincaré QI

α, Q̃Iα̇, and 8 conformal supercharges SI
α, S̃Iα̇. The Greek

letters α, α̇ are left and right handed spinor indices respectively; I, J
are R-symmetry indices. We are not going to write out the algebra. Its
explicit form is e.g. given in Appendix A1 of [36].

Let us concentrate our attention on a specific plane R2 ⊂ R4. There
are two relevant rotation generators: M‖ acting within the plane and
M⊥ rotating the vector orthogonal to the plane. We define complex
coordinates (z, z̄) on R2. The holomorphic generators of sl(2) building up
the holomorphic part of the algebra action on the plane, can be expressed
as

L− = −∂z, L+ = −z2∂z, L0 = −z∂z . (10.1)
These generators can also be identified with part of the conformal algebra
in 4d: L− = P++̇, L+ = K+̇+ and 2L0 = M‖ + D. The translation and
special conformal transformation are appropriately contracted with sigma
matrices.

The anti-holomorphic generators on the plane, together with a sub-
set of the supercharges form sl(2|2). The anti-holomorphic part of the
conformal algebra on the plane consists of

L̄− = P−−̇ = −∂z̄, L̄+ = K−̇− = −z̄2∂z̄, L̄0 = 1
2(D − M‖) = −z̄∂z̄ .

(10.2)
The fermionic generators are

QI = QI −, SI = SI
− Q̃I = Q̃I−̇, S̃ = S̃I−̇ . (10.3)

Finally, the algebra has a central element Z = M⊥ + r.
The nilpotent supercharges

Q1 = Q1 + S̃2 and Q2 = S1 − Q̃2, (10.4)

commute with the holomorphic sl(2).
Having identified the supercharges, one can find the R-twisted ŝl(2),

which is Q1,2-exact. Its generators are

L̂+ = L̄+ − R+ = {Q1, Q̃1} = −{Q2, Q2} , (10.5)
L̂− = L̄− + R− = {Q1, S2} = {Q2, S̃1} , (10.6)
L̂0 = L̄0 − R = {Q1, Q†

1} = {Q2, Q†
2} . (10.7)

1In this chapter we are going to assume that all algebras are defined over complex
numbers.
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Furthermore, the central extension

Z = −{Q1, Q2} , (10.8)

is also Q1,2-exact. This twisted algebra still acts anti-holomorphically on
the plane.

Having identified the algebra, we can look into the local operators. Let
us assume that the desired operator is inserted at the center of R4. We
would like it to be in a non-trivial cohomology of both supercharges Q1,2.
For simplicity we define a new family of supercharges Q = Q1 + ξQ2 for
an arbitrary parameter ξ. The operator that is inserted at zero, O(0), is
a representative of the non-trivial Q-cohomology if

{Q, O(0)] = 0 and O(0) �= {Q, O′(0)] . (10.9)

The appropriate commutator/anti-commutator is implicitly used depend-
ing on the nature of the operator.

One can identify these operators by their quantum numbers. Since L̂0
and Z are both Q-exact and they commute with Q, the operator lives in
the zero-eigenspace of both. This translates to the following conditions
for these operators.

1
2(E − j1 − j2) − R = 0 and r + j1 − j2 = 0 , (10.10)

where E is the eigenvalue of D, (the conformal dimension), j1,2 are Lorenz
quantum numbers and R is the R-charge. These operators are called
Schur operators since they coincide with operators surviving in the Schur
limit of the superconformal index [78–80].

Until now, we identified the operator at the origin of R2. We can
twist-translate this operator on the plane using the above algebra:

O(z, z̄) = ezL−+z̄L̂−O(0)e−zL−−z̄L̂− . (10.11)

We used that {Q, O(z, z̄)] = 0, since L− is Q-closed and L̂− is Q-exact
with Q nilpotent. Besides, since O(z, z̄) = {Q, O′(z, z̄)] would imply that
O(0) = {Q, O′(0)] – which is not the case – it is clear that O(z, z̄) defines
a Q cohomology class on the plane.

Let us consider an operator of the form OI1...I2k , with Ii = 1, 2, trans-
forming under the spin representation k of sl(2)R. In [36] it was proven
that the Schur operators at the origin are the highest weight states O1...1

and the twisted-translated operators at any point are defined as

O(z, z̄) = uI1 . . . uI2k
OI1...I2k , (10.12)

where the dressing factor uI = (1, z̄).

53



In [36] it was furthermore shown that these operators have meromor-
phic correlators up to a Q-exact term. The operators form an infinite-
dimensional chiral algebra which establishes a map between 4d CFTs and
chiral algebras in two dimensions.

An illustrative example is the free hypermultiplet in four dimensions.
Using (10.10), we find that the Schur operators at the origin are the scalars
Q and Q̃. The corresponding twisted-translated operators become

q1 := Q(z, z̄) + z̄Q̃∗(z, z̄) and q2 := Q̃(z, z̄) − z̄Q∗(z, z̄) . (10.13)

Their OPE is worked out to be

qi(z)qj(w) ≈ εij

z − w
+ regular terms . (10.14)

In this case, the correlators are indeed meromorphic and there is no need
for extraction of a Q-exact term.

10.2 3d N = 4
We now turn our attention to three dimensions and work in R3 with co-
ordinates x = (x1, x2, x3). We will review the work [81]. The total super-
conformal algebra is osp(4|4). It contains as a subalgebra su(2|2) which
is the superconformal algebra of a 1d SCFT with 8 real supercharges.

Let us briefly analyze the superconformal algebra in three dimensions.
Its maximal bosonic subalgebra is

osp(4|4) ⊃ so(3, 2) ⊕ su(2)C ⊕ su(2)H . (10.15)

The 3d conformal algebra consists of Pμ, Mμν , D, and Kμ. These gener-
ate translations, Lorentz transformations, dilatation, and superconformal
transformations respectively (μ, ν = 1, 2, 3). The generators of the left
and right R-symmetries, su(2)C and su(2)H , are Ra

b and R̄ȧ
ḃ, where the

undotted indices are su(2)C (Coulomb) indices and the dotted ones are
su(2)H (Higgs) indices.2 Finally, the super-generators of osp(4|4) consists
of eight Poincaré supercharges Qαaȧ and eight conformal supercharges
Sα

aȧ, where α = 1, 2 is the spinor index.
Consider the subalgebra su(2|2). We can separate R3 into R × R2

where we assume (x2, x3) ∈ R2. The su(2|2) is created by 1d conformal
transformations sl(2). These are the generators that act on the line:
P ≡ P1, K ≡ K1, D and an su(2)R R-symmetry, which we can choose to
identify with su(2)C . By looking at the osp(4|4) superalgebra3 one can
2The right and left R-symmetries are also called Coulomb and Higgs respectively.
3We are not rewriting the algebra here. See [76] equations (B.31)-(B.37), where one
needs to look for which supercharges the algebra with only P, K, D and R closes.
This can be done up to an su(2)R rotation.
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consider, as fermionic generators of the su(2|2), the Q1a2̇, Q2a1̇, S1
a1̇ and

S2
a2̇. Finally, there exists a central extension Z ≡ iM⊥ − R1̇

1̇ where M⊥

is the Lorentz transformation whose fixed locus is the line.
The strategy is similar as in 4d:
• First, we will pick a line and explain the superconformal algebra

acting on it.
• Then we find nilpotent supercharges Q i.e. Q2 = 0. There are

several choices for defining them, e.g.

Q1 = Q1
12̇ − S2

12̇ and Q2 = S1
11̇ + Q2

12̇ , (10.16)

following [81]. It should be noted that again the commutator of the
two supercharges gives the central charge

{Q1, Q2} = 2Z , (10.17)

as in (10.8).
• We twist the bosonic sl(2) in such a way that the twisted operators

are Q1,2-exact. The generators are

L̂− = P+− + R2
1 = 1

2{Q1, Q2
22̇} = −1

2{Q2, Q1
21̇} , (10.18)

L̂+ = K+− − R1
2 = −1

4{Q1, S1
11̇} = 1

4{Q2, S2
12̇} , (10.19)

L̂0 = D − R1
1 = 1

4{Q1, Q†
1} = 1

4{Q2, Q†
2} . (10.20)

They close in an sl(2) subalgebra, [L̂0, L̂±] = ±L̂± and [L̂+, L̂−] =
−2L̂0. This algebra is su(2)R twisted with respect to the original
one and as such it is referred to as ŝl(2).
From now on we are going to consider the one parameter family
Q = Q1 + ξQ2, with parameter ξ.

