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miR-19a/b and miR-20a Promote Wound
Healing by Regulating the Inflammatory
Response of Keratinocytes

Dongqing Li1,2,16, Hongmei Peng3,4,5,16, Le Qu3,4, Pehr Sommar6, AoxueWang7, Tongbin Chu8, Xi Li1,2,
Xinling Bi3,4, Queping Liu3,4, Irène Gallais Sérézal2,9, Ola Rollman10, Warangkana Lohcharoenkal1,2,
Xiaowei Zheng11, Sofie Eliasson Angelstig11, Jacob Grünler11, Andor Pivarcsi1,12, Enikö Sonkoly1,2,
Sergiu-Bogdan Catrina11,13, Changchun Xiao14, Mona Ståhle1,2, Qing-Sheng Mi3,4, Li Zhou3,4,17 and
Ning Xu Landén1,2,15,17
Persistent and impaired inflammation impedes tissue healing and is a characteristic of chronic wounds. A better
understanding of the mechanisms controlling wound inflammation is needed. In this study, we show that in
human wound-edge keratinocytes, the expressions of microRNA (miR)-17, miR-18a, miR-19a, miR-19b, and miR-
20a, which all belong to the miR-17w92 cluster, are upregulated during wound repair. However, their levels are
lower in chronic ulcers than in acute wounds at the proliferative phase. Conditional knockout of miR-17w92 in
keratinocytes as well as injection of miR-19a/b and miR-20a antisense inhibitors into wound edges enhanced
inflammation and delayed wound closure in mice. In contrast, conditional overexpression of the miR-17w92
cluster or miR-19b alone in mice keratinocytes accelerated wound closure in vivo. Mechanistically, miR-19a/b
and miR-20a decreased TLR3-mediated NF-kB activation by targeting SHCBP1 and SEMA7A, respectively,
reducing the production of inflammatory chemokines and cytokines by keratinocytes. Thus, miR-19a/b and
miR-20a being crucial regulators of wound inflammation, the lack thereof may contribute to sustained
inflammation and impaired healing in chronic wounds. In line with this, we show that a combinatory treatment
with miR-19b and miR-20a improved wound healing in a mouse model of type 2 diabetes.
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INTRODUCTION
Wound healing is a dynamic, sequential process comprising
inflammation, proliferation, and remodeling phases. Among
various cellular types participating in wound repair,
epidermal keratinocytes (KCs) not only perform re-
epithelialization but also play a central role in innate im-
mune response (Strbo et al., 2014). Upon skin injury, the
damaged tissue releases RNAs to trigger toll-like receptor
(TLR) 3 activation on neighboring KCs, which respond by
producing proinflammatory cytokines (e.g., TNF-a, IL-1) and
chemokines (e.g., CXCL5 and CXCL8) (Grimstad et al., 2013;
Kim et al., 2019; Kinoshita et al., 2009; Lai et al., 2009;
Nelson et al., 2015; Yang et al., 2013).

Neutrophils are among the first circulating immune cells
recruited by these chemokines to the injured site, where they
play a significant role in microbial clearance (Wilgus et al.,
2013). However, in chronic nonhealing wounds, the
inflammation becomes persistent, which causes tissue dam-
age but cannot efficiently combat infection (MacLeod and
Mansbridge, 2016; Ramirez et al., 2018). Therefore, it is
important to understand the molecular mechanisms that
control the inflammatory response during wound healing,
which may provide new insights into chronic wound
treatment.

MicroRNAs (miRs) are short (w22 nucleotides) noncoding
RNAs that may regulate about 90% of the protein-coding
genes in humans (Miranda et al., 2006). Current research
has revealed that miRs function as critical regulators of
estigative Dermatology. This is an open access
www.jidonline.org 659
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Figure 1. miR-17w92 expression in human skin wounds. (a) Two 4-mm wounds were created, and the wound-edge tissues were excised 1 (NW1) and 7 days

(NW7) later. Biopsies were taken from the nonhealing edges of VUs, DFUs, and PUs. (beg) QRT-PCR of miR-17w92 cluster in the skin, NW1, and NW7 from

seven healthy donors as well as in VUs (n ¼ 10), DFUs (n ¼ 7), and PUs (n ¼ 10). (h) In situ hybridization of miR-19a/b and miR-20a in the skin (n ¼ 3), NW7

(n ¼ 3), and VU (n ¼ 2). Bar ¼ 100 mm. The data are presented as mean � SD. **P < 0.01; ***P < 0.001; one-way ANOVA multiple comparisons test. DFU,

diabetic foot ulcer; miR, microRNA; NW1, day-1 wound; NW7, day-7 wound; PU, pressure ulcer; QRT-PCR, quantitative real-time reverse transcriptase‒PCR;

VU, venous ulcer.
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Figure 2. Lack of miR-17w92 impairs

wound healing in vivo. (a) Wounds of

miR-17 to -92 cKO mice (n ¼ 10) and

WT mice (n ¼ 10) on days 0e7 after

wounding. Wound closure was

quantified and presented as a healing

rate ¼ 100% ‒ the percentage of the

initial wound size. (b) Wound healing

rate constant k (day�1) was calculated

using a one-phase decay model. (c)

Wounds on days 0e10 after injury in

WT (n ¼ 8e10) and miR-17w92 cKO

(n ¼ 8e10) mice under diabetic

conditions, and wound closure was

quantified as in a. (d) Wound healing

rate constant was calculated as in b.

The data are presented as (a, c) mean

� SEM or (b, d) mean � SD. *P <

0.05, **P < 0.01, ***P < 0.001; (a, c)

Bonferroni post-hoc test or (b, d)

Student’s t-test. cKO, conditional

knockout; DM, diabetes mellitus; miR,

microRNA; WT, wild-type.

