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Abstract
Mast cells are now recognized as key players in diverse pa-
thologies, but the mechanisms by which they contribute in 
such settings are only partially understood. Mast cells are 
packed with secretory granules, and when they undergo de-
granulation in response to activation the contents of the 
granules are expelled to the extracellular milieu. Chymases, 
neutral serine proteases, are the major constituents of the 
mast cell granules and are hence released in large amounts 
upon mast cell activation. Following their release, chymases 
can cleave one or several of a myriad of potential substrates, 
and the cleavage of many of these could potentially have a 
profound impact on the respective pathology. Indeed, chy-
mases have recently been implicated in several pathological 
contexts, in particular through studies using chymase inhib-
itors and by the use of chymase-deficient animals. In many 
cases, chymase has been shown to account for mast cell-de-
pendent detrimental effects in the respective conditions and 
is therefore emerging as a promising drug target. On the 

other hand, chymase has been shown to have protective 
roles in other pathological settings. More unexpectedly, chy-
mase has also been shown to control certain homeostatic 
processes. Here, these findings are reviewed.

© 2020 The Author(s)
Published by S. Karger AG, Basel

Introduction

Mast cells are currently emerging as key actors in many 
types of immune responses, having either beneficial or 
detrimental activities depending on the particular setting. 
Undoubtedly, mast cells are mostly well known for their 
harmful effects in allergic reactions, but detrimental ac-
tivities of mast cells have also been reported in other set-
tings, including arthritis, dermatitis, obesity, atheroscle-
rosis, abdominal aortic aneurysms and cancer [reviewed 
in 1–4]. However, mast cells are also well recognized for 
their protective functions in the immunity towards a va-
riety of pathogens, including bacteria, viruses and para-
sites [5–7].

Based on this development, it is important to investi-
gate the mechanisms behind the contribution of mast 
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cells to these diverse pathological settings, and, indeed, 
this is a major current focus for many laboratories world-
wide. When mast cells are activated, which can be accom-
plished by IgE-mediated and a range of other mecha-
nisms [4], they may respond by degranulation. This 
causes a massive release of the preformed mediators that 
are stored within the mast cell secretory granules [8]. 
Clearly, one mode by which mast cells could influence a 
given inflammatory condition is by effects attributed to 
these released compounds, a notion that is gaining sup-
port from recent research [8].

The preformed mast cell mediators include biogenic 
amines (histamine, serotonin), serglycin proteoglycan, 
certain preformed cytokines (e.g., tumor necrosis factor, 
TNF) and a number of mast cell-specific proteases, the 
latter encompassing chymases, tryptases and carboxy-
peptidase A3 [8–10]. However, activation of mast cells 
does not necessarily lead to degranulation, as evidenced 
by the ability of mast cells to release numerous inflamma-
tory mediators under circumstances where degranulation 
is not evident [4]. It should also be emphasized that sev-
eral of the compounds released by activated mast cells are 
synthesized de novo, rather than being released from pre-
formed pools [4].

Chymases belong to the large family of serine prote-
ases, and their expression is essentially unique to mast 
cells [11–13]. Mast cells can express high levels of chy-
mase-encoding mRNA, previous findings having re-

vealed that up to 2.5% of the total mRNA pool in mast 
cells can code for chymases [13, 14]. Notably, chymase 
expression in mast cells is constitutive and in most cases 
not affected to any major extent by mast cell activation 
[10]. The high expression of chymase mRNA is also re-
flected at the protein level, where it has been calculated 
that chymases can account for up to 25% of the total cel-
lular protein of mast cells [15, 16]. 

For many years, the knowledge of the in vivo func-
tion of chymase was quite rudimentary, mainly based 
on data from in vitro experiments. However, the gen-
eration of chymase-deficient animals and the develop-
ment of selective chymase inhibitors have opened up 
possibilities for investigations of the in vivo function of 
mast cell chymase. By using these tools, important in-
sight into the biological function of chymase has been 
obtained and has revealed an important role for chy-
mase in modulating a diverse array of pathological but 
also homeostatic conditions. Here, these findings are 
reviewed.

Chymases and Chymase Knockout Strains

In humans, only one mast cell chymase gene is ex-
pressed (CMA1; classified as an α-chymase), located on 
chromosome 14 (Table 1). In contrast, the correspond-
ing chymase locus on chromosome 14 in mice has un-

Table 1. Mast cell chymases in humans and mice

Chymase Chymase 
family

Enzymatic activity MC subclass Interaction  
with serglycin 

Knockout Chromosomal 
location

Human
CMA1 α chymotrypsin-like MCTC + –a 14q12

Mouse
Mcpt1 (mMCP1) β chymotrypsin-like MMC – Wastling et al. [21] 14 C3; 14 28.19 

cM
Mcpt2 (mMCP2) β non-active MMC (+) not available 14 C3; 14 28.19 

cM
Mcpt4 (mMCP4) β chymotrypsin-like CTMC + Tchougounova et al. [23] 14 C3; 14 28.19 