• The operators at the origin of the plane O(0) are identified, which
satisfy some non-trivial Q-cohomology as in (10.9).

• One can use L̂− to translate them along the line

O(x1) = e−ix1L̂−O(0)eix1L̂−

= uI1(x1) . . . uIk(x1)OI1...Ik
, (10.21)

with uI ≡ (1, x1) similarly to the 4d spin representation (10.12).
These are the desired operators. Note that, since the submanifold
in one dimensional, the only generator needed for translating the
operators is the one contained in the twisted ŝl(2).

Since the twisted translated operators are Q-exact, the operator de-
fined above is independent of x1 at the level of the cohomology. The only
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relevant information is the ordering of operators along the line, since the
operators cannot change order without leaving the kernel of Q.

The OPEs and the correlators of these operators are well-defined at
the level of the Q-cohomology. In fact, since the original SCFT OPE
algebra is associative, the resulting OPE remains associative, as one can
first compute the full OPE and pass over to the cohomology in the end.
The resulting algebra of operators is associative and depends only on the
ordering of the operators on the line. Finally, there exists an evaluation
map: one can take the expectation values of these operators by evaluating
the correlation functions in the full SCFT. Operator algebras with these
characteristics are called topological.

As an example, let us consider the case of the free hypermultiplet which
contains a scalar qa and a fermion ψȧ. When restricting ourselves to the
origin of R, using the quantum numbers of the fields, we find that the
desired operator is q1(0). The twisted translated operators are of the
form

q(x1) := q1(x1) + x1q2 . (10.22)

Using the original OPE

qa(x)qb(y) = εab

|x − y| + . . . (10.23)

where the ellipsis refers to regular terms, the OPE of the operators in the
Q-cohomology reads

q(0)q(x) ≈ sgn(x) + . . . . (10.24)

In fact, one can introduce an operation ∗ which denotes the multiplication
of Q-cohomology class of local operators ordered from left to right on the
line, i.e.

O1 ∗ O2 := O1(x) ∗ O2(y) , x < y . (10.25)

For the above example we have

q(0) ∗ q(x) ≈ 1 + . . . . (10.26)

which is, indeed, topological since it does not depend on the coordinates.4

4See also Section 13 for the formal definition of topological theories.
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11. S2 × S1 Hypermultiplet

The goal of this section is to apply the same procedure to theories without
superconformal symmetry. A first example, namely S3, was presented
in [34] using N = 4 hypermultiplets.

In this section we are looking into a supersymmetric theory on S2 ×S1.
In particular, we use the coordinates

ds2 = r2β2dt2 + r2(dθ2 + sin2 θdφ2) , (11.1)

where t is the coordinate on S1 and β is its radius. The other two coor-
dinates are parametrizing the S2 as depicted in Figure 11.1. Notice that
in these coordinates the S2 is written as a fibre of S1 over an interval.

θ

ϕ
×

t

Figure 11.1. The choice of coordinates on S2 × S1, extracted from Paper II.

The same construction as before can be applied here since the subal-
gebra used to translate the specific operators did not contain any confor-
mal transformations. In particular, the algebra is realized via spacetime
isometries and not as part of a superconformal algebra. We have eight
supergenerators and the bosonic algebra is su(2) ⊕ u(1) ⊕ su(2)R.

The way to realize the R-symmetry is via a background R-symmetry
connection A. Starting from the conformal case of S2 × R and then
compactifying the R dimension, one needs to turn on a background R-
symmetry connection. Our choice of R-connection is (AH)a

b �= 0 (break-
ing the su(2)H). This leads to the bosonic algebra su(2)⊕u(1)⊕su(2)C .1
The generators are Rȧḃ for the R-symmetry, z for the u(1) on the S1, and
j3, j± for the su(2) on the S2.
1Equivalently, one can choose to break the su(2)C using a background R-symmetry
connection (AC)ȧ

ḃ �= 0. The fixed locus will also be different in that case.

57



The supersymmetric part of the algebra is
{Q11ȧ, Q12ċ} = −r−1εȧċJ+ (11.2)
{Q21ȧ, Q22ċ} = −r−1εȧċJ− (11.3)
{Q11ȧ, Q22ċ} = −r−1εȧċ(iJ3 + Z) − ir−1Rȧċ (11.4)
{Q21ȧ, Q12ċ} = −r−1εȧċ(iJ3 − Z) − ir−1Rȧċ (11.5)

where we defined
J∗ = −Lj∗ , and Z = −Lz (11.6)

following Paper II. The precise definition of R can be found in (4.17) of
Paper II.

We will now focus on the twisted subalgebra of

Q = i

2(Q1 + Q2) , (11.7)

where Q1 = Q112̇ + Q121̇ and Q2 = Q212̇ + Q222̇. It turns out that both,
Q1 and Q2, are nilpotent. Any combination thereof is equivalent.


−→

S1
N

S1
S

Figure 11.2. The fixed point locus S2 × S1 is the disjoint union of two copies of
S1 located at the poles of the two-sphere. The figure is part of Paper II

As in the previous case one has to find twisted operators that live in
the fixed locus of Q2 ≈ J3 − R1̇2̇. If these operators are singlets under
su(2)C the operators live in the fixed locus of J3 ≈ L∂φ

. This contains
the fixed locus on S2 which consists of two points, the north pole (NP)
and the south pole (SP). The total locus on S2 × S1 is {NP} × S1 and
{SP} × S1, see Figure 11.2.

For an N = 4 hypermultiplet the operators are the scalars qa similar
to in (10.22). These are indeed singlets under su(2)C and the the above
fixed locus discussion goes trivially through.

It was shown in Paper II that, on the two disjoint parts of the fixed
locus, the operators are

q± = u±
a qa = q1 ± q2 , (11.8)

where plus and minus indicate north and south pole submanifolds respec-
tively. Notice that the dressing factor takes the form u±

a = (1, ±1).
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12. Partial localization

Another way of realizing this procedure is using a localization technique.
It was originally introduced in [34] and additionally studied in [35, 82–
85]. In Paper II it was generalized for a large class of manifolds for
hypermultiplets.

The general strategy is as follows. Let us consider a closed 3d manifold
M with metric g. Take a 3d theory with an N = 4 hypermultiplet
(qa, q̃a, ψȧ, ψ̃ȧ), where the scalars q, q̃ belong to the (2,1) and the fermions
to the (1,2) representation of su(2)H ⊕su(2)C . The R-symmetry currents
are coupled to the background flat connections AH and AC . The theory
is coupled to a background vector multiplet with a connection A. We will
pack all these connections into a covariant derivative D = ∇− i(A+AH +
AC).

