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Multichannel superconductivity of monolayer FeSe on SrTiO3:
Interplay of spin fluctuations and electron-phonon interaction
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We investigate the effects of electron-phonon coupling, as well as of spin and charge fluctuations on the super-
conducting state in a single layer of FeSe on SrTiO3 substrate. These three bosonic mediators of Cooper pairing
are treated on equal footing in a multichannel, full-bandwidth, multiband, and anisotropic Eliashberg theory
of the interacting state. Our self-consistent calculations show that an s-wave symmetry of the superconducting
gap is compatible only with a complete absence of spin fluctuations. When spin fluctuations are present, the
sign-changing nodeless d-wave pairing symmetry is always obtained, yet the essential ingredient for explaining
the gap magnitude and critical temperature is still the interfacial electron-phonon interaction.
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Ever since the discovery of superconductivity in monolayer
FeSe on SrTiO3 substrate (FeSe/STO) [1] no consensus has
yet been reached about such fundamental questions as, for
example, the Cooper pairing mechanism or the superconduct-
ing gap symmetry, despite tremendous research effort in both
theory and experiment [2]. The measured superconducting
critical temperature Tc in FeSe/STO ranges from 50 K up to
over 100 K [1,3–8], which is an astonishing increase from
the comparatively low Tc (∼8 K) of the parent compound
FeSe [9]. The bulk FeSe material has been shown to be
nonmagnetic, but is poised in close vicinity to a magnetic
phase transition, which is manifested in strong spin fluctua-
tions (SFs) [10–12]. It is therefore commonly believed that
superconductivity in bulk FeSe, as well as in other Fe-based
superconductors with similar Fermi surface (FS) properties,
has a magnetic origin [10–14].

In FeSe/STO the situation is markedly different because
FS nesting conditions are changed due to doping with STO
electrons at the interface. The resulting FS consists only of
electronlike pockets, which makes the material inexplicable
using “standard” FS nesting arguments. There have, however,
been attempts to explain superconductivity in FeSe/STO by
theories for SFs that are more specialized to this particular
system [15,16]. Recently, experimental [17,18] and theoreti-
cal [19] evidence for magnetic signatures have been provided,
but the literature is sparse on the verification of SFs mediated
superconductivity in FeSe/STO. The authors of the current
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work have argued in Ref. [20] that SFs possibly contribute to
the pairing strength in the superconducting state, but are not
the dominant “pairing glue”.

To complicate the issue further, a sizable electron-phonon
interaction (EPI) between the substrate phonon and FeSe elec-
trons has been detected in experiment [7,21], an observation
reproduced by density functional theory calculations [22–25].
A phonon branch of relatively large frequency � = 81 meV
gives rise to strongly enhanced forward scattering exhibit-
ing small momentum transfer. This characteristic feature of
FeSe/STO was shown to play an important role in the su-
perconducting state [26–29]. However, it is currently debated
whether EPI and SF effects are competing or cooperative [30],
and how their interplay reflects in experimentally observable
quantities of the superconducting state.

This is partially due to uncertainty concerning the symme-
try of the superconducting order parameter. Although it has
been shown that the gap function does not exhibit nodes in the
Brillouin zone (BZ), an observation broadly agreed on, it is
still debated whether a sign change occurs between FS pockets
separated by a wave vector q = (π, π ) in the unfolded BZ. In
several works it has been argued that the order parameter has
s-wave symmetry (no sign change), a conclusion drawn from
results of impurity measurements [31] and angular resolved
photoemission spectroscopy [3,7]. On the contrary, scanning
tunneling spectroscopy (STS) carried out in Ref. [32] revealed
that a sign change of the order parameter (d wave) is similarly
possible as s wave, while other recent STS investigations
argued more determinedly in favor of a sign-changing order
parameter [33–35], which suggested SF-mediated pairing to
be most relevant [34].