cM
Mcpt5 (mMCP5) α elastase-like CTMC + Abonia et al. [22] 14 C3; 14 28.19 

cM
Mcpt9 (mMCP9) β chymotrypsin-like uterine-specific 

(CTMC)
+ (predicted) not available 14 C3; 14 28.19 

cM

MC, mast cell; CMA1, MCTC, subtype also expressing tryptase and carboxypeptidase A3; MMC, mucosal mast cell; CTMC, con
nective tissue mast cell. a Humans with altered chymase expression have not been identified.
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dergone extensive expansion, and encompasses 5 chy-
mase genes: Mcpt1 (previously denoted mMCP1; clas-
sified as a β-chymase), Mcpt2 (mMCP2; β-chymase), 
Mcpt4 (mMCP4; β-chymase), Mcpt5/Cma1 (mMCP5; 
α-chymase) and Mcpt9 (mMCP9; β-chymase) [10]. 
The chymase expression profile differs among mast cell 
subtypes. In humans, chymase is expressed by the 
MCTC subtype (also expressing tryptase and carboxy-
peptidase A3), which are predominant in skin but also 
found in many other locations. In the mouse, mast cells 
are generally divided into connective tissue- (CTMC) 
and mucosal (MMC)-type mast cells, of which CTMCs 
are found in skin and various other locations such  
as intestinal submucosa, tongue and trachea, where- 
as MMCs are predominant in the intestinal mucosa. 
CTMCs and MMCs differ with regard to chymase ex-
pression, with CTMCs expressing Mcpt4 and Mcpt5, 
whereas MMCs express Mcpt1 and Mcpt2. However, 
mixed phenotypes have been identified, e.g. in the lung, 
in which mast cells can express both CTMC and MMC 
chymases [17].

Mcpt4 and Mcpt5 are both strongly dependent on 
electrostatic interactions with sulfated (thereby negative-
ly charged) serglycin proteoglycans for storage in mast 
cell granules, as shown by a major reduction in the respec-
tive proteins (but not mRNA) in serglycin–/– mast cells 
[18]. Also, the lack of NDST2, an enzyme that is essential 
for the sulfation of serglycin proteoglycans, causes a 
strong reduction in the storage of Mcpt4 and Mcpt5 [19]. 
In contrast, Mcpt1 storage is independent of serglycin, 
whereas Mcpt2 storage is partly serglycin-dependent 
[20]. 

Based on amino acid sequence similarities, Mcpt5 may 
be regarded as the homologue to human chymase (both 
are classified as α-chymases). However, Mcpt5 and hu-
man chymase have fundamentally divergent substrate 
cleavage profiles (see “Enzymatic properties of chymas-
es”). For this reason, Mcpt5 is most likely not the func-
tional counterpart to human chymase. Of the remaining 
murine chymases, Mcpt4 has a similar substrate cleavage 
profile to human chymase (see “Enzymatic properties of 
chymases”), has a similar tissue distribution and also has 
similar proteoglycan-binding properties to human chy-
mase. In contrast, Mcpt1, Mcpt2 and Mcpt9 all have dif-
ferent expression patterns as compared with human chy-
mase. Hence, out of the murine chymases, Mcpt4 may be 
regarded as a close functional homologue to human chy-
mase, and studies on Mcpt4-deficient animals may thus 
provide particularly important clues to the function of 
human chymase.

The first reported chymase knockout came from Mil
ler’s group, who reported the targeted deletion of Mcpt1 
[21]. Also Mcpt5 [22] and Mcpt4 [23] knockouts have 
been generated but, to date, knockouts for Mcpt2 and 
Mcpt9 have not been reported. 

Enzymatic Properties of Chymases

Chymases are monomeric serine proteases, i.e., their 
active sites contain a Ser-His-Asp catalytic triad, of which 
the serine has a direct role in cleaving the target peptide 
bond by forming a covalent intermediate. Chymases are 
endopeptidases, i.e. have the ability to cleave proteins/
peptides within the interior of the peptide chains. In 
terms of cleavage specificity, chymases are chymotrypsin-
like and thereby show strong preference for peptide bonds 
with an aromatic amino acid residue (Phe, Tyr, Trp) on 
the N-terminal side of the scissile bond (the P1 position) 
[24]. With regard to the extended substrate cleavage spec-
ificities, different chymases have variable preferences. 
Human chymase (CMA1) has a strong preference for 
peptide bonds where an acidic residue (Asp, Glu) is lo-
cated two amino acids C-terminal of the cleavage bond 
(P2’ position) and has also preference for aliphatic amino 
acid residues at positions P2–P4 [25]. These preferences 
are largely shared by Mcpt4 [26], supporting the notion 
that Mcpt4 represents the functional homologue to hu-
man chymase. Mcpt1, in contrast, lacks the preference for 
an acidic P2’ residue, prefers Phe at the P1 position, shows 
preference for Ser at P1’, prefers large hydrophobic resi-
dues at P2 and aliphatic residues at P3–P4 [27]. Mcpt2 is 
considered to be enzymatically inactive [28, 29]. Mcpt5, 
although being structurally more similar to CMA1 than 
Mcpt4 in terms of amino acid sequence homology, has 
evolved elastase-like (prefers aliphatic amino acid resi-
dues at the P1 position) rather than chymotrypsin-like 
specificity [30]. 

