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Abstract

Computational study of single protein sensing using
nanopores

Sebastian Cardoch

Identifying the protein content in a cell in a fast and reliable manner has become a
relevant goal in the field of proteomics. This thesis computationally explores the
potential for silicon nitride nanopores to sense and distinguish single miniproteins,
which are small domains that promise to facilitate the systematic study of larger
proteins. Sensing and identification of these biomolecules using nanopores happens by
studying modulations in ionic current during translocation. The approach taken in this
work was to study two miniproteins of similar geometry, using a cylindrical-shaped
pore. I employed molecular mechanics to compare occupied pore currents computed
based on the trajectory of ions. I further used density functional theory along with
relative surface accessibility values to compute changes in interaction energies for
single amino acids and obtain relative dwell times. While the protein remained inside
the nanopore, I found no noticeable differences in the occupied pore currents of the
two miniproteins for systems subject to 0.5 and 1.0 V bias voltages. Dwell times were
estimated based on the translocation time of a protein that exhibits no interaction
with the pore walls. I found that both miniproteins feel an attractive force to the pore
wall and estimated their relative dwell times to differ by one order of magnitude. This
means even in cases where two miniproteins are indistinguishable by magnitude
changes in the ionic current, the dwell time might still be used to identify them. This
work was an initial investigation that can be further developed to increase the
accuracy of the results and be expanded to assess other miniproteins with the goal to
aid future experimental work.
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Populärvetenskaplig sammanfattning

Det här arbetet undersöker huruvida nanoporer kan användas för att studera stora mängder
protein. Proteiner är små biomolekyler, vars funktion är att binda till andra biomolekyler
inuti alla levande organismer. De mest intressanta proteinerna återfinns i den mänskliga
cellen, eftersom kunskap om dessa kan leda till genombrott för nya mediciner och pre-
ventiva medicinska åtgärder. En utmaning är att utveckla experimentella metoder som
kan användas för att detektera och identifiera protein i stora mängder. En teknik som
har potential för detta användningsområde är nanoporer; små porer med endast några få
nanometer i diameter. De tillverkas i antingen syntetiska eller biologiska material. I den
här studien har en syntetisk nanopor av kiselnitrid med cylindrisk form undersökts. Hur
detekteras då protein i en nanopor?

Ett membran, i vilket nanoporen existerar, separerar två regioner som är helt fyllda
med en elektrolytisk lösning. Protein placeras i en av dessa regioner och en spänning
appliceras över systemet. Laddade lösta partiklar, så som joner och protein, rör sig då
i det elektriska fältets riktning genom nanoporen, från ena sidan av membranet till den
andra. Jonernas rörelse ger upphov till en elektrisk ström som kan mätas. När ett protein
passerar genom poren kallas det translokation, och detta ger upphov till en minskning
av strömmen eftersom jonflödet delvis blockeras. Beroende på proteinets storlek och
sammansättning minskar jonflödet olika mycket och under olika lång tid. Hypotesen är
att man genom att titta på förändringen hos den uppmätta strömmen kan särskilja olika
protein från varandra.

Tillvägagångssättet i den här studien var att simulera ett system med en nanopor, ett
protein och en jonlösning genom att använda teknikerna "Molecular mechanics" (MM)
och "Density Functional Theory" (DFT). MM använder Newtons rörelselagar för att ap-
proximera systemet medan DFT tar hänsyn till elektronernas interaktioner och därmed
beskriver systemet bättre. Nackdelen med DFT är dock att det är mer beräkningstungt
och därför bara kan användas för att simulera ett litet system med några få atomer (hun-
dratals till tusentals).

I den här studien har jag fokuserat på att studera miniproteiner, som är byggstenar
i stora protein. Tanken är att studien av miniprotein kan bana väg för att systematiskt
kunna studera större och mer komplexa protein. De två valda miniproteinen valdes då
deras form och storlek påminner om varandra. På så sätt blir det en större utmaning att
skilja dem åt.

Med hjälp av MM simulering beräknades storleken på den ström som uppstår när pro-
teinerna var för sig befann sig i nanoporen. Strömmen mättes för 0.5 och 1.0 V applicerad
spänning. Det visade sig att de resulterande strömmarna såg liknande ut för de två pro-
teinerna, för båda spänningarna. DFT användes sedan för att estimera hur lång tid det
tog för proteinerna att ta sig igenom nanoporen, baserat på hur starkt olika aminosyror
i proteinerna interagerade med porväggen. Resultaten visade att de båda proteinens rel-
ativa uppehållstid skiljde sig med en faktor tio. Dessa resultat indikerade att det skulle
kunna vara möjligt att detektera olika proteiner med denna metod. Studien kan använ-
das som en guide till experimentellt arbete inom detta område. Jag presenterar även en
simuleringsmetod som kan användas för att vidare studera andra miniprotein.
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1. Introduction

In this thesis I computationally investigate a method that can potentially detect and catego-
rize proteins using nanopores. To get a deeper understanding of the motivation, aims and
assumptions made, I first discuss proteins, their importance and how they are currently
being sensed.

I begin with amino acids, which are building blocks for proteins. There are 20 nat-
urally occurring proteinogenic amino acids and these join together covalently to form
chains that, depending on length, are called peptides or polypeptides. A protein is con-
structed by one or more polypeptides and has as its function to bind to other molecules.
Figure 1.1 outlines the biological steps from genetic code to the formation of proteins.
Proteins can be further understood in terms of structures; a protein’s primary structure
refers to the amino acid sequence, while local folds such as a helices, b sheets and turns
are its secondary structure [1]. Tertiary structures describes the relative position and folds
between secondary structures. Finally, if the molecule is made of more than one polypep-
tide, its quaternary structure describes relative positioning and orientations in these larger
sub-units [1]. Proteins have been found to be responsible for different functions in organ-
isms i.e. molecule transport, cell structure, acting as a catalyst for metabolic functions or
DNA replication [2].

dsDNA
ssDNA

single
gene

tRNA
amino acid

anti-codon

anti-codon loopmRNA

codon

amino acids

peptide bond

peptide

polypeptide

protein

Figure 1.1. Diagram outlining the biological mechanism for the formation of proteins. The process begins
when double-stranded DNA (dsDNA) splits into single-stranded DNA (ssDNA). A section of the sequence
in ssDNA, or gene, is transcribed into RNA [3]. Each gene in ssDNA codes for a particular RNA i.e.
messenger RNA (mRNA) or transfer RNA (tRNA). These two RNA molecules in particular are involved
in the formation of proteins; mRNA holds the genetic blueprint in sets of three nucleotides called codons,
whereas tRNA holds a single anti-codon and amino acid [3]. Codons bind with anti-codons one at a time. At
the same time, at the other end of tRNA, peptide bonds begin to form between neighboring amino acids [3].
This process forms small chains called peptides, larger chains with some folds called polypeptides and
eventually proteins.
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An emergent area of research and main motivation for this thesis is single cell protein
analysis. This field aims to distinguish and quantify the protein content in a single cell to
track cell mutations and potentially detect diseases based on a cell’s protein content [4].
Different techniques are currently used to study proteins, for example Edman degrada-
tion splits the molecule and uses mass spectroscopy to determine a protein’s primary
structure [1]. Varying degrees of folds can be determined using x-ray crystallography,
nuclear magnetic resonance (NMR) [1]. These processes suffer from a number of disad-
vantages, since they require a bulk number of proteins that in some cases cannot easily
be obtained [1]. Additionally, none of these methods give insight into binding, reaction
or dynamic processes [1]. Different types of single molecule sensors, such as atomic
force microscopy, optical tweezers, fluorosequencing, and Föster resonance energy trans-
fer (FRET) fingerprinting, have emerged as new alternatives to study the dynamics of
proteins [1, 5]. Such methods require molecules to be labelled and struggle to detect
small energy differences and resolve short time steps [5].

Nanopore sequencing is a unique single-molecule sensing technique at the forefront of
innovation that has the potential to circumvent these drawbacks [5]. Oxford Nanopore
Technologies, first to offer a commercial nanopore-based DNA sequencer, is a prime ex-
ample of the possibilities that nanopore sequencing brings [6]. Most recently, nanopores
are also being considered as an efficient method to sense proteins to get concentrations
and observe dynamic changes. In fact theoretical investigations on folding have already
been explored and show that it is possible to obtain distinct ionic signatures for a selected
number of proteins in their folded and unfolded state [5]. Nanopore sequencing requires
either a solid-state or biological membrane (examples shown in figure 1.2) to be placed
in electrolyte solution with a known salt concentration. An electric potential difference
applied across the membrane, forces charged particles close to the pore’s entrance to elec-
trophoretically translocate through. The flow of ions in the pore is measured as a steady
current that will be modulated when a molecule is found inside the pore. Solid-state
nanopores are being considered in particular for their great mechanical stability, large
degrees of freedom in the shape of the pore and in the case of silicon-based ones their
material compatibility with current technology [1].

A

�

+

A

�

+

Figure 1.2. Biological and solid-state nanopores. (left) Commonly used biological nanopore a-hemolysin
(a-HL) embedded in a lipid bi-layer surrounded by chloride and sodium ions. In solution the nanopore
has a 3.6 nm and 2.6 nm diameter at the cap and b -barrel respectively [7]. (right) Solid-state b �Si3N4
membrane surrounded by chloride and potassium ions. A pore of the desired diameter can be drilled by
electron and ion beams or wet-etching techniques [7].

This thesis thus builds on the potentials of solid-state nanopores over other sequencing
methods to sense proteins. I approach the problem from a theoretical perspective by using
a combination of classical mechanics and quantum mechanics computational methods to
describe a system consisting of silicon nitride membrane, miniprotein (small protein) and
solution. The objectives of this thesis are the following:
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1. Use force field (FF) molecular dynamics (MD) simulations to compute occupied
pore iocc ionic current by placing a miniprotein inside the pore.

2. Use FF MD results to estimate the interaction strength between miniprotein and
pore wall, based on changes to the potential energy of the protein while near the
membrane and far away from it.

3. Use quantum mechanics (QM) in the form of density functional theory (DFT)
calculations to compute the interaction strength between pore wall and individual
amino acids that make up the protein.

4. Based on the results above repeated over two miniproteins, we aim to gain insight
into the potential of nanopores to classify these and other proteins.

These objectives are based on the following assertions:
1. We consider that the occupied pore current, when the miniprotein is placed at the

centre of the pore, corresponds to ionic current amplitudes of typical transloca-
tion events.

2. We hypothesize that the interaction strength is proportional to the duration of
typical translocation events.

3. We further hypothesize that together the ionic current amplitude and interaction
strength can be used as a measure to assess differences in the translocation output
signals of different miniproteins.

The implementation of MD and QM methods to address the objectives of this thesis
is a compromise between accuracy and speed. Good description of the total energies of
the system can be obtained by performing electronic structure calculations. Due to the
large size of the system, vast computational power that are not available would be needed
to simulate the entire nanopore system. Through MD simulations I can consider a large
region of interest using a simplified model based on parametrized forces.
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2. Physics of sensing proteins with nanopores

The use of nanopores for protein sensing offers an advantage over other sensing meth-
ods, because nanopores have the potential to reach single-protein resolution with high
throughput rate. One relevant field discussed in the introduction that could benefit from
nanopore technology is single-cell protein analysis, which can be used to study cell evo-
lution through the large-scale study of proteins also known as proteomics [8]. The protein
content in a cell is stochastic, therefore cell variations can be spatially and temporally
tracked only by significant statistical changes to protein counts [8]. Current protein sens-
ing methods, i.e. cell array and mass spectroscopy, use a bulk number of cells and in-
herently yield an averaged result with low temporal or spatial resolution [8]. True single-
cell resolution has been achieved by different groups with varying degrees of success, but
these techniques require labelling (i.e. fluorescence antibody binding) that limits the study
to a few selected proteins [8–10]. The use of nanopores to sense proteins would eliminate
the need for labels, while achieving true single-cell resolution [11]. Nevertheless, the
task remains difficult since small proteins (M<kDa) in their native state translocate too
quickly and the bandwidth required to detect them yields a signal that is largely obscured
by noise [1, 12]. Additionally, the number of proteins in a cell puts a limits on the num-
ber of samples that can be used to derive statical differences and protein amplification
methods are not currently known [8]. In this chapter, I present background information
on solid-state nanopores and miniproteins, which are small protein domains that have the
potential for good identification due to their size and low net charge.

2.1 From tunable resistive pulse sensors to silicon nitride nanopores
A tunable resistive pulse sensor (TRPS) is a device that measures a current through an
aperture. As briefly described in the introduction, this is done typically by an insulating
membrane with a small opening that separates electrolyte solution into two regions cis and
trans [13]. It is possible to apply a bias voltage Vbias that causes ions in the solution to feel
a force that drives them into a directed motion. This motion is then measured as a steady
current by electrodes placed at the end of the two regions. For large enough ion concen-
trations most of voltage difference occurs across the surface of the membrane, limiting
the directed flow of ions inside or near the aperture of the pore. Coulter counters are one
of such TRPS devices, typically microns in size and routinely used for cell counting [13].
Coulter counters have served as an inspiration in the development of nanopores, which
are a nano-sized version of them ranging from 1-100 nanometers in size [14]. Given the
size of the TRPS, the physics near the pore are different. Coulter counters are dominated
by bulk behavior, but in the case of nanopores, in addition to electrophoresis, surface
charge and electroosmosis play a relevant role [13]. The interplay between these three
physical phenomena will be discussed in detail later. A charged polymer such as DNA
or protein introduced in the TRPS environment will also translocate from one chamber
to the other under the influence of Vbias [15]. During the translocation process the flow
of ions is restricted, which experimentally was shown correlates with modulations in the
measured ionic current [15]. The shape and duration of these modulation can give struc-
tural information about the biological molecule i.e. ion-molecule interaction, geometry,
size and charge [16].

Advances in nanopore technology have made it possible to create nanopore membranes
of biological or solid-state origin. Biological pores, such as a-HL, bacteriophageF,
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MspA, have the advantage of being structurally well defined [7]. Their geometry is
highly reproducible and can be modified by targeted mutations in the coding of DNA
strands [7]. Biological nanopores are typically embedded in lipid bi-layers through self
assembly, making their exact position difficult to control [13]. They also exhibit a low
capacitance that allows low current detection with a large bandwidth [13]. Solid-state
nanopores have gained attraction because, among other advantages, they can be embed-
ded into circuit chips with the help of field-effect transistors [7]. Si3N4, SiO2, Al2O3
and two-dimensional materials such as graphene and MoS2 have all been considered as
potential candidates [7, 17]. Pores of these materials are drilled in a free-standing mem-
brane using focused ion or electron beams, where the process is usually controlled by
photo-lithography [7]. Methods using wet-etching and electric breakdown have also been
reported [13]. Such procedures require a clean room, making their commercial prepa-
ration a present challenge [13]. Unlike biological nanopores, the position of solid-state
pores can be controlled opening the possibility of miniaturization of future devices [13].
Additional coatings on the membrane can also lead to low capacitance and large signal
bandwidth, both desirable features for sensing [13].

In particular, silicon nitride Si3N4 exhibits thermal, mechanical and chemical stabil-
ity, characteristic of solid-state membranes [7]. Silicon integrates well with metal oxide
semiconductors making it compatible with integrated circuits, opening the possibility for
parallelization in the analysis [7]. Pores made of this material have been shown to work
well under high electrolyte concentrations and their surface charge can be modified to
achieve higher sensitivity [7]. For these reasons Si3N4 nanopores have been experimen-
tally and theoretically studied for DNA sequencing in a number of papers (for a review
see [13, 15]). Its potential application for the classification of single proteins has also re-
cently been demonstrated in several studies [14]. For example Houghtaling et al. showed
that it is possible to classify nine proteins based on their approximate shape, molecular
volume and dipole moment [18]. Additionally, Firnkes et al. showed that the direction of
transport can depend on the difference in the z -potential between the protein and the pore,
where diffusive, electrophoretic and electroosmotic forces can cause proteins to move in
the opposite direction with respect to the applied electric field [19].