The supercharge Qaȧ is associated with a spinor ξaȧ. From now on we
are going to omit the explicit dependence on the spinor index α and treat
objects as matrices. The spinor ξaȧ satisfies the conformal killing spinor
equation for an auxiliary spinor ξ̃aȧ. The supersymmetric transformations
are of the form

δqa = ξaȧψȧ, δq̃a = ξaȧψ̃ȧ, (12.1)
δψȧ = iγμξaȧDμqa + iξ̃aȧqa − iξaċΦȧ

ċqa, −iνaȧ , (12.2)
δψ̃ȧ = iγμξaȧDμq̃a + iξ̃aȧq̃a − iξaċq̃

aΦȧ
ċ − iνaȧG̃a , (12.3)

δGa = νaȧ(γμDμψȧ − Φȧċψ
ċ) , (12.4)

δG̃a = νaȧ(γμDμψ̃ȧ − Φȧċψ̃
ċ) , (12.5)

where we have introduced two auxiliary fields G, G̃ together with their
associated auxiliary spinors νaȧ. This ensures off-shell closure of the su-
persymmetry transformations.1

Finally, the action is

S =
∫

M
�L, where

L = Dμq̃aDμqa−iψ̃ȧγμDμψȧ + R/8q̃aqa + G̃aGa

−q̃a(iDac+1/2εacΦȧċΦȧċ)qc + iψ̃ȧΦȧċψċ . (12.6)

1The auxiliary spinors satisfy some conditions mentioned in (2.15) of Paper II.
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The supersymmetry transformations square to the Lv, where v is the
killing vector

vμ = iξaȧγμξaȧ . (12.7)

In particular v satisfies Lvg = 0.
Let Mv be the fixed locus manifold of v. In this manuscript we study

the Abelian case for simplicity, the non-Abelian version can be found in
Paper II.

We are going to apply the localization argument from Section 5. Hence
we introduce the equivariant differential dv = d − ιv and an equivariant
closed polyform Ω such that dvΩ = 0. This polyform is given by

Ω = ∗L + α1 , (12.8)

where α1 is a 1-form and ∗L is a 3-form or a top form in three dimensions.
This means we are allowed to replace∫

M
∗L →

∫
M

Ω =
∫

Mv

ι∗α1

e(NMv) . (12.9)

In the last step we used the localization formula from (5.16).
The only remaining task is to identify the 1-form α1. This was done

in Paper II using that Ω is equivariantly closed:

dv(∗L + α1) = 0 → ιv(∗L) = dα1 and ιvα1 = 0 , (12.10)

so that

α1μ = Xac(q̃aDμqc − Dμq̃aqc) + q̃aqawμ + 2(Λac)μq̃aqc . (12.11)

The newly introduced matrices that are functions of the killing spinor:

Xac = ξȧ
aξcȧ, wμ = ξaȧγμξ̃aȧ, (12.12)

(Λac)μ = (ξaȧγμξcċ)Φȧċ . (12.13)

12.1 S2 × S1

Let us apply the prescription discussed in Chapter 11 to S2 × S1.
As already noted the choice of the supercharge (11.7) means that the

killing vector is along the equator of S2, v = −r−1∂φ. The localizing locus
is the disjoint union of Mv = ({NP} × S1) ∪ ({SP} × S1), which is shown
in Figure 11.2. By using the localization procedure described above one
finds that on the north pole the localizing integral (12.9) simplifies to

SN = 2πr

∮
S1

dt q̃+(∂t − iζ)q+ , (12.14)
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having used the definition of α1 and restricting to {NP} × S1. Here, ζ
is a BPS combination of the vector multiplet fields: ζ = a − iβσ, where
a and σ are the BPS connection and scalar field of the vector multiplet
respectively.

Similarly, for the south pole we have

SS = −2πr

∮
S1

dt q̃−(∂t − iζ∗)q−. (12.15)

It is important to notice that we arrived exactly at the BPS operators
(11.8). One can combine DN = ∂t − iζ and DS = ∂t − iζ∗, which can
be seen as twisted covariant derivatives. The final representation of the
action is

S = 2πr

∮
{NP}×S1

dt q̃+DN q+ − 2πr

∮
{SP}×S1

dt q̃−DSq−. (12.16)

This is the form of two copies of quantum mechanics.
The field configurations are found to be

q+(θ, t) =
∑
k∈Z

e−ikt[+u+,k cosh(ωk cos θ) + iv+,k sinh(ωk cos θ)
]

,

q−(θ, t) =
∑
k∈Z

e−ikt[+u−,k cosh(ωk cos θ) − iv−,k sinh(ωk cos θ)
]

,

q̃+(θ, t) =
∑
k∈Z

e+ikt[+u∗
−,k cosh(ωk cos θ) + iv∗

−,k sinh(ωk cos θ)
]

,

q̃−(θ, t) =
∑
k∈Z

e+ikt[−u∗
+,k cosh(ωk cos θ) + iv∗

+,k sinh(ωk cos θ)
]

, (12.17)

by imposing the BPS equation δψα̇ = δψ̃α̇ = 0 and the reality conditions
q̃a = (qa)∗ and G̃a = (Ga)∗. We have that

ωk = β−1|k + ζ| , (12.18)

and constant u’s and v’s such that

u−,k = k + ζ

|k + ζ| v+,k ,

v−,k = k + ζ

|k + ζ| u+,k . (12.19)

These configurations are evaluated on the north and south pole accord-
ingly. The one-dimensional action will only contain q̃+

N , q+
N , q̃−

S , and q−
S .

The action in (12.16) corresponds to a quantum mechanical system with
path integral

Z =
∫

BPS
[dq̃+

N ][dq+
N ][dq̃−

S ][dq−
S ] e−S1d . (12.20)
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For simplicity, we will drop the subscripts N/S as the superscript ± is
sufficient to resolve the ambiguity.

By plugging the solutions (12.17) into the one-dimensional action, one
finds

S1d = 4π2r
∑
k∈Z

|k + ζ|
[(|uk|2 + |vk|2) sinh(2ωk) − i

(
ukv∗

k + u∗
kvk

)]
,

(12.21)

whose real part is manifestly positive semi-definite. Note that we have
used (12.19) to eliminate v−,k and u−,k. We have also dropped the sign
subscript of u and v.

We can rewrite the partition function using

zk =

⎛⎝uk

vk

⎞⎠ , Mk = 4π2r|k + ζ|
⎛⎝sinh(2ωk) −i

−i sinh(2ωk)

⎞⎠ . (12.22)

and performing the Gaussian integration over each Fourier mode:

Z1d(ζ, ζ∗) =
∏
k∈Z

∫
C2

duk du∗
k dvk dv∗

k cosh2(2ωk) e−z†
k
M

k
z

k

=
∏
k∈Z

1
4π2r2|k + ζ|2 . (12.23)

Zeta-function regularization can be used to simplify the partition func-
tion. Specifically,using∏

k∈Z

|ak + b|2 = 4| sin(πb/a)|2 , (12.24)

if a > 0 and b ∈ C. The partition function takes the form

Z(ζ, ζ∗) = 1
4| sin(πζ)|2 . (12.25)

This partition function was generalized in Paper II for the case of mul-
tiple hypermultiplets. Also, it is important to note that this partition
function matches the one obtained by performing a direct localization
computation with the three-dimensional hypermultiplet as was shown in
Paper II. Hence, a mapping between 3d N = 4 theories and 1d quantum
mechanics of protected operators is established.

One can extract the correlators of the Fourier modes using the inverse
of the matrix Mk:

〈u∗
k uk′〉 = 〈v∗

k vk′〉 = δk,k′
sinh(2ωk)

4π2r|k + ζ| cosh2(2ωk)
,

〈u∗
k vk′〉 = 〈v∗

k uk′〉 = δk,k′
i

4π2r|k + ζ| cosh2(2ωk)
, (12.26)
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and combine them according to (12.17) into

〈q̃+(t2) q+(t1)〉 = + i
4π2r

∑
k∈Z

1
k + ζ

eik(t2−t1) ,

〈q̃−(t2) q−(t1)〉 = − i
4π2r

∑
k∈Z

1
k + ζ∗ eik(t2−t1) . (12.27)

Performing the summation, the correlators take the form

〈q̃±(t2) q±(t1)〉 = G±(t2 − t1) , (12.28)

where

G+(t) = −sign(t) − i cot(πζ)
4πr

e−iζt ,

G−(t) = +sign(t) − i cot(πζ∗)
4πr

e−iζ∗t . (12.29)

It is important to note that these correlators are only valid in the range
t1, t2 ∈ [0, 2π), or t ∈ (−2π, 2π) for t = t2 − t1. Outside this domain the
following periodicity condition is enforced

G±(t) = G±(t + 2π) . (12.30)

For the free hypermultiplet, i.e. ζ = 0, these correlators are topological
as the ones found in Section 10.2. It was argued in [34] that the resulting
one-dimensional quantum mechanical system of the gauge hypermultiplet
can be viewed as a gauged topological quantum mechanics, where ζ plays
the role of the gauge field.