With regard to macromolecular substrates, chymase 
has been shown to cleave large numbers of proteins/pep-
tides, including fibronectin [23, 31, 32], procollagenase 
[33], pro-MMP9 [34–36], pro-MMP2 [35, 37], IL-6 [38, 
39], IL-13 [38], IL-15 [39], IL-33 [39, 40], pro-IL1β [41], 
pro-IL-18 [39, 42], TNF [43], CCL6/9/15/23 [44], angio-
tensin I [45], thrombin [23, 46, 47], latent transforming 
growth factor β (TGF-β) [48–50], vasoactive intestinal 
peptide [51], substance P [51], HMGB1 [52], tight junc-
tion proteins [37, 53], big-endothelin-1 [54], chemerin 
[55] and CTAP-III [56] (Fig. 1; see also [57]). However, 
many of these substrates have been identified through ex-
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periments in purified systems, and it is not certain wheth-
er all of them represent physiological targets for chymase 
in vivo. 

Chymase Inhibitors

Several synthetic, selective chymase inhibitors have 
been developed over the last few decades (Table 2). These 
have been assessed for effects in various disease models 
(see below), and, in many cases, promising beneficial ef-
fects of such inhibitors have been seen, hence supporting 
a role for chymase in the respective condition. However, 
it is important to note that chymase is highly similar to 
neutrophil cathepsin G in terms of cleavage specificity, 
and many of the developed chymase inhibitors also target 
cathepsin G, at least to some extent (Table 2). For several 
of the used chymase inhibitors, their selectivity over ca-
thepsin G has not been reported (Table 2). Hence, it is not 
clear under all circumstances whether effects of chymase 
inhibitors are indeed due to inhibition of chymase, as op-

posed to off-target inhibition of cathepsin G. Moreover, 
chymase inhibitors are usually developed to target human 
chymase rather than the corresponding endogenous chy-
mase type expressed by the respective experimental ani-
mals. Hence, it is in many cases not clear whether the in-
tended target chymase is in fact efficiently inhibited by 
the applied inhibitor. These considerations should be tak-
en into account, and some caution should accordingly be 
taken when interpreting data derived from usage of chy-
mase inhibitors in animal models for disease. 

Biological Functions of Chymases: General 
Considerations

As discussed below, based on studies of chymase knock-
out animals and on pharmacological chymase inhibition, a 
role for chymase in a multitude of pathological (and non-
pathological) contexts has been identified (Table 3; Fig. 1). 
At first sight, the range of proposed functions for chymase 
may seem bewildering. Moreover, it may seem contradic-
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Fig. 1. Examples of mast cell chymase function. MMP, matrix metalloproteinase; TGF-β, transforming growth factor β.
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tory that chymase, in some contexts, can in fact have an op-
posing impact depending on the exact setting and on the 
specific tools used. However, it is important to note that chy-
mase-expressing mast cells are widely distributed in the 
body and thereby are present, either as resident or recruited 
cells, in the context of multiple pathologies. Moreover, it is 
known that mast cells can undergo degranulation (and 
thereby release chymase) in response to a wide panel of stim-
ulants [4], and it is also important to emphasize that chy-
mase is a major component of mast cell granules. Conse-
quently, large amounts of released chymase will be present 
in a very wide panel of pathologies. It is also important to 
note that chymase can cleave a large range of substrates (see 
“Enzymatic properties of chymases”), and the cleavage of 
the respective substrates can have highly variable conse-
quences, ranging from protective functions by degrading 
harmful/proinflammatory substances to a detrimental im-
pact by activating molecules that contribute to the pathology 

(Fig. 1). The exact impact of chymase will thus be dependent 
on the availability of potential chymase substrates under the 
respective condition. Clearly, the levels and repertoire of 
chymase substrates may vary extensively between different 
pathological settings, and also under different phases of the 
respective condition. The wide array of functions for chy-
mase may thus be a reflection of its presence under the re-
spective settings, and the variable impact of chymase may 
reflect the variable repertoire of available chymase substrates 
in different conditions and in different phases of these. 

Chymase in Host Defense

Mast cells show a preferential localization to sites in close 
contact with the external environment, such as skin and 
mucosal surfaces of the gut and lung. Based on this and on 
that mast cells express numerous pattern recognition recep-

Table 2. Chymase inhibitors

Compound IC50/Ki
(human chymase)

Selectivity over human 
cathepsin G, n-fold

Effect on nonhuman 
chymases 

Reference

TY-51469 IC50 = 7.0 nM n.r. IC50 = 0.4 nM (simian) 98
TY-51184 IC50 = 37 nM >2,700 IC50 = 11 μM (dog) 99
TY-51076 IC50 = 56 nM >10,000 n.r. 152
NK3201	 IC50 = 2.5 nM n.r. IC50 = 1.2 nM (dog); IC50 = 

28 nM (hamster)
153

SUN-C8257 IC50 = 130 nM 18 IC50 = 890 nM (Mcpt4); IC50 = 
1,200 nM (Mcpt1)

129, 154

SUN-C8077 IC50 = 360 nM 0.4 IC50 = 180 nM (Mcpt4) 154, 155
SUN13834 Ki = 160 nM n.r. Ki = 63 nM (Mcpt4) 133
JNJ-10311795 (RWJ-355871) Ki = 2.3 nM 16.5 n.r. 72
BCEAB IC50 = 5.4 nM n.r. n.r. 156
SPF-32629 A IC50 = 0.25 µg/mL 20 n.r. 157
TEI-E548 Ki = 6.2 nM n.r. n.r. 102
TEI-F00806 Ki = 6.2 nM n.r. Ki = 30.6 nM (hamster) 102
TEI-E00548 n.r. n.r. n.r. 94
Y-40613 Ki = 22.6 nM 32 Ki = 3.68 nM (dog); Ki = 103 nM 