In this Rapid Communication, we study the competition/
cooperation between SFs and EPI in the superconducting state
of FeSe/STO. This is done within a self-consistent multi-
channel Eliashberg formalism in which EPI, SFs, and charge
fluctuations (CFs) are treated on an equal footing. Our results
reveal that the most plausible BZ symmetry of the supercon-
ducting gap is nodeless d wave, while an anisotropic s-wave
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state is also possible but only under the exclusion of any
influence of spin fluctuations. Hence, our investigation shows
that the EPI is responsible for the gap magnitude and high Tc,
but the SFs generate the unconventional pairing symmetry.

We start from the multiorbital Hubbard-Fröhlich Hamil-
tonian Ĥ = Ĥ0 + Ĥint + Ĥph + Ĥeph, expressed in an orbital
basis of the five Fe-d states, with

Ĥ0 =
∑

k,p,q,σ

ξk,p,qĉ†
k,p,σ ĉk,q,σ , (1)

Ĥint = U
∑

i,s

n̂i,s,↑n̂i,s,↓ + V ′

2

∑
i,s,t �=s

n̂i,sn̂i,t

− J

2

∑
i,s,t �=s

�̂Si,s · �̂Si,t + J ′

2

∑
i,s,t �=s,σ

ĉ†
i,s,σ ĉ†

i,s,σ̄ ĉi,t,σ̄ ĉi,t,σ ,

(2)

Ĥph = h̄�
∑

q

(
b̂†

qb̂q + 1

2

)
, (3)

Ĥeph =
∑
k,k′

∑
p,q,σ

gq,p,qĉ†
k′,p,σ ĉk,q,σ (b̂†

q + b̂−q). (4)

Here Ĥ0 and Ĥph are the electron and phonon kinetic energies,
respectively, with ĉ†

k,p,σ (b̂†
q) electron (phonon) creation op-

erators, σ denotes spin, p, q, s, t orbital indices, and k, k′, q
are BZ wave vectors (we set q = k − k′). We consider the
1-Fe unit cell and thus work in the unfolded BZ. Further,
ξk,p,q denotes electron energies in orbital space and � is a
characteristic Einstein phonon frequency. The EPI is given
by Ĥeph with EPI scattering matrix elements gq,p,q. Electron
correlations are described by the purely electronic term Ĥint

which carries the information about CFs and SFs mediated
interactions. As usual, �̂Si,s(n̂i,s) are spin (density) operators,
U,V ′ are the respective intra- and interorbital Hubbard inter-
actions, J is the Hund’s rule coupling, and J ′ the pair-hopping
interaction with V ′ = U − 3J/4 − J ′ and J ′ = J/2 [36,37].

Our tight-binding description of FeSe/STO is adopted from
Refs. [28,38], where hopping energies for bulk FeSe [39]
are modified so as to account for the lattice distortion that
arises when a monolayer of FeSe is deposited on the substrate.
Diagonalization of Ĥ0 yields electron energies ξk,n with band
index n and matrix elements ap

k,n which we utilize to derive
our Eliashberg theory in band space.

Including the infinite series of Feynman diagrams for all
first-order scattering processes due to EPI, SFs, and CFs, we
arrive at the electron self-energy [40],

�̂k,m,n = T
∑

k′,m′,n′
V eph

k−k′,m−m′,n,n′ ρ̂3Ĝk′,m′,n′ ρ̂3

+ T
∑

k′,m′,n′
V S

k−k′,m−m′,n,n′ ρ̂0Ĝk′,m′,n′ ρ̂0

+ T
∑

k′,m′,n′
V C

k−k′,m−m′,n,n′ ρ̂3Ĝk′,m′,n′ ρ̂3, (5)

where m, m′ index Matsubara frequencies [ωm =πT (2m+1)]
and ρ̂0(3) are Pauli matrices. The EPI kernel V (eph)

q,n,n′ (iωm−iωm′ )

is derived similarly as in Refs. [20,28], where the electron-
phonon scattering at the interface is modeled by the functional
form gq = g0 exp(−|q|/qc) with interaction strength g0, qc =
0.3a−1 and a the lattice constant [7]. Further, we employ
an Einstein phonon with frequency � = 81 meV to which
the FeSe electrons are coupled [7,23]. For brevity we use
henceforth the notation V (eph)

q,l,n,n′ with l = m − m′. As described
in detail in the Appendix and Ref. [20], we keep the full orbital
content encoded in ap

k,n when calculating band-dependent in-

teraction kernels V (±)
q,l,n,n′ = V (S)

q,l,n,n′ ± V (C)
q,l,n,n′ for SFs (S) and

CFs (C). Labels (+) and (−) are respectively referring to
kernels as they are used in electron-energy renormalization
and superconducting equations (see below).