In Paper II we studied the path integral of such a quantum mechanical
system by addressing the problem of identifying the correct integration
cycle along the lines of [86]. Indeed, it was found that using the cycle
(12.17) leads to the same expression for the partition function. Addi-
tionally, Paper II studies the algebra for the flavour currents obtained
via the operators q̃± and q± resulting in an affine algebra. Finally, we
also looked at the theory in the presence of surface defects supported on
S2. The two-dimensional theory (which includes vector multiplets) can
be localized with the same supercharge used for the three-dimensional
hypermultiplet. Furthermore, it is immediate to extend our computa-
tion to include insertions of appropriate BPS operators coming from the
multiplets on S2, e.g [87,88].
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Part V:
N = 2 in 4d and equivariant twisting
This part introduces topological twisting in N = 2 supersymmetric field
theories in four dimensions. This procedure was first explored by Witten
in [12], and has induced important developments in mathematical physics.
We are first going to review Witten’s work and explain the concept of
twisting. We will continue by explaining the key concepts of Paper III
and the connection of the twisting procedure with localization.





13. Topological twisting

We begin with a review of topological field theories and their importance
for the discussion afterwards. We are going to follow [89] for most of
the key concepts, thus we refer the reader there for a more thorough
discussion.

13.1 Review of topological field theories
Let us consider a 4d Riemannian manifold (M, g) together with a quan-
tum field theory defined thereon. In general, the observables of this theory
will depend on the metric g. In the case of a topological quantum field
theory (TQFT) there is a sector of operators whose observables do not de-
pend on the metric. These observables are called topological observables.
If we denote by {Oi} the set of topological operators the independence
of the metric is equivalent to

δ

δgμν
〈Oi1 . . . Oim〉 = 0 . (13.1)

Topological quantum field theories are categorized into two types, the
Schwarz and the Witten/cohomological type. Here we recap their defini-
tion:

• Schwarz type: theories where the action and the observables are
manifestly independent of the metric. A well-known example is
Chern-Simons theory [12].

• Cohomological type: more subtle TQFTs with an action and op-
erators depending on the metric. However the observables do not.
This is possible in the following way: Let us consider a scalar, non-
anomalous symmetry δ which acts on the fields of the theory {Φi},
such that the action is invariant,

δS[Φi] = 0 . (13.2)

Operators with correlators whose variation with respect to the met-
ric are δ-closed are called topological. An illustrative example is the
energy momentum tensor [89]

Tμν = δS

δgμν
. (13.3)
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If the energy momentum tensor is δ-exact, i.e.

T = δα , (13.4)

for some tensor α, the theory is topological since for a set of opera-
tors O

δ

δgμν
〈O〉 ≈ 〈OTμν〉 = ±〈δ(Oα)〉 = 0 , (13.5)

where we assumed the vacuum is invariant under δ. The ± comes
from the property of the scalar symmetry which can be either even
or odd. The symmetry that we are going to discuss, i.e the super-
symmetry variation, is odd.

We are going to restrict ourselves to the latter type of theories.
It is important to note that for a nilpotent δ, i.e. δ2 = 0, operators

that are δ-exact have vanishing correlators as can be easily see from (13.5).
Thus, we are focusing only on operators in the cohomology of δ.

In the generic case of L := δ2 �= 0 we will additionally need to restrict
to operators that are invariant under the action of L. These operators
live in the equivariant cohomology of δ as discussed in Section 4. As such,
the language of equivariant cohomology will continue being at the heart
of our formalism.

13.2 Witten’s N = 2 twisting
In this section we describes the work of Witten [12], where he obtained
topological field theories of the cohomological type. It is based in a pro-
cedure called twisting which we summarize in the following paragraphs.

We start with an N = 2 supersymmetric field theory in four dimen-
sional flat space. The superconformal algebra was introduced in Sec-
tion 10.1. We will not need the full superconformal algebra but rather
the super-subalgebra which contains only the supersymmetric generators
QI

α, Q̃Iα̇, the rotation group su(2)l ⊕ su(2)r, and generators Mαβ and
Mα̇β̇ respectively. The R-symmetry remains the same and we have su(2)R

with generators RIJ .
The relevant commutation relations of the algebra are

[Mαβ , QIγ ] = εγ(αQIβ) , [Mαβ , Q̃Iγ̇ ] = 0 ,

[M̃α̇β̇ , QIγ ] = 0 , [M̃α̇β̇ , Q̃Iγ̇ ] = εγ̇(α̇Q̃Iβ̇) , (13.6)
[RIJ , QKα] = εK(IQJ)α , [RIJ , Q̃Kα̇] = −εK(IQ̃J)α̇ ,

not including the relations for the Lorentz transformations. These can be
found in Appendix A1 of [36].
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We continue with the twisting procedure. We identify the R-symmetry
algebra with the su(2)r. The corresponding indices are identified accord-
ingly (I, J)→(α̇, β̇).We can rotate the Lorentz generator with respect to
the R-symmetry group

M̂α̇β̇ = M̃α̇β̇ − Rα̇β̇ . (13.7)

These generators define a new rotation group ŝu(2)l ⊕ su(2)r.1 The su-
percharges become QIα → Qα̇α and Q̃Iβ̇ → Q̃α̇β̇ . This allows us to define
a topological supercharge

Q := εα̇β̇Q̃α̇β̇ . (13.8)

It commutes with the generators of the new rotation algebra. This super-
charge is a symmetry operator that we will need to define the topological
sector.

Furthermore, we define α0μ := αμ ≈ (σμ)ȧaQȧa from (13.4) so that

{Q, αμ} = ∂μ . (13.9)

This ensure the Q-exactness of the energy momentum tensor such that
(13.5) holds. Finally, notice that in this twisted algebra Q is nilpotent.
Thus, one can use it to define a cohomology of twisted topological opera-
tors. This result was important historically since for the case of the N = 2
super Yang-Mills theory the resulting topological theory is the Donaldson
Witten theory [12], whose correlators are the Donaldson invariants [37].
This links the topological field theories to mathematical objects.

This work is not only important because of its mathematical impli-
cations but also because of its use of semi classical approximation from
which localization originates. Specifically, for this theory one can show
that the action is Q-exact up to a topological term. As a consequence,
the expectation values do not depend on the coupling constant of super
Yang-Mills. Hence it is justified to use the saddle point approximation
that we discussed in Part II.

A interesting consequence of the twisting is that all spinors are elimi-
nated in the process and become differential forms. Thus, the resulting
theory can be defined in any orientable manifold. The orientability is
important in order for the Hodge star to be well defined.

1Notice that the redefinition performed in Section 10.1 is also some kind of twisting
with the R-symmetry. This is the reason that we called the operators in Part IV twisted
operators. We also see that, in 3d, we end up with operators that are topological in
the resulting sub-manifold but not in the original manifold. Indeed, in Paper II we
explore the topological correlators in the 1d theory.
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14. Pestunization

We will now focus on the case considered in Paper III and its predecessor
[38]. We are going to perform a twisting that is called equivariant twisting
which is relevant for manifolds that allow for a torus action. An example
of such an equivariant twisting was [90], which resulted in the Nekrasov
partition function [91]. The connection between equivariant twisting and
supersymmetric localization was first made in [38] for the case of vector
multiplets. The work of Paper III extended this discussion to the case of
hypermultiplets. Our main focus will lie on the latter.

The difference between equivariant twisting and the topological twist-
ing before is that we do not identify SU(2)l with SU(2)R. Instead we
use supersymmetric tools, such as Killing spinors, in order to redefine
fields and make them singlets under SU(2)R. That way, the fields be-
come differential forms, or spinors that can be defined on a large class of
manifolds. Hence, we will have a similar cohomological complex as in the
case of seven dimensions, see e.g. (9.16). The supersymmetry transfor-
mations play the role of an equivariant differential and square to the Lie
derivative along some Killing vector plus gauge transformations. This is
the usual cohomological complex used within the localization technique.