(rat), Ki = 40.4 nM (mouse)
158

ASB17061 IC50 = 20 nM 1,605 IC50 = 30 nM (Mcpt4) 112
BAY 1142524 (fulacimstat) IC50 = 4 nM n.r. IC50 = 3 nM (hamster) 159
TPC-806 n.r. n.r. n.r. 83
RO5066852 IC50 = 11 nM 27 IC50 = 3 nM (hamster) 110

Peptide based
Z-Ile-Glu-Pro-Phe-COOMe Ki = 1 nM n.r. n.r. 160
Diphenyl Nα-benzocarbonyl-L-

Arg-Glu-Thr-PheP-phosphonate
IC50 = 3.8 nM 2,700 n.r. 161

Suc-Val-Pro-PheP(OPh)2 n.r. 0.42 kobsd/[I] (M–1 s–1) = 15,000 
(rat chymase)

162

n.r., not reported in the scientific literature; kobsd, pseudo-first order rate constant.
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Table 3. Detrimental and protective functions of chymase

Condition Role of chymase Supported  
by studies in 
knockout mice

Supported  
by chymase 
inhibition

Proposed impact of chymase Reference

Abdominal aortic 
aneurysms

detrimental yes yes MMP9 generation; monocyte 
recruitment; regulation of 
cysteine cathepsins; elastin 
degradation; angiogenesis; 
vascular cell apoptosis

111, 112

Adhesions detrimental no yes TGF-β generation 145–149

Arthritis detrimental yes no proinflammatory; promotion 
anti-collagen-IgG generation

78, 79

Asthma protective yes no degradation of IL-33, IL-13 40, 69, 70, 71
detrimental no yes proinflammatory 

Atherosclerosis detrimental yes yes promotion of necrosis; adverse 
effect on plaque stability

109, 110

Atopic dermatitis detrimental no yes itch induction; proinflammatory 129, 133, 144

Bleomycin-induced lung 
inflammation/fibrosis 

detrimental yes yes profibrotic; proinflammatory 74, 75

Bullous pemphigoid detrimental yes no MMP9 generation; 
hemidesmosome degradation

36

Burn injury detrimental yes no degradation of tight junctions 53

Cardiac dysfunction detrimental yes yes cardiomyocyte apoptosis; adverse 
cardiac remodeling; MMP9 
formation, TGF-β activation; 
cytokine/chemokine induction; 
macrophage recruitment; 
contribution to fibrosis; 
fibronectin loss; vascular 
proliferation

81, 89–92, 
94, 95,  
97–105, 153

Diabetes detrimental no yes albuminuria; pancreatic island 
damage; oxidative stress; Ang II 
generation

121–123

Experimental autoimmune 
encephalomyelitis

detrimental yes no proinflammatory 80

Graft rejection detrimental yes no neutrophil recruitment 163

Inflammatory bowel 
disease

detrimental no yes proinflammatory; negative impact 
on Treg populations

135

Ischemic kidney injury protective yes no limiting neutrophil recruitment; 
modification of integrin/selectin 
expression

126

Lung inflammation 
(LPS, silicosis)

detrimental no yes neutrophil influx; cytokine 
induction

72, 73

Nephritis (partial 
ureteral obstruction)

detrimental yes no fibrosis; CCL2 production; 
α-smooth muscle actin expression

125

Nephritis (unilateral 
ureteral obstruction)

protective yes no suppression of fibrosis/α-smooth 
muscle actin/collagen deposition/
CCL2/TGF-β

32
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tors capable of sensing a plethora of pathogen-expressed 
factors [5], it is generally thought that mast cells are impor-
tant sentinel cells acting in the early phases of innate im-
mune responses against pathogens [5–7]. Regarding the 
mechanism(s) by which mast cells confer protection against 
infectious agents, there is evidence that chymase can con-
tribute to such protective functions. In an early study, 
Knight et al. [58] showed that mice lacking Mcpt1 display a 
delayed expulsion of the nematode Trichinella spiralis and 
increased deposition of larvae in tissues. In contrast, the ex-
pulsion of Nippostrongylus brasiliensis was not affected by 
the absence of Mcpt1, indicating that mast cell chymases 
preferentially act against selected parasite worms [58]. Chy-
mase has also been shown to have a role in protection 
against various types of bacterial insults. In a model where 
sepsis is induced by cecal ligation and puncture, it was dem-
onstrated that the absence of Mcpt4 resulted in markedly 
more severe pathology than that seen in wild-type mice 
[43], and data were presented to suggest that the protective 

effect of Mcpt4 was due to its ability to suppress the levels 
of TNF [43]. In subsequent studies it was shown that Mcpt4 
can additionally reduce the severity of group B streptococ-
cus infections by degrading fibronectin in the extracellular 
matrix of the host, thereby reducing bacterial adherence 
[59]. On a different angle, it has been demonstrated that 
Mcpt2 can have a protective role in the cecal ligation and 
puncture model, and that IL-15 can constrain antibacterial 
defense capabilities of mast cells by downregulating Mcpt2 
expression [60]. However, since Mcpt2 appears to lack en-
zymatic activity [28, 29], its antibacterial effect is probably 
due to nonenzymatic mechanisms. Mast cells have also 
been implicated in the host defense against various toxins 
produced by venomous animals [61], and there is evidence 
that chymase (Mcpt4) can account for some of these effects 
[62]. To date, the potential role of chymase in viral infec-
tions has not been evaluated. Further, the possible effects of 
pharmacological chymase inhibition on host defense mech-
anisms remain to be explored. 

