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Abstract
In science and technology studies today, there is a troubling tendency to
portray actors in the biosciences as “cultural dopes” and technology as
having monolithic qualities with predetermined outcomes. To remedy this
analytical impasse, this article introduces the concept styles of valuation to
analyze how actors struggle with valuing technology in practice. Empirically,
this article examines how actors in a bioscientific laboratory struggle with
valuing the properties and qualities of algorithms in a high-throughput
setting and identifies the copresence of several different styles. The ques-
tion that the actors struggle with is what different configurations of algo-
rithms, devices, and humans are “good bioscience,” that is, what do the
actors perform as a good distribution of agency between algorithms and
humans? A key finding is that algorithms, robots, and humans are valued in
multiple ways in the same setting. For the actors, it is not apparent which
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configuration of agency and devices is more authoritative nor is it obvious
which skills and functions should be redistributed to the algorithms. Thus,
rather than tying algorithms to one set of values, such as “speed,”
“precision,” or “automation,” this article demonstrates the broad utility of
attending to the multivalence of algorithms and technology in practice.
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What Is a Good Algorithm?

The biosciences are often proclaimed to be going through a data revo-

lution based on high-throughput technologies, online data sharing, and

automated tools. Sometimes the biosciences are said to be going from in

vivo through in vitro to in silico, a computer-based bioscientific ima-

ginary where research has become “bigger, faster, better” (Davies,

Frow, and Leonelli 2013). In response to this enthusiasm, many observ-

ers have asked what these technological changes might entail for knowl-

edge production.

In this article, we wish to nuance a troubling tendency in science and

technology studies (STS) to treat in silico technologies as having monolithic

qualities and pregiven outcomes. Rather than tying high-throughput tech-

nologies to one set of values, such as “speed,” “precision,” “size,” or

“capitalist automation,” our approach is to examine in detail what Keating

and Cambrosio (2012) have referred to as the “hybridization” of the bio-

medical sciences (p. 37). Thus, rather than tracing how a seemingly neb-

ulous but static set of high-throughput technologies affects the biosciences

wholesale, we follow actors’ struggles to value what a good distribution of

agency between humans and technology should entail in a high-throughput

laboratory.

Consequently, this article approaches the shift toward high-throughput

automation in the biosciences through actors’ valuations. Specifically, it

examines how different configurations of humans and devices are valued in

a high-throughput laboratory. In doing so, we show how actors’ valuations

may diverge in ways that are tied to broader historically situated struggles

about what should count as “good bioscience.” Concretely, the object of

analysis is how laboratory workers value algorithms used for

“normalization” and “randomization.”
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Today, algorithms are an indispensable part of any high-throughput

laboratory that aims to automate a variety of tasks. But what are algorithms?

In computer science, an algorithm is defined as a “finite set of rules that

gives a sequence of operations for solving a specific type of problem”

(Knuth 1997). That is, an algorithm is a computerized instruction sequence

to solve certain tasks. In a laboratory, for example, algorithms may be used

to clean data or run a sample-handling robot.

However, for those working in the laboratory, the use of algorithms

evokes many questions that relate to the valuation of algorithmic automa-

tion. What is a good algorithm? What does it achieve? And would the task

be better done by an algorithm or a human? The actors’ struggles with such

questions ground our research question: what different configurations of

humans, devices, and algorithms are performed as “good bioscience?” In

short: what configurations of agency between humans and machines do the

actors articulate as appropriate and beneficial?

A key finding of this article is that different configurations of algorithms,

robots, and humans were valued in multiple ways in the same laboratory: it

was not apparent to our informants which configuration of devices should

be seen as more authoritative than the other nor was it apparent which skills

and functions should be redistributed to algorithms for automation. Instead,

the appropriate distribution of agency was a matter of negotiating the value

of algorithmic automation in each situation.

To underline the multiple and diverging yardsticks for “good bioscience”

that actors articulated in our case, we introduce the concept of styles of

valuation (cf. Fujimura and Chou 1994). By doing this, we aim to highlight

how different styles of valuing algorithms can coexist within a single

laboratory with varying degrees of dispute.1 In paying attention to valua-

tions in situated practices, we follow a valuographic research program that

focuses on the practical enactment of values and stresses how such valua-

tions are an inseparable part of knowledge production (Dussauge et al.

2015).

Approaching the data revolution in the biosciences in this manner

enables us to describe and disentangle some of the many yardsticks that

coexist in today’s high-throughput biomedical science. Thus, with Knorr

Cetina (1999) or Daston and Galison (2007), we are interested in the links

between valuations and the machineries of knowledge production. But,

rather than studying the disunity of science by comparing different branches

of science or tracing the instability of a particular value through history, we

examine how different values are attributed to different configurations of

human/technology in situated practices.
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Technology in the Biosciences

The salience of these issues becomes apparent in relation to STS’s long-

standing interest in the automation and digitalization of the biosciences.

Recurring questions about the nature of this change have abounded, ranging

from questions about how certain representational devices are constructed

as more authoritative than others (Fujimura 1999) to questions about how

skills and functions are redistributed between human and machines (Keat-

ing, Limoges, and Cambrosio 1999).