2.2 Entropy barrier and physics near the pore
In its natural state, molecules can take on a number of different conformations N that
can be related to a conformational entropy S [15]. This entropy is mainly determined by
the stiffness of the backbone and in the case of proteins by its tertiary and quaternary
structure [15]. An extreme example of a molecule with high entropy would be single-
stranded DNA, which holds no rigidity. Alternatively, a double-stranded DNA forms a
characteristic double helix that reduces its entropy. When a polymer is found inside the
membrane, the pore walls can also impede its free movement if the radius of the pore
Rpore is comparable to the size of the polymer Rprotein [15]. Entropy can be related to the
free energy F by

F = E �T S = E �T kB lnN , (2.1)
where E represents the interaction energy between the polymer and solvent, T is the tem-
perature and kB the Boltzmann constant [15]. Since the pore reduces the entropy, translo-
cation becomes a nucleation process in which the molecule must overcome a free energy
barrier as it enters the pore [15]. This mechanism is schematically shown in figure 2.1. For
ion concentrations explored in this thesis, the largest voltage difference occurs between
the two membrane surfaces. Subject to this environment, biological molecules approach
the nanopore aided by Brownian motion and attraction to the surface of the membrane (if
any exists). Both of these factors mean the capture and successful translocation of a single
molecule happens in large timescales inaccessible to all atomistic simulations methods.
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Figure 2.1. Diagram showing a schematic representation of the free energy of a polypeptide at each of the
stages during its translocation. The free energy barrier occurs due to the low entropy of the molecule when
found inside the pore. Adapted from [15].

Once the biological molecule is near the pore its translocation happens, in addition to
random collisions with other particles, through an interplay between electrostatic forces,
electrophoresis and electroosmosis [20]. These physical phenomena are a consequence
of the electrolyte and the surface charge of the membrane and biological molecule [12].
When the bias voltage is off, ions in solution of opposite polarity form a charged cloud that
screen the surface charge of the membrane and biological molecule [21]. The formation
of the screening cloud, also referred as a double layer, coupled with the surface charge
effectively creates a capacitor at the interface with an electrostatic potential described by

f(x) = ss lD

ew
e�x/lD ⌘ z e�x/lD , (2.2)

where ew is the relative permittivity of water, ss is the surface charge density of the mem-
brane or molecule and lD is the Debye screening length, which describes the thickness of
the screening cloud and depends on the ionic concentration [21]. In the equation above I
have defined

z ⌘ ss lD

ew
, (2.3)

where z is known as the zeta-potential, a useful quantity for modeling the interaction
between surface and solution. When the bias voltage is turned on, ions including those
making up the double layer feel a Coulomb force that drives them into motion [21]. The
flow of ions around a stationary surface such as the membrane is known as osmotic flow.
In the case of a freely suspended particle, osmotic flow causes the particle to experience a
force from the moving charge in the opposite direction, known as electrophoresis [21]. In
the limit of small zeta-potential z << kB T/e and for a symmetric electrolyte such as KCl
(meaning the affinity of both ions is the same) these effects can be described as shown in
figure 2.2 [21]. Under these conditions, the slipping velocity of the screening cloud can
be modeled by

us =�ew z
h

Ek , (2.4)

where Ek is the z-component of the electric field and h is the fluid’s viscosity [21]. The
electrophoretic velocity for a freely suspended particle can be modeled in a similar manner
by

U =
ew z

h
E , (2.5)

where in this case the factor ew z/h describes the electromobility of the particle [21].
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Figure 2.2. Diagram depicting an electric double layer of thickness lD forming at the surface of the mem-
brane (left) and at the surface of the biological molecule (right), which under the influence of an exter-
nal electric field E experience an electroosmotic flow with velocity us. In the case of the free-standing
molecule, electroosmosis induces a movement on the molecule with velocity U known as electrophoresis.
Adapted from [21].

The model considers a membrane and biomolecule with a surface charge that is well
distributed and therefore generates a homogeneous zeta-potential. This is an approxima-
tion, since defects or regions of excess charge are found in in the pore walls and protein.
When the double layer is in motion, such defects have been shown to cause eddies and
recirculation regions that require non-linear terms to describe the flow [21].

2.3 Noise, resistance and detection
The different physical phenomena described above coupled with the dynamics of the
protein make translocation a stochastic process. Distinguishing between proteins then
becomes challenging, since a variety of current signatures can be detected for a single
polymer. Additionally, a number of sub-events can happen when a molecule translocates
or is found near the pore. Besides a smooth transit, a molecule can collide with the pore,
make contact with the pore walls, undergo structural changes or even tumble inside the
pore [1]. All these sub-events produce distinct current blockades. As a consequence, the
repeated sensing of a particular protein will give rise to a current amplitude and dwell
time distribution. It has been shown that implicit entropy models can predict the nature
of the energy barrier and aid in the design of nanopores, but cannot explain translocation
time distributions [15]. For this task, it is necessary to employ an all-atomic model such
as the ones offered by molecular dynamics simulations.

The sensitivity and temporal resolution of the nanopore become increasingly relevant
to discriminate current modulations between different biological molecules, specially for
short-lived translocation events [22]. In this area solid-state nanopores have the disadvan-
tage of producing large noise compared to their biological counterpart [22]. The temporal
resolution of solid-state nanopores can be enhanced with a larger bandwidth, but noise
also increases with increasing bandwidth [22]. In fact studies have demonstrated that at
different frequency regimes distinct noises are the dominant source of degradation in the
captured signal. As shown in figure 2.3, dielectric and capacitance noise dominate the
high frequency domain. The former can be explained by the fact that non-ideal dielectric
materials experience electrical energy loss in the form of heat dissipation, which trans-
lates to an increase in thermal noise [22]. The latter refers to a pairing between the noise
from the input impedance voltage and the capacitance of the membrane [22]. It has been
demonstrated that lowering of the capacitance by applying special coatings to the surface
can dampen these noises [22, 23].
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Figure 2.3. Diagram showing the dominant source of noise in a solid-state nanopore at different frequency
regimes. Estimates of noise are derived from an equivalent circuit depicting a nanopore connected to a
transimpedance amplifier. Adapted from [22, 24].

To get an estimate of the sensing capability of a nanopore and the type of noise that
will be most dominant in the system, it is possible to model the system with an equivalent
circuit like the one shown in figure 2.4. In such case, an upper limit on the cutoff frequency
fc (frequency at which the signal attenuates) can be found using

fc 
1

4p C Relectrolyte
, (2.6)

where Relectrolyte the resistance associated with the solution and C is the membrane capac-
itance [22]. An approximation of the capacitance can be obtained from the geometry of
the membrane

C =
e0 er A

t
, (2.7)

where A is the membrane’s area of contact with the electrolyte, t is the thickness of the
membrane and e0 and er are the permittivity of free space and membrane respectively [22].

Vbias

Relectrolyte

CmembraneRpore-total

Relectrolyte

Figure 2.4. Equivalent circuit representing a simplified nanopore system, where Relectrolyte is the resistance
associated with the solution and Rpore-total represents a combination of the pore’s access resistance and
resistance due to ions near its walls [22].

The total pore resistance referred to in figure 2.4 can be divided into an access resistance
(AR) and a pore resistance (PR) [13, 16]. AR models the reduction in electrodiffusivity of
ions when they converge from the bulk to a confined volume inside the nanopore, which
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under low salt concentrations has been shown to be the dominant source of resistance [16].
In a cylindrical pore, AR can be modeled as

Racc =
1

4k d
, (2.8)

where k is the electrolyte conductivity, and d the diameter of the pore [13]. The PR can be
considered to have two main contributors from ions at the surface of the pore walls Rsurf
and ions far from the pore walls Rbulk. For a cylindrical-shaped pore, these two quantities
can be modeled by

Rsurf =
4L

p d2 k
and Rbulk =

L
p d ss µi

, (2.9)

where L is the pore length and µi is the electrophoretic mobility of counter ions i [13].
These two resistance contributions add in parallel to give the pore resistance

1
Rpore

=
1

Rbulk
+

1
Rsurf

, (2.10)

making the total resistance [13]

Rpore-total = 2Racc +Rpore . (2.11)

These models assume for example a constant electric potential, a neutral pore and a ho-
mogeneous electrolyte solution [16]. These conditions do not hold exactly true in exper-
imental environments or molecular dynamic simulations. Nevertheless, if the electrolyte
is well distributed, the electric field will be approximately constant over the bulk region
and change rapidly near the pore, where electrophoretic forces will be present [13]. At
some radius rc the forces associated with Brownian motion and electrophoresis will ap-
proximately cancel out [13]. This radius encloses a volume known as the capture region,
as shown in figure 2.5.

rc

membrane membraneRpore

Racc

Racc

Figure 2.5. Schematic representation of resistance contributions present in a cylindrical nanopore subject
to a uniform external field along the latitudinal direction.

Finally, the open pore current io for a cylindrical-shaped opening can be approximated
by Ohm’s law [1]

io =
Vbias

Rpore-total
. (2.12)

The occupied pore current iocc on the other hand, is proportional to the cross-sectional area
of the pore and inversely proportional to the thickness of the pore [20]. This means thin
membranes are most desirable to achieve high sensitivity [22]. Additionally, the smaller
the pore size, compared to the size of the molecule, the greater signal strength will be
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exhibited. This is because it is common to define the modulation in the ionic current as
the ratio between the occupied and open pore currents [13]

I =
iocc

io
, (2.13)

such that if DI ⌘ io � iocc and the pore size is very large, iocc ⇡ io and DI/io is approxi-
mately zero. In the case when the pore is very small iocc ⇡ 0 and the ratio DI/io becomes
approximately 1.

2.4 Proteins, domains and miniproteins
As discussed earlier, a protein is built from a sequence of amino acids that assemble into
a unit by forming peptide bonds. Each amino acid is composed of a carboxyl group
(COOH), an amino group (NH2) and a radical (R) where the radical in this case is the
part that differs for each type of amino acid [2]. As shown in figure 2.6, amino acids join
together when the carbon atom from the carboxyl group (COO-) shares an electron with
the nitrogen from the amino group (NH3+) [2]. The linked carboxyl and amino group
make up the backbone of the protein, while the radical becomes a side group [2]. Due to
the way these bonds form, two ends emerge; the N-terminus and C-terminus.

Figure 2.6. Schematic representation of a sequence of amino acids forming a peptide chain. The bond-
ing process releases a water molecule. By convention, the protein sequence is read in the N-C terminus
direction [2]. Taken from [2].

Peptide bonds are flexible and allow folds to originate exclusively based on the amino
acid sequence of the protein [2]. These folds take on different angles and configurations,
but are limited by non-covalent forces between atoms [2]. The entire folded structure of
a protein, also called conformation, tries to minimize the energy of the molecule [2]. The
stability of the molecule thus depends on its entropy and the enthalpy of the bonds that
keep the folds in place [25]. Common fold patterns are a helix or b sheets, as shown
in figure 2.7. Based on various folds, proteins tend to form a hydrophobic core, which
generally strengthens the protein’s conformation and creates binding sites that allow it to
interact with other molecules [13].
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Figure 2.7. Schematic representation of common folds found in proteins.

Besides the primary to quaternary structures discussed in the introduction, a protein
can also be subdivided into domains. A protein’s domain is any polypeptide section that
has the ability to independently fold into a stable structure [2]. It is usually the case that
these domains are associated to a particular function of the protein, i.e. regulatory roles,
transport or binding to other molecules [2]. Domains make it possible to study protein
sensing using nanopores in this thesis. The computational power required for all-atom
molecular dynamics and electronic structure calculations places a limitation in the size
of the simulation system. For this reason, systems of large proteins are not feasible with
the resources that I have available. I therefore turn to the investigation of small domains
from proteins that are involved in cellular processes. These domains, typically a single
polypeptide with less than 40-50 amino acids long, can be classified as miniproteins [25,
26]. Miniproteins are often less stable due to the fewer number of atoms, which translates
to a reduced number of non-covalent bonds and a less hydrophobic core [25]. This also
means a single miniprotein contains a limited number of secondary structures, making
them suitable to study folds in larger proteins in systematic ways [2, 26].

I selected two miniproteins to study that are involved in cellular processes; the WW
domain of FBP11 and AGRP(87-120). General information about these molecules is
shown in table 2.1 and their amino acid sequence is shown in appendix A.

Table 2.1. List of miniproteins involved in human cellular processes, selected for their analogous geometry
and number of residues. The structure of these proteins has been determined by NMR spectroscopy in
aqueous environment. Their structure files were obtained from the Protein Data Bank (PDB) [27].

PDB protein structure lengtha (Å) mass (Da) volumeb (Å3) res. ref.

1ZR7 FBP11 WW b -sheet, turn, bend 30.7 3587.7 8.47⇥103 30 [28]
1MR0 AGRP(87-120) b -strand, turn, bend 31.6 3884.5 8.90⇥103 34 [29]

aLargest distance between any two atomic centers. bApproximate volume determined using MDTools MolVolume
with a probe radius of 2.0 Å and grid size of 0.1 Å.

FBP11 is a human protein that participates in mRNA splicing, a process in which cod-
ing regions in RNA are separated from the non-coding regions to form mRNA [28, 30].
There exits two WW domains in FBP11, where each folds into a b sheet consisting of
three b strands [31, 32]. The name for this domain is derived from the two tryptophan
residues, given the amino acid code W, that form part of its structure [33]. These domains
have been shown to bind to the protein huntingtin that is associated with Huntington’s
disease [28]. A disruption in the normal binding between these two proteins is theorized
to contribute to the generation of this disease [31]. The WW domain of FBP11 is show in
figure 2.8.

The agouti-related protein (AGRP) is a regulatory protein that is produced in the hy-
pothalamus, located in a central region of the brain [29]. AGRP regulates feeding be-
havior and energy balance by acting as an antagonist to other molecules in melanocortin
receptors [29]. The C-terminal domain, corresponding to residues (87-132) of the protein,
consists mainly of a cysteine knot that has the contact points that are responsible for the
protein’s interaction with these receptors [29]. To experimentally prove this, Jackson et al.
synthesized a miniprotein AGRP(87-120) that only contains the cysteine knot [29]. For

17



N

T

TRP-I

TRP-II

Figure 2.8. Cartoon representation of the structure of the FBP11 WW domain. Beta sheets are shown
in yellow, while turns and bends are shown in green. The miniprotein has two tryptophan (W) residues
highlighted using balls and sticks, that are 21 amino acids apart. The figure also shows the direction of the
sequence from the N-T terminus. Between the two W amino acids, the peptide folds into a beta sheet.

example, experiments in mice have shown that AGRP is linked to weight disorder [29].
Controlling the protein-receptor dynamics can lead to the development of novel treat-
ments for diabetes or substance abuse in humans [29]. The domain AGRP(87-120) is
shown in figure 2.9
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Figure 2.9. Cartoon representation of the structure of AGRP(87-120). Beta strands are represented by yel-
low arrows, while the turns and bends are represented by green tubes. I highlight cysteine amino acids using
balls and sticks (labelled I-V following the miniprotein sequence read in the N-T direction), responsible for
cysteine knots formed by disulfide bonds [34].
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3. Computational theory

In this section, I present theoretical details on the simulation techniques employed to study
the nanopore-miniprotein system. Molecular mechanics can be used to obtain dynamic
properties for a large system at the cost of using a simplified model, while a density
functional method gives accurate atomic and electronic structures at great computation
expense and thus can only be used to study small regions. In this investigation I used the
former method implemented in the software NAMD to study transport properties of ions
and the latter implemented in the software SIESTA to quantify the interaction strength
between pore-wall and miniprotein [35, 36].

3.1 Molecular mechanics
With molecular dynamics (MD) simulations it is possible to model a system made up
of individual particles and obtain information about its properties as a function of time
by solving Newton’s equations of motion. I can start by writing the Hamiltonian of the
system as

H =H(r, p) =U(r)+K(p) , (3.1)

where U(r) is the potential field under which particles interact, K(p) represents their
kinetic energy and variables r and p are the set of position and momenta of a single
microscopic state of the system in phase space {r, p} [37]. For a single state and for a
single atom i with mass mi, this Hamiltonian can be differentiated

ṙi =
∂H(r, p)

∂pi
and ṗi =�∂H(r, p)

∂ri
, (3.2)

to give the equations of motion as two coupled first order differential equations

ṙi =
pi

mi
and ṗi = Fi , (3.3)

where the dot represents a derivative with respect to time and Fi the net forces acting on
the atom [37, 38]

Fi =�∂ U(r)

∂ ri
. (3.4)

Molecular mechanics (MM) is one MD method that expresses U(r) as a mathemati-
cal function in the form of an empirical force field (FF) where the nucleus and electrons
are combined into inert spherical particles [38]. In this picture the electronic degrees
of freedom are decoupled from the motions of the nucleus and are considered as an av-
erage. This idea follows from the Born-Oppenheimer approximation where the typical
movement of electrons is orders of magnitude faster than the nucleus’s due to their mass
differences [38, 39].