Condition Role of chymase Supported  
by studies in 
knockout mice

Supported  
by chymase 
inhibition

Proposed impact of chymase Reference

Nephritis (immune-
complex mediated)

detrimental yes no formation of Ang II, collagen 1, 
TNF, MCP-1/CCL2

119

Posttraumatic brain 
inflammation

protective yes yes regulation of astrogliosis and 
T-cell infiltration/microglia 
infiltration

141

Posttraumatic spinal cord 
damage

protective yes no degradation of proinflammatory 
cytokines/chemokines; limiting of 
scar formation: modulation of 
scar protein expression

139, 140

Protection against toxins protective yes no degradation of toxic peptides 62

Scleroderma detrimental no yes generation of profibrotic TGF-β 143

Sepsis protective yes no degradation of TNF 43, 60

Steatohepatitis detrimental no yes contribution to fibrosis; collagen 
induction; Ang II generation; 
α-smooth muscle actin induction; 
MMP9 generation

114–118

Thrombin-induced skin 
inflammation

protective degradation of thrombin 47

Trichinella spiralis 
infection

protective yes no promotes parasite expulsion; 
inhibits muscle larva deposition

58

MMP, matrix metalloproteinase; TGF-β, transforming growth factor β; Ang, angiotensin; Treg, regulatory T cells; LPS, lipopolysac-
charide; CCL2, CC chemokine ligand 2; TNF, tumor necrosis factor; MCP-1, monocyte chemotactic protein 1.

Table 3 (continued)
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Chymase in Pulmonary Inflammation

There is currently a wealth of evidence supporting a 
detrimental role for mast cells in asthma, both from clin-
ical studies and animal experimentation approaches [re-
viewed in 63–66]. Hence, it would be reasonable to as-
sume that chymase could account, at least to some extent, 
for such effects. However, somewhat unexpectedly, evi-
dence has accumulated to suggest that chymase in fact has 
a protective role in asthma. This is supported by evidence 
from clinical studies where chymase positivity has been 
correlated with preserved lung function [67, 68]. In addi-
tion, when evaluating Mcpt4–/– mice in two models for 
asthma, it was revealed that the absence of Mcpt4 resulted 
in elevated airway reactivity and increased eosinophil in-
filtration [40, 69]. Mechanistically, it has been suggested 
that Mcpt4 alleviates airway inflammation by degrading 
IL-33 [40] or IL-13 [70]. Based on these findings it would 
be expected that pharmacological chymase inhibition 
would result in worsened outcome in asthma models. 
However, it was demonstrated that chymase inhibition in 
fact had a dampening effect on airway responses in rat 
and sheep models for allergic airway inflammation [71]. 
Although these findings are in seeming discrepancy, it 
should be noted that the chymase inhibitor used (RWJ-
355871) has dual specificity for chymase and cathepsin G 
(Table 2). Hence, it cannot be excluded that the beneficial 
effect of this chymase inhibitor is due to its effects on ca-
thepsin G rather than on chymase. To firmly establish this 
issue, it would be warranted to perform studies where 
more selective chymase inhibitors are assessed in animal 
models of asthma. Chymase inhibition has also been 
shown to dampen airway inflammation induced by bac-
terial lipopolysaccharide [72] and in a silicosis model 
[73]. In the latter study, chymase inhibition also reduced 
the lung fibrosis. In line with these findings, the absence 
of chymase was associated with less inflammatory re-
sponses in a bleomycin-induced lung fibrosis model [74], 
and the latter condition was also improved by pharmaco-
logical chymase inhibition [75].

Chymase in Autoimmune Settings

There is both clinical and experimental evidence from 
mast cell-deficient mice indicating an aggravating impact 
of mast cells in arthritis [76]. Intriguingly, whereas mast 
cells were redundant in passively induced experimental 
arthritis, they were shown to contribute profoundly in 
antigen-induced disease [77]. Mechanistically, there is 

some evidence to suggest that mast cell chymases can 
contribute to the pathology in such settings. Magnusson 
et al. [78] showed that animals lacking Mcpt4 exhibited a 
milder course of disease in collagen-induced arthritis 
than did the corresponding wild-type counterparts. 
Moreover, it was shown more recently that also Mcpt5 
can contribute to experimental arthritis, as shown in 
models where arthritis was induced either by transfer of 
K/BxN serum or by meBSA/IL-1β [79]. However, it 
should be kept in mind that Mcpt5 has no known func-
tional homologue in humans (see “Chymases and chy-
mase knockouts”), and the bearing of this finding on hu-
man arthritis is thus not clear. Chymase has also been 
reported to contribute to the pathology of experimental 
autoimmune encephalomyelitis, a model for autoim-
mune multiple sclerosis [80]. 