There has been great interest in how bioscientific research is becoming

“big biology” and thus reshaped through “high-throughput” or “data-

driven” approaches (cf. Leonelli 2012; Davies, Frow, and Leonelli

2013). Closer to the practices and technologies of knowledge production,

questions have been posed about the so-called omics fields (e.g., geno-

mics, metabolomics, proteomics), and how they “produce new genres of

difference and variation” (McNally and Mackenzie 2013, 75). Some of

these studies have taken an interest in high-throughput technologies and

argued that bioinformatics is reshaping the biosciences into a capitalist

production machine that emphasizes scale, economy, and surveillance

(Stevens 2011). Other studies ask how a new breed of experts without

wet-lab experience—such as bioinformaticians and biostatisticians—can

lead to new challenges for online data interpretation (Leonelli 2014a,

2014b). One concern is that the data-driven biosciences could lead to an

“exaggerated trust in the quality and comparability of the data” and a

replacement of “subjective judgment” with a “statistical kind of

objectivity” (Strasser 2012, 87).

While these lines of research highlight important developments in the

biosciences, their technodeterminist tendencies concern us and we wish

to address them here. Our argument is that there is a propensity to

produce monolithic accounts of technology in the biosciences. We

maintain that these studies sidestep a body of careful research on tech-

nology that has shown the variability of technologies in practice (Pinch

and Bijker 1984; Mackenzie 1996; Laet and Mol 2000). Consequently,

rather than making wholesale assumptions about the properties and

effects of technology—for example, that bioinformatics is turning biol-

ogy into a capitalist production machine—we propose to pay attention

to situated valuations of technology in the biosciences and to highlight

multiple human-algorithm configurations and concurrent values to

which they are linked.
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A Valuography of Algorithms

In the social sciences, algorithms have recently received an upsurge of

interest (e.g., Kitchin 2014; Dourish 2016). Some researchers are employ-

ing the strategy of “going under the hood” of the algorithm, showing, for

example, how machine gambling algorithms fabricate “near misses” to

entice gamblers to bet again (Schüll 2012) or how algorithms can embody

certain values—for example, a utilitarian moral philosophy for allocating

organs (Roscoe 2015). In other research, algorithms are analyzed as per-

forming and transforming the objects on which they are brought to bear, for

instance, in detecting plagiarism (Introna 2013). We position this article

closer to an ethnomethodological perspective that attends to the practices of

designing and using algorithms rather than going under the hood to under-

stand what those algorithms really do (cf. Neyland 2015; Ziewitz 2017;

Seaver 2017).

To do this, we employ a valuographic research strategy that aims to

analyze the multiplicity of values that users and designers attach to algo-

rithms in the biosciences (Dussauge et al. 2015).2 A particular facet of

algorithms, which makes them intriguing as objects of inquiry in this sense,

is their multivalence. This implies that their characteristics and their effects

and values—just as bikes, missiles, bush pumps, or tomatoes—are difficult

to stabilize (Pinch and Bijker 1984; Mackenzie 1996; Laet and Mol 2000).

As a consequence, we do not treat algorithms as stabilized nor the values

ascribed to them as intrinsic.

Significantly, this approach to analyzing values also entails an impartial

stance to which valuations are the correct ones. Just as the symmetry prin-

ciple in the sociology of scientific knowledge highlighted the need for

epistemic impartiality in scientific disputes, this perspective on values

means that we do not take sides in arguments about what is valuable in the

use of algorithms (cf. Bloor 1976). Concretely, this means that we do not

decry the advent of high-throughput algorithms as constituting a

“corruption” or an “alienation” of the biosciences. Instead, we focus on the

values—both positive and negative—that various actors attach to algo-

rithms in a high-throughput laboratory.3

Styles of Valuation

Below, we introduce the notion styles of valuation4 to analyze our infor-

mants’ assessment of human–machine configurations. We introduce this

concept to explore the problems, values, and yardsticks that are articulated,
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in this case, around algorithms. We here draw on Fujimura and Chou’s

(1994) concept: styles of practice, which is defined as “historically located

and collectively produced work processes, methods and rules for verifying

theory” (p. 1020). However, while Fujimura and Chou “examine the co-

production of facts and the rules for verifying facts over time” (p. 1017), we

use styles of valuation to highlight differences in the valuation of scientific

work processes, methods, and their relation to different yardsticks for “good

science.”

In this view, technologies are intertwined with multiple concurrent sets

of values such as tactility, reproducibility, smoothness, neutrality, objectiv-

ity, or universality. In the words of Fujimura (1999, 75):

Scientific technologies are highly elaborated symbolic systems, not neutral

media for “knowing” nature. For example, neutrality, or the idea that one can

eliminate “noise” versus “signal” to reach a tabula rasa from which one can

then produce “reproducible effects,” is part of a set of “values” historically

located in so-called “Western traditions of thought.” These values include

realist, objectivist, and empiricist rhetorics, which form the basis for estab-

lishing factness and the universality of findings.

Similarly, we are interested in the different values that actors articulate

in the laboratory. With Fujimura (1999), we ask how some “technologies

and practices of representation [ . . . ] are constructed as more authoritative

than others” (p. 76).

An important point is that styles of valuing are situated in historical

continuities and discontinuities. For instance, there have been debates about

the merits of randomizing samples versus creating balanced comparisons at

least since the statistician R. A. Fisher debated the issue of randomness in

experiment design in the early twentieth century (Hall 2007). Also, the

practice of blinding experiments by employing randomness has a long

history, stretching back to early experiments on telepathy and in psycho-

physics (Dehue 1997; Hacking 1988). Thus, when new algorithms provoke

debates on their value, these discussions resonate with historically long-

running articulations and valuations of “good science.” Hence, new devices

for automation—in this case, algorithms—can sometimes unsettle the status

quo and lead to new experimental configurations, but they can also provoke

repetitions of well-rehearsed clashes between entrenched styles of

valuation.