D Li et al.
miR-19a/b and miR-20a in Wound Healing
numerous processes associated with cellular physiology and
pathology, hence making them promising as both therapeutic
and diagnostic targets. MiR-17w92 is a highly conserved,
polycistronic miR cluster comprising six mature miRs, which
belong to three miR families, that is, the miR-17 family (miR-
17, miR-18a, and miR-20a), the miR-19 family (miR-19a and
miR-19b), and miR-92a. MiR-17w92 plays critical roles in
normal development, aging, and various diseases, such as
cancer, immune disorders, and cardiovascular and neurode-
generative diseases (Mogilyansky and Rigoutsos, 2013).
Recently, we identified miR-19a as one of the upregulated
miRs during wound healing of human skin (Li et al., 2015b).
Aberrant miR-20a expression has also been reported in
venous ulcer (VU) previously (Pastar et al., 2012). Moreover,
miR-92a has been found to negatively regulate angiogenesis
(Gallant-Behm et al., 2018; Lucas et al., 2017), and miR-92a
inhibitor is currently under clinical investigation as a new
wound treatment in part through enhancing angiogenesis
(ClinicalTrials.gov NCT03603431). In light of its ever-
increasing importance in a wide variety of biological pro-
cesses, we decided to investigate the role of miR-17w92 in
skin wound healing. Our study identified miR-19a/b and
miR-20a as crucial regulators restricting the inflammatory
response of epidermal KCs during wound repair. Their defi-
ciency may contribute to sustained inflammation and
impaired healing in chronic wounds.
RESULTS
Characterization of miR-17w92 expression in human skin
wounds

To study miR-17w92 expression in human skin wounds
in vivo, we created wounds in the skin of 18 healthy
volunteers (Supplementary Table S1) and collected the
wound edges at 1 and 7 days later, whose time points were
selected to represent the inflammatory and proliferative
phases of wound healing (Figure 1a). In addition, we
collected nonhealing wound edges from 10 patients with VU,
seven patients with diabetic foot ulcer (DFU), and 10 patients
with pressure ulcer (PU), which are the three most common
types of chronic wounds (Supplementary Figure S1a and
Supplementary Table S1). Quantitative real-time reverse
transcriptase‒PCR results showed that the expression of miR-
17w92 cluster members was upregulated in acute wounds at
the inflammatory phase (day-1 wound [NW1]) or the prolif-
erative phase (day-7 wound [NW7]) compared with the skin
from the same healthy donors (Figure 1beg). Interestingly,
compared with the acute wounds under healing (NW1 or
NW7), the expression of miR-17w92 cluster was signifi-
cantly lower in VUs, DFUs, and PUs (Figure 1beg). Using
laser capture microdissection, we isolated the skin and
wound-edge epidermis (Supplementary Figure S1b and
Supplementary Table S1) and found that the levels of miR-
19a, miR-19b, and miR-20a were significantly lower in the
epidermis of VUs than in the normal wounds (Supplementary
Figure S1ceh). This was further confirmed by in situ hybrid-
izations, showing that in the wound-edge epidermal KCs, the
expression of miR-19a/b and miR-20a was elevated during
healing, whereas in the wound-edge epidermis of VU, their
levels were overtly lower than those in the normal wounds
(Figure 1h). Thus, we focused on epidermal KCs to study the
role of miR-19a/b and miR-20a in wound healing.

Lack of miR-17w92 in KCs impairs wound healing in vivo

To determine the impact of abnormal miR-17w92 expression
in KCs on wound healing in vivo, we examined the healing
www.jidonline.org 661
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Figure 3. Improved wound healing in miR-17w92 or miR-19b cKI mice. (a) Days 0e6 wounds of miR-17w92 cKI mice (n ¼ 7) and littermate controls (WT, n ¼
4) under diabetic condition. Wound closure was quantified as a healing rate. (b) Day-6 wounds of miR-17w92 cKI and WT mice. Dashed lines mark the newly

formed epithelial tongues, whose area was quantified (n ¼ 3 per group). (c) The strategy of generating miR-19b cKI mice. (d) QRT-PCR of miR-19b in the wound-

edge epidermis of WT (n ¼ 4) and miR-19b cKI mice (n ¼ 4) at 2 days after injury. (e) Days 0e6 wounds of miR-19b cKI (n ¼ 7) and WT mice (n ¼ 4). (f) Day-6

wounds of miR-19b cKI and WT mice. The epithelial tongues area was quantified (n ¼ 3 per group). The data are presented as (a, e) mean � SEM or (b, d, f)
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capacity of mice with KC-specific miR-17w92 conditional
knockout (cKO) (Wu et al., 2017). We found that wound
closure was significantly delayed in the miR-17w92 cKO
mice compared with that in the littermate controls (wild type
[WT]) (Figure 2a and b). We also induced diabetes in miR-
17w92 cKO and WT mice with multiple injections of low-
dose streptozocin. In the hyperglycemic state, the lack of
miR-17w92 in KCs led to a more profound inhibition of
wound healing than in the nondiabetic condition (Figure 2c
and d).