First we are going to define an N = 2 supersymmetric field theory on
a four dimensional manifold. In order to define the theory on a general
background we will argue the existence for a global solution of the spinors.
Then we are going to present the twisting before discussing the final result.

14.1 N = 2 supersymmetric theories
Let (M, g) be a Riemannian manifold with spin structure. As explained
in [92] one can define a supersymmetric theory on M by coupling it to
an off-shell background supergravity. When one sets the supergravity
variations to zero, the generalized Killing spinor equation emerges. The
resulting theory is supersymmetric if there exists a non-vanishing Killing
spinor satisfying that equation. Then, the supergravity degrees of freedom
become background fields. In this thesis we are going to consider N = 2
supersymmetric theories with a conserved SU(2) R-current.

The supergravity background fields are: a 1-form Gμ, a closed 2-form
Fμν , a scalar N , a 2-form Wμν , and a scalar Sij transforming as a triplet
under SU(2)R.1

1For more details on the background we refer to [38] and Paper III.
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The supersymmetric transformations are associated with the Killing
spinors ζI

α and χ̄α̇
I which obey the symplectic Majorana conditions

(ζIα)∗ = ζIα and (χ̄α̇
I )∗ = χ̄I

α̇ . (14.1)
Requiring that the supergravity variations vanish leads to generalized

Killing spinor equations. We refer the reader to Paper III for the explicit
for of the equations and additional information about the field configura-
tion of the supergravity background.

One can construct a bilinear using the Killing spinors
s = 2ζIζI , s̃ = 2χ̄I χ̄I (14.2)

and
vμ = 2χ̄I σ̄μζI , where ||v||2 = ss̃ . (14.3)

Using the reality condition we find that s, s̃ ≥ 0. Also using the Killing
spinor equations, one can prove that v is a Killing vector and Dμs = 0,
Dμs̃ = 0. One should bear in mind that the covariant derivative Dμ also
contains the background SU(2)R connection.

The fixed points of the Killing vector, i.e. ||v||2 = 0, can be separated
into two families according to (14.3). The fixed points where s = 0 and the
ones where s̃ = 0 are called plus and minus fixed points respectively [38].2

14.1.1 Global Spinors
The spinors associated with supersymmetry transformations are the Kill-
ing spinors. However there is the need of additional auxiliary spinors to
be introduced in order to allow for off-shell closure of the supersymmetric
algebra (without using the equations of motion). These auxiliary spinors
are associated to auxiliary fields as it is discussed in Section 14.1.3. In
order to perform the twisting one has to ensure that the Killing and
auxiliary spinors are globally defined. [38] contains a longer discussion
about the Killing spinors that is also mentioned in Paper III together
with the construction of globally defined auxiliary spinors.

The Killing spinors transform under SU(2)l ×Z2 SU(2)R for ζI and
SU(2)r ×Z2 SU(2)R for χ̄I . The auxiliary spinors on the other hand
transform under SU(2)l ×Z2 SU(2)Ř for ζ̌Ǐ and SU(2)l ×Z2 SU(2)Ř for
ˇ̄χǏ . Notice that, in principle, the external symmetry SU(2)Ř is different
from the R-symmetry group SU(2)R. In order to obtain off-shell closure,
the auxiliary spinors need to satisfy the consistency conditions

ζI ζ̌J̌ − χ̄I ˇ̄χJ̌ = 0 , ζ̌Ǐ ζ̌ Ǐ = s̃

2 ,

ˇ̄χǏ σ̄μζ̌Ǐ = −1
2vμ , ˇ̄χǏ

ˇ̄χǏ = s

2 .
(14.4)

2They are also called instanton and anti-instanton fixed points respectively.
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Using the reality conditions for the Killing spinors (14.1), the auxiliary
spinors fulfil their own set of reality conditions

(ζ̌Ǐα)∗ = −ζ̌ Ǐα and ( ˇ̄χα̇
Ǐ
)∗ = − ˇ̄χǏ

α̇ . (14.5)

The general strategy is: We will cover M with charts Uk in such a
way that each chart contains only one fixed point. For each chart, we
will make a choice of the vielbein ea

k. We will start with a chart with
at most one plus fixed point (s̃ = 0) and find a regular solution of the
spinors. Then, we will construct a transition function to a chart with a
minus fixed point (s = 0) and find the regular solution for the spinors in
that chart. Altogether, we have constructed globally defined spinors.

Let us assume that we are in a chart Uk with s �= 0. Thereon define
the Killing spinors

ζI
α =

√
s

2 δI
α , χ̄I = 1

s
vμσ̄μζI (14.6)

and the auxiliary spinors

ˇ̄χα̇
Ǐ =

√
s

2 δα̇
Ǐ

, ζ̌Ǐ α = −1
s

vμ
(
σμ ˇ̄χǏ

)
α

. (14.7)

These spinors are regular and satisfy the bilinear and reality conditions
(14.4), (14.1), and (14.5).

The spinorial transition function for the spinors from Uk to a new chart
Uk′ containing a point s = 0 is of the form

UI
J = i

vμ

||v||σμI
J (14.8)

for the Killing spinors and

UǏ
J̌ = i

vμ

||v||(σμ)Ǐ
J̌ . (14.9)

for the auxiliary ones. Therefore, the spinors in the new chart read

χ̄α̇
I = −i

√
s̃

2 δα̇
I , ζI = −1

s̃
vμσμχ̄I (14.10)

and

ζ̌ Ǐ
α = i

√
s̃

2 δǏ
α , ˇ̄χα̇

Ǐ
= 1

s̃
vμ

(
σ̄μζ̌Ǐ

)α̇
. (14.11)

These spinors are regular in Uk′ . The two solutions in Uk and Uk′ together
with their transition function ensure that the spinors are globally well
defined.
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14.1.2 Vector Multiplet
The twisting of the vector multiplet was discussed in length in [38]. In
Paper III we were interested in a hypermultiplet coupled to a vector
multiplet. We are going to briefly review the twisting map in the case of
the vector and hypermultiplet.

Original multiplet
The form of N = 2 vector multiplet consists of a gauge field Aμ, a complex
scalar X, two fermions λIα and λ̃I

α, and an auxiliary scalar DIJ . All fields,
except from the gauge field, transform in the adjoint of the gauge group.
Furthermore the fermions transform in the fundamental of SU(2)R and
the auxiliary field transform as an SU(2)R triplet.

The supersymmetric variations are of the form

δX̄ =χ̄I λ̄I , δX = −ζIλI ,

δAμ =iζiσμλ̄I + iχ̄I σ̄μλI ,

δDIJ =iζIσμ(Dμ+ iGμ

)
λ̄J − iχ̄I σ̄μ(Dμ− iGμ

)
λJ

+ 2i[X, χ̄I λ̄J ] + 2i[X̄, ζIλJ ] + (i ↔ J) ,

δλI = − 2i(Dμ − 2iGμ)Xσμχ̄I + 2
(
F +− X̄ W +)

ζI (14.12)
+ DIJζJ + 2i[X, X̄]ζI − 2XηI ,

δλ̄I =2i(Dμ + 2iGμ)X̄σ̄μζI +2
(
F −− X W −)

χ̄I

− DIJ χ̄J − 2i[X, X̄]χ̄I + 2X̄η̄I .

Here, Fμν is the field strength of Aμ and η is a spinor defined by the
supergravity fields.3 In general we will use the notation B+ := 1

2Bμνσμν

and B− := 1
2Bμν σ̄μν for any 2-form field B.

The derivative Dμ is covariantized with respect to the SU(2)R connec-
tion and the gauge field.