Consequently, the notion of styles of valuation is meant to draw attention

to how actors’ valuations of different configurations of human–machine
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agencies vary. The notion thus aims to open the possibility to identify

situations where multiple styles are concurrent in a situated practice,

thereby providing a means for examining frictions between different valua-

tions of the same human–machine configurations.

Fieldwork

This article draws on the first author’s longitudinal and polymorphous

engagement with an anonymous research group working with high-

throughput biomedical mapping. The empirical work started in 2010 and

was concluded in spring 2014, with a return visit to present results in 2016.

The data collection consisted of interviews, meeting observations, demon-

stration sessions, and analyses of published and unpublished laboratory

documents (such as articles, protocols, screenshots, and unpublished

papers). Interviews were done at the laboratory, audio recorded, and sub-

sequently transcribed. The laboratory demonstrations entailed sessions

where different laboratory and software practices were demonstrated and

explained, often in conjunction with scheduled interviews. Demonstration

sessions were documented in field notes. In total, thirty-four interviews or

demonstration sessions were conducted with researchers, lab technicians,

doctoral students, and other actors related to the laboratory. Articles from

the group and others, unpublished laboratory documents and protocols,

screenshots from laboratory management systems, analysis software, and

textbooks on research design were analyzed. All interviews and documents

were coded and analyzed by the first author using Atlas.ti. To preserve the

anonymity of the laboratory, the country, language, publications, and names

are not stated.

Entering the Laboratory

The studied lab is situated at a research university in a European country. It

consists of about twenty individuals divided into two research groups. The

laboratory has been running for roughly ten years. It is focused on biomedical

mapping of protein biomarkers or the identification of links between protein

“signatures” or protein expression patterns and different diseases. The iden-

tified protein signatures, it is hoped, would provide leads for developing

novel methods of diagnosis, which perhaps in the longer term would lead

to new treatments. One dream being to replicate other laboratories’ successes

in finding genomic biomarkers for the diagnosis of breast cancer (the BRCA

genes) or prostate cancer (the prostate-specific antigen test).
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In this lab, identifying protein signatures entails finding differences

between protein expression patterns from “cases”—people understood as

having a specific condition—and samples from “controls”—people consid-

ered to not have the condition. In order to find these coveted patterns, the

lab analyzes samples from patients in the form of various bodily fluids such

as blood, urine, and spinal fluid. The samples are supplied by collaborators

around the world and have often been gathered in different places, using

different techniques, and for different purposes. In the analysis of these

samples, the scientists utilize a specific technique to map protein levels

in the body fluids. This entails mapping how much of a range of proteins

exists in a patient sample. For each sample, the levels of multiple proteins

are measured. There are often hundreds of different proteins for each

sample.

The high-throughput methods employed are designed to analyze hun-

dreds of samples in one run. In general, the laboratory’s process entails

several steps. First, transferring patient samples from different collaborators

to the so-called microtiter plates (square plastic “plates” with small inden-

tations or wells for body fluids ordered in a grid formation). Each plate

contains a number of wells (up to 384 wells per plate in their fastest

machine), and each well contains a sample from a single patient. Second,

the plates are fed through the so-called multiplex machines that analyze the

protein levels of all the samples on a plate. The third and last step involves

comparing the protein levels of different samples to find patterns linked to

different conditions. This involves comparing “cases” and “controls”

through different types of statistical software, scripts, and algorithms.

The high-throughput methods make automation through algorithms and

robotics crucial in the studied lab. The laboratory workflow includes

machines to automate the handling of plates and samples, algorithms that

control the machines, and algorithms that clean the data. We focus here on

two algorithms in use in the lab: randomization and normalization. The

randomization algorithm was used in the first step of the process outlined

above and generated instructions for sample-handling robots. These robots

transferred patient samples from the test tubes they were stored in to the

plates that were fed into the multiplex machines. The normalization algo-

rithm was used (in step three above) to separate—as one of our informants

expressed it—“biological variation” from “nonbiological variation.” That

is, to separate noise from signal when the data from the multiplex machines

were analyzed. We will attend to the valuations of these algorithms in detail

below. The two algorithms in focus in this article addressed a central matter
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of concern for our informants—separating signal from noise, pattern from

static, and protein signatures from trash.

Randomization: Tinkering versus Ignorance

As described above, randomization algorithms were used to place patient

samples on plates. However, achieving a good randomization was not

straightforward and included a multitude of devices and practices through-

out the lab: it was sometimes introduced manually (literally by hand) by

putting samples into cardboard boxes and shaking them, which an infor-

mant jokingly called “the box method of randomization.” Sometimes the

randomization was brought about using a simple algorithm in the R script-

ing language that took a “vector” and scrambled it. That is, the algorithm

took an orderly list of numbers—1, 2, 3, 4—and randomly reordered the

sequence into for example 2, 4, 1, 3. This new sequence of numbers was

then utilized to guide the researcher’s hand when manually sorting samples

onto a plate. Our informant’s argument was that the vector method ensured

random placement without the researchers having to “think about it”—

without mental energy being expended on producing a randomization.