To complement the data obtained from the mouse model
with constitutive miR-17w92 deletion, where compensatory
events may occur, and also to imitate human chronic
Journal of Investigative Dermatology (2021), Volume 141
wounds in which miR-17w92 expression was low but not
absent, we established a mouse model with transient inhi-
bition of miR expression. For this, we injected a mixture of
miR-19a/b and miR-20a inhibitors intradermally into the
wound edges of C57BL6 mice immediately after a skin
injury, which reduced the levels of these miRs to a similar
extent as the difference between human chronic and normal
wounds (Supplementary Figure S2aed). Importantly, inhi-
bition of miR-19a/b and miR-20a significantly delayed
wound closure (Supplementary Figure S2e). Together, we
show that both miR-17w92 cKO mice and transient inhi-
bition of miR-19a/b and miR-20a in wounds of WT mice
exhibited delayed wound closure.
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Increased miR-17w92 expression in KCs promotes wound
healing in vivo

To test whether enhanced miR-17w92 expression promotes
wound healing, we examined the healing capacity of mice
with KC-specific miR-17w92 conditional knockin (cKI) (Wu
et al., 2017). Under diabetic conditions induced by multiple
injections of streptozocin, we observed faster wound closure
in miR-17w92 cKI mice than in the littermate controls
(Figure 3a). This was confirmed by histomorphometry anal-
ysis, showing that the areas of the newly formed epithelial
tongues were significantly increased in the miR-17w92 cKI
mice compared with that in the controls (Figure 3b). We also
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established a mouse line with KC-specific miR-19b cKI
(Figure 3c). We observed a two-fold upregulation of miR-19b
expression in the wound-edge epidermis of this mouse line
compared with that of the littermate controls (Figure 3d).
Similar to the miR-17w92 cKI mice, miR-19b cKI mice
healed significantly faster than the controls (Figure 3e and f).
Together, these in vivo data highlight the importance of the
upregulation of miR-17w92 expression in KCs in wound
repair and suggest that miR-17w92 deficiency may
contribute to the pathogenesis of chronic wounds.

MiR-19a/b and miR-20a suppress polyinosinic:polycytidylic
acid‒induced inflammation

To investigate the impact(s) of miR-19a, miR-19b, and miR-
20a on KC functions critical for wound repair, we either
overexpressed or inhibited one of them in human primary
KCs by transfecting miR-specific mimics or inhibitors, whose
effects were confirmed by quantitative real-time reverse
transcriptase‒PCR (Supplementary Figure S3a and b). We
showed that the aberrant miR-19a/b and miR-20a expression
did not impact KC growth and migration (Supplementary
Figure S3c and d). To examine their impact on KC inflam-
matory response after injury, we treated the transfected cells
with polyinosinic:polycytidylic acid (poly[I:C]), a synthetic
double-stranded RNA activating TLR3 signal, because it has
been shown that the skin epithelium requires TLR3 activation
for normal inflammation after injury (Lai et al., 2009). We
found that the inhibition of miR-19a/b and miR-20a
increased, whereas their overexpression decreased
poly(I:C)-induced expression of several proinflammatory
chemokines and cytokines, for example, CXCL8 and/or IL-8,
CXCL5, TNF-a, and IL-1A at the mRNA level (Figure 4aeh
and Supplementary Figure S4aec). The reduced production
of IL-8 and CXCL5 by KCs overexpressing miR-19a/b or miR-
20a was also confirmed at the protein level (Supplementary
Figure S4d and e).

These chemokines are key players recruiting neutrophils to
the injured skin (Murphy et al., 2012). This is a multistep
process starting with the chemokine-induced expression of
adhesion molecules, for example, ICAM1, SELE, and
VCAM1, on the surfaces of endothelial cells, which mediate
attachment of circulating leukocytes to the blood vessel wall,
facilitating leukocytes extravasation (Butcher, 1991, Murphy
et al., 2012). We measured the expression of these adhe-
sion molecules in the endothelial cells incubated with the
conditioned medium from KCs overexpressing miR-19a/b or
miR-20a. Our results showed that these miRs decreased the
capacity of KCs to induce the expression of adhesion mole-
cules in endothelial cells (Figure 4i and j). Moreover, we
performed chemotaxis assays with neutrophils isolated from
human peripheral blood using conditioned supernatants from
KCs overexpressing miR-19a/b or miR-20a. We found that the
supernatants from KCs with increased miR-19a/b or miR-20a
expression attracted fewer neutrophils than the medium from
control-treated cells (Figure 4k).

In line with the in vitro data, the anti-inflammatory func-
tion of miR-19a/b and miR-20a was also observed in vivo. In
the wound-edge epidermis of miR-17w92 cKO mice, the
expression of Ccl2 and Cxcl5 was significantly upregulated
compared with that of the WT mice (Figure 4l and m).
Accordingly, more neutrophils infiltrated in the wound
dermis of the miR-17w92 cKO mice than in that of the
controls, shown by flow cytometry analysis (Figure 4n). Of
note, there was no significant difference in the number of
Langerhans cells and gd T cells in the wound-edge epidermis
between the control and the miR-17w92 cKO mice,
excluding the possibility that the changed leukocyte infiltra-
tion in wound dermis would result from a different epidermal
immune cell composition (Supplementary Figure S5a and b).
Moreover, we found that in the mice wounds treated with
miR-19a/b and miR-20a inhibitors, the levels of Cxcl5,
Ccl20, and Ccl2 (Supplementary Figure S5c and e) as well as
the number of neutrophils (Ly6Gþ), macrophages (CD68þ),
and T cells (CD3þ) were also increased compared with those
of the controls (Supplementary Figure S5fei). In contrast,
reduced epidermal expression of chemokine genes Ccl2 and
Ccl20 and decreased dermal infiltration of neutrophils were
observed in the wound edges of miR-19b cKI mice
(Figure 4oeq). On the basis of these in vitro and in vivo data,
we conclude that the increased miR-19a/b and miR-20a
expression during wound healing is important to restrict the
leukocyte influx through the suppression of epidermal pro-
duction of inflammatory chemokines.