Chymase in Cardiovascular Conditions

It has been recognized for a long time that mast cell 
chymase can have an impact on various cardiovascular 
conditions. A hallmark finding that boosted this area of 
research was the finding that heart chymase can cleave 
angiotensin (Ang) I to generate the potent pressor Ang II 
[45], i.e. having overlapping activity with that of angio-
tensin-converting enzyme (ACE). Based on this finding, 
a number of studies have been conducted where the ef-
fects of pharmacological chymase inhibition on Ang II 
formation have been studied. In a hallmark study it was 
demonstrated that chronic ACE inhibition did not re-
press Ang II levels in the cardiac interstitial fluid, indicat-
ing the presence of non-ACE-dependent Ang II-generat-
ing activity. Intriguingly, chymase inhibition blocked 
such Ang II-forming activity in mast cell-sufficient but 
not in mast cell-deficient mice, suggesting that chymase 
accounts for ACE-independent Ang II generation within 
the cardiac tissue [81]. In further support for this notion, 
the knockout of ACE resulted in abrogated Ang II forma-
tion within the circulation but failed to suppress cardiac 
Ang II levels [82]. 

Considering that chymase has the capacity to generate 
Ang II, it would appear likely that chymase repression can 
lead to reduced blood pressure. Indeed, there are studies 
in various animal models showing that chymase inhibi-
tors can cause reduced blood pressure in response to var-
ious triggers [83–85]. Based on these animal studies, it is 
reasonable to assume that chymase inhibition could po-
tentially have the effect to lower blood pressure in hu-
mans. However, two recent clinical studies evaluating 
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BAY 1142524 (fulacimstat) did not reveal any significant 
effects of chymase inhibition on basal blood pressure [86, 
87], although the drugs used were proven to be safe and 
well tolerated. 

In addition to its role in Ang II formation, there is ev-
idence that chymase has an important role in generation 
of the potent pressor endothelin-1 (ET-1) from big ET-1. 
This is supported by reduced ET-1 formation and in-
crease in blood pressure in Mcpt4–/– animals in response 
to administration of big ET-1 (the precursor for ET-1) 
[54, 85]. In agreement with a crucial function for chymase 
in this process, ET-1 generation (from big ET-1) was 
blocked by the chymase inhibitors TY51469 or Suc-Val-
Pro-Phe(P)(OPh)(2) [54, 88].

There is also evidence that chymase can have a pro-
found impact on cardiac dysfunction following tissue in-
jury, independently of effects on regulating blood pres-
sure. In one study it was shown that the absence of Mcpt4 
was associated with reduced cardiac dysfunction after 
myocardial infarction, and it was proposed that Mcpt4 
deficiency results in increased cardiomyocyte survival 
[89]. These findings are in agreement with other studies 
where chymase Mcpt4 was shown to promote cell death 
and cardiac remodeling after mycoardial infarction [90] 
and where chymase inhibition resulted in improved car-
diac function following myocardial infarction in ham-
sters [81]. A detrimental function of chymase during 
heart infarction was also seen in a study where permanent 
myocardial infarction was induced. In this study, the ab-
sence of chymase Mcpt4 led to substantially enhanced 
survival and cardiac function [91]. In line with these find-
ings, there is a massive documentation revealing protec-
tive effects of chymase inhibition in various settings of 
cardiovascular injury, including myocardial ischemia-re-
perfusion injury [92], vascular dysfunction in stroke-
prone rats [93], cardiac fibrosis [94, 95], inflammation 
after acute myocardial ischemia/reperfusion [95], cardio-
myocyte function in dogs with isolated mitral regurgita-
tion [96], cardiac function after left ventricular repair in 
rats [97], progression to heart failure after autoimmune 
myocarditis in rats [98], as well as in many other settings 
of cardiac pathology [99–105]. Based on these findings, it 
has been proposed that chymase could represent a novel 
pharmacological target for treatment of cardiovascular 
disease [reviewed in 106, 107], and ongoing clinical trials 
are aiming at evaluating this concept.

There is extensive documentation suggesting that chy-
mase can modify lipoproteins (high- and low-density li-
poproteins) [108] such that atherosclerotic progression is 
promoted. In support of this, the genetic ablation of Mcpt4 

has been associated with reduced atherosclerotic lesions 
in apolipoprotein E-deficient mice [109]. In addition, 
pharmacological inhibition of chymase with RO5066852 
was shown to reduce atherosclerotic progression in apoli-
poprotein E-deficient mice [110]. It has also been shown 
that chymase promotes the generation of abdominal aor-
tic aneurysms, as shown both by evaluating chymase 
(Mcpt4)-deficient animals [111] and by using the chy-
mase inhibitors ASB17061 [112] and NK3201 [113].

Chymase in Steatohepatitis/Liver Pathology

There are several studies showing that chymase inhibi-
tion has a substantial beneficial impact on the develop-
ment of steatohepatitis, as shown in animal models where 
the condition is induced by different pathogenic diets 
[114–116]. Chymase inhibition has also been shown to 
have beneficial effects in acute liver failure in hamsters 
[117] and in tetrachloride-induced liver fibrosis [118]. 