However, when large numbers of samples had to be randomized—when

the lab ran their signature high-throughput analyses—an algorithm pro-

duced by the lab’s resident bioinformatician could be used. This bespoke

“plate layout algorithm” produced instructions for a sample-handling robot,

which automatically randomized the samples on a microtiter plate accord-

ing to a specific “plate layout.”

What was at stake in these actors’ struggles with randomization is related

to well-known issues in experiment design that are brought head-to-head in

negotiations of what “good bioscience” should entail. Specifically, the

informants struggled with valuing balanced and unblinded ways of orga-

nizing experiments versus randomized and blinded ways. Importantly, the

valuations of the algorithm related to debates in experimental design that

have been running for a century or more (Hall 2007, Marks 2003). Thus, the

actors tied the randomization algorithm to different problematizations of

good scientific practice and different yardsticks for what a good algorithm

should do.

Randomization, Balance, and Human Tinkering

Perhaps paradoxically, the randomization algorithm used in the laboratory

we studied was not random—it produced what our informants called “a
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balanced randomization.” This was by design, since a complete randomiza-

tion was understood as problematic. Thus, alongside the argument for ran-

domization, our informants contended that the randomization algorithm

also needed to produce a balanced distribution of samples. The informants’

reasons for introducing this “balanced randomization” was a concern that

the machines and processes used to analyze the samples—the multiplex

machines—could introduce nonbiological variation in the resulting data.

The first source of concern was that samples located on different plates

could yield different results when they were put through the multiplex

machines. At issue was that each run could result in subtle differences that

stemmed from slight variations in the machine rather than from measured

variances between samples. Hence, an appropriate randomization was con-

sidered to be one that located patient samples to be compared on the same

plate for analysis in the multiplex machine. By placing samples to be

compared on the same plate, they could, our informants argued, neutralize

differences in the results from differences in the machine.

A second source of concern for our informants was that samples of a

certain kind (e.g., cases/controls or male/female) could become clustered in

one location on a microtiter plate. If, for instance, all control samples

happened to be grouped in the top left corner, data patterns could be pro-

duced that could be picked up in the subsequent analysis. According to this

way of thinking, the plate layout algorithm should not (even by chance)

place all samples of one type in one cluster on the plates. To counter these

two problems, our informants wanted to place samples randomly—but

distributed in the right way—on the plates:

There are several different methods to do it [the randomization]. But, the

important part is to check if all control samples happen to be placed at the

start—and all with the condition at the end of the plate. (Excerpt from inter-

view, Biotechnologist 2, 2013)

Thus, while randomization was considered beneficial, a concern of our

informants was that certain random patterns in how samples were placed

could introduce a bias. That is, nonbiological differences in the data would

mistakenly be read as biological variation. The fear that randomization

could produce a false signal was thus countered by introducing a balanced

randomization.

A common way to algorithmically balance the randomization was to

decide which parameters were to be distributed evenly on the plate and

feed these parameters to the algorithm. Three parameters frequently seen as

668 Science, Technology, & Human Values 45(4)



being in need of balancing were age, sex, and diagnosis of the patients. One

informant told us how their algorithm worked:

I can note the information I have about age, gender and diagnosis, and that I

want these characteristics to be evenly distributed. Then—say I have four

initial plates that are to be combined into a 348 well plate—I want to be sure

that the samples are distributed in a balanced way across the four plates.

(Excerpt from interview, Biotechnologist 2, 2013)

Thus, to counter the fear about the algorithm inadvertently randomizing

the samples in a bad way, the researchers utilized different means to create a

balanced randomization. Knowledge about sample characteristics—such as

sex, age, and diagnosis—was seen as an important input for the randomiza-

tion algorithm since it allowed for countering patterns emerging from

machine differences. Our informants were articulating well-known chal-

lenges in sampling design that attempts to solve problems of experimental

comparison by sorting samples to be compared. These concerns for

balanced comparison also became the yardstick by which our informants

valued the algorithm.

For our informants, a balanced randomization algorithm that broke up

patterns, distributed samples evenly, or balanced samples to be compared

was thus seen as the appropriate solution to the problems of noise, cluster-

ing, and comparison. This is a style of valuation that foregrounds the ben-

efits of balance and comparability. It emphasizes how the algorithm makes

it possible for the experimenters in the laboratory to handle machine noise,

thus facilitating comparison.

Randomization to Create Ignorant Researchers and Remove Bias

However, the value of having a balanced randomization was not self-

evident to all collaborators. As we outlined initially, the lab depended

on partners around the world for the supply of patient samples to be

analyzed. These collaborators were an essential part of the high-

throughput setup. In a particular misunderstanding between the lab and

a collaborator, different ideas about randomization came to a head.

Some of them argued for randomness as a tool for creating blindness,

thus measuring the value of the algorithm with a different yardstick for

“good science”—that of ignorance to remove bias (cf. Dehue 1997;

Hacking 1988).
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Several of our informants touched on the incident and discussed how

their collaborators had a different idea about randomization. The person

working in the collaboration recalled:

Then they [the partner] randomized the samples and sent them to us, and I

didn’t know they were going to randomize them for us. That’s something we

usually do ourselves. We weren’t happy with their randomization [ . . . ] So we

had to have a meeting. They wanted us to be blinded. We shouldn’t know

which [samples] were [from] healthy and ill [patients]. (Excerpt from inter-

view, Biotechnologist 3, 2013)

The collaborators stressed that the recipient laboratory needed to be

blind to the characteristics of the samples. However, as our informants

stressed above, such information about the samples was crucial to achieving

the “balanced randomization” that they valued so highly. In contrast to the

style of valuation that foregrounded comparability, this style foregrounded

the perils of human bias.