From the Green’s function Ĝ−1
k,m,n = iωmZk,m,nρ̂0 − (ξk,n +

	k,m,n)ρ̂3 − φk,m,nρ̂1, we derive a self-consistent set of a to-
tal of 15 coupled Eliashberg equations for the mass Zk,n,m

and chemical potential 	k,n,m renormalization functions, and
the superconducting order parameters φk,n,m [41,42]. The
full interaction kernels for EPI, CFs, and SFs are given
by K (±)

q,l,n,n′ = V (eph)
q,l,n,n′ ± V (±)

q,l,n,n′ , using K (+)
q,l,n,n′ in the equa-

tions for Zk,n,m and 	k,n,m, and K (−)
q,l,n,n′ in the equation for

φk,n,m. For further details we refer to the Appendix and
Refs. [20,28].

In the theory employed here we treat the scattering strength
g0 as a parameter to control the strength of the EPI. For
CFs and SFs we are free to choose the intraorbital on-site
interaction U and the Hund’s rule coupling J . For convenience
we set J to a fixed ratio of U , leaving us with two variational
quantities g0 and U . Hence, we have direct control over the in-
teraction strength for all three mediators of superconductivity.
Our calculations are carried out using the Uppsala Supercon-
ductivity (UPPSC) code [43–47], in particular, by combining
the advances of Refs. [20,28].

Motivated by our earlier work [20], we choose the tem-
perature T = 5 K (to compare to available experiments [3,7])
and select J = U/2 from the acceptable region J � U/2
for FeSe/SrTiO3 [16,48]. For calculations of the SF and
CF kernels we apply a high-energy cutoff ωcut = 0.54 eV
(see [20]). We consider this pair of (J, ωcut ) as it report-
edly allows for a finite superconducting gap, even in the
absence of any EPI [20]. Left with two parameters U and
g0, which respectively control the strength of CFs/SFs and
EPI, we solve the full-bandwidth, multiband, and anisotropic
Eliashberg equations (see Appendix) for each pair (U, g0).
Computing the experimentally observable gap function as
�k,m,n = φk,m,n/Zk,m,n, we plot the maximum value � =
maxk,n |�k,m=0,n| in Fig. 1. The red dashed line through
(U, g0) space represents a gap size of � � 12 meV as was
measured for this material [3,49].

It is apparent that the onset of superconductivity with re-
spect to the electron-phonon scattering strength lies at g0 ∼
0.6–0.7 eV. For growing g0 the maximum superconducting
gap increases approximately linear for fixed U . On the other
hand, for small g0 the choice of U must be close to the
maximally allowed value, which in term is dictated by the
Stoner criterion, to obtain a finite �. Here we do not pay
special attention to either of the limiting cases U = 0 eV
or g0 = 0 eV, because these have been analyzed in detail in
previous studies [20,28,29].
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FIG. 1. Self-consistently calculated maximum value of the su-
perconducting gap as a function of g0 and U . The red dashed
line corresponds to a value � � 12 meV, compatible with exper-
iments [3,7]. Inset: the computed d-wave gap function shown in
the BZ.

When computing the results of Fig. 1 we assumed that
the symmetry of the order parameter is a priori not known,
which is why we performed each calculation with an initial
s-wave and d-wave state. For all parameter space shown in
Fig. 1 we find a d-wave symmetry as the converged solution
(gap shape shown in the inset of Fig. 1), with the exception
of the purely phononic case (U = 0), where the symmetry is s
wave [28].