The equations of motion can be written using a finite difference approach and solved by
numerical integration methods. These algorithms have to be efficient, time reversible, ac-
curate (meaning they experience a small short-term energy drift) and symplectic (meaning
they experience a small long-term energy drift) [38]. Common integrators are the Verlet

19



and Leapfrog, where NAMD uses the former coupled with a multiple-time-stepping algo-
rithm to determine momenta and position of particles [35].

From MM simulations, one can readily obtain the dynamic average of an equilibrium
or transport property of interest, i.e. for a dynamic variable A(r,p) the dynamic average
is given by

hA(r, p)it =
1
t

Z t

0
dt A(r(t), p(t)) , (3.5)

where t is the simulation time [37]. This expression represents the time evolution of a sin-
gle phase space state, but instead what is generally desired is to obtain the thermodynamic
average of this property

hA(r, p)iZ =

Z

V
dr
Z •

�•
dp r(r, p)A(r, p) , (3.6)

where the first integral is over all momenta, the second over all volume and r(r, p) is
the probability of finding the system in a particular state in phase space. For an NVT
ensemble, this probability is given by the Boltzmann distribution

r(r, p) = exp(�H(r, p)/kB T )
Z

, (3.7)

where kB is the Boltzmann constant, T the temperature and Z is the partition function [37].
Since Z is an integral over the whole phase space, solving for the thermodynamic average
would require to have information of every single microscopic state which is a compu-
tationally expensive task [37]. From this point it is assumed that, if the system remains
in a stationary state over the length of the simulation, the system is ergodic such that
for very long simulation times the thermodynamic average and the dynamic average are
approximately the same [37]

lim
t!•

hA(r, p)it ⇡ hA(r, p)iZ . (3.8)

In practice these assumptions still require simulations to run for a long time as to ob-
tain reliable dynamic averages, which are determined from the position and velocity of
particles [38].

3.1.1 CHARMM force field
There is no unique solution to describe the quantum mechanical energy landscape of a
material or molecule using a classical description [39]. To build an empirical FF it is
therefore assumed that the energy landscape of the system can be split into contributions
that added together yield a good description of the true potential [39]. Furthermore, FF
are also assumed to be transferable meaning that their functional form and parameters
(with the exception of some cases) are system-independent [39]. Many force fields are
available to describe bio-molecules and most split the potential in the general form

U(r) =U(r)internal +U(r)external , (3.9)

where the internal and external terms model bonded and non-bonded interactions respec-
tively [37]. For this thesis I chose to work with the CHARMM36 FF.
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The CHARMM36 FF expands this potential energy function to describe a system like
the one shown in figure 3.1 using [40]

U(r) = Â
bonds

Kb(b�b0)
2
+Â

UB
KUB(S�S0)

2
+ Â

angle
Kq (q �q0)

2

+ Â
dihedrals

Kc(1+ cos(n c �d ))+ Â
impropers

Kimp(f �f0)
2

+ Â
residues

ucmap(f ,y)+ Â
non

bonded

qi q j

e1 ri, j
+ ei, j
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4
 

Rmin
i, j

ri, j

!12

�
 

Rmin
i, j

ri, j

!6
3

5
2

. (3.10)

In this expression Kb, KUB, Kq , Kc and Kimp are the bond, Urey-Bradley, angle, dihedral
angle and improper dihedral angle force constants. The terms b, S, q , c and f are the
bond length, Urey-Bradley 1,3-distance, bond angle, dihedral angle and improper torsion
angle and those marked with the subscript zero represents their respective equilibrium
values [40, 41]. The bonded, Urey-Bradley, angle and improper dihedral angel interac-
tions are treated harmonically by a quadratic function, while the dihedral angles have
an oscillatory behavior described by a sinusoidal function [41]. For dihedral angles the
force constant determines the height of the energy barrier of the rotation whose location
and periodicity are defined by the phase d and the multiplicity n [37]. The ucmap term
is a special contribution acting on improper dihedral angles f and y found in the back-
bone of proteins [42, 43]. This term has been added to improve the sampling of certain
conformations and folded descriptions in some domains and proteins [42, 43].
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b

Figure 3.1. Generic system of atoms with bonded and non-bonded interactions. The potential energy of the
system can be described by the additive force field CHARMM shown in equation (3.10). The Urey-Bradley
term enhances the description of the vibrational spectra of the system by including a bonding term between
atoms 1 and 3 and the improper dihedral angle terms treat out-of-plane distortions or prevent the molecule
from flipping over to its mirrored image [37]. Adapted from [37].

The non-bonded interactions include the electrostatics between atoms i and j with
charge q at a distance ri, j and van der Waals forces modeled by a standard 12-6 Lennard-
Jones potential. Parameter e1 is the effective dielectric constant, which has been taken to
be 1 in order not to unbalance the parametrization between forces that hold the molecule
together (intramolecular) and forces between molecules (intermolecular) [40]. Along
with the potential expression CHARMM also includes best fit parameters that are atom
specific and determined either through experiments or quantum mechanical calculations,
which all together make the FF [41]. Lennard-Jones parameters involving two differ-
ent atom types are determined by geometric mean ei, j =

peie j and arithmetic mean
Rmin

i, j = (Rmin
i +Rmin

j )/2 [37]. The non-bonded terms have a large influence in the struc-
ture of biological molecules such as hydrogen bond formations that determine the stability
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of a protein’s secondary structure and influence its interaction with the external environ-
ment [37]. Based on the assumption presented earlier, equation (3.10) is a simplified form
of the true potential energy of the system that is a compromise between chemical accuracy
and computational load. Such approximation also limits the range of conditions for which
the model remains valid, therefore molecular mechanics simulations must be executed in
the vicinity of room temperature [37].

3.1.2 Particle mesh Ewald electrostatics
Because the Coulomb term in the FF falls slowly as 1/r, electrostatic interactions be-
tween particles need to be computed over large distances. Its implementation consumes
a large portion of the resources and in the beginning of computer simulations cut-off
schemes were introduced to make the task more manageable [41]. Such approach lacks
the description of long-range non-bonded interactions that are crucial for modeling bio-
molecules [41]. Nowadays full-range electrostatics can be obtained using the Ewald sum-
mation method, which builds on the premise that an infinite sum of pair-wise electrostatic
interactions conditionally converges for a neutrally charged system under periodic bound-
ary conditions [35, 44]. To calculate the electrostatic energy for a simulation box defined
by three independent lattice vectors a1, a2 and a3 with N particles and volume V , the
Ewald sum takes the general form [35]

EEwald = Edirect +Ereciprocal +Eself +Esurface . (3.11)

An infinite series with conditional convergence yields a different result based on the order
in which it is carried out. The energy is therefore computed by first summing over each
simulation box and later over spheres of boxes with increasing radius [35].

The direct energy contribution in equation (3.11) is computed in real space by pair-wise
Coulomb interactions [35]

Edirect =
1
2

N

Â
i, j

qi q j Â
nr

erfc(b |ri �r j +nr|)
|ri �r j +nr|

, (3.12)

where nr = n1a1 +n2a2 +n3a3, n1, n2 and n3 are integers, qi is the charge and ri is the
position of atom i [35]. Ewald summation is an approximate solution to the true electro-
static energy of the system with an error quantified by the complementary error function
erfc(b ;r) [35]. The weight parameter b determines how much of the electrostatic sum
is done in real and reciprocal space, such that after some cutoff radius rc the real space
contribution to the energy becomes negligible [35, 44]. The reciprocal term has the form

Ereciprocal =
1

2p V Â
m6=0

exp(�p |m|2/b 2
)

|m|2

�����

N

Â
i

qi exp(2p im ·ri)

�����

2

, (3.13)

where V represents the volume of the simulation box and m its dimensions in reciprocal
space [35]. The last two terms of equation (3.11) are the self energy, which is independent
of the size of the simulation box and has the form

Eself =� bp
p

N

Â
i

q2
i , (3.14)

and the surface energy term, which is proportional to the square of the net dipole moment
and has the form [35, 45]

Esurface =
2p

(2es +1)V

�����

N

Â
i

qiri

�����

2

. (3.15)
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This last energy term can be ignored under the so-called tin-foil boundary conditions,
where the box is assumed to be surrounded by an infinite sphere made of a medium that
is perfectly conducting [45]. The dielectric of the surroundings es is then considered to be
infinitely large es ! • and the surface energy term vanishes [45]. For the system under
investigation this approximation holds, since the membrane and protein are surrounded
by water with low ion concentration with an approximate dielectric constant 80 >> 1.

The Ewald method is commonly replaced by the particle mesh Ewald (PME) method
to improve the efficiency of the calculation by evaluating the reciprocal energy contribu-
tion using an interpolation scheme [44]. As shown in figure 3.2, a single charge can be
distributed over a grid that allows the reciprocal term to be solved using fast Fourier trans-
forms. Additionally, the value of b is readjusted to optimize computational scaling [44].

q

Figure 3.2. Interpolation scheme used by PME to distribute charge q over a two dimensional grid. The
weight of the charge distribution on the grid, visually represented by the size of the dots, is determined
based on distance. The same distribution can also be extended in three dimensions. Adapted from [35].

3.1.3 Water, ensemble conditions and simulation constraints
To solvate the nanopore-protein system I employed a static TIP3P water, which is a model
that has been parametrized to reproduce the structural and energetic properties of gas and
liquid water [46]. TIP3P is a 3-site model where two positive charges are placed at the
nucleus of each of the hydrogen atoms and a negative charge is placed at the bisector
of the H-O-H angle [46]. The OH bonds in the molecule have an equilibrium distance of
0.9572 Å and the H-O-H angle has an equilibrium value of 104.2o [46, 47]. Relevant com-
puted water properties using this model and experimental values for reference are show
in table 3.1. The TIP3P water model was developed with electrostatic cutoff schemes in
mind and the introduction of long-range electrostatic methods such as Ewald summation
and PME have resulted in its diffusivity becoming large [41]. The TIP3P water model
nevertheless continues to to be widely used in MM simulations and the CHARMM36 FF
was parametrized to work alongside it. Changing the water model used in the paralleliza-
tion of the FF can lead to undesired effects in the dynamics of the molecule and is not
recommended unless extensive studies are made [41].

Table 3.1. Summary of computed and experimental values for TIP3P and water respectively.

Model Dipole momentb Dielectric constanta Diffusivityb ⇥10�9 [m2/s] densityb r [g/cm�3]

TIP3P 2.347 82.0 5.6 0.998
Exp. 2.95a 78.4 2.3 0.997

aTaken from [46]. b Taken from [48] at 297.0(0.9) K.

The direct treatment of Newton’s equations of motion gives an NVE ensemble, but
most experiments are conducted at constant pressure and/or constant temperature [38].
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To simulate an environment under these conditions, the equations of motion are modified
slightly to model a system that is coupled to a reservoir [35]. In the simulations performed,
I employed the Nose-Hoover Langevin (NHL) piston for pressure control and the Lowe-
Andersen thermostat for temperature control.

Pressure controlled simulations solve the following problem; it is difficult to know a
priori the volume of the system that yields reasonable density values in liquids [49]. For
simple systems/geometries the volume can be estimated based on bulk experimental val-
ues, but in systems with membranes one can expect densities to be different in regions
near the nanopore, membrane or protein [49]. In constant pressure simulations densities
are therefore determined as a consequence of the force field parameters and the force ex-
erted by a piston of pseudo-mass W [49]. Available in NAMD is a modified version of
the Nose-Hoover method in which Langevin dynamics are used to control fluctuation in
the piston [35]. The Nose-Hoover method in turn is derived from the simpler Anderson
method, where the volume of the simulation box is adjusted and the position and momen-
tum of the particles is scaled to keep the pressure constant. Using the NHL piston method,
the equations of motion for a single particle i become

ṙi =
pi

mi
+

1
3

V̇
V
ri , ṗi = Fi �

1
3

V̇
V
pi and (3.16)

V̈ =
1

W
[P(t)�Pext]� g V̇ +R(t), (3.17)

where V is the volume, P is the instantaneous pressure of the system, Pext the target
pressure, g is the collision frequency and R(t) is a random force taken from a Gaussian
distribution with mean zero and variance hR(0)R(t)i = 2g kB T d (t)/W [49]. The NHL
piston method, through fluctuations in the volume, creates an NPT ensemble [49]. For the
set of simulations I performed, the degrees of freedom for this energy exchange are two;
volume in the z-direction is allowed to fluctuate freely and in the x-y direction the volume
can fluctuate but the ratio of geometry is kept fixed. As a result, the exchange of energy
from the piston is slow in typical molecular dynamics timescales and the system must be
coupled to a thermostat in order to carry out simulations in an efficient manner [49].

The Lowe-Andersen thermostat is local, Galilean-invariant and conserves momentum;
I explain the significance of each of these descriptions briefly. Thermostats can generally
be divided into global or local. In global thermostats the scaling factor that controls
the temperature is based on properties of the entire system (i.e. looking at the velocity
of all particles) and therefore distributes energy evenly over the system [50]. In local
thermostats the rescaling factor is determined in a stochastic way that takes effect over a
local space only (i.e. velocity reassignment for a single particle) and therefore dissipates
the energy in a more realistic way [50, 51]. Galilean invariant means Newton’s equations
of motion hold true in any inertial reference frame, as a result any motion to the centre of
mass of the system will not be considered as a shift in temperature [51]. Finally, the fact
that the thermostat conserves momentum means it models hydrodynamics correctly and
makes it possible to study transport properties of the system [51].

The Lowe-Andersen thermostat proposes to keep temperatures constant by periodically
changing the velocities of pairs of particles that are within a search radius RT [51, 52].
Every pair of particles in the search radius has a probability GDt of having a collision with
the heat bath, where G is the collision frequency and Dt is the simulation time step [51, 52].
In case of a bath collision, the pairs of particles get assigned relative velocities from a
Maxwell-Boltzmann distribution in a way that conserves angular momentum [51]. For a
pair of particles i and j initially with velocities vi(t) and v j(t), the criteria for assigning
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new velocities v?
i (t) and v

?
j (t) respectively is the following

v
?
i (t) =

(
vi(t) GDt < z1

vi +
⇣

µi j
mi

⌘
v
0 GDt � z1 ,

(3.18)

v
?
j (t) =

(
v j(t) GDt < z1

v j �
⇣

µi j
m j

⌘
v
0 GDt � z1 ,

(3.19)

where µi, j = mi m j/(mi+m j) is the reduced mass of the pair, v0
= (l �(vi�v j) · ŝi j) ŝi j

is the relative velocity added to the particle pair from the collision with the heat bath and
z1 is a number drawn from a Gaussian distribution of unit variance [51]. The relative
velocity is determined via a stochastic variable l = z2

p
(kBT/µi j), where z2 is also a

random number taken from the unit-variance Gaussian distribution, and the unit separa-
tion vector is �̂i j = (ri �r j)/|ri �r j| [51].

It is desirable to set a high collision rate G to keep the temperature of the system con-
stant and achieve a high rate of diffusion. A as a result the simulations become more effi-
cient, since the conformation space can be sampled rapidly [51]. This constraint comes at
a disadvantage, since the thermostat also disturbs the dynamics by applying a shier stress
sxy(t) to the system that contributes with artificial viscosity when compared to a system
without a thermostat. This artificial dynamic viscosity is given by the time integral of the
stress-stress correlation function

hT ⇠ lim
t!•

Z t

0
dt 0 hsxy(0)sxy(t 0)i ⇠

p r2 R5
T G

75m
, (3.20)

where m and r are the mass and density of the material the thermostat is being applied
to [51]. The presence of the viscosity was useful in the simulations I carried out, because
the TIP3P overestimates the diffusivity of water. In a liquid, momentum is transferred
rapidly by the inter-forces between neighboring molecules, whereas the mass transport
happens slowly [52]. This effect can be summarized by the Schmidt number Sc, which
is the ratio of the kinematic viscosity and diffusivity Sc = n/D. In liquids the Schmidt
number is in the order of ⇠ 103 and in gases in the order of ⇠ 1 [52]. By inducing an
artificial viscosity it is possible to adjust Sc such that the hydrodynamics in TIP3P are
closer to a liquid; more details are discussed in section 4.