Tensions: The Balanced Experiments versus Ignorant Researchers

On the one hand, what was at stake for our informants was the tinkering to

produce comparability. These experimental practices are reminiscent of the

classic agricultural experiments in the UK in the 1920s, where balanced

planning of plots of land were to yield balanced comparisons (Hall 2007).

Just as our informants attempted to create a balance on their microwell

plates, early agricultural researchers aimed to compare plots that were

similar in terms of rainfall, sunshine, soil, and so on. The goal of both the

agricultural researchers and our informants was to facilitate comparison by

matching the characteristics of agricultural plots—or patient samples.

On the other hand, balanced randomization ran against the practice of

randomization favored by a partner supplying samples to the lab. This

partner wanted to perform a blinded randomization to render the introduc-

tion of human bias impossible. For them, randomization aimed to protect

against the specter of human intentionality (see, e.g., Hacking 1988;

Kaptchuk 1998). These valuations echo a medical and pharmaceutical

understanding of randomization where the ignorance of personnel is a key

component of producing unbiased results. In short, it is similar to a key trait

in the double-blind randomized controlled trial (RCT). In a textbook on

medical research design, the blindness of the clinical team is stressed:
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If the allocation is predictable, then the investigating physician has knowl-

edge that he or she may subconsciously use to influence their decision to

include (or exclude) certain patients from the trial . . . . [ . . . ] As a conse-

quence, any prior knowledge by the clinical team or the patient of the alloca-

tion can therefore introduce bias into the allocation process, and hence lead to

bias in the final estimate of the parameter b1 at the close of the trial. (Machin

and Campbell 2005, 70)

This highlights the common conceptualization of blinding in RCTs to

ensure that experimenters cannot influence the results (Helgesson, Lee, and

Lindén 2016). Thus, in our case, an algorithmic and “mechanical

objectivity” stood against a style of valuation stressing the benefits of non-

blinded tinkering and sorting in order to achieve balance (cf. Daston and

Galison 2007).5

Consequently, there are tensions in how actors value different config-

urations of humans and algorithms, in particular, the value that the actors

ascribe to different distributions of agency between humans and algorithms.

On the one hand, human knowledge and agency were articulated as crucial

for achieving balanced randomization. On the other hand, unblinded

humans were articulated as problematic as they could introduce bias. Ran-

domization was thus subjected to two different styles of valuation, each of

which favored a particular randomization procedure.

Normalization: The Cooked and the Raw

Another common operation in the lab was algorithmic normalization. This

is a frequent operation in different types of signal processing and is used to

make data sets more alike. A normalization entails treating data algorith-

mically, for example, to make similar the volume of different music tracks.

A key aspect of algorithmic normalization is that it can automate the pro-

cess of bringing data into the same dynamic range: you don’t need to

constantly fiddle with the stereo volume or sample amplitudes. The algo-

rithm does it for you. Hence, in the studied laboratory, normalization

brought protein levels from different patient samples—the data that resulted

from the multiplex machines—into the same dynamic range.

Normalization and the Dream of Automation

Early on in the data collection, normalization was introduced by a medical

epidemiologist working as a bioinformatician in the lab. Most projects ran
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through his normalization algorithms at one time or another. In a sense, he

functioned as a bioinformatics hub for most of the lab’s projects. In answer

to Lee’s questions about normalization, he turned to the practical value of

normalization, which, according to him, was to “minimize nonbiological

variation” and thus extract the “biological variation:”

Lee: What is normalization?

Bioinformatician 1: There is an expression: minimizing nonbiological

variation. Because we are interested in biological

variation, but there’s always some nonbiological var-

iation. Which we should try to remove. But there is

no way to remove it, so we try to minimize it.

Lee: So, how do you know what nonbiological variation is?

Bioinformatician 1: Actually, we don’t know. It’s a really tricky ques-

tion. [ . . . ] if we make a plot of the signal and [ . . . ]

plate one generally has a higher signal than plate

two, it’s visualized in the plot. Then [we can see that]

there’s a big difference between the plates and we try

to adjust them, for them to have the same or similar

values. That’s normalization. (Excerpt from inter-

view, Bioinformatician 1, 2013)

In the exchange above, the bioinformatician valued normalization for its

power to “minimize nonbiological variation.” The ideal was thus to use

normalization algorithms to automatically remove noise stemming from

variations in samples, machines, and laboratory processes, so that biological

variations were highlighted.

Here, we deal with the valuation of one of the normalization algorithms

employed in the studied laboratory, probabilistic quotient normalization

(PQN), which originated outside the studied lab. In order to preserve anon-

ymity, we deal with an article published by the lab that originated the

algorithm rather than one from the studied laboratory. The PQN algorithm’s

creators argued that its value lay in its ability “to reduce variances and

influences, which might interfere with data analysis” (Dieterle et al.

2006, 4281). The value of the algorithm thus lay in its power to make

an automatic separation between biological and nonbiological variation

(Figure 1).