To better understand these findings let us take a closer
look at the couplings in the superconducting channel, where
we focus on the FS for simplicity. In Fig. 2(a) we show
the FS sheets of our tight-binding model (black lines) and
schematically draw all interactions included in our theory.
Here we use the definitions V eph = V (eph)

q,l=0,n,n′ , V S = V (S)
q,l=0,n,n′ ,

and V C = V (C)
q,l=0,n,n′ for brevity. The EPI, shown in Fig. 2(b)

for g0 = 0.5 eV, peaks at small momentum transfer and does
not contain any large-q contributions. Since it enters with a
positive sign into the equation of the superconducting gap, no
local sign change (on each FS pocket) is promoted. There-
fore, if no spin and charge fluctuations are taken into account
(U = 0) the s-wave symmetry is favored because V eph is
attractive.

Choosing U = 1.07 eV as an example, we show in
Figs. 2(c) and 2(d) the SF and CF kernel, respectively. We
observe that a close-to-nesting condition between the two FS
pockets leads to a leading contribution at q = (π, π ) (= M)
for the spin part. Further, we find a small-q coupling for
V S which has significantly lower magnitude. As indicated in
panel (a), since the SF kernel enters repulsively in the equation
for the superconducting order parameter (see Appendix), a
sign change in the superconducting gap is promoted both
globally between the FS sheets, and locally on each pocket.
However, the repulsive small-q contribution of V S is too weak
to induce such a local sign change, which has not been found
here nor in Ref. [20]. As concerns CFs, we find a weak
attractive interaction peaked at q = 	 [see Fig. 2(d)], which
has a similar order of magnitude as the repulsive SFs coupling
at this wave vector.

FIG. 2. (a) Multichannel pairing interactions, schematically
drawn on the Fermi surface considered here (black curve). Red,
blue, and green colors refer, respectively, to spin fluctuations (V S),
electron-phonon coupling (V eph), and charge fluctuations (V C). Re-
pulsive interactions are labeled as “)) − ((” and attractive couplings
as “((+)).” (b) Electron-phonon coupling calculated for g0 = 0.5 eV.
(c) Spin and (d) charge fluctuations kernel for U = 1.07 eV.

To first-order approximation we can assume that SF and CF
kernels do not significantly contribute at q = 	, due to their
comparable magnitude and the fact that V S and V C are com-
peting in the superconducting channel. Therefore, we are left
with V eph peaked at 	, and V S having a leading contribution at
M. In other words, we have a locally sign-conserving EPI, and
a repulsive interaction V S that induces a sign change between
FS pockets. These contributions cooperatively support a sign-
changing d-wave solution. Note that for a global s-wave state
we face a different situation. If the order parameter does
not change sign between the two FS pockets, contributions
V eph and V S are competing and hence reducing the size of
the superconducting gap. Then, s-wave symmetry becomes
energetically less favorable.

Next, we examine the temperature dependence of the su-
perconducting gap for various pairs of (U, g0). The couplings
are taken from the red dashed line in Fig. 1 such that the
magnitude of � � 12 meV corresponds to the experimental
value at T ∼ 5 K. In Fig. 3(a) we show the result for the maxi-
mum superconducting gap as a function of T , self-consistently
computed for choices of U as written in the legend. Note that
all four curves exhibit the behavior limT →0 �(T ) � 12 meV,
while the values for Tc change with U . Notably, our results
for U � 0.6 eV, indicating a weak coupling to SFs, fall on
top of each other to a good approximation. As U increases
towards the maximum value Umax, which is dictated by the
Stoner criterion [20], Tc gradually decreases.

To elucidate this aspect further we draw the ratio �/kBTc

as blue circles in Fig. 3(b). It is apparent that an enhancement
of the SF kernel leads to a more strongly coupled system. We
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FIG. 3. (a) Self-consistently calculated maximum gap as a func-
tion of temperature for various U as indicated in the legend. (b) Ratio
�/kBTc as a function of U . The reference lines corresponding to
�/kBTc = 2.1 [4] and 2.53 [49] are plotted in dashed red. Blue
circles show our computed data points, which are fitted by the solid
blue line (see legend).

analyze this behavior in more detail by fitting our results to
the functional form

�

kBTc
= c1 + c2

U 2

c3 − U
, (6)

where c1, c2, and c3 are free parameters of the fit. The result,
drawn as a solid blue line in Fig. 3(b), matches our data points
very accurately.