Chymase in Inflammatory Kidney Disease

There are several indications that chymase can affect 
the outcome of inflammatory kidney disease, but the im-
pact of chymase seems to depend strongly on the exact 
condition. In immune complex-mediated glomerulone-
phritis, Mcpt4 chymase was shown to contribute to the 
inflammation and fibrosis, and the absence of Mcpt4 led 
to lower levels of various pathogenic factors, including 
Ang II, collagen 1, TNF and MCP-1/CCL2 [119]. In sup-
port of a role for chymase in generating Ang II in the con-
text of kidney pathology, pharmacological chymase inhi-
bition was shown to suppress renal Ang II formation in 
diabetic mice [120] and in mice treated with Ang I (pre-
cursor of Ang II) [84]. Additionally, chymase inhibition 
has been shown to protect against albuminuria in diabetic 
mice [121] and rats [122], to protect against diabetes-in-
duced oxidative stress and renal dysfunction in hamsters 
[123] and to confer pancreatic islet protection in experi-
mental diabetes [124]. In line with a detrimental impact of 
chymase in kidney pathology, Mcpt4 was shown to partly 
account for the inflammation induced by partial ureteral 
obstruction [125]. In that study it was observed that Mcpt4 
promoted kidney hyper/hypotrophy, development of fi-
brosis, CCL2 secretion and α-smooth muscle actin expres-
sion [125]. In contrast, when kidney inflammation was 
induced by unilateral ureteral obstruction, chymase was 
shown to a have a protective function [32]. Here, increased 
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fibrosis, α-smooth muscle actin, collagen deposition, 
CCL2 and TGF-β were seen in animals lacking Mcpt4 ex-
pression, i.e. in sharp contrast to the findings in the partial 
ureteral obstruction setting. The reasons behind these ap-
parent discrepancies are not entirely clear. However, it 
was reasoned that these differences could be explained by 
the specific pathophysiological phenotypes associated 
with the respective types of lesions, and possibly related to 
different disease kinetics of the models [125]. A protective 
function for chymase has also been seen in ischemic kid-
ney injury, where Mcpt4 was shown to limit neutrophil 
recruitment and activation [126]. It was suggested that 
chymase exerted this role by modifying the surface expres-
sion of CD11b integrin and P/E-selectin [126]. 

Chymase in Regulation of the Coagulation System

There is evidence suggesting that chymase could be 
involved in the regulation of certain blood coagulation 
parameters. It was shown in an early study that purified 
chymase Mcpt4 efficiently degrades thrombin, thereby 
abolishing its enzymatic activity [46]. This was supported 
by studies showing that the knockout of Mcpt4 abolished 
the ability of mast cells to proteolytically inactivate throm-
bin [23]. In further agreement with this, a more recent 
study demonstrated that Mcpt4 has a major function in 
limiting thrombin-induced skin inflammation in vivo 
[47]. It has also been shown that chymase has the capac-
ity to regulate plasmin activity [127]. Further, it was 
shown in a recent study that chymase, in vivo, has a role 
in regulating FXIIIA (transglutaminase) activity [128]. 
Altogether, these findings suggest that chymase can regu-
late the coagulation cascade at various levels, potentially 
affecting blood coagulation. Indeed, Mcpt4 deficiency 
has recently been shown to cause reduced bleeding times 
during experimental sepsis [128]. However, considering 
that chymase is generally found outside of the circulation, 
it appears likely that chymase may predominantly affect 
extravascular coagulation events. 

The Role of Chymase in Regulating Inflammatory 
Cell Recruitment

There is substantial evidence that chymase has the abil-
ity to promote inflammatory cell recruitment in various set-
tings. This is, firstly, supported by experiments in which 
administration of purified/recombinant chymase in differ-
ent animal models has been shown to cause the accumula-

tion of various inflammatory cell types, including eosino-
phils [129, 130], neutrophils [73, 130, 131], lymphocytes 
[130] and macrophages [130]. In support of this, various 
chymase inhibitors have been demonstrated to suppress the 
accumulation of leukocytes under different inflammatory 
conditions. For example, chymase inhibition has been 
shown to attenuate eosinophilia [132, 133], to inhibit neu-
trophil influx in various inflammatory settings [71–73, 95] 
and to reduce monocyte/macrophage recruitment [93, 
134]. It has additionally been demonstrated that chymase 
inhibition can dampen inflammatory responses in a rat 
model of inflammatory bowel disease [135]. 

At present it is not entirely clear by what mechanism 
chymase causes leukocyte recruitment. However, there is 
evidence suggesting that chymase has a major role in de-
grading tight junction proteins [53, 136], and a plausible 
scenario could thus be that such chymase-dependent 
degradation of cell-cell contacts could be an important 
factor in promoting the migration of inflammatory cells 
from the circulation to sites of tissue injury. In agreement 
with this notion, chymase has been shown to enhance 
paracellular permeability of the gut epithelium, both at 
baseline conditions [136] and during anaphylaxis [137]. 
Chymase has also been shown to cause increased micro-
vascular leakage in skin [138]. On a similar angle, chy-
mase has shown to cleave hemidesmosome proteins in 
the context of autoimmune bullous pemphigoid, thereby 
contributing to the inflammation seen in this condition 
[36]. 

In seeming discrepancy with these findings (see dis-
cussion under “Biological functions of chymases: general 
considerations”), it has been shown that chymase may 
also exert anti-inflammatory properties, e.g. by degrading 
proinflammatory alarmins [52], IL-33 [40, 69] or IL-13 
[70]. Further, chymase has been shown to protect from 
posttraumatic spinal cord damage, most likely by degrad-
ing proinflammatory cytokines [139]. Moreover, the ab-
sence of Mcpt4 led to increased scar formation under this 
condition [140]. Also in posttraumatic brain inflamma-
tion, chymase has been shown to have a protective role, 
by reducing brain inflammation [141]. 