Furthermore, we detected TLR3 expression as well as the
presence of neutrophils (MPOþ) and macrophages (CD68þ)
in human chronic wounds, skin, and day-7 acute wounds by
immunofluorescence (Supplementary Figure S5j). For TLR3,
we observed its increased expression in the wound-edge
epidermis of chronic wounds compared with that of the
day-7 acute wounds and the skin (Supplementary Figure S5j).
Interestingly, we found a higher TLR3 signal in epidermal cell
nuclei in chronic wounds. In contrast, in human skin, TLR3
expression is primarily membranous and cytoplasmic in KCs
(Supplementary Figure S5j). In addition, we detected
increased infiltration of neutrophils and macrophages in
chronic wounds compared with that in the day-7 acute
wounds and the skin (Supplementary Figure S5j). Of note,
among the three types of chronic wounds we studied, the
number of neutrophils in DFU and PU was lower than that in
VU (Supplementary Figure S5j). Together, we postulate that
the enhanced TLR3 expression as well as increased infiltra-
tion of neutrophils and macrophages in VU, DFU, and PU
may be at least partially attributed to the low levels of miR-
19a/b and miR-20a expression in these chronic wounds
(Supplementary Figure S5j).

miR-19a/b and miR-20a regulate NF-kB signaling pathway

Next, we aimed to unravel the signaling pathway(s) medi-
ating the anti-inflammatory function of 19a/b and miR-20a.
To this end, we first dissected signaling pathways involved
in the poly(I:C)-induced inflammation by treating KCs with
pathway-specific chemical inhibitors before poly(I:C) stimu-
lation. Analysis of chemokine expression revealed p38,
extracellular signaleregulated kinase, and NF-kB as the key
pathways mediating the effects of poly(I:C) in KCs
(Supplementary Figure S6a and b). Poly(I:C) treatment
increased the phosphorylation of p38, extracellular
signaleregulated kinase, and p65 as well as nuclear trans-
location of p65, indicating activation of these pathways
(Figure 5a and b and Supplementary Figure S6cee).
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Figure 6. miR-19b and miR-20a exhibit therapeutic potential for chronic wounds. The mixture of miR-19b and miR-20a mimics (miRs) or control oligos was

injected into the wound-edges of db/db mice after injury. (a) MiR-19b and (b) miR-20a were detected by QRT-PCR in wounds and inner organs. (c) Days 0e6

wounds in control (n ¼ 6) and miRs-treated group (n ¼ 6). Wound closure was quantified and presented as a healing rate. QRT-PCR of (d) Shcbp1, (e) Sema7a,

and (f) Ccl20 in the day-6 wounds (n ¼ 6). (g, h) Ly6G- and CD68-positive cells were counted in the immunostaining of the day-6 wounds (n ¼ 3). Data are

presented as (c) mean � SEM or (a, b, deh) mean � SD. *P < 0.05, **P < 0.01, ***P < 0.001; (c) Bonferroni post-hoc test or (a, b, deh) Student’s t-test. Ctrl,

control; db/db, leptin receptor‒deficient; miR, microRNA; QRT-PCR, quantitative real-time reverse transcriptase‒PCR.
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Interestingly, we found that miR-19a/b and miR-20a mainly
reduced the phosphorylation and nuclear translocation of
p65 (Figure 5a and b), whereas their impact on p38 and
extracellular signaleregulated kinase was minimal
(Supplementary Figure S6cee). In line with this, gene set
enrichment analysis of microarray data of KCs overexpressing
miR-19a/b or miR-20a revealed that gene sets related to NF-
kB signaling pathway were enriched among the genes
downregulated by these miRs (Supplementary Figure S6f and
g) (Subramanian et al., 2005), further supporting that miR-
19a/b and miR-20a suppress poly(I:C)-induced inflamma-
tion by regulating NF-kB signaling pathway in KCs.

Identification of target genes important for miR-19a/b’s and
miR-20a’s anti-inflammatory function in KCs

Because miRs act through post-transcriptional regulation of
protein-coding genes, identification of target genes is critical
to understand miRs’ function. To this end, we performed a
global transcriptomic analysis in KCs overexpressing miR-
19a/b or miR-20a. Gene set enrichment analysis of the
microarray data revealed the significant enrichment of the
predicted targets of miR-19a/b and miR-20a among the
downregulated genes, indicating the high specificity of the
assay (Supplementary Figure S7aec). Among the 64 putative
targets that were commonly predicted by all the three inde-
pendent miR-target prediction algorithms, that is, TargetScan
(Lewis et al., 2005), miRDB (Wang, 2016), and DIANAT
(Vlachos et al., 2015), five were found downregulated by
miR-19a/b (fold change of � 1.3, P < 0.05, Supplementary
Figure S7def) shown by the microarray. In this experiment,
SHCBP1 was demonstrated as a direct target of miR-19a/b in
Journal of Investigative Dermatology (2021), Volume 141
KCs on the basis of a series of strong evidence from in silico
and experimental analysis: (i) two conserved putative binding
sites for miR-19a/b were identified in the 30 untranslated re-
gion of SHCBP1 mRNA (Supplementary Figure S7g); (ii) miR-
19a/b decreased luciferase activity of a reporter gene
construct containing the full-length 30 untranslated region of
SHCBP1 mRNA, whose effect was abolished by the mutation
either of these two predicted binding sites (Figure 5c); (iii)
miR-19a/b overexpression decreased, whereas their inhibi-
tion increased the mRNA level of SHCBP1 shown by quan-
titative real-time reverse transcriptase‒PCR (Supplementary
Figure S7h and i). Similarly, among the four putative targets
that were commonly predicted by all the three algorithms
and significantly downregulated by miR-20a in KCs (fold
change of � 1.3, P < 0.05, Supplementary Figure S8aed), we
identified SEMA7A as a target directly bound and inhibited
by miR-20a by luciferase reporter assay (Figure 5d). In KCs,
overexpression of miR-20a decreased, whereas its inhibition
increased the SEMA7A mRNA level (Supplementary
Figure S8e and f).