Taking the limit U → 0 in Eq. (6) corresponds to the
case of only considering EPI. Therefore, the value c1 =
2.164 equals �/kBTc without any influence of CFs or SFs
(compare Ref. [28]). Further, it was shown in Ref. [20]
that the leading spin contributions to the kernel at q = M
scale like U 2/(Umax − U ), which makes us associate c3 ≡
Umax = 1.183 eV. This value is remarkably close to the pre-
cise value found from the Stoner criterion [20]. With scaling
constant c2 = 0.0118 eV−1 we therefore find that enhanced
contributions due to SFs drive �/kBTc more towards the
strong-coupling regime.

The red dashed lines in Fig. 3(b) serve as an approximate
bounding box for reasonable magnitudes of �/kBTc, accord-
ing to existing works on FeSe/STO where the gap magnitude
was found as ∼12 meV [3,27,49]. For our fitting curve (blue)
to stay within the red shaded area, U can be chosen relatively
large but not in too close vicinity of the maximally allowed
value Umax. This has the consequence that the influence of SFs
on the superconducting gap magnitude is bounded.

Further analysis shows that the decrease of Tc with growing
U in Fig. 3(a) stems from a competition of SFs and EPI
in mediating superconductivity. To prove this we first need
to calculate the renormalized Fermi surface, defined by the
condition ξk,n + 	k,m=0,n = 0, in the interacting state for a
given T . No significant changes in comparison to the non-
interacting FS are detected in the whole temperature range
considered here, which goes in line with earlier predictions
of a temperature-independent FS in this system [29,50]. As
the influence of SFs increases with U , we detect decreasing
values of 〈φk,m=0,n∈FS〉kF , while λ(T <Tc )

m = 〈Zk,m=0,n∈FS〉kF − 1

grows. Therefore we observe a decrease in the superconduct-
ing gap magnitude � ∼ φ/Z .

We have already seen that SFs and EPI can act coopera-
tively for superconductivity, a statement that holds true when
considering the leading contributions at M and 	, respectively.
However, an increase in U enhances also the interaction kernel
V S at 	, which competes with the small-q EPI. Therefore,
the influence of V eph gets partially suppressed, which is not
compensated by an increased V S coupling at M. This is a com-
peting aspect of these bosonic mediators of Cooper pairing in
FeSe/STO. Our computed small-coupling value λm � 0.35 is
furthermore consistent with experimental observations [7,51].
Importantly, our multichannel calculations show that in the
presence of a sizable EPI, even modest SFs (i.e., small U )
nonetheless lead to a nodeless d-wave pairing symmetry.
This unconventional symmetry is consistent with the sign-
changing order parameter that was deduced in recent STS
experiments [33–35].

In summary, we have investigated the superconducting
state of FeSe/STO treating EPI, SFs, and CFs on an equal
footing. Our self-consistent multichannel Eliashberg theory
shows unambiguously that an s-wave symmetry of the order
parameter is possible only with negligible magnetic contribu-
tions, i.e., in the limit U → 0. Conversely, a nodeless d-wave
state is realized for any small influence of SFs. For the latter
scenario the obtained maximum superconducting gap and Tc

are compatible with experiment, provided that U is reasonably
smaller than its maximally possible value (given by the Stoner
criterion). Consequently, we are led to identify the main pair-
ing glue in FeSe/STO as the EPI, but any small contribution
from SFs is sufficient to cause an unconventional d-wave
pairing symmetry.

This work has been supported by the Swedish Research
Council (VR), the Röntgen-Ångström Cluster, the Knut and
Alice Wallenberg Foundation (Grant No. 2015.0060), and the
Swedish National Infrastructure for Computing (SNIC).