The supersymmetric transformations square to

δ2 = iLv + ivμVμ ◦ +iΛ(R)◦ −i[Φ, ·] , (14.13)

where ◦ denotes the action corresponding to the field’s SU(2)R represen-
tation. The gauge transformation parameter reads

Φ = ivμAμ + sX̄ + s̃X (14.14)

and Λ(R) is the SU(2)R parameter

Λ(R)
IJ = χ̄I σ̄μ(Dμ − iGμ)ζI − ζIσμ(Dμ + iGμ)χ̄J + (I ↔ J) . (14.15)

3One can find its exact definition in (2.4) of Paper III.
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Vector Twisting
We notice that the fermionic fields transform under SU(2)R. As a result
one can start by twisting them using the Killing spinors into a scalar, ηI ,
a 1-form Ψμ and a 2-form χμν . 4

Let us define flipping projectors acting on 2-forms

P+ = 1
2(s2 + s̃2)

(
(s + s̃)2I + (s2 − s̃2) � −4κ ∧ ιv

)
, (14.16)

P− = 1 − P+ .

They are called flipping since P+ projects 2-forms into their self-dual parts
at the plus fixed points and to the anti-self -dual parts at the minus fixed
points. For example the fermionic 2-form χμν is such a form. It satisfies
P+χ = χ. Furthermore, we also twist the auxiliary field. The resulting
field is Hμν which satisfies P+H = H.

Twisting preserves the number of degrees of freedom of the vector mul-
tiplet. We started from eight complex fermions. The resulting multiplet
has the following fermionic counting: one degree of freedom from the
scalar η, four from the 1-form Ψμ and originally six degrees of freedom
from the 2-form χ but the projection equation shows that half of them
only remain, which sum again to eight.

If one also redefines the two scalars X and X̄ into φ and ϕ, the counting
of the bosons is simpler since the gauge field remains unchanged: There
are two complex scalars in the starting and final multiplet. The super-
symmetric transformations simplify into three submultiplets. The long
one contains (A, φ, Ψ) with

δA = i Ψ , (14.17)
δΨ = ιvF + i dAφ , (14.18)
δφ = ιvΨ . (14.19)

The first short multiplet contains a scalar and a fermion (ϕ, η)

δϕ = iη ,

δη = ιvdAϕ − [φ, ϕ] .
(14.20)

And finally, the second short multiplet is built from the bosonic and
fermionic 2-forms (χ, H)

δχ = H ,

δH = iLA
v χ − i[φ, χ] ,

(14.21)

where L = dAιv + ιvdA is the Lie derivative that also contains A, and
dA = d + [A, ·]. The gauge transformation parameter can be rewritten as
4The interested reader can find the complete map in Section 3.3.3 of [38] or Paper III.
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Φ = iιvA + φ . (14.22)
One can write the square of the supersymmetric transformations as

δ2 = iLv − GΦ (14.23)

where with Gφ we indicate the action of Φ on the fields according to their
gauge representation.

Note that as we discussed in the start of the chapter, the original
square of the supersymmetry (14.13) is now twisted into one resembling
the equivariant differential.

14.1.3 Hypermultiplet
Let us continue with a hyper- coupled to a vector multiplet. We embed the
gauge group in Sp(k). Thus, the hypermultiplet is transforming under the
fundamental of Sp(k) with indices n = 1, . . . , 2k. The hypermultiplet’s
physical degrees of freedom contain a scalar, qnI , and a pair of spinors,
ψαn and ψ̄α̇n. To ensure off-shell closure of the supersymmetric algebra
we add auxiliary fields FnǏ accompanied by the auxiliary spinors ζ̌ Ǐ and
ˇ̄χǏ we already discussed in Section 14.1.1. The checked indices transform
under the fundamental of an SU(2)Ř.

The supersymmetric transformations read

δqnI = ζIψn + χ̄I ψ̄n ,

δψn = 2i(DμqnI)σμχ̄I + iqnIσμ (Dμ + iGμ) χ̄I + 4iX̄n
mqmIζI + 2iFnǏ ζ̌ Ǐ ,

δψ̄n = 2i(DμqnI)σ̄μζI + iqnI σ̄μ (Dμ − iGμ) ζI +4iXn
mqmI χ̄I + 2iF nǏ ˇ̄χǏ ,

δFnǏ = ζ̌Ǐ

[
σμ (Dμ − iGμ) ψ̄n − 2Xn

mψm + 2(λJ)n
mqmJ − iW +ψn

]
+ ˇ̄χǏ

[
σ̄μ (Dμ + iGμ) ψn + 2X̄n

mψ̄m − 2(λ̄J)n
mqmJ + iW −ψ̄n

]
.

(14.24)

For the vector multiplet fields we have, for example, Xn
m = Xata

n
m using

a gauge group generator ta.
Furthermore, the supersymmetric algebra, restricted to the physical

degrees of freedom, squares to

δ2 = iLv + ivμVμ ◦ +iΛ(R)◦ +GΦ� , (14.25)

where we used the same notation as in (14.13). The new term, GΦ�, in-
dicates the action of the gauge transformation parameter Φ on the fields
according to their gauge group representation. The squared supersymme-
try variation on the auxiliary field is similarly given by

δ2 = iLv + ivμV̌μ ◦ +iΛ(Ř)◦ +GΦ� , (14.26)
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where the auxiliary spinors transform under the SU(2)Ř instead. The
field V̌μ is the background SU(2)Ř connection. We have a similar trans-
formation parameter for SU(2)Ř

Λ(Ř)
ǏJ̌

=2ζ̌Ǐσμ
(
Ďμ − iGμ

)
ˇ̄χJ̌ + 2iζ̌ǏW +ζ̌J̌ (14.27)

− 2 ˇ̄χǏ σ̄μ
(
Ďμ + iGμ

)
ζ̌J̌ + 2i ˇ̄χǏW − ˇ̄χJ̌ +

(
Ǐ ↔ J̌

)
, (14.28)

as in (14.15). Here, Ďμ denotes the covariantized derivative with respect
to the SU(2)Ř connection.

We will not give the supersymmetric Lagrangian in this thesis but we
refer the interested reader to equation (2.18) of Paper III. However, an
interesting aspect of it is that the Lagrangian is (up to total derivatives)
δ-exact, i.e. L = δVG.

Twisting projectors
The twisting procedure in the case of the hypermultiplet is more subtle
than in the case of a vector multiplet. The fields transforming under
SU(2)R are not the fermions but the scalars. This means that, after
the twisting, the resulting cohomological fields will not be differential
forms but spinors instead. That restricts the set of manifolds since a spin
structure is required.

A convenient way to perform the redefinition is in the language of
Dirac spinors. Firstly, let us define a convenient projector acting on Dirac
spinors. Using the decomposition of a Dirac spinor

Ψ =

⎛⎝ψα

ψ̃α̇

⎞⎠ , (14.29)

one can define the projector

Z+ = 1
2

(
I + s − s̃

s + s̃
γ5 − 2

s + s̃
vμγ5γμ

)
, (14.30)

with γ5 = −γ1γ2γ3γ4 and γμ the Dirac matrices in four dimensions. One
obtains additional useful projectors

Z− = I − Z+ , Z̃+ = γ5Z+γ5 , Z̃− = I − Z̃+ . (14.31)

Analogously to P+, the new operators, Z+ and Z̃+, project spinors into
their left-handed part at the plus fixed points and right-handed part at
the minus fixed points.