One last aspect relevant to discuss is that additional constraints can be placed on atoms
to speed up or control aspects of the simulation environment. One standard practice is
to employ a combination of the SHAKE and RATTLE algorithms to reduce vibrational
degrees of freedom in the system. The advantage being that larger simulation time steps
can be used, since bond vibrations with high frequency that normally require a small time
step are suppressed [38]. Rigid bond constraints are commonly placed in water molecules
and bonds involving hydrogen atoms. The software I used to carry out MM simulations
employs a variant optimized algorithm specifically for water molecules called SETTLE.
This constraint was also employed in the parametrization of the CHARMM36 FF.

3.2 Density functional theory
In electronic structure calculations, the aim is to solve for the interactions of a many-
body system. In the formalism of density functional theory (DFT), this means solving the
single-particle Kohn-Sham (KS) equation

(T̂ +V̂ext +V̂H +V̂xc)Yk = ek Yk . (3.21)
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where ek and Yk are the KS eigenvalues and orbitals respectively. The Born-Oppenheimer
approximation is used to arrive at this equation, hence the interaction between atomic
cores and their kinetic energies can be ignored and the interaction between the electron-
cloud and nuclei is considered as an external potential Vext [53]. The operator T̂ represents
the kinetic energy of the non-interacting electrons

T̂ =�1
2 Â

i
—2

i (3.22)

and the Hartree potential VH

VH =
1
2

Z
d3r d3r0

n(r)n(r0)
|r�r0| (3.23)

represents the classic electron-electron interaction, where n(r) is the density of the elec-
tron gas [53]. The Hartree term yields a non-physical self interaction; additionally, since
the electrons are particles their motion will be correlated forming a charge density de-
pletion zone near each electron; finally, due to the exclusion principle there exists a type
of exchange contribution [53]. These quantum mechanical effects are casted into the
exchange-correlation term V̂xc, which cannot be exactly known and is instead approxi-
mated by a functional of the electronic density.

DFT builds on three key theoretical foundations presented by Hohenberg and Khon [54].
The first is uniqueness, which tells that a point in energy space can be uniquely de-
termined by a point in density space [53]. Further, the variational principle means
the ground state energy of the system is exactly determined by ground state electronic
density [53]. Finally, universality means the electronic kinetic energy and the electron-
electron interaction are system-independent [53]. The total energy can therefore be found
self-consistently for a system of N electrons by

E =

N

Â
k

ek �
1
2

Z
d3r d3r0

n(r)n(r0)
|r�r0| �

Z
d3rV̂ext[n]n(r)+Exc[n] , (3.24)

where the exchange-correlation energy functional is Vxc = dExc[n]/dn(r) [53, 55].

3.2.1 Pseudopotential
The idea of a pseudopotential begins by recognizing that there are two distinct regions
in the external potential of a single atom, as shown in figure 3.3. In the region close to
the core the external potential changes rapidly, while in the region outside the core the
potential changes slowly. The first region is composed of tightly bounded core electrons
that are mostly unaffected by the presence of other neighboring atoms [56, 57]. On the
contrary, the potential in the second region is composed of valence electrons that respond
to the presence of other atoms leading to the formation of bonds or rearrangement of the
electronic density [56, 57]. The reason for the distinct behavior in these two regions can
be explained by the fact that the energy levels for core electrons are deep and their wave-
functions are localized close to the atomic nucleus, compared to valence electrons [57].
This means core electrons are chemically innert and do not feel the electrons from other
atoms [56].

An additional factor must be considered. The wavefunctions describing the atomic or-
bitals must be orthogonal to each other, as shown for manganese in figure 3.4, where the 1s
orbital has no nodes, the 2s orbital has one node and the 3s orbital has two nodes [56]. To
represent all the wiggles in the 3s-wavefunction in real space would require a fine mesh.
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Figure 3.3. Atomic potential for silicon as a function of radial distance from the core. The external potential
can be divided into a core (shaded cyan) and valence (unshaded) region. Taken from [58].

Similarly, to represent the wavefunction in reciprocal space would require Fourier com-
ponents with high frequency and the rapid oscillations in the valence wavefunctions trans-
lates to higher kinetic energy [56]. As a consequence higher energy cutoff are needed and
the computational cost to handle heavier atoms or systems with many electrons quickly
increases.

Figure 3.4. Radial component for all the wavefunctions of manganese Mn showing these are orthogonal.
SIESTA defines wavefunctions where nodes occur close to the core and the function becomes smooth in
the valence region [36]. Higher orbitals have more nodes and therefore more wiggles. Taken from [56].

Pseudopotentials solve this problem by introducing a pseudo-wavefunctions that re-
places the original wavefunctions. The pseudowavefunction is defined to be smooth and
node-less inside some spherical region with a cutoff radius rc, where all the wiggles of the
all-electron wavefunction are found [56]. This pseudowavefunction modifies the original
Hamiltonian and the effective potential is replaced by a pseudopotential [56]. Under this
approximation, the core electrons become frozen and are assumed to remain unperturbed
when atoms in the system are brought together [56]. SIESTA uses a norm conserving
pseudopotential, where some additional conditions are imposed. The eigenvalues of the
modified Hamiltonian must match the eigenvalues of the all-electron calculation done for
a single atom [57]. The pseudowavefunction must also exactly match with the all-electron
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wavefunctions in the region outside the cutoff radius [36, 57]. Finally, the pseudowave-
function yl(r) must give a density inside the core region that matches the true electron
density, meaning that

Ql =

Z rc

0
dr r2|yl(r)|2 , (3.25)

where Ql is the charge of the all-electron wavefunction up to the cutoff radius [36].

3.2.2 SIESTA
The Kohn-Sham orbitals in equation (3.21) are split into two, a radial and angular function

Yk = ci(r)Yl m(q ,f) , (3.26)

where the angular part is represented in real space using Legendre polynomials

Yl m(q ,f) =Cl mPm
l (cosq) , (3.27)

Clm is a normalization factor and lm are the quantum numbers [36]. For the radial part,
SIESTA uses a linear combination of atomic orbitals

ci(r) = Â
µ

cµ ifµ(r) , (3.28)

therefore the charge density is given by

r(r) = Â
i

ni|ci(r)|2 , (3.29)

where ni is the occupation number that follows the Fermi-Dirac distribution [36]. At
zero temperature the function is a step function, but at finite temperature the function is
smeared around the Fermi level.

In SIESTA the pseudopotential contribution to the Hamiltonian is divided into two
parts, a local part that acts equally on all electrons independent of their angular momen-
tum and a non-local Kleinman-Bylander part that depends on the angular momentum [36]

V̂ PS
=V local

(r)+V̂ KB . (3.30)

Far away from the core region, the local part behaves as a Coulomb potential with an
attractive force (as seen by a valence electron) given by

V local
(r)!�Zval

r
, (3.31)

where the valence charge Zval is the net charge of the nucleus plus core electrons [36]. The
slow decay constitutes a problem, because calculation of the total energy at any particular
point would require to keep track of the contribution from all the core and valence elec-
trons in the system. SIESTA solves this by defining a neutral atom potential V NA for every
atom in the system, such that outside some atomic region the attractive long-range local
potential is screened by the repulsive potential coming from the Hartree term [36, 59]. I
briefly discuss the details of this method.

The electronic density of the system r(r) can be given by the sum of the charge density
of individual atoms ratom(r) plus some perturbation such that

r(r) = ratom(r)+dr(r) , (3.32)

where dr(r) is the change in the electron density due to the creation of bonds and rear-
rangement of the charge distribution when the individual atoms are brought together to
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form the system [59]. Following equation (3.32), the Hartree potential of the system can
also be split into contributions from the unperturbed density plus the difference

V̂H(r) = V̂ atom
H (r)+dV̂H(r) , (3.33)

where the unperturbed Hartree potential can be expressed as the sum of single-atom po-
tential V atom

I (r) [59]. SIESTA uses a finite basis set that is localized around the atomic
region and, due to this confinement, the single-atom potential are repulsive and decay as
Zval/r far away from the core [59]. The neutral atom potential for a single atom I can then
be defined as the sum of the local pseudopotential contribution added to the Coulomb
repulsion coming from the core and core electrons [36]

V̂ NA
I ⌘ V̂ local

I (r)+V̂ atom
I (r) . (3.34)

As seen in figure 3.5, inside the core the neutral atom potential has some smooth shape
that is determined by the two terms, but away from the core region the Hartree potential
will exactly cancel the local part of the pseudopotential. Using this arrangement, it is no
longer necessary to keep track of these two terms for every atom over all space to find the
total energy of the system.

Figure 3.5. Neutral atom potential VtextNA for silicon used by SIESTA to accelerate the self-consistent
calculations. The local part of pseudopotential that after some radius rc is screened by the electron charge
distribution [36]. Taken from [36].

Following the introduction of the neutral atom potential, the Hamiltonian is then re-
expressed in the form [36]

Ĥ = T̂ +Â
I

V̂ KB
+Â

I
V̂ NA

(r)+dV̂H(r)+V̂xc(r) . (3.35)

This modification also speeds up the calculation because the first two terms do not de-
pend on the electronic density and can be computed before the self-consistent loop, which
SIESTA does through a two point integral in reciprocal space [36, 59]. The perturbation to
the Hartree potential is determined by solving the Poisson equation in Fourier space [59].
To execute such method requires not only to know the density of electrons over all space,
but also to impose boundary conditions, which SIESTA fixes as periodic boundary con-
ditions. The rest of the terms in the Hamiltonian are evaluated numerically using a real-
space grid inside the self-consistent loop, but these real-space integrals become zero un-
less there is an overlap between orbitals[59]. As a consequence the computational effort
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does not scale with system size, but rather with the addition of more orbitals thus increas-
ing linearly with the number of particles O(N). As shown in figure 3.6, this means the
type of system that is studied influences the speed of the computation and it also means
vacuum in the system does not significantly increase the cost of the simulations.

Figure 3.6. Overlap between the extension of the orbitals centered at the core of each atom. Taken from [60].
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4. Molecular mechanics methods

In this section I discuss the methods I employed to prepare and carry out MM simulations
for a system consisting of silicon nitride nanopore and miniprotein. I built on the methods
presented in [61–64] and made use of a modified version of the MSXX FF to describe
the membrane and the CHARMM36 FF to model ions, water and proteins [43, 65]. In
the process I also optimized the response of the membrane to an external field, adjusted
the conductivity of ions to experimental values and modified the protonation states of the
miniproteins to match physiological pH conditions.

4.1 Silicon nitride membrane
I used a b -Si3N4 unit cell with lattice constants summarized in table 4.1, to build a hexag-
onal membrane with its surface normal to the z-axis. The shape was chosen to minimize
the volume of the membrane, but maximize the separation distance between mirrored
images of the system. As a next step I assigned covalent bonds to atoms < 2 Å apart,
using periodic boundary conditions along the x-y plane. After, I adjusted the position of
the membrane to align its geometric center to the origin of the simulation box and cut a
cylindrical pore of radius rpore along the z-axis using

p
x2 + y2 < rpore . (4.1)

Unlike the top and bottom faces of the membrane, removing atoms left a pore surface
irregular in shape and with nitrogen or silicon atoms exposed in different amounts. This
feature of the membrane was not possible to control exactly and created a disadvantage
in the model, since exposed atoms influence the interaction strengths between protein and
pore wall. I therefore minimized and equilibrated the membrane in vacuum applying a
harmonic restraint to all atoms except those close to the pore surface. The procedure
allowed surface atoms to find an equilibrium position that reduced the cavities between
neighboring atoms and improved the surface ratio of silicon and nitrogen atoms. More
details of this procedure can be found in appendix B. Removing atoms from the mem-
brane also modified the ratio of nitrogen and silicon ions and left an excess charge in
the membrane. This was corrected by slightly shifting the charge of nitrogen atoms by
approximately 0.07%, with the final result shown in figure 4.1.

Table 4.1. Lattice vectors for silicon nitride obtained using x-ray crystallography [61, 66].

Unit cell lattice vectors [Å]

a1 = 7.595⇥ [1,0,0]
a2 = 7.595⇥ [1/2,

p
3/2,0]

a3 = 2.902⇥ [0,0,1]

The MSXX FF parameters that model the membrane were adapted by Aksimentiev
et al. to the CHARMM FF format to be compatible with the program running the MM
simulations [61]. The bonded interactions between silicon and nitrogen, which in the
MSXX FF are described by the Morse bond stretch potential, were instead fitted around
its minimum to a harmonic potential following equation (3.10) using parameter values
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Figure 4.1. Van der Waals representation of Si3N4 nanopore in two different orientations. The hexagonal
membrane has side length of s = 37.98 Å , height of h = 37.73 Å and pore radius of rpore = 17.5 Å. Silicon
atoms rSi-VdW = 2.10 Å are shown in yellow and nitrogen atoms rN-VdW = 1.55 Å in blue.

Kb = 5.0 kcal/(mol Å2) and b0 = 1.777 Å [61, 62, 65]. The angular bonds between sets of
three atoms and non-bonded interactions, which include electrostatic and van der Waals
interactions, were taken directly from the MSXX FF [61]. Values for these non-bonded
parameters are shown in table 4.2.

Table 4.2. Summary of the MSXX FF parameters for non-bonded interactions, obtained from Hartree-
Fock calculations [65]. To describe interactions between silicon and nitrogen atoms, parameters were
determined by geometric and arithmetic mean following CHARMM convention.

Atom charge (q) [e] e [kcal/mol] Rmin [Å]

Si 0.767900 0.31 6.270
N �0.575925 0.19 3.995

Silicon nitride is a dielectric material that polarizes in the presence of an external field.
The amount of polarization can be denoted by its relative permittivity constant er, experi-
mentally measured to be 7.5 [67]. The default MSXX FF parameters used for the bonded
interactions have been optimized to give a dielectric constant equal to vacuum [63, 68].
For this reason, I defined an additional force to all atoms in the membrane by applying a
harmonic restraint that allowed me to control the relative permittivity and found a restraint
value of 7.0 kcal/(molÅ2) to be optimal. Details of the process for obtaining this result
are outlined in appendix B.

4.2 Selected miniproteins
The accuracy of molecular dynamics simulations depends largely on the accuracy of the
protein model itself. For this reason it is necessary to check the protein structure is com-
plete. In general this means checking that no atoms are missing, filling valence bands with
hydrogen and determining the protonation state of titratable amino acid groups based on
a specified pH value [69]. The molecular structures for both miniproteins were obtained
using NMR spectroscopy which, unlike X-ray spectroscopy, can detect the position of
hydrogen atoms. After checking the protein structure, for the other two remaining tasks
I employ the open source web server H++ [69–71]. H++ uses the protonated and de-
protonated partial charges of each titratable side chain to create titration curves using the
AMBER ff99SB FF for proteins [69]. The protonation state of each group is then deter-
mined based on the pH and the midpoint of the titration curve pK [69]. Titration curves
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represent the protonation state probabilities as a function of pH, therefore if pK < pH, the
site is deprotonated or protonated otherwise [69]. The output structure file from H++ is
follows the AMBER FF naming convention, which was translated to CHARMM36 nam-
ing convention using the MMTSB tool set [72]. Details on the titration results from H++
are summarized in appendix A.

The charge distribution of the two miniproteins after protonation from H++ are shown
in figures 4.3 and 4.2, respectively. These quantities were computed using the adaptive
Poisson-Boltzmann solver (APBS) to get an indication of how these molecules will be-
have under the influence of an external electric field [73].
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Figure 4.2. Surface render of the FBP11 WW domain miniprotein showing the charge distribution using a
dielectric constant of 10 for the protein and 80 for the solvent subject to a 1 M ion concentration.
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Figure 4.3. Surface render of the AGRP(87-120) miniprotein showing the charge distribution using a di-
electric constant of 10 for the protein and 80 for the solvent subject to a 1 M ion concentration.