APPENDIX

The Hamiltonian of the system is given by

Ĥ = Ĥ0 + Ĥph + Ĥeph + Ĥint, (A1)

with kinetic term Ĥ0 = ∑
k,p,q,σ ξk,p,qĉ†

k,p,σ ĉk,q,σ . Here we

use ĉ†
k,p,σ and ĉk,p,σ as electron creation and annihilation

operators, where σ denotes spin, k a wave vector, and p, q
orbital indices. Further, ξk,p,q denotes electron energies in
orbital space. The lattice vibrations are represented by Ĥph =
h̄�

∑
q(b̂†

qb̂q + 1
2 ), where h̄� = 81 meV is the characteristic

Einstein phonon frequency of the interfacial phonon and b̂†
q

(b̂q) creates (annihilates) a phonon with exchange momentum
q. The EPI is given by Ĥeph which describes an electron
ĉk,q,σ being scattered into the state ĉ†

k′,p,σ via scattering matrix

elements gq,p,q and phonon displacements ûq = b̂†
q + b̂−q. In

this work we set q = k − k′.
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Electron-electron interactions in the system are modeled
via

Ĥint = U
∑

i,s

n̂i,s,↑n̂i,s,↓ + V ′

2

∑
i,s,t �=s

n̂i,sn̂i,t

− J

2

∑
i,s,t �=s

�̂Si,s · �̂Si,t + J ′

2

∑
i,s,t �=s,σ

ĉ†
i,s,σ ĉ†

i,s,σ̄ ĉi,t,σ̄ ĉi,t,σ .

(A2)

In Eq. (A2) we use index i to describe the lattice site, hence
ĉ†

i,s,σ create an electron of orbital character s with spin σ

at site i. We describe spin operators by �̂Si,s as defined, e.g.,
in Ref. [37]. The occupation numbers are given by n̂i,s,σ =
ĉ†

i,s,σ ĉi,s,σ and n̂i,s = ∑
σ ĉ†

i,s,σ ĉi,s,σ . The first and third terms
scale with intraorbital on-site coupling U and Hund’s rule
coupling J , respectively. For the interorbital on-site energy
V ′ and the pair-hopping amplitude J ′ we make the choice
V ′ = U − 3J/4 − J ′ and J ′ = J/2 [36,37].

A diagonalization of the hopping energies ξk,p,q provides
us with the electronic dispersion in band space ξk,n and matrix
elements ap

k,n. These are used to calculate the bare susceptibil-
ities

Im
([

χ0
q (ω)

]pq

st

) = −π
∑

n,n′,k′
as

k,nap,∗
k,naq

k+q,n′a
t,∗
k+q,n′

× [nF(ξk,n) − nF(ξk+q,n′ )]

× δ(ξk+q,n′ − ξk,n + ω),

Re
([

χ0
q (ω)

]pq

st

) = 1

π
P

∫ ∞

−∞

dω′

ω′ − ω
Im

([
χ0

q (ω)
]pq

st

)
, (A3)

as a function of frequency ω, where nF(·) is the Fermi-Dirac
function. Within the random phase approximation (RPA) the
spin and charge susceptibilities are respectively calculated as

[
χS

q (ω)
]pq

st =[
χ0

q (ω)
]pq

st +
∑

u,v,w,z

[
χS

q (ω)
]pq

uv

[
U S

]uv

wz

[
χ0

q (ω)
]wz

st ,

(A4)[
χC

q (ω)
]pq

st =[
χ0

q (ω)
]pq

st −
∑

u,v,w,z

[
χC

q (ω)
]pq

uv

[
U C

]uv

wz

[
χ0

q (ω)
]wz

st ,

(A5)

where we make use of the Stoner tensors

[U S]aa
aa = U, [U S]aa

bb = J

2
, [U S]ab

ab = J

4
+ V ′,

[U S]ba
ab = J ′, [U C]aa

aa = U, [U C]aa
bb = 2V ′,

[U C]ab
ab = 3J

4
− V ′, [U C]ba

ab = J ′. (A6)

The RPA susceptibilities can be used to find the available
phase space for choosing U and J (see Ref. [20]).