Of note, silencing of SHCBP1 or SEMA7A with gene-
specific small interfering RNAs significantly decreased
poly(I:C)-induced IL-8, CXCL1, and CXCL5 production by
KCs (Supplementary Figure S9aeg), phenocopying miR-19a/
b or miR-20a overexpression (Figure 4). In addition,
enhancement of chemokine expression by the inhibitors of
miR-19a/b or miR-20a was completely reversed by the
silencing of SHCBP1 or SEMA7A, respectively (Figure 5e and
f). Moreover, we found that poly(I:C)-induced p65 phos-
phorylation was decreased by silencing SHCBP1 or SEMA7A,
indicating that these two genes function as positive regulators
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of NF-kB signaling (Figure 5g). These findings provide
compelling evidence that SHCBP1 and SEMA7A are the key
targets mediating the anti-inflammatory function of miR-19a/
b and miR-20a in KCs.

In line with the above in vitro data, we found increased
Shcbp1 and Sema7a mRNA levels in the wound-edge
epidermis of miR-17w92 cKO mice (Figure 5h and i). In
the mice wounds treated with miR-19a/b and miR-20a in-
hibitors, Shcbp1 expression was significantly upregulated,
whereas Sema7a showed a slight increase (Supplementary
Figure S9h and i). On the contrary, the level of Shcbp1
was decreased in the wounds of miR-19b cKI mice
(Supplementary Figure S9j). More interestingly, immunoflu-
orescence staining detected more SEMA7A and SHCBP1
proteins in human DFUs, VUs, and PUs than in the normal
NW7, which may correspond to the miR-19a/b and miR-
20a deficiency in these chronic wounds (Figure 5j). In
addition, we observed a significant negative correlation
between the levels of SEMA7A mRNA and miR-20a in hu-
man acute and chronic wounds (Supplementary Figure S9k).
These findings suggest that SHCBP1 and SEMA7A may be
regulated by miR-19a/b and miR-20a in human wounds
in vivo.

Local application of miR-19b and miR-20a mimics promotes
wound healing in a mouse model of type 2 diabetes

Owing to the anti-inflammation and prohealing effects of
miR-19a/b and miR-20a and their deficiency in chronic
wounds, we hypothesized that the replenishment of miR-
19a/b and miR-20a might be a therapeutic approach to
promote healing. We tested this in leptin receptor‒deficient
mice, a mouse model of type 2 diabetes with impaired
wound healing capacity (Scherer et al., 2008). Similar to
human chronic wounds, the expressions of miR-19a and
miR-20a were also lower in the wounds of leptin receptor‒
deficient mice than in those of the WT mice
(Supplementary Figure S10aef). We injected a mixture of
miR-19b and miR-20a mimics encapsulated within a
phospholipid-oil emulsion intradermally into the wound
edges of leptin receptor‒deficient mice immediately after
an injury. This treatment specifically and efficiently
increased the levels of miR-19b and miR-20a in the
wounds but not in inner organs, for example, liver, spleen,
lung, and kidney (Figure 6a and b). We observed signifi-
cantly accelerated wound closure (Figure 6c) as well as
decreased expression of miR-19a/b and miR-20a targets,
that is, Shcbp1 and Sema7a, and proinflammatory che-
mokines, for example, Ccl20, in the miR-19b/20a mimics‒
treated wounds compared with those of the controls
(Figure 6def). Moreover, a reduced number of leukocytes,
in particular, neutrophils (Ly6Gþ) and macrophages
(CD68þ), was found in the wounds treated with miR-19b/
20a mimics (Figure 6g and h and Supplementary
Figure S10g). The prohealing effect of miR-19b and miR-
20a was not due to better metabolic control because
blood glucose and weight of mice were unaffected by the
treatment (Supplementary Figure S10h and i). Together, our
data highlight the therapeutic potential of local adminis-
tration of miR-19b and miR-20a mimics for hard-to-heal
wounds.
DISCUSSION
At the early phase of wound healing, inflammatory response
defends us from invading pathogens and accumulation of
dead tissue in the wound. The inflammation ceases once
these danger signals are removed (Landén et al., 2016).
However, in chronic nonhealing wounds, persistent and
impaired inflammation has been observed (MacLeod and
Mansbridge, 2016). Chronic wound inflammation has been
characterized as overpersistence of neutrophils that cause
collateral tissue damage (Wilgus et al., 2013), a reduced
capability of macrophages to clear neutrophils, and deficient
transition from a proinflammatory to a reparative phenotype
of macrophages (Hesketh et al., 2017; Krzyszczyk et al.,
2018). In line with previous findings (Diegelmann and
Evans, 2004; Khanna et al., 2010; Krzyszczyk et al., 2018;
Larouche et al., 2018; Loots et al., 1998; MacLeod and
Mansbridge, 2016; Wilgus et al., 2013; Wu et al., 2016),
the increased infiltration of neutrophils and macrophages was
also detected in our VU, DFU, and PU samples
(Supplementary Figure S5j). Interestingly, our immunofluo-
rescence staining also detected fewer neutrophils in DFU and
PU than in VU (Supplementary Figure S5j), which may be
due to differences in chronic wound etiologies (e.g., venous
insufficiency, diabetes, and mechanical pressure) or infection
status.