For the Dirac Killing spinor

zi =

⎛⎝ζI

χ̄I

⎞⎠ , (14.32)

76



we have Z+zI = zI . For its auxiliary spinor analogue we have

žǏ =

⎛⎝ ζ̌Ǐ

ˇ̄χǏ

⎞⎠ , (14.33)

with Z̃−žǏ = žǏ .
The scalars can be redefined as

qn = zIqnI =

⎛⎝ζIqnI

χ̄IqnI

⎞⎠ . (14.34)

Thus the new field is well defined on the whole manifold M.
In order to arrive at a similar cohomological complex as in (9.16), we

also redefine the fermionic degrees of freedom according to

cn = −s + s̃

4 Z+

⎛⎝ψn

ψ̄n

⎞⎠ = −1
4

⎛⎝sψn − vμσμψ̄n

s̃ψ̄n + vμσ̄μψn

⎞⎠ , (14.35)

and

bn = s + s̃

4 Z̃−γ5

⎛⎝ψn

ψ̄n

⎞⎠ = 1
4

⎛⎝ s̃ψn + vμσμψ̄n

−sψ̄n + vμσ̄μψn

⎞⎠ . (14.36)

Finally, the auxiliary spinor transforms under the SU(2)Ř so we will
use the auxiliary Dirac spinor (14.33)

hn =Z̃−
(

s + s̃

2 γμ(Dμ + iTμ)qn + ivμGμqn

)
+ Z̃−

(
−i

(s + s̃)
2 ϕn

mqm

)
+ s + s̃

2 žǏFnǏ . (14.37)

In this formula, T is a combination of supergravity background fields and
derivatives of Killing spinor bilinears.

The new fields satisfy the projection relations

Z+q = q , Z+c = c , Z̃−b = b , Z̃−h = h . (14.38)

As before the number of fermionic degrees of freedom stays the same.
We started from 4+4 complex degrees of freedom from ψn and ψ̄n. At the
end we are left with two Dirac fermions which amount to 8+8 complex
degrees of freedom. Both are shortened since they satisfy the projection
relations (14.38) and we end up with 4+4 degrees of freedom again.

Due to the redefinitions the multiplet splits into two separate sub-
multiples. The first one contains the bosonic spinor and one of the
fermions (q, c)

δq = c ,

δc = (iLv − GΦ)q ,
(14.39)
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where we omit the Sp(k) indices for simplicity. The second sub-multiplet
contains the remaining spinor and the auxiliary field (b, h) with variations

δb = ih ,

δh = (Lv + iGΦ)b .
(14.40)

Note that the gauge transformation parameter is defined in (14.22).
Finally as for the vector multiplet the square of the supersymmetric

transformations takes the form

δ2 = iLv − GΦ . (14.41)

14.1.4 Localization of the gauged hypermultiplet
We review the localization computation for the gauged hypermultiplet
following Paper III.

As it was explained in Section 6, one first needs to identify the localiza-
tion locus. This is achieved by setting the fermions and their variations
to zero. In this case this results to

(iLv − GΦ)q = 0 and h = 0 . (14.42)

However, by imposing reality conditions this leads to q = 0.
The localizing action is of a similar form as (6.3)

Vloc = 1
4 zizi

(δΨn)∗Ψn = 8
(s + s̃)3 [(δbn)∗bn + (δcn)∗cn] . (14.43)

One may rewrite it for the purpose of computing the one loop determi-
nant as

Vloc = 8
(s + s̃)3

(
δq, b

)⎛⎝D00 D01

D10 D11

⎞⎠⎛⎝ q

δb

⎞⎠ . (14.44)

The matrix elements are defined by

D00 = iLv − iΦ − i[2φ + i(s − s̃)ϕ] ,

D10 = i(s + s̃)γμ(Dμ + iTμ) − 2ιvG − g(s + s̃)ϕ ,

D01 = 0 ,

D11 = −I .
(14.45)

The Gaussian integration is once more resulting in a ratio of the determi-
nants of the δ2 = iLv − GΦ for bosons and fermions. Using the fact that
Dij commutes with δ2, the one loop determinant is

sdet(iLv − GΦ)−1 = detb(iLv − GΦ)
detq(iLv − GΦ) = detCokerD10(iLv − GΦ)

detKerD10(iLv − GΦ) (14.46)

As explained in [18,29], for the case of a transversally elliptic operator
the 1-loop determinant can be computed by extracting the spectrum of
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eigenvalues of δ2 from the index of that operator. In the following we will
show that D10 is transversally elliptic and we will give an explanation of
the index derivation for plus and minus fixed points.

In order to prove that transversally ellipticity of D10, we will consider
its symbol

σ [D10] = 8 pμ

(s + s̃)2 Z̃−γμZ+ . (14.47)

The symbol simplifies on the two fixed points as

σ [D10]|s̃=0 = σ

[
−8i

s2 σμ∂μ

]
, (14.48)

σ [D10]|s=0 = σ

[
−8i

s̃2 σμ∂μ

]
. (14.49)

These are the symbols of the chiral Dirac operators. This behaviour hints
to the operator being elliptic. By close examination of the case s = s̃
away from the fixed points, we get

σ [D10]|s=s̃ = 4
s2 Z̃−γ5γμνpμvν , (14.50)

The operator is not elliptic in this patch since for pμ = vμ �= 0 we have
σ[D10] = 0. The symbol is invertible for any pμ �= 0 orthogonal to v.
Hence, the operator is transversally elliptic. As such we can compute
the index of the operator which will has the information needed for the
calculation of the 1-loop determinant.

As explained in [18] one can calculate the kernel and the co-kernel of
such operators by summing over all the irreducible representations of the
gauge group Ra with different multiplicities, m0

a for the kernel and m1
a for

the co-kernel. We find that
detCokerD10(iLv − GΦ)
detKerD10(iLv − GΦ) =

∏
a

(detRa)m0
a−m1

a . (14.51)

However, the index can be computed to be

indD10 =
∑

a

(m0
a − m1

a)εa , (14.52)

where ε is the generator of one of the U(1) actions. Therefore, if we
calculate the index, we can use the coefficients of the U(1)-generators,
(m0

a − m1
a), in (14.51) to find the partition function.

In our case the index is

ind(D10)(t) =
∑

x : x̃=x

Trqe−i t δ2 − Trbe−i t δ2

det(1 − ∂x̃/∂x) , (14.53)
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where t ∈ R, while x is a coordinate on M and x̃ its image under the
torus action induced by δ2. The sum goes over the fixed points of the
torus action, i.e. x̃ = x.

Around the neighbourhood of a plus/minus fixed point the space looks
locally flat. We can parametrize it by (z1, z2) ∈ C2 with a T 2 acting as
(2.16). As seen in (2.11), the Killing vector takes the form

v = iε
(+/−)
1 (z1∂z1 − z̄1∂z̄1) + iε

(+/−)
2 (z2∂z2 − z̄2∂z̄2) , (14.54)

where ε
(+/−)
1,2 are the parameters of the torus action close to the plus

or minus fixed points. The denominator of the index formula (14.53)
becomes

det
(

1 − ∂z̃i

∂zj

)
= (1 − q1)(1 − q1)(1 − q2)(1 − q2) , (14.55)

where qi = exp(i ε
(+/−)
i t) are the parameters of the group action.

In order to calculate the index we additionally need the action of δ2

on the fields. As explained in Paper III or [18], we can embed T 2 into
Spin(4) using the spinor representation of the torus action g ∈ Spin(4)

g = diag
(√

q1q2,
√

q1q2,
√

q1q2,
√

q1q2

)
, (14.56)

We then can define the coordinate z matrix

z = xμγμ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 z2 z1

0 0 z1 −z2

−z2 −z1 0 0
−z1 z2 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (14.57)

such that z → g z g−1. the spinor field Ψ = {q, b} transforms as Ψ →
g−1Ψ under the Lv action.

For the plus fixed points, the bosonic spinor q is left-handed and the
fermionic counterpart b is right-handed as can be seen from their defini-
tions (14.34) and (14.36) respectively. The Lv action reads

q+ → √
q1q2 q+ , q− → √

q1q2 q− , (14.58)
b̃+̇ → √

q1q2 b̃
+̇ , b̃−̇ → √

q1q2 b̃
−̇ . (14.59)

Plugging this back into the index formula (14.53) we get

ind(D10)|plus point =
√

q1q2

(1 − q1)(1 − q2)
∑
ρ∈R

e−t ρ(Φ0) . (14.60)
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The last contribution is from the action of GΦ. It acts non-trivially. Thus,
we sum over the weights ρ of the representation R of the gauge group. Fi-
nally, Φ0 is the BPS field that contains only the Coulomb branch modulus
and fluxes. It takes the form

Φ0 = a0 + k+(ε+
1 , ε+

2 ) , (14.61)

where a0 is a Coulomb branch moduli and k+(ε+
1 , ε+

2 ) is parametrizing the
flux contribution at the plus fixed point.