In section 2.4 I mentioned these two miniproteins were chosen based on their likeness;
the volume, shape, sequence length and mass are very similar. Additional properties can
be used to further quantify the likeness of the two miniprotein, based on their amino acid
sequence. Identity is a property that measures the number of amino acids that match
exactly in both sequences (excluding gaps). In figure 4.4 I show the optimal alignment
of the two protein sequences and find an identity value of 14.3%. This low identity value
means the composition of the two proteins differs significantly, which might also indicate
their interaction strength with the nanopore wall (and by extension the dwell time) could
differ to a significant degree as well.

AGRP(87-120): -CVRLHESCLGQQVPCCDPAATCYCRFFNAFCYCR

FBP11 WW: GSWTEHKSPDG–––––––––RTYYY–––NTETKQSTWEKPDD

Figure 4.4. Amino acid sequence represented by single letter residue codes. I underline matching sequences
and represent gaps with a dash symbol.

4.3 Preparing and executing molecular mechanics
To prepare the system for molecular dynamics simulations, I used VMD’s plugin solvate
to fill a box with water molecules to a height of 80 Å and removed any excess as to follow
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the hexagonal shape of the membrane. A number of potassium K+ and chloride Cl� ions
were also added using VMD’s plugin autoionize, equating to a 1 M concentration1. In
cases where a protein is present, I included excess positive or negative charges to keep the
total charge of the system zero. According to H++ results, at physiological pH of 7.1 the
FBP11 miniprotein has a total charge of �2e, while AGRP(87-120) has a total charge of
+1e. Each protein was placed at the center of the pore in three different orientations. A
render of the system after adding water and ions is show in figure 4.5.

Figure 4.5. Side-view and top-view of the solvated hexagonal silicon nitride membrane with 1 M concen-
tration of potassium chloride ions (open pore system). Water molecules are represented as a transparent
surface, potassium ions as purple spheres and chloride ions as green spheres.

I chose MM software NAMD2 to perform simulations with periodic boundary condi-
tions using a time step of 1 femtosecond [35]. Full electrostatics were computed every
4 femtoseconds using particle mesh Ewald (PME) with a grid size of  1 Å. Local elec-
trostatics and van der Waals interactions were computed every 2 femtoseconds using a
switching function with a cutoff distance of 12 Å.

The temperature was fixed at 298 K using a Lowe-Andersen thermostat with a cutoff
radius of 3.0 Å and a collision rate of 50/picosecond. Water bonds were set to rigid us-
ing NAMD2’s optimized algorithm SETTLE [74]. In NPT simulations the Nose-Hoover
piston had a target pressure of 1.01325 bar, a Langevin piston period of 200 femtosec-
onds and a piston decay of 100 femtoseconds. The dimension of the simulation box were
allowed to vary in all directions, but I placed constant ratio constraint along the x-y direc-
tion.

Pre-production runs
In preparation for production runs the simulation systems were minimized for 0.1 pi-
cosecond and equilibrated for a further 1 nanosecond in NPT conditions. From these, an
average system box size was computed to be later used in production simulations. During
this time the miniprotein was allowed to freely move inside the pore.

Production runs - first set
Production simulations ran for 30 nanoseconds in NVT conditions under a 0.5 V and
a 1.0 V voltage bias. To keep the miniprotein inside the pore, atoms that make up the
backbone of the protein were harmonically restrained to their initial position. These initial
position were determined by the last simulation step from the pre-production equilibration
runs.
1Used molality to keep the concentration of ions independent of the volume of the simulation.
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Production runs - second set
I continued to simulate the system for a further 20 nanoseconds by running two simula-
tions 10 nanoseconds in length. This time the harmonic restraint on the protein’s back-
bone was removed, which allowed the protein to freely translocate out of the pore. If the
z-coordinate of the center of mass of the protein was found near the edges or outside the
pore after the first simulation, I executed the remaining 10 nanoseconds using the initial
conditions from the first set of production runs.

Free protein runs
Finally I ran 30 ns-long simulations where miniproteins were simulated far away from the
pore walls. For example, I imagined a system where the pore radius was much larger than
the radius of the miniprotein. In practice it was not realistic to scale up the silicon nitride
membrane to a large size. Instead I placed each miniprotein without the presence of the
membrane in a bulk solution with the same 1 M ion concentration. In these simulations the
bias voltage was scaled proportional to the system size as to mimic as much as possible the
environment the protein experiences while inside the pore. I only performed simulations
where the bias voltage was scaled from 0.5 V. These simulations were used, along with
the second set of production runs, to estimate the interaction strength between the protein
and pore wall.

4.4 Ionic current, potential energy and harmonic restraint
The ionic current is based on the trajectory files output from molecular dynamic simula-
tions and is computed by the collective movement of all ions in the system over time t
while inside a pore region of length lz such that

I(t) =
1

Dt lz

N

Â
i

qi(zi(t +Dt)� zi(t)) , (4.2)

where zi(t +Dt)� zi(t) is the displacement of a single ion i along the z-direction in an
interval of time Dt [61]. The sum runs over all ions that either at time t or t +Dt were
inside the pore. The transport properties of the system thus becomes relevant, but in MM
simulations modeling the movement of ions accurately comes as a challenge, since I have
chosen to work with TIP3P known to overestimate the diffusivity of water [75]. To com-
pensate for this effect, I used the artificial viscosity from the Lowe-Andersen thermostat
to influence the water diffusivity and obtain a KCl ion conductivity k , a measure of how
ions move in a medium, that is close to theoretically predicted values in bulk solution.
Details of this calibration can be found in appendix B.

I employed the VMD plugin NAMD-Energy to compute the bonded and non-bonded
interactions of the miniprotein alone, based on trajectory files from simulations. I defined
the same bonded and non-bonded configuration settings as those used in simulations,
along with the CHARMM36 and MSXX FF parameters.

The harmonic restraint applied to the backbone of the miniproteins based on the posi-
tion of these atoms z at a give simulation time and their initial atomic positions z0. The
harmonic biasing method followed the equation

V (z ) = 1
2

k
✓

z �z0

wk

◆
, (4.3)

where k = 1 kcal/mol Å2 is the force constant and wk = 1 can alter the physical force units
of the restraint [76].
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5. Quantum mechanics methods

In this section I discuss the methods I used to prepare and carry out electronic structure
calculations using the density functional theory package SIESTA-4.0 in order to quantify
the interaction strength between miniprotein and pore wall and by extension identify dif-
ferences in the dwell time [36]. For this I developed a method to determine the interaction
strengths from looking at the contribution of individual amino acids to the entire system
based on their accessibility.

5.1 Amino acids and silicon nitride slab
Due to the sheer quantity of atoms in the system (approx. 76500 atoms, 79% water, 19%
membrane, approx. 1% ions and < 1% biomolecule) and computational resources avail-
able, I chose to perform DFT calculations selecting a single amino acid at a time to study
the interaction strength between the pore wall and biomolecule. With this approach the
question of the interaction strength of the entire miniprotein still remains. To address this
I turned to the relative solvent accessibility (RSA), which is a measure of how buried
or exposed a residue in the biomolecule is. The RSA has been previously used to de-
scribe physical properties and as a predictive measure of evolution rates in proteins [77].
The RSA is a number that for a single amino acid quantifies the accessible surface area
(ASA) around its local environment [77]. In the application of this thesis, RSA values
identify those amino acids that are most likely to be in contact with the pore walls while
the miniprotein translocates. These values are then used to determine the total interaction
strength of the miniprotein. The are several ways to compute the maximum solvent ac-
cessibility of an amino acid X, which is used as a reference value for RSA. I employed the
software Swiss-PDB Viewer that uses the surface area of X when placed between glycine
to form a Gly-Gly-X-Gly-Gly pentapeptide in extended conformation as a normaliza-
tion factor [78]. Glycine in particular is the most simple of the 20 proteinogenic amino
acids, since the R-group is composed of a single hydrogen atom. The computed RSA
values for FBP11 WW domain and ARGRP(87-120) miniproteins are show in figures 5.1
and 5.2 respectively.

90o 90o
90o

70-60% 60-50% 50-40% 40-30% 30-20% 20-10% 10-5% 5-0%

Figure 5.1. FBP11 WW domain miniprotein with its amino acids color coded based on their RSA value. A
dark blue color is attributed to completely buried amino acids while red is given to those that have 70-60%
of the relative surface exposed.
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Figure 5.2. AGRP(87-120) miniprotein with its amino acids color coded based on their RSA value. Colors
follow the same logic as those presented in the previous figure.

To determine the interaction strength of individual amino acids, I prepared a system
with a small triclinic silicon nitride slab with a thickness of approx. 13 Å. The objective
is to model the interaction between amino acid inside the pore, I therefore rotated the
silicon nitride slab such that the contact surface was as similar to the pore wall as possible.
Much like I did in MM simulations I explored minimizing and equilibrating the membrane
surface, but observed no changes to the structure because the slab is small and in an
extended position. SIESTA simulations are performed in periodic boundary conditions;
mirror images of the slab therefore extend continuously along the x-y plane, but were
separated by a large distance along the z-direction. Based on the geometry of the slab,
mirror images of the protein were also distanced by approx. 14 Å along the x-direction
and approx. 15 Å along the y-direction. Depending on the size of the amino acid, mirror
images of the silicon nitride slab along the z-direction were at least 39, 46 or 52 Å apart.
I determined these distance values were sufficiently large such that periodic images did
not affect the total energy of the system, from convergence tests done as a function of
simulation box size. Details of these tests are found in appendix C.

The amino acid was initially placed close to the surface of the slab, with the R-group
facing the membrane. I took notice to add a hydrogen atom in the carboxyl group or
remove a hydrogen atom from the amino group for negatively or positively charged amino
acids such as histidine or aspartic acid. I generated snapshots moving the amino acid away
from the membrane initially in steps of 0.1 or 0.2 Å and once far away in steps of 1.0 Å.
For each of these snapshots I later performed electronic structure calculations to find the
ground-state energy of the system after convergence of the electronic density. I show a
few of these snapshots for asparagine in figure 5.3.

amino group

carboxyl group

R-group

x

z

y

Figure 5.3. Snapshots of asparagine (ASN) placed at different distances away from the triclinic silicon
nitride slab. The amino acid is oriented such that the R-group faces the surface of the membrane.
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5.2 Exchange-correlation functional
I employed the non-local van der Waals functional DRSLL to describe the exchange cor-
relation part of the Khon-Sham Hamiltonian. Local and semi-local functional approxi-
mations such as LDA and GGA are not well suited to describe long-range interactions
present in sparse systems such as biomolecules and soft matter [79, 80]. The VdW func-
tional is expected to yield a better description of the energy landscape when compared to
GGA [59]. LDA sometimes yields get correct VdW interactions, but for different reasons
that can lead to the wrong interpretation of the physics [59]. VdW binding is a correlation
effect between two electrons at locations r and r

0, which can be determined through the
general expression

Exc µ
Z

d3r d3r0 n(r)f(r,r0)n(r0) , (5.1)

where f(r,r0) is some function that depends on the electron positions [79]. The exchange
part of DRSLL is taken directly from the revPBE functional, a conscious choice by Dion
et al. that makes it possible to express van der Waals binding exclusively from the corre-
lation term [80]. The exchange choice was made by testing the predictive power of GGA
functionals, using the exchange contribution alone, to compute the binding energy of dif-
ferent dimers [80]. In the case of revPBE, the exchange lacks description of this binding
energy [79, 80].

5.3 Parameters for electronic structure calculations
For SIESTA calculations I employed a single k-point along the Brillouin zone, since the
system dimensions were large enough that its reciprocal space was very small. I used
a double-z polarized basis set and a Pulay mixing scheme with a mixing coefficient of
0.02 and a self-consistent cycle history of 5 to reach convergence. From trial and er-
ror, I found this small mixing value guaranteed convergence for all systems. I fixed a
mesh cutoff energy of 300 Ry according to convergence runs I performed in appendix C.
SIESTA employs pseudopotential to speed up simulations; I selected Abinit’s GGA-PB
non-relativistic pseudopotential for all elements in the system. The electronic temperature
was fixed at 300 K and the tolerance for convergence of the density matrix was kept at
1⇥10�4 eV.
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6. Results

I sectioned the results in two parts; in the first section I studied occupied pore currents iocc
from results obtain exclusively from MM simulations. In the second section I studied the
interaction between pore wall and miniprotein to estimate the dwell time, where results
were obtained from both MM and electronic structure calculations.

6.1 Occupied pore ionic current
I explored three different random orientations for each miniprotein and looked at the
occupied pore ionic current for the systems under a 0.5 and 1.0 V voltage drops. I arrived
at each of these orientations by rotating the protein a few degrees along the x-y-z axes,
such that their positioning differed significantly with respect to one another. To keep the
results concise, I mostly present results from simulations with a single bias voltage and
place remaining findings in appendix D.

Harmonically restrained protein simulations
In an ideal experiment the pore has been submerged in solution and the bias voltage has
been left on long enough such that when the protein reaches the access region, the system
is in a steady state. Conditions in the simulated environment were different, since the
electric field was turned on when the protein was already inside the pore. As a first step
I determined the simulation time when the system reached a state that closely resembled
experimental conditions, while the protein remained fixed. I conjectured that in a well-
equilibrated system, the ion count inside the pore stays roughly constant. I decided then
to monitor the number of ions inside the pore at any given time in the simulation, which
I achieved by saving the position of all atoms at equally spaced intervals. The results for
both miniproteins are shown in figures 6.1 and 6.2.
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Figure 6.1. Ion count as a function of simulation time for pore with protein FBP11 WW domain under a
0.5 V voltage drop. Ion count is shown for all three orientations. The system was minimized, equilibrated
and after 1 nanosecond the field was turned on and the protein was harmonically fixed. Ion positions were
stored every 1 picosecond. The dashed purple line marks when experimental conditions were reached.
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Figure 6.2. Ion count as a function of simulation time for pore with protein AGRP(87-120) under a 0.5 V
voltage drop. Ion count is shown for all three orientations. The system was minimized, equilibrated and
after 1 nanosecond the field was turned on and the protein was harmonically fixed. Ion positions were stored
every 1 picosecond. The dashed purple line marks when experimental conditions were reached.

Based on the results above, the number of ions inside the pore reached a steady state
after 16 nanoseconds for FBP11-WW and 11 nanoseconds for AGRP(87-120). From the
remaining 15 and 20 nanoseconds respectively, I computed the occupied pore current as
a function of time based on the trajectory of the ions and equation (4.2). Protein sensing
experiments using a silicon nitride nanopores such as those performed by Rosenstein et al.
utilize a patch-clamp amplifier that can capture ionic currents in the range of MHz [81,
82]. Typical ionic current measurements at this frequency have large noise from both
the system and instrumentation that attenuate the signal and make it difficult to retrieve
meaningful information [1, 12]. Noise in experiments can be removed using a low pass
filter (LPF), i.e. Bessel filter, with a pass-band in the order of 1kHz-100kHz [1, 12].
This range of frequencies cannot easily be accessed in simulations, since they translate
to timescales in the order of microseconds. Fortunately, instrumentation noise was not
present in simulations and I applied a Bessel LPF with a cutoff frequency of 5 GHz. For
illustration, I show the raw and filtered iocc for a single orientation of the FBP11 WW
domain in figure 6.3. The LPFd results for all the orientations and for each miniprotein,
are shown in figures 6.4 and 6.5.
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Figure 6.3. Raw and filtered occupied pore current computed for protein FBP11 WW domain as a function
of simulation time. The block average was taken using a window size of nanoseconds. The system was
subject to 0.5 V voltage drop along the z-direction. Ion positions were stored every 1 picosecond.
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Figure 6.4. LPFd occupied pore current computed for protein FBP11 WW domain as a function of sim-
ulation time for all three orientations subject to a 0.5 V bias voltage. The protein’s backbone remained
harmonically restrained during the simulation.
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Figure 6.5. LPFd occupied pore current computed for protein AGRP(87-120) as a function of simulation
time for all three orientations subject to a 0.5 V bias voltage. The protein’s backbone remained harmonically
restrained during the simulation.