Chymase in Skin Pathologies

Chymase-expressing mast cells are abundant in skin, 
and it is therefore reasonable to assume that chymase 
could have a significant impact on pathologies of this or-
gan. Indeed, there are numerous studies in support of 
this notion. In a scleroderma model (tight skin mice; 



Mast Cell Chymase 367J Innate Immun 2020;12:357–372
DOI: 10.1159/000506985

Tsk), selective upregulation of chymase Mcpt4 was seen 
[142] and pharmacological chymase inhibition by SUN-
C8257 was shown to dampen the pathology significantly 
[143]. It was proposed that the beneficial effect of chy-
mase inhibition was due to blunted generation of profi-
brotic TGF-β. It has also been shown that chymase inhi-
bition (by SUN-C8257 or SUN13834) improves atopic 
dermatitis-like skin lesions in NC/Nga mice [129, 133, 
144]. Further, it was shown in a burn-induced injury 
model that both Mcpt4 and Mcpt5 contribute profound-
ly to the pathology [53]. Chymase has also been shown 
to be crucial for limiting thrombin-induced skin inflam-
mation [47].

Chymase in Adhesions after Surgery

Formations of adhesions are serious adverse affects as-
sociated with surgery. Several animal experimental stud-
ies have revealed that mast cell chymase can contribute to 
this condition, as shown by attenuated peritoneal adhe-
sion formation after administration of Suc-Val-Pro-
PheP(OPh)2 in rat [145], hamster [146] and canine [147] 
models. Peritoneal adhesion formation was also inhibited 
by using the TY-51184 and NK3201 chymase inhibitors 
in hamster models [148, 149]. However, a role for chy-
mase in adhesion formation has not been confirmed by 
studies in chymase-deficient animals. 

Chymase in the Regulation of Homeostasis

It is generally thought that biological effects of the 
mast cell granule proteases are seen under inflammatory 
conditions where mast cells have been activated, by IgE-
mediated or other mechanisms. However, there is accu-
mulating evidence suggesting that chymase can exert bio-
logical effects even in conditions were mast cells are not 
overtly activated, i.e. to affect body homeostasis. In one 
study it was shown that the absence of Mcpt4 caused de-
creased intestinal permeability at baseline conditions, 
and it was shown that the absence of Mcpt4 led to in-
creased expression of the tight junction protein claudin-3 
[136]. Hence, this suggests that chymase can enhance ep-
ithelial permeability under homeostatic conditions by de-
grading tight junctions. Notably, this is in agreement with 
a study showing that Mcpt4 can degrade claudin-4 during 
skin inflammation caused by burn injury [53], and with 
an earlier study where it was demonstrated that infusion 
of chymase to the cranial mesenteric artery caused in-

creased gut permeability in rats [150]. There is also evi-
dence that the absence of chymase Mcpt4 results in an 
age-dependent increase in bone mass in female mice un-
der baseline conditions, i.e. suggesting that Mcpt4 has a 
homeostatic impact on the regulation of bone metabo-
lism [151]. Finally, there is evidence to suggest that chy-
mase has a role in the regulation of homeostatic extracel-
lular matrix deposition, as shown by an age-dependent, 
excessive accumulation of collagen and fibronectin in 
mice lacking Mcpt4 [35].

Concluding Remarks and Future Directions

Research conducted over the last decades has provided 
considerable insight into the biological function of chy-
mase. In particular, the use of chymase knockout animals 
and the use of selective chymase inhibitors have made it 
possible to elucidate the in vivo impact of chymase in di-
verse pathological, but also homeostatic, conditions. In-
triguingly, the gathered knowledge from these efforts 
suggests that chymase has a highly complex role in regu-
lating pathological processes, ranging from protective 
functions in some cases to being detrimental in others 
(Table 3). To add further complexity, chymase can even 
have opposing functions in a given condition, depending 
on the methodology/tools adapted. So, can we exploit this 
knowledge for medical purposes? Clearly, in cases where 
there is a well-documented detrimental impact of chy-
mase, chymase inhibition could be of therapeutic signifi-
cance. The most notable example of the latter is cardiac 
dysfunction after heart injury, where a wealth of evidence 
from various animal experimental models and from eval-
uating a wide range of chymase inhibitors indicates that 
chymase inhibition can alleviate the pathology in a pro-
found way. Indeed, clinical trials to assess this notion are 
currently under way. On the contrary, in cases where chy-
mase has a proven beneficial role, it is conceivable that 
recombinant chymase could be used as a biological drug. 
However, since chymase carries a high positive charge, it 
may be anticipated that its pharmacological properties 
are suboptimal. Given the range of additional pathologies 
where chymase has been implicated (Table 3), it is likely 
that chymase inhibition will be assessed for beneficial ef-
fects in a range of novel clinical settings in the near future. 
It is also likely that upcoming research will provide a 
more detailed insight into the exact mechanism of chy-
mase action under diverse pathological situations. For ex-
ample, it will be important to gain more knowledge of the 
in vivo substrates for chymase under various pathological 
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settings, and also under different phases of a given patho-
logical process. Most likely, such efforts will provide a 
more comprehensive picture of the exact biological func-
tion of chymase, knowledge that will aid in exploiting 
chymase for therapeutic or diagnostic purposes. 
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