It is crucial to understand the molecular mechanisms that
regulate the inflammatory response during normal wound
healing and to examine whether any of these mechanisms are
dysregulated in nonhealing ulcers. In this study, we identified
miR-19a/b and miR-20a as negative regulators of KC in-
flammatory response; their increased expression during
wound healing is important to restrict the leukocyte traf-
ficking to the skin through the suppression of epidermal
production of inflammatory chemokines. Compared with the
human normal wounds at the inflammatory phase (NW1) or
the proliferative phase (NW7), we found that the expression
of miR-19a/b and miR-20a were significantly downregulated
in all the three major types of chronic wounds, that is, VU,
DFU, and PU, which may contribute to sustained inflam-
mation and impaired healing there. Interestingly, recent
studies have revealed beneficial effects of converting chronic
wound microenvironment to a healing milieu similar to that
in an acute wound (Stone et al., 2020, 2017). In line with
this, our study suggested that the replenishment of miR-19b
and miR-20a in wounds with a deficiency of these miRs
has therapeutic potential.

TLRs are the first sensors to danger signals after a skin
injury, including invading pathogens and molecules released
by stressed cells undergoing necrosis (Kawai and Akira,
2010). TLR engagement by these ligands activates MAPKs
and NF-kB signaling, which leads to the expression of
proinflammatory cytokines and chemokines important for
triggering innate immune responses and priming antigen-
specific adaptive immunity (Kawai and Akira, 2010). How-
ever, it is critical to turn off the TLR-induced inflammation
after the removal of danger signals. Loss of negative regula-
tion of TLR-signaling has been involved in the pathogenesis
of inflammatory diseases (Liew et al., 2005). Moreover,
persistent activation of TLR signaling has been found in hu-
man venous or diabetic ulcers (Dasu and Martin, 2014;
www.jidonline.org 667
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Pukstad et al., 2010). In line with previous findings, in this
study, we detected increased TLR3 expression in the wound-
edge epidermis of VU, DFU, and PU compared with that of
NW7 and the skin (Supplementary Figure S5j). In addition,
we observed different subcellular localization of TLR3 in
epidermal KCs of chronic wounds (nuclear), in comparison
with those of the skin (membranous and cytoplasmic)
(Supplementary Figure S5j). Similarly, nuclear localization of
TLR3 protein has been recently reported in the lesions of
patients with psoriasis, atopic dermatitis, and prurigo nod-
ularis (Szöll}osi et al., 2019). We postulate that the altered
subcellular localization of TLR3 may be involved in the
pathogenesis of chronic inflammatory skin diseases, which
underlying molecular mechanism warrants further
investigation.

In this study, we identified miR-19a/b and miR-20a as
negative regulators of TLR signaling in epidermal KCs,
which inhibit the phosphorylation and nuclear trans-
location of P65, resulting in reduced inflammatory che-
mokine production in wound healing. Increased
expression of miR-19a/b and miR-20a with healing
progress may reduce the responsiveness of TLRs on KCs,
repress the capacities of KCs to recruit neutrophils, and
thus contribute to the resolution of inflammation in the
wound repair process. Of note, the miR-17w92 cluster
was found to be upregulated in psoriasis lesions (Zhang
et al., 2018), where TLR3 was also induced and with
the nuclear localization (Szöll}osi et al., 2019). This is
probably because the strong activation of TLR3 signaling
could not be completely reversed by miR-17-92 eleva-
tion in psoriasis lesions or because of quite
different roles of miR-17-92 in psoriasis compared with
those in wound healing, which warrants further
investigation.

Furthermore, we found that the anti-inflammatory function
of miR-19a/b was mediated at least partially through the
downregulation of their target SHCBP1, a binding partner of
Shc, and acting as an adaptor of numerous cell surface re-
ceptors (Schmandt et al., 1999). Previous studies have linked
SHCBP1 mainly to cell proliferation and tumorigenesis
(Asano et al., 2013; Feng et al., 2016; Peng et al., 2016;
Schmandt et al., 1999; Tao et al., 2013). Our study reveals
that SHCBP1 also regulates NF-kB signaling and inflamma-
tory chemokine production in KCs. In parallel, we identified
SEMA7A as a direct target of miR-20a. SEMA7A is a sem-
aphorin important for both innate and adaptive immunity
(Garcia-Areas et al., 2013) and is expressed on the cell
membrane of basal and suprabasal human epidermal KCs
(Scott et al., 2008). Interestingly, the expression of both
SHCBP1 and SEMA7A was aberrantly upregulated in VU,
DFU, and PU, suggesting their pathological roles in chronic
wounds.

In this study, we focused on the role of miR-19a/b and miR-
20a in wound-edge KCs. Of note, another member of the
miR-17w92 cluster, miR-92a, has been identified as an
important negative regulator of angiogenesis (Bonauer et al.,
2009). Inhibition of miR-92a enhances angiogenesis and
accelerates wound healing in diabetic mice (Gallant-Behm
et al., 2018; Lucas et al., 2017). Currently, the miR-92a in-
hibitor is being tested as a new wound treatment
Journal of Investigative Dermatology (2021), Volume 141
(clinicaltrials.gov NCT03603431). These pieces of evidence
suggested that multiple cellular processes during wound
healing could be coordinated by different members of a miR
cluster; therefore, it is important to dissect the functional
roles of each member.