From the LPFd results above it was possible to obtain a histogram, which I then used
to compare the occupied pore currents that could be expected to be captured in typical
translocation events of these two miniproteins. The histogram in figure 6.6 shows the
combined results for all orientations for the two proteins, when the system were subject
of a 0.5 V voltage bias. Similarly, I obtained a histogram of the recorded occupied pore
current signatures after applying a low pass filter and aggregating the results from the
three different orientations when the system was subject to a 1.0 V voltage bias. I show
these results in figure 6.7.
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Figure 6.6. Histogram of LPFd occupied pore currents for both miniproteins when the system was subject
to a 0.5 V bias voltage. I used a bin width of 0.2 nA and combined results from all orientations. The
protein’s backbone remained harmonically restrained during the simulation.
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Figure 6.7. Histogram of LPF occupied pore currents for both miniproteins when the system was subject
to a 1.0 V bias voltage difference. I used a bin width of 0.2 nA and combined results from all orientations.
The protein’s backbone remained harmonically restrained during the simulation.
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Unrestrained protein simulations
From the last phase state of the harmonic-restraint simulations I ran two 10 nanosecond-
long simulations for each protein orientation, where the restraint on the backbone of the
protein was removed. During these simulation, it was possible for the miniproteins to
leave the pore. If after the first unrestrained simulation the protein was on the edge or
outside the pore, I executed the remaining 10 nanoseconds restarting from the last phase
state of the harmonic-restraint simulation, otherwise I continued the unrestrained simula-
tions for an additional 10 nanoseconds. In figures 6.8 and 6.9 I show the resulting LPFd
occupied pore currents from these simulations when the system was subject to a 0.5 V
voltage bias. The LPF needs a short period of adjustment, I therefore omitted results for
the initial 0.5 nanoseconds.
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Figure 6.8. LPFd occupied pore current computed for protein FBP11 WW domain as a function of simula-
tion time for all three orientations subject to a 0.5 V voltage bias. No external restraints were applied to the
protein.
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Figure 6.9. LPFd occupied pore current computed for protein AGRP(87-120) as a function of simulation
time for all three orientations subject to a 0.5 V voltage bias. No external restraints were applied to the
protein.

Again, I compared these occupied pore ionic currents results using a histogram. Results
from a 0.5 V voltage bias are shown in figure 6.10 and form a 1.0 V voltage bias are shown
in figure 6.11.
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Figure 6.10. Histogram of LPFd occupied pore ionic currents for both miniproteins when the system was
subject to a 0.5 V voltage bias. No external restraints were applied to the protein. I used a bin width of
0.2 nA and combined results from all orientations.
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Figure 6.11. Histogram of LPFd occupied pore currents for both miniproteins when the system was subject
to a 1.0 V voltage bias. No external restraints were applied to the protein. I used a bin width of 0.2 nA and
combined results from all orientations.
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6.2 Estimate of the pore wall and amino acid interaction
I estimated dwell-time differences in the translocation of the two miniproteins, based on
MM simulations carried out using the CHARMM36 FF model. I computed the total po-
tential energy of each miniprotein when placed inside the nanopore and when placed far
away from it. We reasoned that changes to the internal energy of the miniproteins in
these two environments gave an indication on the interactions between the biomolecule
and the pore wall. Simulations when the protein was far away from the pore ran for
30 nanoseconds, but I used the last 20 nanoseconds for the energy analysis. Calculation
of the potential energy included all bonded and non-bonded interactions specified in equa-
tion (3.10). For illustration I first show in figure 6.12 the potential energies for the FBP11
WW domain in these two environments. Due to the large noise in the computed energies I
applied a Bessel LPF to the data with a 5 GHz cutoff frequency. Results when the protein
is near the pore wall are an average resulting from all three different orientations.
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Figure 6.12. Raw and filtered total potential energy for FBP11-WW domain as a function of simulated
time. The potential energy is computed from trajectory files every 1 picosecond and includes bonded and
non-bonded interaction. I ignored the first 0.5 nanoseconds to allow the LPF time to adjust.

I used these LPF energies in these two environments to compute potential energy differ-
ences for both miniproteins and show the results in figure 6.13. Additionally, I took these
energy differences and plotted them in a histogram where it could be easy to visualize
changes between the two proteins. I show the histogram results in figure 6.14.
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Figure 6.13. Potential energy difference when miniprotein is inside the pore and far away from the pore.
The differences were taken from LPF data of the bonded and non-bonded interactions.
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Figure 6.14. Histogram of the potential energy difference when the miniproteins were inside the pore and
far away from the pore.

46



6.3 Comparative dwell times
To compute the interaction energy between miniprotein and pore wall explicitly and with
increased accuracy, I carried out DFT simulations for each of the amino acids found in
the miniprotein’s sequence.

Total energy difference
The interaction strength was determined based on the difference in the total energy of
the membrane and amino acid at their equilibrium distance and at the asymptotic limit.
To achieve this I placed the amino acid close to the membrane surface and gradually
increased their separation distance. At each step I determined the total energy, once self-
consistency was reached. To get a good estimate of the asymptotic limit, the distance
between mirrored images of the simulated environment had to be large. I studied the
energy dependence on the simulation box size and show the results in appendix C. For a
few selected amino acids I show the total energy results in figure 6.15.
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Figure 6.15. Total energy as a function of separation distance for selected amino acids. The energy was
computed after the calculations reached self-consistency. The separation distance was defined between a
line at the surface of the membrane and the atom making up the amino acid with the lowest z-position. To
compare results between amino acids, I shifted the energies such that the total energy approached zero at
far away separation distances.

In the results above, it is possible to see a slight lowering of the energy at very large
distances. The energy difference was therefore taken at the minima of the potential well
and the maxima in the asymptotic limit. It was not possible to attain energies for every
separation space imaginable. To solve this I fitted a Morse potential function of the form

M(d) = A(e�2B(d�C)�2e�B(d�C)
)+D (6.1)

where A, B, C and D are parameters to be fitted, to the total energy profiles for each
amino acid to obtain a smoother energy description. To achieve the best possible fit, I
modeled individual Morse potentials to data points computed near the potential-well and
those found at the asymptotic limit. In figure 6.16 I demonstrate how the Morse function
describes the behavior of the energy. In table 6.1 I tabulate the computed changes in
energy with respect to the energy of the system when the molecule was far away from the
pore wall.
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Figure 6.16. Total energy of tryptophan (TRP) and pore wall as a function of reparation distance. Results
from DFT calculations are represented by blue triangles and are fitted to a Morse potential represented by a
blue dashed line. The Morse potential models the general trend of the energies as a function of distance, but
sometimes can do poorly fitting the potential well or asymptotic limit. I therefore fitted individual Morse
potentials for short (dashed orange line) and large (dashed red line) separation distances.

Table 6.1. Calculated energy differences found at the equilibrium point and at large separation distances
for each amino acid. The energies at these two regions are computed by separate Morse potential best-fits.
Amino acids are organized based on the charge of the side chain determined at physiological pH [83]. Un-
certainties are 1s deviation from the mean fit given by best-fits using all combinations of fitted parameters.

Side-chain Amino acid Energy min. [eV] Energy max. [eV] Energy diff. [eV]

positively HIS �59367.11±0.09 �59366.241±0.006 �0.9±0.1
charged ARG �59723.53±0.07 �59720.9559165 �2.57±0.07

LYS �59179.86±0.07 �59176.10±0.05 �2.9±0.1

negatively ASP �59354.01±0.08 �59351.170±0.005 �2.84±0.09
charged GLU �59540.80±0.05 �59538.042±0.006 �2.76±0.06

uncharged SER �58761.39±0.03 �58759.887±0.009 �1.50±0.04
THR �58949.98±0.03 �58948.990±0.008 �0.99±0.04
ASN �59205.56±0.04 �59204.303±0.007 �1.26±0.05
GLN �59393.88±0.08 �59392.913±0.008 �0.97±0.09

hydrophobic ALA �58324.64±0.02 �58323.651±0.005 �1.02±0.02
LEU �58891.89±0.04 �58890.767±0.009 �1.12±0.05
PHE �58667.731±0.009 �58666.844±0.005 �0.89±0.01
TRP �59923.61±0.05 �59922.575±0.010 �1.04±0.06
TYR �59760.93±0.03 �59759.682±0.010 �1.24±0.04
VAL �58702.39±0.03 �58701.467±0.005 �0.92±0.03

other CYS �58643.94±0.02 �58642.477±0.009 �1.47±0.03
GLY �58136.11±0.09 �58134.62±0.02 �1.5±0.1
PRO �58669.27±0.01 �58668.183±0.007 �1.09±0.02
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Dwell time estimate
From the relative surface accessibility and changes in energies of each amino acid, I
estimated a dwell-time t for the two miniproteins. We considered the dwell time to be
proportional to the transition between two states; when the protein was interacting with
the pore wall s1 and when it was far away from it s2. The transition between these two
states is determined by the ratio of their probabilities which is given by a Boltzmann
distribution function, such that

t µ ps1

ps2

=
e�b Einteracting

e�b Efar-away
= e�b DEprotein , (6.2)

where DEprotein = Einteracting � Efar-away is the total interaction energy difference of the
miniprotein and b represents a characteristic energy for the transitions. In equilibrium
conditions b is defined as a factor that depends on the Boltzmann constant and tempera-
ture, but in our case the leading contribution for the transitions came from the bias voltage
applied across the membrane. If we represent the miniprotein as an object of unit charge,
when subject to a 1.0 V bias voltage, the characteristic energy b can be estimated as 1 eV.
Equation (6.2) allowed us to directly compare transition states to dwell times using an
arbitrary value such that, if the interaction between pore wall and miniprotein was very
small or none existent, the measured dwell time approached t0. In other words,

if DEprotein ⇡ 0 , t = t0 e�b DEprotein ⇡ t0 .

In the case where interaction energy between these two was repulsive,

DEprotein > 0 , t = t0 e�b DEprotein ! small, t < t0

and the protein on average was expected to translocate in less time than the dwell time t0.
Finally if the interaction was attractive

DEprotein < 0 , t = t0 e�b DEprotein ! large, t > t0

and the protein’s translocation was expected to take longer.
To determine DEprotein, I conjectured that at any given time in a typical translocation

event at most N amino acids in the sequence found themselves at their equilibrium dis-
tance from the pore wall and only those had a leading contribution on DEprotein. It re-
mained to determine, which amino acids? And how many? To answer the first question,
I decided to select individual amino acids from a weighted random choice based on the
computed RSA values (see section 5.1 for more details). I argued that the probability
for any amino acid to be close to the pore wall depended on how solvent-accessible they
were. To determine the number of amino acids, we were motivated by experimental dwell
time measurements. Investigations by Lu et al. on tau peptides fragments using biolog-
ical nanopores and Larkin et al. on large proteins using solid-state nanopores, revealed
that dwell times for a single type of protein ranged between 2 or 3 orders of magni-
tudes [84, 85]. Based on these observations and the dwell times computed by considering
different number of amino acids, we estimated that 4 amino acids contributed to DEprotein.

From the method described above with amino acids selections repeated 100’000 times,
I determined the energy changes for each miniprotein to be

DEAGRP(87-120) =�5.39±1 eV and
DEFBP11-WW =�7.46±2 eV.

Based on these results, one can expect both translocations to be slower than t0, but their
dwell times on average to be one order of magnitude apart

tAGRP(87-120) = (219±41)t0 and
tFBP11-WW = (1737±470)t0.
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7. Discussion

Occupied pore ionic current
The MM simulations served mainly to model the ionic currents that might be detected
during typical translocation events for the two miniproteins in an experiment. Initially,
we explored the possibility of restraining the protein at its center of mass, which allowed
the protein the freedom to rotate around this point and also to reach different conforma-
tions. With this solution, we found that even at low voltages the protein denatured. One
potential cause could be attributed to the directed movement of ions and water in the pore
region, which forced the ends of the protein to slowly unfold. Another could be that since
the protein is polar, after alignment with the external field, the side chains with most net
charge slowly were forced into an unfolded configuration. We also explored the possibil-
ity of defining a protein-specific potential-well around the pore region with barriers large
enough that prevented the protein from leaving the pore. This solution experienced the
same drawbacks as the first solution. Restraining the backbone of the protein and later al-
lowing the molecule to be unrestrained, was a compromise between a model that is close
to experimental conditions but also unphysical due to the artificial forces that allowed the
protein to remain unfolded for long simulation times. I discuss the results obtained using
this latter method.

When the backbones were harmonically restrained, simulation showed noticeable dif-
ferences in the occupied ionic currents between the two miniproteins. Larger currents
were computed for FBP11-WW domain than for AGRP(87-120). When the system was
subject to 0.5 V voltage drop, the differences in ionic currents were in the order of approx.
1.5 nA and their distributions were roughly similar in shape. When the system was subject
to 1.0 V, the measured occupied currents for both proteins increased as expected. Their
distributions showed relative differences between them also increased to approx. 3.0 nA.
The shape of the distribution of FBP11-WW domain remained the same, but AGRP(87-
120) developed a tail towards larger ionic currents with similar magnitudes as those of
FBP11-WW.

More realistic experimental conditions were achieved by letting the protein be unre-
strained. Now it became possible for the protein to move entirely out of the pore, due to
a combination of Brownian motion and electrophoretic/electroosmotic forces. I therefore
decided to run shorter simulations in intervals of 10 nanoseconds. After the first set of
simulations, I continued to evolve the system for a further 10 nanoseconds if the protein
was still near the center of the pore. Otherwise if the protein was close to the edge of the
pore or left the pore, I restarted the simulations for 10 nanoseconds from the last step of
the harmonic-restraint. When the system was exposed to 0.5 V, both proteins remained
inside the pore for the total 20 nanoseconds. But AGRP(87-120) reached the edge of the
nanopore after 10 nanoseconds, when the system was exposed to 1.0 V. These observa-
tions suggested that differences could exist in the interaction strength between the two
miniproteins when in contact with the pore wall. It also suggested that for large voltages,
the translocation time for AGRP(87-120) could be too short-lived to be detected in real
experiments considering limitations created by the noise at these short time scales.

Unrestrained simulations showed no differences in the occupied ionic currents between
the miniproteins subject to either bias voltage. These results suggested that experiments
might not be able to differentiate between these two miniproteins based on the modulation
of the ionic current alone. Still it is unclear wether differences could exist in the occu-
pied pore currents when these proteins enter or leave the pore. The simulations I carried
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out (membrane has zero net change) show that sections of the proteins felt an attractive
force to the pore wall. A possibility also exists that if the silicon nitride surface charge
could be modified by changing the charge of the membrane, the interaction between pore
wall and miniprotein might change to different extends. This modification might show
as differences in blocked ionic currents as well. In the introduction I mentioned that a
number of sub-events can happen in typical translocations. It is also possible, due to the
geometry or interaction with the membrane, that bias exist in the sub-events for one of the
miniproteins that could further influence recorded current modulations.

MM simulations rely on the accuracy of the force field to be able to describe an environ-
ment that closely resembles reality. I went to length to model the transport properties of
ions using the TIP3P water model. By introducing an artificial viscosity via the thermostat
I was able to adjust the conductivity of KCl close to experimental conditions. Such mod-
ifications also have a disadvantage, since large viscosities could lead to undesired effects
in the simulation such as stiffening of the protein. Improvements could be made by intro-
ducing a different water model that has a water diffusivity closer to experimental values.
A systematic study needs to be made along with the CHARMM36 FF to check a different
water model ie. describe well conformation in the protein. I also made an effort to model
the response of the silicon nitride membrane to the external field as to obtain a field pro-
file inside the pore that resembles experiments. One improvement that can be made to
the simulated environment is to perform a wettability test on the silicon nitride membrane
to improve the description of transport properties. Finally, the CHARMM36 and MSXX
FF were fitted independently, so the interaction between the nanopore and miniprotein
largely depends on the non-bonded description between these two being good enough.