An important part of showcasing this value was the demonstration of its

power to automatically produce smoother sets of data. In the above-cited

article on PQN, three different normalization methods are compared

visually. The argumentation and visualization in the article focused on the
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power of the algorithm to produce “optimal normalization” results. A

diagram shows four different simulated data sets that vary the

“nonbiological variation” in different ways. The optimal normalization

being represented as a flat line, which only the PQN algorithm achieves in

three of the data set visualizations (Figure 2; data set 4 shows a marked

“shelf” drop-off for PQN).

The PQN algorithm is thus supposed to automate the smoothing out of

nonbiological differences by deciding (based on a set of predetermined

calculations) whether a sample varies because of biological or

Figure 1. An illustration of the effect of normalization from Dieterle et al. (2006,
4282). The image shows two diagrams. Both diagrams show the same two sets of
data (presented in gray and black). The left diagram shows the data sets before
normalization, the right diagram after normalization. The gray and black data sets
diverge significantly on the left, while they are nearly aligned on the right.
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nonbiological differences. The normalization algorithm is thus valued for

its ability to produce smooth data sets and for its ability to automate the

separation of biology from nonbiology. Hence, the PQN algorithm is

assessed in a style of valuation that emphasizes the benefits of automating

data processing. This style of valuation thus foregrounds the benefits of

automation: high value is attached to the automatic reduction of noise while

retaining the signal unchanged.

The Allure of the Raw: The Value of Analyzing by Hand

However, as alluring as the idea of an automatically smoothed biology was

for our informants, the algorithmically normalized biology was constantly

questioned. The normalized data provoked serious doubts about how bio-

logical and nonbiological differences could be told apart. One informant

highlighted the difficulty:

Figure 2. A comparison of different normalization methods, with probabilistic
quotient normalization as the clear “winner” (Dieterle et al. 2006, 4286).
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And then you get stuck in a kind of argument about whether it is age or

disease. And if we normalize away the age—which is something you can

compensate for in an analysis—then one loses those differences. And are they

then biological or are they somehow . . . (Excerpt from interview, Biotechnol-

ogist 2, 2013)

In the quote above, the tensions and challenges of normalization are

brought to the fore. Are the identified differences due to normal aging or

the progression of a disease? Is age to be treated as a biological difference or

should it be removed through normalization? For our informants, the auto-

matic separation between biological differences and noise not only became

a solution but also a source of concern. How much of this work should be

delegated to the algorithm? And how much should stay in human hands?

Trust in the algorithmic normalization was at times also contrasted with

“destroying the data through normalization.” In these situations, it was

argued that nonbiological variation could be introduced by the very algo-

rithmic practices that were used to remove them:

I’m not a trained statistician or mathematician. I don’t have the proper under-

standing or feel for all the effects of throwing a massive number of variables

into models. This is also something I hear from others, that you can tweak

your data to the point of breaking it. You can destroy the data through

normalization. (Excerpt from interview, Biotechnologist 1, 2013)

Here, our informant pointed out her lack of training and “understanding

or feel” for the algorithmic methods. She voiced a concern that the

“tweaking” of the data could at some point break it and that the normal-

ization algorithms were a potential danger for her work.

This skepticism against algorithmic data processing was also expressed

by another informant who argued that patterns observed using normalized

data should be visible also in “raw data,” protecting against the algorithm

introducing nonbiological variations rather than removing them. Here,

looking at the unnormalized “raw data”—straight from the multiplex

machine—was seen as a safeguard:

When you’re working to normalize and trying to get rid of certain things in

the data, a helpful rule can be that things should also be visible in the raw

data. A difference that you want to point out in a publication shouldn’t be

something that has been introduced through normalization. (Excerpt from

interview, Biotechnologist 3, 2013)
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Our informant put forward the notion that “things should also be visible

in raw data” as a criterion for both analysis and publishing results. Thus, for

all the effort put into normalization, it was highly prized to find “biological

variation” in “raw data,” that is, to find noteworthy differences in nonnor-

malized data. “Raw data” that contained a marked correlation between a

biomarker and a disease were thus seen as a stronger indicator that this was

a “signal” representing a biological variation.

The algorithmic normalization stuck the researchers between a rock and

a hard place. For one informant, getting a feel for how the “raw data” varied

was crucial, but the crux of the matter was that this “hands-on disposition”

also precluded a high-throughput approach.

I’m such a nerd. I like to print out the raw data on paper and have it in a paper

table since I like to highlight some things by hand. I’m pretty hands-on. Of

course, I do all my analyses in R with the latest statistical software packages

and all that jazz, but I think it’s reassuring to be able to go back and actually

check if I have done something quick and dirty. It’s way too easy to drop lines

and get lost in the normalization. But that’s not possible if you’re working

with 10,000 antibodies. (Excerpt from interview, Biotechnologist 4, 2014)

Here, the high-throughput methodology staked out as the lab’s specialty

brought normalization up as a necessary evil. The traditional know-how and

feeling for the data that the biologist could use as a baseline can in our view

represent a style of valuation that foregrounds the advantages of tactile

human judgment.

Tensions in Valuing Normalization: Automation versus Tactility

Consequently, algorithmic normalization was subject of two different styles

of valuation, one which foregrounded the benefits of high-throughput anal-

yses and one that foregrounded the advantages of tactile human judgment.

They each represents a different articulation of the problem of handling

signal and noise and what were appropriate means to address these

problems.