As a significant health and economic burden globally,
there is a continued search toward more effective treatment
for chronic wounds. Intensive studies have led to the devel-
opment of GFs- and stem cell‒based therapies, however with
limited clinical success (Borena et al., 2015). As potent gene
regulators, miRs are becoming promising tools in the diag-
nostic and therapeutic fields of medicine. Recent clinical
trials demonstrate that modulation of miRs has beneficial
effects on a variety of diseases, including virus infection,
cancer, and diabetes (Chakraborty et al., 2017; Rupaimoole
and Slack, 2017). The progress of miR therapy provides op-
portunities to develop efficient and targeted wound treat-
ments (Eming et al., 2014; Meng et al., 2018). To this end, it is
a requisite to understand the functions of miRs in wound
healing, and much efforts have been invested in solving this
challenge in recent years (reviewed in Herter and Landén
[2017]; Li and Landén [2017]; Meng et al. [2018]). In hu-
man skin wounds in vivo, a miR expression profile has been
reported (Li et al., 2015b). Among the miRs regulated during
wound healing, many have been shown to play functional
roles in wound repair, for example, miR-21 (Das et al., 2014),
miR-27b (Wang et al., 2014), miR-31 (Li et al., 2015a), miR-
99 family (Jin et al., 2013), miR-132 (Li et al., 2017a, 2017b,
2015b), miR-146a (Roy et al., 2014), miR-155 (van Solingen
et al., 2014), and miR-210 (Biswas et al., 2010). It is not
surprising that the complex process of wound healing
involving the dynamic interaction of diverse biological pro-
cesses requires complex regulation. In this study, evidence
derived from several complementary experimental models
demonstrates a significant anti-inflammatory role of miR-19a,
miR-19b, and miR-20a in wound-edge KCs. Because miR-
19a and miR-19b have very similar expression and function
patterns as well as a highly overlapped target spectrum, in
this study, we used one of them, that is, miR-19b, together
with miR-20a to treat wounds of diabetic mice. We showed
that the combination of miR-19b and miR-20a mimics
reduced wound inflammation and accelerated wound
closure. A further study to compare the therapeutic potential
of miR-19a and miR-19b mimics head to head in vivo is
warranted before recommending that either one could serve
as a therapeutic to accelerate human chronic wound repair.
In addition, although the oncogenic role of miR-17w92 has
been reported in multiple hematopoietic and solid cancers
(Mogilyansky and Rigoutsos, 2013; Olive et al., 2013), we
did not observe obvious effects of miR-19a/b and miR-20a on
the growth and motility of human primary KCs
(Supplementary Figure S3c and d), and along this line, miR-
20a has previously been shown to inhibit the proliferation
and metastasis of squamous cell carcinoma (Zhou et al.,
2014). Therefore, the primary effect of local and transient
replenishment of miR-19b and miR-20a in wounds is likely to
be anti-inflammatory. However, for patients with chronic
wounds, multiple or long-term treatments may be required.
Thus, the oncogenesis risk of miR-19/20a treatment needs to
be carefully evaluated.

http://clinicaltrials.gov
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In summary, our study identified miR-19a/b and miR-20a
from the miR-17w92 cluster as molecular brakes suppress-
ing the inflammatory response of KCs through the regulation
of the NF-kB signaling pathway (Supplementary Figure S10j).
With the increased expression in KCs during wound healing,
miR-19a/b and miR-20a play an important role in resolving
inflammation, whereas their deficiency in KCs, as observed in
chronic wounds, impairs wound healing in vivo. Thus, our
study emphasizes the importance of the properly controlled
innate immune response of KCs in wound repair. Moreover,
our data highlight the therapeutic potential of recovery of the
brake system of inflammation, for example, miR-19a/b and
miR-20a, in non-healing wounds, which may help to break
the vicious circle and reactivate the healing program.

In conclusion, miR-19a/b and miR-20a restrict KC in-
flammatory response and promote skin wound healing.

MATERIALS AND METHODS
Human wound samples

Human samples were collected at the Department of Dermatology,

the Department of Reconstructive Plastic Surgery, and the Depart-

ment of Endocrinology and Diabetes, Karolinska University Hospital

(Stockholm, Sweden), the Dermatology clinic of Academic Univer-

sity Hospital (Uppsala, Sweden), and the Second Hospital of Dalian

Medical University (Dalian, China). Patients with nonhealing VUs,

DFUs, or PUs that, despite conventional therapy, persisted for more

than 2 months were enrolled in this study. Tissue samples were taken

using a 4-mm biopsy punch at the nonhealing edges of chronic

wounds. Healthy donors without diabetes, skin diseases, unstable

heart disease, infections, bleeding disorder, immune suppression,

and any on-going medical treatments were recruited. One or two

full-thickness excisional wounds were created using a 4-mm biopsy

punch at the lower leg area or the upper buttock area of each donor.

The central skin excised from these surgical wounds were saved as

intact skin control. The wound-edge skin was collected using a 6-

mm biopsy punch 1 and 7 days later. Local lidocaine injection

was used for anesthesia while sampling.

Statistical analysis

Statistical significance was determined by two-tailed Student’s t-test

or Wilcoxon-matched pairs signed-rank test or Mann‒Whitney U

test. Differences between groups were computed using Bonferroni

post-hoc test in GraphPad Prism 7 (GraphPad Software, San Diego,

CA). The correlation between the expressions of different genes in

the same sample was made using Pearson’s correlation test on log-

transformed data. For all statistical tests, P-values < 0.05 were

considered to be statistically significant.