Dwell time - MM simulations
Aware of the shortcomings of the FF-based results, I explored changes in the potential en-
ergy of the miniproteins, when they were located close to the pore wall and far away from
it. This energy difference, when compared against the two miniproteins could be also re-
lated to dwell time differences in their typical translocations. The results summarized in a
histogram when the system is subject to 0.5 V, showed significant differences in the way
their potential energy changed. The results suggested that the time these miniproteins
spend inside the nanopore could be different, but it was not possible to relate these re-
sults to an absolute measure of the dwell time. Nevertheless the results were encouraging
enough to move forward with a more accurate simulation method.

Dwell time - DFT simulations
To improve the description of the interaction between pore wall and miniprotein, I per-
formed electronic structure calculations using DFT. For this I created a smaller system and
decided to investigate each amino acid in the sequence of these two miniproteins individ-
ually. The pore wall in the hexagonal membrane was replaced by a smaller silicon nitride
slab that was rotated such that the surface facing the protein resembled the pore surface as
much as possible. In this new system, the curvature of the pore wall was absent. To speed
up the calculations, water and ions were also ignored. This is a crude approximation that
could have a significant influence in the interaction results, as suggested by the investiga-
tion done by de Freitas et al. on the interaction of DNA nucleotides in graphene [86]. The
total energy difference for each miniprotein in these two environments depended on the
relative surface accessibility. RSA values were computed over a single snapshot of the
miniproteins. An improvement on the model would be to capture conformation snapshots
from MM simulations, while the protein remains inside the pore and compute RSA values
for each of these to obtain an average value.

Intuitively, the total energy of the system when the amino acid is far from the membrane
should match the total energy of the system computed from independent simulations of
the membrane and the amino acid alone. In reality, the energy of these two arrangements
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do not match exactly due to what is referred as the basis set superposition error. For a
finite set, the more basis functions are used the better the description of the energy. When
the protein and membrane are brought together in the same system some of these bases
overlap and the number of available states for those atoms increases. This consequently
improves the description of the energy when compared to those two systems simulated
individually, bringing about a numerical error in the solution. I therefore obtained energy
changes from simulations where the separation distance between amino acid and pore
wall were gradually increased.

Generally, amino acids sharing the same type of side chain have similar energy differ-
ences as shown in table 6.1 . One notable exception was histidine (HIS), which had a
much lower energy compared to arginine (ARG) and lysine (LYS). One possible expla-
nation is that histidine is a rather short amino acid compared to the other two negatively
charged side chain amino acids, therefore the amino and carboxyl group are closer to
the surface of the membrane and likely contribute in a significant way to the total en-
ergy. Additionally the R group of histidine, rather than being a linear carbon chain like
in most other amino acids, is a carbon (imidazole) ring. Proline (PRO), phenylalanine
(PHE), tryptophan (TRP) and tyrosine (TYR) also have a carbon rings of various types
and similar to histidine their energy difference hovered around 1 eV. Disparities between
computed energies for amino acids could also be attributed to the fact that it was not pos-
sible to control the exact position of the biomolecule with respect to distance of all silicon
nitride atoms along the x-y plane.

Larger changes in energies for charged amino acids compared to those computed for
uncharged ones made sense, since silicon nitride is polar. We expected positively charged
side group to interact strongly with nanopore surface atoms. One improvement that could
be made in this regard is to also take the polar influence of the applied bias voltage on the
silicon nitride membrane. I expect such change will reduce the polarization effect from
the amino acid on the nanopore wall.

We computed a larger energy difference for FBP11-WW domain, compared to the en-
ergy difference found for AGRP(87-120). These finding qualitatively agree also with
the previously computed energy differences derived from MM simulations. The results
suggest FBP11-WW interacts with the pore walls more strongly therefore its dwell-time,
when compared to the dwell-time of AGRP(87-120) is expected to be longer.

Answering the thesis
We considered that occupied pore currents distribution results from MM simulations yield
ionic current modulations recoded from typical translocation events. We also considered
that relative changes in the total energy of the protein-nanopore system when close to the
pore wall and far away from it are proportional to the dwell-time of a typical translocation
event. These two factors were used to assess if nanopores could be employed to sense and
identify differences between them. We found that while the occupied pore currents were
roughly equal for both molecules, their dwell times can be expected to be different. These
results thus show promise in the experimental detection of these miniproteins.

Dwell time in particular plays an important role in the potential detection of these
miniproteins. As stated by Di et al., recorded measurements due to noise are typically
filtered to frequencies of 1kH-100kHz, but Rosenstein et al. have also demonstrated high
signal to noise ratio at detection frequencies of 1MHz [1, 12, 82]. From this investigation
it is not possible to determine the exact dwell time, but observations in the movement of
the proteins inside the pore from MM simulations suggested that AGRP(87-120) might
experience translocation times in the order of tens to hundreds nanoseconds under a 1.0 V
bias voltage. Sub-microsecond dwell times means translocation events might be very dif-
ficult, if not impossible, to detect under these conditions for this miniprotein. The situation
could improve significantly if much lower voltages are used and the instrumentation noise
can be kept low without the need for filtering. Surface charge modification, salt concen-
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tration gradients could also slow down translocation times. Specially encouraging are ex-
perimental results from Di et al., Nir et al. and Huang et al. that successfully demonstrated
solid-state and biological nanopore sensing capabilities for kDa proteins [12, 87, 88]. We
were discouraged from employing low voltages typically used in experimental settings
(ie. 0.4-0.1 V) for MM simulation, because it meant lower statistics since the number of
ions passing through the pore is reduced. Limitation on the statistics can be mitigated
by accessing longer simulation times, which can be achieved in a number of ways. For
example, the time-step for recoding ionic positions can be made larger, since recording
atomic positions takes memory and computational time. In fact measured occupied ionic
currents from the MM simulations I carried out showed that ion positions did not need
to be recorded every 1 picosecond, but rather could be increased by one or two orders
of magnitude. This is evident by the large noise captured from the measured ionic cur-
rents. Another example is taking advantage of a simplified water model. I used a static
water model that opens the possibility to use larger time-step ie. 2 femtoseconds, that also
increases simulated times at reduced computational costs.
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8. Conclusion

Molecular mechanics and density functional theory results combined carried out in this
project indicate that silicon nitride nanopores show potential in the detection and iden-
tification of miniproteins. The two miniproteins I computationally studied showed sim-
ilar occupied pore currents, but their dwell-times were estimated to differ by one order
of magnitude. These results, although involving only two miniproteins very similar in
shape, demonstrate miniproteins have the potential to exhibit distinct-enough changes in
their structure, shape or composition such that their detection might be possible in an ex-
periment of similar characteristics. To make more concrete statements about the detection
of miniproteins in experiments, the work I have presented in this thesis can be expanded
in several ways.

One possibility is to examine a larger number of different miniproteins. An obvi-
ous choice is to continue with miniproteins that involved in cellular processes ie. P53
tetramerization domain, fragment(1-31) of human parathyroid hormone and the third ex-
tracellular loop of cholecystokinin-A receptor. Larger polymers or even full proteins are
also relevant, but the advantage of using domains is that they can potentially make the
study of very larger proteins systematic.

MM and DFT simulations can be further developed, such that both results are much
more interconnected with each other. For example, I could use snapshots obtained directly
from MM simulations that include water molecules and ions to carry out DFT calculations
of individual amino acids. The inclusion of water and ions changes the interaction ener-
gies between biomolecule and pore wall; computing and averaging the interaction energy
over several conformations can yield more accurate results. The positioning of each indi-
vidual amino acid with respect to the structure of the miniprotein can also be considered
relevant. I take cysteine as a concrete example, which in AGRP(87-120) makes cysteine-
knots at various places in the miniprotein. DFT simulations in this work place the sulfur
atom facing towards the surface of the pore wall, but in reality the R-group combines to
form disulfide bond that face the structure. One last consideration can be made to the
influence of the electric field on the pore wall and amino acid. Amino acids are polar and
silicon nitride is a dielectric material. In the calculations I carried out, the amino acid po-
larizes the silicon nitride which influences their interaction strength. In reality the silicon
nitride is polarized mainly by the external bias voltage applied across the system. Such
external influence should also be taken into consideration in DFT calculations.

The connection between MM and DFT simulations can also be strengthened in the
opposite direction, by utilizing DFT calculations to obtain a better description between the
pore wall and amino acid for MD simulations. At the moment I utilized the CHARMM36
non-bonded parameters to describe the interaction between individual atoms found in the
pore wall and miniprotein. Carrying out DFT for small sections of the miniprotein and
silicon nitride slab, I could develop a custom force field that could act independently of the
CHARMM36 and MSXX FF to get a better description of these two objects interacting
together.

The current method for estimating relative dwell-time differences between miniproteins
could also be improved if RSA values are computed over difference conformations of
the protein. We determined the number of ions that have a leading contribution on the
interaction strength of the biomolecules, based on the range of experimentally observed
dwell times for a single type of protein. A study on its own could be to use a more
sophisticated method to model the number of amino acids with leading contribution. It is
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possible to even expand the model to consider secondary and tertiary contributions, based
on the fact that at large distances we expect the total energy to fall approximately as 1/r6.

A different approach all together can also be taken to investigate miniprotein sens-
ing using nanopores. Originally we had explored the possibility of using a quantum-
mechanics/molecular-mechanics (QM/MM) method to model the membrane-protein in-
teractions. This method splits the entire system into two regions; the QM and MM re-
gions. The QM is a small region of interest where the protein and pore wall are most
proximate to each other. The MM region is then everything else not encompassed in the
QM region. DFT simulations are carried out in the QM region considering the electro-
static influence of the MM region as an external potential in the Hamiltonian. Dividing the
system this way means that covalent bonds in the membrane and the miniprotein must be
broken. One method to deal with broken bonds is the link-atom approach, where dangling
bonds in the QM region are saturated with hydrogens.
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Appendix A.
Details on proteins and titration

I show the amino sequence (reads from top to bottom from left to right) for FBP11 WW
domain. Titrable amino acid residues are marked by a star along with their pK value
determined by H++.

GLY: 1 0
SER: 1 1
RRP: 1 2
THR: 1 3
GLU:14⇤ 4 . 0
HSE:15⇤ 6 . 6
LYS:16⇤ 1 0 . 3
SER: 1 7

PRO: 1 8
ASP:19⇤ 3 . 7
GLY: 2 0
ARG:21⇤ > 1 2 . 0
THR: 2 2
TYR: 2 3 1 0 . 7
TYR:24⇤ > 1 2 . 0
TYR:25⇤ 1 0 . 4

ASN: 2 6
THR: 2 7
GLU:28⇤ 4 . 0
THR: 2 9
LYS:30⇤ 1 1 . 9
GLN: 3 1
SER: 3 2
THR: 3 3

TRP: 3 4
GLU:35⇤ 4 . 9
LYS:36⇤ 1 1 . 0
PRO: 3 7
ASP:38⇤ 3 . 8
ASP:39⇤ 1 . 8

I also show the amino sequence for AGRP(87-120).

CYS: 8 7
VAL: 8 8
ARG:89⇤ >12.0
LEU: 9 0
HIS :91⇤ 6 . 6
GLU:92⇤ 3 . 9
SER: 9 3
CYS: 9 4
LEU: 9 5

GLY: 9 6
GLN: 9 7
GLN: 9 8
VAL: 9 9
PRO:100
CYS:101
CYS:102
ASP:103⇤ 3 . 0
PRO:104

ALA: 105
ALA: 106
TYR: 107
CYS:108
TYR:109⇤ 1 0 . 5
CYS:110
ARG:111⇤ 1 1 . 6
PHE:11 2
PHE:11 3

ASN: 11 4
ALA: 115
PHE:11 6
CYS:11 7
TYR:118⇤ 1 0 . 3
CYS:11 9
ARG:120⇤ >12.0

Titration curves for some selected sites are shown in figures 9.1 and 9.2 for each minipro-
tein. The parameters used in H++ are summarized in table 9.1.

Table 9.1. Summary of H++ parameters used for both proteins. The protonation state of side chains de-
pends on their electrostatic interaction with the environment [69]. Different results are resolved depending
on the dielectric constants assumed for solvent and protein. Since I am most interested in surface inter-
actions, I use a high value for the protein’s dielectric constant. I also use a pH value within the range of
intracellular pH.

Parameter value

solvent dielectric 80
protein dielectric 10
ionic concentration 1 M
target pH 7.1
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Figure 9.1. Titration probability as a function of pH for selected titrable amino acids in FBP11 WW domain
miniprotein. The pK value is determined by the pH when the titration probability is half.
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Figure 9.2. Same information as in figure 9.1 but for AGRP(87-120) miniprotein.
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Appendix B.
Details on molecular dynamic simulations

In this section I show the procedures I used to improve the description of surface atoms in
the silicon membrane pore, correctly model the movement of ions in a TIP3P environment
using a momentum conserving thermostat and study the response of the membrane to an
external field. In the last two procedures I was guided by experimental results and found
parameters for MM configuration files, referenced in section 4, that best described the
system.

Silicon nitride relative permittivity
The motion of ions and protein also depends on the response of the membrane to an
applied potential difference such that the electric field distribution near and inside the
pore region resembles experimental conditions. One approach is to apply an additional
constraint on the membrane atoms to modify the relative permittivity of the material.
A silicon nitride membrane is made of charged particles that induce an internal dipole
moment D that can be computed using the multi-pole expansion

D =

N

Â
i
(qi �q0)ri , (9.1)

where N is the number of particles in the membrane with charge qi at position ri [68].
The term q0 is the monopole term of the expansion given by

q0 =
N

Â
i

qi , (9.2)

which accounts for the fact that dipole moment should be independent of the measurement
coordinates [68]. When an external electric field is applied, the dipole moment tends to
line up in the direction of the field and the material becomes polarized with its polarization
P described as the dipole moment per unit volume [68]. In the case of MM simulations,
the polarization is instead determined by a time average

P =
hDDit

V
, (9.3)

where DD is the dipole moment change induced by applying an external field to the ma-
terial and V the volume [91]. If I now consider a silicon nitride sphere that is uniform,
the volume charge density of the membrane rb can be neglected and the electric field
inside the sphere depends only on its surface charge density sb [68]. It follows from this
approximation that the electric field inside the sphere can be expressed as

E =� 1
3e0

P , (9.4)

where e0 is the permittivity of free space [68]. If I apply an uniform external field Eext to
the dielectric material, I find the field inside the sphere can also be determined by

E =
3

er +2
Eext , (9.5)
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where er is the relative permittivity of silicon nitride [68]. I can rearrange equation (9.5)
to compute er based on a time average of the changes to the dipole moment inside the
sphere when an external field is present and absent in the system. A diagram of these two
scenarios is shown in figure 9.3.

Eo

Eext

E

Figure 9.3. Diagram showing electric field lines for a homogenous linear dielectric sphere (left) in vacuum
and (right) subject to an uniform external electric field Eext. Adapted from [68].

The polarization of the sphere in MM simulations can controlled by applying a har-
monic restraint to all membrane atoms, which acts as a fictional force that restricts the
alignment of individual dipole moments in response to the external field. Changes to
the magnitude of the harmonic restraint therefore translate to adjustments in the relative
permittivity, which can be used to match the experimental value for silicon nitride of 7.5.

To accomplish this, I ran two sets simulations systematically adjusting the harmonic re-
straints to explore the space. The first set of simulations ran for 1 nanosecond and the sec-
ond set, which spanned over a smaller region of harmonic restraints, ran for 1.6 nanosec-
onds. The membrane was placed in a vacuum cube 18 nanometers in length and the
temperature was kept constant at 298 K using a Lowe-Andersen thermostat with the op-
timized RT value determined in the previous section. Before production simulations, the
system was minimized and further equilibrated for 1.0 picoseconds. In the cases when the
sphere was subject to an external field, I applied a 1 V voltage drop along the z-direction.
The results from these simulations are show in figure 9.4.

The behavior of the relative permittivity in figure 9.4 agrees with my understanding
of the FF parameters used, since the er approach a value of 1 as the magnitude of the
harmonic restraint was lowered. I fitted a logarithmic function to these results and de-
termined a restraint of 7.0 kcal/(molÅ2) gave reasonable agreements with experiments.
The computed er values proved to be very sensitive to the volume of the membrane, for
example a small change in the van der Waals radius of the surface atoms, which caused
a 2 Å increase in the sphere radius, caused a shift in permittivity values of ⇠ 1.5. The
uncertainty in the figure is derived from fluctuations in the electric field inside the mem-
brane, which was determined by computing the time average of the dipole moment change
following equation (9.3).