For a minus fixed point, q is right- and b is left-handed i.e.

b+ →
√

q′
1q′

2 b+ , b− →
√

q′
1q′

2 b− , (14.62)

q̃+̇ →
√

q′
1q′

2 q̃
+̇ , q̃−̇ →

√
q′

1q′
2 q̃

−̇ . (14.63)

The index becomes

ind(D10)|minus point = −
√

q′
1q′

2
(1 − q′

1)(1 − q′
2)

∑
ρ∈R

e−t ρ(Φ′
0) . (14.64)

Note that we used the primed version q′
i = exp(i ε

(−)
i t) to visualize that

the two indices have different results even if they look similar. Note that
Φ′

0 is the BPS field with analogous expression as in (14.61) for the minus
fixed point instead.

In order to find the partition function one needs to regularize the in-
dex. In Paper III, we were inspired by [31, 75, 93, 94] to use two different
regularization schemas which we denoted by plus and minus[ 1

1 − qi

]
+

=
∑
n≥0

qn
i ,

[ 1
1 − qi

]
−

= −
∑

n≤−1
qn

i = −
∑
n≥0

q−n−1
i .

(14.65)

Their difference is [ 1
1 − qi

]
+

−
[ 1

1 − qi

]
−

=
∑
n∈Z

qn
i . (14.66)

In Paper III we presented multiple regularization results depending on
which regularization was used for q1 and q2.

For the example of a plus fixed point with (+,+) regularization, we use
the plus regularization for both q1 and q2. We find[

ind(D10)|plus point

]
++

= +
∑
ρ∈R

∑
n1,n2∈N

q
n1+ 1

2
1 q

n2+ 1
2

2 e−t ρ(Φ0) , (14.67)
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which translates to the partition function

ZHM++

ε
(+)
1 ,ε

(+)
2

(a0, k+) =
∏
ρ∈R

∏
ni∈N

[
ε

(+)
1

(
n1 + 1

2

)
+ ε

(+)
2

(
n2 + 1

2

)
+ i ρ(Φ0)

]−1

=
∏
ρ∈R

Γ2

(
i ρ(Φ0) + ((ε(+)

1 + ε
(+)
2 )/2)|ε(+)

1 , ε
(+)
2

)
.

(14.68)

It is important to note that the regularization needs to be chosen case by
case since it is far from an obvious task.

Combining this with the results of [38], we give a schematic answer for
the full partition function for N = 2

Zε1,ε2(q, q)

=
∑
ki

∫
h

da0 e−Scl

p∏
i=1

Z inst
ε

(i)
1 ,ε

(i)
2

(a0, ki, q)ZVM
ε

(i)
1 ,ε

(i)
2

(a0, ki)ZHM
ε

(i)
1 ,ε

(i)
2

(a0, ki)

×
l∏

i=p+1
Zanti-inst

ε
(i)
1 ,ε

(i)
2

(a0, ki, q)Z̃VM
ε

(i)
1 ,ε

(i)
2

(a0, ki)Z̃HM
ε

(i)
1 ,ε

(i)
2

(a0, ki) .

(14.69)

The formula above holds for a manifold with p plus and (l−p) minus fixed
points. In (14.69) the integral is taken over the Cartan gauge subalgebra
h, whereas q, q are counting parameters labelling (anti-)instantons. Z inst,
ZVM and ZHM are the instantons contribution, the vector multiplet 1-
loop determinant, and the hypermultiplet 1-loop determinant at a plus
fixed point respectively. Analogously, Zanti−inst, Z̃VM and Z̃HM are the
anti-instantons contribution, the vector multiplet 1-loop determinant, and
the hypermultiplet 1-loop determinant at a minus fixed point. The 1-
loop contributions ZHM and Z̃HM are in general Barnes double gamma
functions [95].
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Svensk sammanfattning

Den största utmaningen inom teoretisk fysik idag är att komma fram till
exakta resultat som beskriver naturen. Faktum är att sannolikhetsfördel-
ningen av standardmodellpartiklar som sprids, något som kan observeras
vid LHC, är mycket svårt att beräkna. Fysiker lockas då till att söka
efter symmetrier för att förenkla denna uppgift. Ett exempel på en sådan
symmetri är supersymmetri som spelar en avgörande roll för vår förståelse
av naturen. Supersymmetri är intressant modell där varje partikel i uni-
versums början parades ihop med en superpartner. Mer specifikt så as-
socierades de partiklar som vi kallar materia med partiklar som var av
strålningsnatur och vice versa.

Dessa superpartners har dock ännu inte observerats experimentellt. En
mekanism som skulle kunna förklara detta är att när universum blev
svalare upphörde denna symmetri vid en viss energinivå, och tanken är då
att superpartnerna bara kan observeras ovanför denna energinivå. Nedan-
för denna nivå kan experiment endast observera partiklarna i standard-
modellen. Supersymmetri har löst många av de förbryllande problemen
som standardmodellen har och fysiker är förväntansfulla över att se om
LHC eller någon annan partikelaccelerator kan bekräfta att supersym-
metri existerar genom att accelerera partiklar till högre energier i framti-
den. Förutom att supersymmetri möjligen beskriver naturen, fungerar
den även som en förenklad test-modell för att studera matematiska egen-
skaper, utveckla beräkningsverktyg och studera fysikaliska fenomen.

Denna avhandling undersöker sådana supersymmetriska teorier. En
viktig teknik som används är något som kallas localizing (“lokalisering”)
som används för att beräkna observabler. Mer specifikt är lokalisering ett
utmärkt verktyg som låter oss exakt beräkna vissa särskilt utmanande
integraler. Metoden går ut på att man kan bevisa att endast några få
speciella punkter bidrar till dessa integraler och att de kan reduceras till
enklare integraler eller till och med summeringar. Mängden som dessa
punkter utgör kallas localization locus (“lokaliseringens geometriska ort”).

Även geometrin spelar en viktig roll i dessa beräkningar. I själva verket
tyder observationer på att universum inte är platt, utan snarare aningen
krökt vilket motsvarar en liten kosmologisk konstant, något som introduc-
erades i Einsteins gravitationsmodell i hans berömda allmänna relativitet-
steori. Medan Einsteins gravitationskraft klassiskt är en välfungerande
teori, innebär däremot dess förening med standardmodellen på kvantnivå
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allvarliga problem. En mer omfattande modell som innefattar allmän rel-
ativitet som en klassisk gräns är strängteori. Supersymmetri och sträng-
teori är sammankopplade på ett naturligt vis. Fungerande formuleringar
av strängteori kräver ett universum som har tio rymdtidsdimensioner.
Strängteorins grundidé är att dess fundamentala objekt är små strängar
snarare än punktpartiklar. För att studera spridningen av sådana strän-
gar måste man ta hänsyn till alla topologiskt olika vägar som en sträng
kan ta. Därför är det viktigt att förstå spridning i olika geometrier.

I artiklar I och II utforskar vi supersymmetriska teorier i sju och tre di-
mensioner. En modells geometri har en mycket stor påverkan på beräknin-
gen av observablerna. I den förstnämnda är studien i sju dimensioner
särskilt intressant då det förekommer speciella geometrier som antyder
intressanta mönster i resultaten. I den sistnämnda artikeln undersöker vi
idén att beräkna sannolikheter för spridning för specifika operatorer i tre
dimensioner som är naturligt förekommande i dessa teorier.

Artikel III fokuserar på fyrdimensionella teorier och en teknik som
kallas twisting (“vridning”). Vridning undersöktes först av Witten då
han försökte få teorier i platta rum att även fungera i krökta rum. Mer
specifikt så börjar man med en supersymmetrisk teori i ett platt rum,
varpå man vrider partikelinnehåll så att det resulterande ramverket är
oberoende av vilket rum man faktiskt beskriver teorin i.
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