Study approval

Written informed consent was obtained from all the donors for the

collection and use of clinical samples. The study was approved by

the Stockholm Regional Ethics Committee (Stockholm, Sweden) and

the Ethics Committee of The Second Hospital of Dalian Medical

University (Dalian, China). The study was conducted according to

the Declaration of Helsinki’s principles. All animal procedures were

reviewed and approved by the North Stockholm Ethical Committee

for Care and Use of Laboratory Animals (Stockholm, Sweden) and

the Henry Ford Hospital Institutional Animal Care and Use Com-

mittee (Detroit, MI). The investigation conformed to the Guide for

the Care and Use of Laboratory Animals published by the US Na-

tional Institutes of Health (Publication No. 85-23, revised 1996).
The experimental protocols for in vivo wound models, RNA

extraction and quantitative real-time reverse transcriptase‒PCR,

laser capture microdissection, in situ hybridization, cell culture and

treatments, leukocyte chemotaxis assay, proliferation assay, scratch

assay, protein detection, histological analysis, microarray, luciferase

reporter assay, and flow cytometry are detailed in the Supplementary

Materials and Methods available online.

Data availability statement

Datasets related to this article can be found at https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc¼GSE93110, hosted at the National

Centre for Biotechnology Information Gene Expression Omnibus

database (GSE93110).
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Suárez Y. Improved repair of dermal wounds in mice lacking microRNA-
155. J Cell Mol Med 2014;18:1104e12.
Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T,
Kanellos I, et al. DIANA-TarBase v7.0: indexing more than half a million
experimentally supported miRNA:mRNA interactions. Nucleic Acids Res
2015;43:D153e9.

Wang JM, Tao J, Chen DD, Cai JJ, Irani K, Wang Q, et al. MicroRNA miR-27b
rescues bone marrow-derived angiogenic cell function and accelerates
wound healing in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol
2014;34:99e109.

Wang X. Improving microRNA target prediction by modeling with unam-
biguously identified microRNA-target pairs from CLIP-ligation studies.
Bioinformatics 2016;32:1316e22.

Wilgus TA, Roy S, McDaniel JC. Neutrophils and wound repair: positive
actions and negative reactions. Adv Wound Care (New Rochelle) 2013;2:
379e88.

Wu D, Bi X, Qu L, Han L, Yin C, Deng J, et al. miRNA miR-17-92 cluster is
differentially regulated in the imiqumod-treated skin but is not required for
imiqumod-induced psoriasis-like dermatitis in mice. Exp Dermatol
2017;26:82e4.

Wu Y, Quan Y, Liu Y, Liu K, Li H, Jiang Z, et al. Hyperglycaemia inhibits
REG3A expression to exacerbate TLR3-mediated skin inflammation in
diabetes. Nat Commun 2016;7:13393.

Yang CS, Kim JJ, Lee SJ, Hwang JH, Lee CH, Lee MS, et al. TLR3-triggered
reactive oxygen species contribute to inflammatory responses by acti-
vating signal transducer and activator of transcription-1. J Immunol
2013;190:6368e77.

Zhang W, Yi X, An Y, Guo S, Li S, Song P, et al. MicroRNA-17-92 cluster
promotes the proliferation and the chemokine production of keratinocytes:
implication for the pathogenesis of psoriasis. Cell Death Dis 2018;9:567.

Zhou J, Liu R, Luo C, Zhou X, Xia K, Chen X, et al. MiR-20a inhibits cutaneous
squamous cell carcinoma metastasis and proliferation by directly targeting
LIMK1. Cancer Biol Ther 2014;15:1340e9.

This work is licensed under a Creative Commons
Attribution 4.0 International License. To view a

copy of this license, visit http://creativecommons.org/
licenses/by/4.0/
www.jidonline.org 671

http://refhub.elsevier.com/S0022-202X(20)31989-8/sref47
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref47
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref47
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref47
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref48
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref48
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref48
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref48
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref49
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref49
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref49
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref49
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref50
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref50
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref50
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref50
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref51
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref51
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref51
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref51
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref52
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref52
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref52
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref52
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref52
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref53
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref53
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref53
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref53
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref54
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref54
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref54
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref54
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref54
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref55
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref55
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref55
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref55
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref55
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref56
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref56
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref56
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref56
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref57
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref57
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref57
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref57
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref58
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref58
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref58
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref58
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref58
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref59
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref59
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref59
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref59
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref59
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref60
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref60
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref60
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref60
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref61
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref61
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref61
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref61
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref62
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref62
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref62
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref62
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref62
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref63
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref63
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref63
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref64
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref64
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref64
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref64
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref64
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref65
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref65
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref65
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref66
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref66
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref66
http://refhub.elsevier.com/S0022-202X(20)31989-8/sref66
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.jidonline.org

	miR-19a/b and miR-20a Promote Wound Healing by Regulating the Inflammatory Response of Keratinocytes
	Introduction
	Results
	Characterization of miR-17∼92 expression in human skin wounds
	Lack of miR-17∼92 in KCs impairs wound healing in vivo
	Increased miR-17∼92 expression in KCs promotes wound healing in vivo
	MiR-19a/b and miR-20a suppress polyinosinic:polycytidylic acid‒induced inflammation
	miR-19a/b and miR-20a regulate NF-κB signaling pathway
	Identification of target genes important for miR-19a/b’s and miR-20a’s anti-inflammatory function in KCs
	Local application of miR-19b and miR-20a mimics promotes wound healing in a mouse model of type 2 diabetes

	Discussion
	Materials and Methods
	Human wound samples
	Statistical analysis
	Study approval
	Data availability statement

	ORCIDs
	Conflict of Interest
	Acknowledgments
	Author Contributions
	Supplementary Material
	References