The dipole moment and volume of the sphere was calculated based on the trajectory
files from the simulation, which were stored every 0.1 picoseconds. An sample of these
two values as a function of time is shown in figure 9.5. The volume of the sphere in
particular was determined by distance between the geometric centre of the sphere and the
atomic centre of all surface atoms plus the average van der Waals radius of the surface
atoms.

It is also relevant to look at the dependence of the relative permittivity as a function of
the applied external field. For this I ran 1 nanosecond long simulations under the influence
of electric fields produced by voltages differences of 0.75, 1.0, 1.5, 2.0 and 5.0 V. The
uncertainty grows large for lower voltages, I therefore ran additional 2 nanosecond long
simulations at applied external voltages differences of 0.5, 0.4, and 0.3 V. A summary of
the results is show in figure 9.6. These suggested that either there is no dependence be-
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tween the external field and er in the simulated environment or that the dependence is too
small to be captured from the simulation results. For both cases the relative permittivity
stays within uncertainty near the experimental value. Due to the large uncertainty, the
results also show that it not advisable to execute simulation with lower than 0.3 V voltage
difference unless even longer calibration simulations are executed.
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Figure 9.6. Sphere relative permittivity as a function of external voltage drop. Blue triangles show results
from 1 nanosecond long simulations and green circles from the 2 nanosecond long simulation. Errors in the
permittivity values are derived from fluctuations in the computed polarization.

Figure 9.7 shows a render of the sphere used to carry out the MM simulations. The
sphere was formed from a rectangular block of repeating b �Si3N4 unit cells. To make
the sphere of a volume that matched the one of the hexagonal membrane that is later used
in nanopore simulations, I removed atoms outside a radius of r = 36.5 Å. The resulting
structure had an irregular surface that exposed regions with excess positive or negative
charges and did not preserve the 3:4 ratio of silicon to nitrogen atoms. The system charge
was brought back to zero by slightly shifting the charges of all atoms to obtain a neutral
sphere.

Figure 9.7. Van der Waals render of silicon nitride sphere of approximate radius of 36.5 Å. Silicon atoms
are depicted in yellow and nitrogen atom in blue.

Derivation of the electric field inside the sphere considers the silicon nitride sphere to
be a uniform dielectric material. This approximation can be brought to question, since the
sphere is made of discrete charged particles and the surface has regions with excess silicon
or nitrogen atoms. To know more about the charge distribution of the sphere, I evaluated
the electrostatic potential using VMD’s PMEpot plugin. The plugin approximates each
charged particle as a spherical Gaussian with a width determined by a parameter called
the Ewald factor [64]. A single slice of the electrostatic potential when no external field
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is applied is show in figure 9.8. Electrostatics were evaluated from trajectory file every
10 picoseconds from a 1 nanosecond long simulation.
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Figure 9.8. Single x-z electrostatic potential slice at y = 90 Å for silicon nitride sphere. Values were
computed using 1 Å resolution with an Ewald factor of 0.25, every 10 picoseconds and averaged over the
entire 1 nanosecond simulation time. The separation between each contour line corresponds to a 1.0 V
difference. The dashed line represents the boundaries of the sphere determined by the centre of surface
atoms.

Silicon nitride pore surface
Pore surface atoms are the closest membrane atoms that interact with water, protein and
ions and thus play a role in the duration and magnitude of ionic current signatures obtained
in MM simulations. Because the membrane was formed by repeating triclinic unit cells
and the pore was carved-out by removing a cylindrical-shaped group of atoms with cutoff
radius rc, the pore surface was left with unequal amounts of nitrogen and silicon exposed.
The ratio of surface silicon and nitrogen atoms fluctuates entirely based on the value of
rc, which was undesirable since a slightly larger or smaller radius could give different
results and became a motivation to perturb their crystalline arrangement to obtain a more
uniform surface.

For this task, I minimized the nanopore in vacuum for 0.01 nanoseconds, equilibrated
for 0.15 nanoseconds and further minimized the system for 0.01 nanoseconds. The equi-
libration ran in NVT conditions at a temperature of 298 K using a Lowe-Andersen ther-
mostat. In all simulations the membrane atoms were harmonically restrained except for
those near the surface that were enclosed within a radius of 25 Å from the centre. In fig-
ure 9.11 I show the atoms that were selected to be restrained. I used the modified MMSX
FF described in section 4 to define bonded and non-bonded interaction in the membrane.

From the simulation trajectories, recorded every 0.1 picoseconds, I monitored the ratio
of silicon to nitrogen atoms at the pore surface. The results shown in figure 9.9 and also
in figure 9.11 brought silicon atoms closer to regions with excess nitrogen and vice versa,
thus reducing the effects of choosing a particular pore radius. The number of surface
atoms as a function of the simulation time is also considered in figure 9.10, which suggest
that the pore slightly increased in diameter. I additionally explored annealing the surface
by slowly increasing the temperature of the membrane near or above melting temperature
and rapidly cooling the membrane. The annealing procedure did not make a difference
in the disorder of surface atoms, when compared to the procedure discussed above. For
large temperature to make a difference, a FF that allows for the formation and breaking
of bonds is needed.

67



0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Su
rf

ac
e

at
om

ra
tio

(S
i/N

)

Simulation time [ns]

Figure 9.9.
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Figure 9.11. Renders of silicon nitride membrane pore surface. (left) Selection of silicon nitride atoms to
apply a harmonic restraint, with blue atoms being selected and red atoms left unrestrained. (middle) Pore
surface after removing atoms to create the pore. (right) Pore surface after minimization, equilibration at
298 K for 0.15 nanoseconds and minimized again.
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Ion conductivity
To validate the open and occupied pore ionic current results obtained from MM simu-
lations, it is necessary to accurately model the motion of potassium and chloride ions
in solution. One technique is to study the ion conductivity, which is a measure of the
solution’s ability to conduct electricity when subject to an external field. If a potential
difference is applied across an electrolyte solution by means of two electrodes, a current
I is generated by the movement of ions with a magnitude described by Ohm’s law

V = I R . (9.6)

The resistance R is determined by a number of factors such surface characteristics of
the electrodes, transport properties of the solvent, the types of ions and their concentra-
tion [92]. Its reciprocal, conductance S, can be decoupled into two contributions

S = k f , (9.7)

where the ion conductivity k holds intrinsic property of the ions and the cell constant
f , defined as the ratio between the surface area of the electrodes and their separation
distance, holds system-specific information. The conductivity still depends on the ion
concentration C, but can be written in a more abstract way by introducing the molar
conductivity L

k =CL . (9.8)
The molar conductivity of a single electrolyte solution can be computed by

L = n+l++n�l� , (9.9)

where n± represent stoichiometric coefficients and l± are ionic molar conductivities [92].
The molar conductivity L and by extension the ion conductivity k are proportional to

the mobility of the ion which in turn is inversely proportional to the viscosity of the solu-
tion. As a consequence, limitations in the water model will impact the mobility of ions.
In fact it is well known that water diffusivity in the TIP3P model is significantly larger
compared to experimental measurements and therefore not surprisingly ion conductivity
is overestimated in MM simulations when no additional constraints are applied [75, 92].
Other water models i.e. TIP4P, SPC and SWM4 have been shown to yield better diffu-
sivity values among other properties, nevertheless the CHARMM36 FF was parametrized
with TIP3P and the use of a different model can lead to undesired effects or bias in the
dynamics of the proteins under investigation [41].

To improve the description of k using the TIP3P model, I made use of the artificial vis-
cosity introduced by the Lowe-Andersen thermostat hT . A similar approach has already
been introduced by Aksimentiev et. al. using a different thermostat [64]. Two parameters
in equation (3.20) can be controlled to modify the solution viscosity; the rate of particle
collision with the heat bath G and the interaction radius of the thermostat RT [51]. It is
most desirable if the rate of particle collisions is maximized to ensure the target tempera-
ture stays constant, thus leaving RT to be freely adjusted [51].

I determined the theoretical conductivity of k = 14.985 S/m for a 1 M KCl electrolyte
solution from literature values summarized in table 9.2. To explore the space, I ran sim-
ulations for a solvated cube box 4 nanometers in length and 1 M KCl concentration for a
range of different Lowe-Andersen radii values. After minimization and a 0.05 nanosec-
ond equilibration period, each simulation with unique RT was exposed to voltage drop
ranges of 0.1-5.0 V applied along the z-direction for 1 nanosecond. In all cases, the water
box had periodic boundary conditions and the target temperature was set to 298 K. The
equilibration simulations were carried out in NPT conditions at 1 atm where the volume
was allowed to fluctuate along the z-direction. Production simulations were done in NVT
conditions where the system volume was determined by the average volume from the
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Table 9.2. Literature ion molar conductivity values for potassium and chloride ions at 25o C. [92].

Ion l [S m2/mol]

K+ 7.350⇥105

C� 7.635⇥105

last 0.04 nanoseconds of the equilibration. Ionic currents were calculated according to
equation (4.2) over the length of the simulation box using unwrapped trajectories.

Conductivity results from simulations where the LA radius remained constant, but the
system was subject to different voltage drop magnitudes is shown in figure 9.12. The
ionic conductivity k was computed from the slope of the weighted best fit.
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Figure 9.12. Ion conductivity as a function of applied voltage for a 1 nanosecond simulation with a 1 M ion
concentration and LA radius RT = 3.0 Å. The uncertainty was determined from fluctuations in the current
the over time. The best fit is shown by a solid red line.

The process, repeated for different LA radius values, yielded the results shown in fig-
ure 9.13. As expected the ion conductivity decreased with increasing RT , since the vis-
cosity of the solvent was systematically increased by the thermostat. I fitted the trend to a
power function, which showed the target ion conductivity was reached by defining a LA
radius of RT ⇠ 3.0 Å. Finally I plot the ionic current ratio in figure 9.14 and compare it
with the ration obtained using literature ionic molar conductivities for low ion concentra-
tions. The results showed good agreement between simulation and experimental values.

In all simulations I employed a static TIP3P water model using NAMD’s SETTLE algo-
rithm, in accordance with the parametrization of the CHARMM36 FF. If water molecules
were allowed to vibrate, elastic collision between water and ions would further hinder
the mobility of ions lowering their conductivity. Such configuration would add a level of
accuracy to the simulations, but at the cost of increased computational power. Ultimately
the choice of restricting the water vibrations and use of the LA thermostat instead of other
common thermostats (i.e. Langevin thermostat) were justified by the ability of the system
to conserve momentum and yield reasonable ion conductivity values without a very large
increase in RT values. Any residual systematic bias in the conductivity with respect to
experimental values were later removed from calculations, since I was interested in the
ratio between open and occupied pore currents. It is worth noting that the viscosity of the
water to an extend also influences the dynamics of the protein.
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Figure 9.13. Ion conductivities as a function of the Lowe-Andersen radius. Conductivity values are obtained
from a weighted best fit of the ionic current as a function of applied voltage from 1 nanosecond simulations.
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Figure 9.14. Cl� and K+ current ratio from a 1 nanosecond simulations using RT = 3.0 Å. Errors come
from fluctuations in the ionic current over time and the dashed red line shows the ratio of literature values
of L.
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Appendix C.
Details on electronic structure calculations

Ground state energy converge
I am interested in the simulation cell dimensions, energy mesh cutoff and k-points that
yield a well-converged ground-state energy for the silicon nitride slab, the amino acid
and both objects combined. In all simulations I employed a double-z polarized basis set
with the van der Waals functional DRSLL. Convergence was achieved with the Pulay
convergence accelerator with a 0.02 mixing factor (0.1 for simulations of the amino acid
alone) and a history of 5 self-consistent cycles.

For the silicon nitride slab, made of 280 atoms, I fist ran simulations varying the sep-
aration distance along the z-direction between periodic images. The results are show in
figure 9.15. Later I systematically increase the energy cutoff to reduced contributions
from the egg-box effect on the final energy. Results are show in figure 9.16. I did not
study the ground-state energy of the system with increasing k-points, because the simula-
tion box size is large enough such that in reciprocal space is very small and computations
can be done along a single k-point (usually the g-point). Based on the results, I find pa-
rameter values for separation distance of ⇠ 13.0 Å and energy mesh cutoff of 300 Ry are
best suited.
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Figure 9.15. Ground state energy of the silicon nitride slab as a function of z-direction separation between
layers on silicon nitride slabs that are periodic along the x-y direction.
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Figure 9.16. Ground state energy of the silicon nitride slab as a function of energy cutoff.

In a similar manner as above, I studied the ground state energy converge for a single
amino acid glutamine made of 20 atoms as a function of the simulation box length and
cutoff energy. The results are shown in figures 9.17 and 9.18 respectively. In this case,
the simulation box might be small enough such that the number of k-points could have an
influence in the total energy of the system. Results of the k-point convergence are shown
in figure 9.19. Based on the results and taking into consideration the simulation wall time,
I find parameter values for separation distance of ⇠ 16 Å, energy mesh cutoff of 300 Ry
and k-points of 1 are best suited.
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Figure 9.17. Ground state energy of amino acid glutamine as a function of simulation box length.
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Figure 9.18. Ground state energy of amino acid glutamine as a function of energy cutoff.
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Figure 9.19. Ground state energy of amino acid glutamine as a function of k-points.
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Finally, I studied the ground state converge of the silicon nitride slab and amino acid
glutamine combined into a single system (300 atoms in total). Energy results for increas-
ing z-direction separation distance between periodic images of the membrane and mesh
cutoff energy are shown in figures 9.20 and 9.21 respectively. Based on the results and
taking into consideration the simulation wall time, I find parameter values for separation
distance of ⇠ 26 Å and energy mesh cutoff of 300 Ry are best suited.
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Figure 9.20. Ground state energy of silicon nitride slab with amino acid glutamine as a function of simula-
tion box length.
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Figure 9.21. Ground state energy of silicon nitride slab with amino acid glutamine as a function of energy
cutoff.
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Appendix D.
Additional results

Occupied pore ionic currents
Ion counts for occupied pore simulations subject to a 1.0 V voltage bias are shown in
figures 9.22 and 9.23. Based on these results, the number of ions inside the pore reached
a steady state after 8 nanoseconds for both proteins.
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Figure 9.22. Ion count as a function of simulation time for pore with protein FBP11-WW under a 1.0 V
voltage bias. Ion count is shown for all three orientations of the protein. The system is first minimized,
equilibrated and after 1 nanosecond the field is turned on and the protein is harmonically fixed. Ion positions
were stored every 1 picosecond. The dashed purple line marks when experimental conditions were reached.
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Figure 9.23. Ion count as a function of simulation time for pore with protein AGRP(87-120) under a 1.0 V
voltage bias. Ion count is shown for all three orientations of the protein. The system is first minimized,
equilibrated and after 1 nanosecond the field is turned on and the protein is harmonically fixed. Ion positions
were stored every 1 picosecond. The dashed purple line marks when experimental conditions were reached.
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I used the remaining 13 nanoseconds of the simulation to compute the ion current as
a function of time based on the trajectory of the ions and I applied a Bessel LPF with a
cutoff frequency of 5 GHz. The results are show in figures 9.24 and 9.25.
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Figure 9.24. LPFd occupied pore current computed for protein FBP11 WW domain as a function of sim-
ulation time for all three orientations, while the system is subject to a 1.0 V voltage bias. The protein is
harmonically restrained.
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Figure 9.25. LPFd occupied pore ionic current computed for protein AGRP(87-120) domain as a function
of simulation time for all three orientations, while the system is subject to a 1.0 V voltage bias. The protein
is harmonically restrained.

I followed the same treatment for occupied pore currents results from simulations
where the harmonic restrain on protein’s backbone is removed. The LPFd occupied pore
current results when the system is subject to a 1.0 V voltage bias are shown in figure 9.26
and 9.27.
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Figure 9.26. LPFd occupied pore current computed for protein FBP11 WW domain as a function of simu-
lation time for all three orientations, while the system is subject to a 1.0 V voltage bias.
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Figure 9.27. LPFd occupied pore ionic current computed for protein AGRP(87-120) domain as a function
of simulation time for all three orientations, while the system is subject to a 1.0 V voltage bias.
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