The drive toward hands-on analysis and tactility is well-documented in

research on the cultures of the biosciences. It can be connected to a long

series of studies done on the biomedical sciences, emphasizing the hands-

on work, the tinkering, or openness of biological experimentation (cf.

Jordan and Lynch 1998; Cambrosio and Keating 1992). An early example

is Evelyn Fox Keller’s (1983) book A feeling for the organism, which
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documents, among other things, the geneticist Barbara McClintock’s

resistance to the increasing quantification of genetics in the 1930s and

1940s. A classic quote from McClintock shows her passion for knowing

the organism:

I start with the seedling, and I don’t want to leave it. I don’t feel I really know

the story if I don’t watch the plant all the way along. So, I know every plant in

the field. I know them intimately, and I find it a great pleasure to know them.

(Keller 1983, 198)

McClintock’s words resonate with how our informants problematize algo-

rithms. The “rawness” of the data—the lack of algorithmic signal process-

ing—is described using the same type of words that McClintock uses: a

feeling for the data . . . knowing your specimens intimately.

The researchers in our laboratory thus ascribed a high value to intimate

knowledge of data, which included skepticism toward automated high-

throughput approaches and algorithms. The value of human agency and

tacit knowledge were central. However, simultaneously, and in contrast,

they also foregrounded the benefits of high-throughput automation. It was

even deemed impossible to know your data in the traditional manner.

The tension between these two styles of valuation was a constant issue.

For example—at a revisit to the lab presenting our results after concluding

the fieldwork—we were told by one of our informants that she had dis-

cussed normalization and their lab’s criterion to see patterns in nonnorma-

lized data, with an outside biostatistician. The biostatistician’s comment

was as follows: “But why normalize at all then?!”
Thus, different styles of valuation coexisted in the same laboratory and

surfaced regularly as disagreements about how to define a problem and the

proper means to address them. For our informants, there were constant

worries about what distribution of agency between algorithms and humans

was the right one.

Styles of Valuation: Algorithms and the Distribution of Agency

By paying attention to how actors struggle with the use of algorithms in a

high-throughput bioscientific laboratory, we have been able to identify four

different styles of valuing algorithms. In this, our emphasis has been on the

valuation of different configurations of humans and algorithms and, in

effect, different distributions of agency. Thus, we have analyzed how actors
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struggle with the questions “What is a good algorithm?” and “How should

competencies and roles be assigned between humans and machines?”

We have heuristically identified the researchers’ valuations as being

done in four different styles. These styles of valuation center on actors’

articulations of problems, solutions, devices, and configurations of agency.

Each style is characterized by a particular problematization as well as a

particular assessment of what are appropriate solutions to these problems.

We argue that styles of valuation is a helpful tool for examining the ambig-

uous role of algorithms in our examined lab and for analyzing how actors

struggle with high-throughput bioscience. Table 1 provides a summary of

key characteristics of each style of valuation identified in this case study.

In our analysis, we first attended to algorithms and tensions between the

fear of machine noise and the fear of human bias. Tensions between human

intervention to achieve balanced comparisons were counterpoised with

blinding to achieve unbiased experiments. In one case, noisy machines were

articulated as the problem and algorithmic matching of samples as the

solution. In the other case, biased human intervention was seen as the

central concern and algorithmic blinding as the answer. Second, we exam-

ined algorithms and conflicts between automation and human judgment. In

this situation, actors valued an algorithm for its capacity to automate the

handling of sample differences. This placed the responsibility for separating

data and noise in the realm of the algorithm. Clashing with this was the

articulation of the algorithm as a destroyer of “raw data.” Here, intimate

Table 1. A Summary of Key Characteristics of Each Style of Valuation Identified in
This Case Study.

A style of valuation that

foregrounds . . .

. . . comparability

of samples

. . . the perils of

bias

. . . the virtues of

automation

. . . the advantages of

tactile human judgment

Problematization: the

problem to be

addressed

Machine noise Biased human

intervention

Data variations

(ex. amplitude)

Algorithmic data

destruction

Solution: that addresses

the problematization

Matching of

samples

Blind

researchers

Automatic

cleaning of data

Observing “raw” data

Devicing: the favored

device for realizing

the solution

Balanced

randomization

Randomization

for blinding

Normalization Human assessment

Agencing: favored

distribution of agency

Human tinkering

central

Algorithmic

blindness

central

Algorithmic

automation

central

Human judgment

central

The achievement that is

considered valuable

Sample

comparability

Unbiased

analysis

High-throughput

analyses

Trust in data
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knowledge of “raw data”—an oxymoron to be sure—was articulated as the

remedy against algorithmic destruction (cf. Gitelman 2013).

Our observations should be understood against the backdrop of the

ongoing technological shift toward high-throughput bioscience, which has

led observers to ask whether subjective judgment will be replaced with

statistical objectivity and an exaggerated trust in data (Strasser 2012) or

whether singular data points will fade away from high-throughput work

(Leonelli 2014b). Our observations, however, both support and contradict

these arguments: the tension between subjective judgment and statistical

objectivity did not fade away in the laboratory we examined. Rather, ten-

sions were heightened. Individual data points were understood as impossi-

ble to know as intimately as desired, but the drive to intimacy and subjective

judgment persisted.

In previous studies of high-throughput bioscience, it has been argued that

this technological shift might reshape the biosciences in line with a capi-

talist logic of production (Stevens 2011) or as an enabler of “data journeys”

(Leonelli 2016). However, we maintain that tensions and instabilities per-

sist in these practices. Our suggestion has been to analyze these different

ways of swimming in the high-throughput tide of data by paying attention to

actors’ contradictory valuations of scientific devices and technologies. This

approach allows us, as Fujimura (1999) proposes, to understand these sci-

entific devices as part of elaborate symbolic systems, with links to multiple

and divergent ideas about how good science should be done.

We see this move to stress the multiplicity of valuations as a remedy to

an unfortunate tendency within STS to treat “high-throughput” or “big data”

technologies as phenomena that in determinist fashion reshape the bios-

ciences. An unfortunate analytical consequence of this tendency is that

“new technology” can be used as a featureless placeholder that allows for

deterministic conclusions about how “big data” and “infrastructures” are

wholesale reshaping “biomedicine.” Perhaps the quintessence of this sim-

plifying move can be found in Anderson’s (2008) much criticized article

“The End of Theory: The Data Deluge Makes the Scientific Method

Obsolete”. Some STS analysts may want to argue that high-throughput

bioscience undermines the very craft of research. However, we want to

refrain from passing such judgments. By sticking instead to a principle of

symmetry, we have highlighted the multivalence of these technologies and

underlined how bioscientists struggle to work with and value these new

sociotechnical configurations.

Today, many STS studies of the biosciences have a troubling tendency to

view “algorithms,” “big science,” “big data,” or “data-driven science” as
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monolithic phenomena that will have pregiven outcomes. It is all too easy to

fall into the current “algorithmic drama” (cf. Ziewitz 2015) that highlights

either a dystopian future where human agency is curtailed or a utopian

dream world of “bigger, faster, better” (Davies, Frow, and Leonelli

2013). We contend that this dualistic take on new technologies in the

biosciences—in its seductive simplicity—risks undoing a lot of careful

work on the complexities of laboratory practices in STS and elsewhere,

reproducing bioscientists as “cultural dopes” who act with preconceived

notions of how technology in the biosciences has worked and will work in

the future (cf. Garfinkel 1967, 68).

Approaching the data revolution in the biosciences through the concept

of styles of valuation enables us to disentangle the multiplicity of valuations

that coexist in today’s high-throughput biomedical science. To understand

how new technologies become part of the biosciences, we need to be open

to actors’ articulations of these challenges and how they value different

distributions of agency between humans and algorithms. Our argument is

that if we fail to acknowledge the divergent valuations of technology in

situated settings, we risk becoming blind to actors’ struggles to work with

automation and algorithms. “What is good technology?” will always be an

open question, and we want to highlight that tension to bring out the multi-

plicities, dilemmas, and trade-offs over deterministic accounts of science

and technology. As Donna Haraway (2010) phrases it, we wish to provide

tools for “sticking with the trouble.”
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Notes

1. We are indebted to one of our anonymous reviewers for this observation.

2. It is worth noting that styles of valuation share an interest in values with other

broadly pragmatist approaches to the study of valuations. For example, Boltanski

and Thévenot (2006) have introduced the concept worlds of worth to describe

how actors justify and reach compromise in French organizational life. However,

we argue that applying an analytical frame that emphasizes tensions between

different “worlds of worth” would risk playing into precisely the monolithic

descriptions of the in silico biosciences that we wish to unsettle. Thus, rather

than analyzing how actors’ reach agreements on the justified use of technology,

we wish to show how multiple concurrent sets of values can coexist in one

situated practice. As should be apparent, we want to avoid reifying technology

in the biosciences by succumbing to ready-made categorizations of technologies,

actors, or values.

3. In this sense, a valuographical research program is indebted to both ethnometho-

dology’s and actor–network theory’s attention to how actors’ construct the

world. For some analysts of values, this perpective misses important points about

the corruption of the biosciences by a capitalist production machine, leading to

an alienation of scientists from their work. We see the value of these normative

perspectives on value but aim to nuance this story of alienation and corruption by

paying attention to how actors make their world make sense. On ethnomethodol-

ogy, see Garfinkel (1967), on ANT, see Latour (1987). See also especially the

discussion about valuography in Dussauge et al. (2015).

4. A similar concept being, for example, Hauge’s (2016) modes of valuation, which

emphasizes devices’ “relationship to prevailing tools and practices of valuation

at play in the organization” (p. 128). In our view, Hauge’s approach is a produc-

tive avenue to explore in that it refocuses the analytical lens from how devices

reshape an organization’s values to how valuation devices exist in more complex

ecologies of values. Our goals in introducing the concept styles of valuation are

similar to Hauge’s. However, in difference to Hauge’s modes of valuation, we

wish to stress the continuity with classic laboratory studies, drawing primarily on

the work of Fujimura and Chou. Thus, by using styles of valuation, we wish to

emphasize not only the complex interplay between valuations and devices but
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also the links between valuations, devices, and the production of scientific

knowledge.

5. In other fields of research—such as in medical research based on clinical trials—

randomness has also been tied to multiple styles of valuation. The Historian

Harry Marks has commented on the value ascribed to randomness in randomized

clinical trials: “Two epistemological claims underwrite the randomized clinical

trial. The first, associated with Austin Bradford Hill, asserts that randomization

prevents biased estimates of the value of new therapies. The second, associated

with R. A. Fisher, maintains that randomization is necessary for the valid inter-

pretation of statistical significance” (Marks 2003, 932).
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