From here we calculate the real frequency-dependent inter-
action kernels for spin and charge fluctuations via

[
V (+)

q (ω)
]pq

st = [
3
2U SχS

q (ω)U S + 1
2U CχC

q (ω)U C
]tq

ps, (A7)

[
V (−)

q (ω)
]pq

st = [
t 3

2U SχS
q (ω)U S + 1

2U S

− 1
2U CχC

q (ω)U C + 1
2U C

]tq

ps
. (A8)

The outcome of Eqs. (A7) and (A8) is used to compute the
kernels in band space (q = k − k′):

[
V (±)

q (ω)
]

n,n′ =
∑

k,s,t,p,q

at∗
k,nas∗

k,n

[
V (±)

q (ω)
]pq

st ap
k′,n′a

q
k′,n′ . (A9)

Hereafter we obtain the Matsubara frequency-dependent in-
teractions as

V (±)
q,l,n,n′ = 1

π
P

∫ ωcut

−ωcut

dω

ω − iqm
Im

{[
V (±)

q (ω)
]

n,n′
}

(A10)

with high-energy cutoff ωcut which removes the high-energy
parts of the excitation spectrum; especially the incoherent part
that is irrelevant to superconductivity [20].

As stated before, the electron-phonon part of the interac-
tion is given by an Einstein phonon spectrum, so we can write
the kernel as

V (eph)
q,l,n,n′ = |gq,n,n′ |2 2�

�2 + q2
l

, (A11)

with band-dependent scattering elements gq,n,n′ . In this work
we make the approximation gq,n,n′ = gq, with gq as given in
the main text [28].

The self-consistent Eliashberg equations that we solve in
this work are derived in the standard way. Starting from
the noninteracting electron Green’s function in Nambu space
[Ĝ0

k,m,n]−1 = iωmρ̂0 − ξk,nρ̂3, we know that bosonic interac-
tions lead to a Green’s function Ĝk,m,n, which obeys a Dyson
equation Ĝk,m,n = Ĝ0

k,m,n + Ĝ0
k,m,n�̂k,m,nĜk,m,n. Here ρ̂i are

Pauli matrices and �̂k,m,n represents the electron self-energy.
By defining

Ĝ−1
k,m,n = iωmZk,m,nρ̂0 − (ξk,n + 	k,m,n)ρ̂3 − φk,m,nρ̂1 (A12)

the self-energy takes the form

�̂k,m,n = iωm(1 − Zk,m,n)ρ̂0 + 	k,m,nρ̂3 + φk,m,nρ̂1. (A13)

Further, we express �̂k,m,n as the sum over all first-order
scattering processes due to EPI, SFs, and CFs [40]:

�̂k,m,n = T
∑

k′,m′,n′
V eph

k−k′,m−m′,n,n′ ρ̂3Ĝk′,m′,n′ ρ̂3

+ T
∑

k′,m′,n′
PS

k−k′,m−m′,n,n′ ρ̂0Ĝk′,m′,n′ ρ̂0

+ T
∑

k′,m′,n′
PC

k−k′,m−m′,n,n′ ρ̂3Ĝk′,m′,n′ ρ̂3. (A14)

In Eq. (A14) the variables V eph
k−k′,m−m′,n,n′ , PS

k−k′,m−m′,n,n′ and
PC

k−k′,m−m′,n,n′ model the interactions due to phonons, SFs, and
CFs, respectively. The EPI is given by Eq. (A11), while the
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spin and charge terms are related to Eq. (A10) as

PS
k−k′,m−m′,n,n′ + PC

k−k′,m−m′,n,n′ = V (+)
q,l,n,n′ , (A15)

PS
k−k′,m−m′,n,n′ − PC

k−k′,m−m′,n,n′ = V (−)
q,l,n,n′ . (A16)

We now project the electron self-energy expressions Eqs. (5)
and (A13) onto ρ̂0, ρ̂3, and ρ̂1, respectively, leading to the
Eliashberg equations

Zk,n,m = 1 − T

ωm

∑
k′,m′,n′

K (+)
k−k′,m−m′,n,n′

ωm′Zk′,n′,m′

�k′,n′,m′
, (A17)

	k,n,m = T
∑

k′,m′,n′
K (+)

k−k′,m−m′,n,n′
ξk′,n′ + 	k′,n′,m′

�k′,n′,m′
, (A18)

φk,n,m = −T
∑

k′,m′,n′
K (−)

k−k′,m−m′,n,n′
φk′,n′,m′

�k′,n′,m′
, (A19)

�k,n,m = [
iωmZ2

k,n,m

]2 − [ξk,n + 	k,n,m]2 − φ2
k,n,m, (A20)

for the mass renormalization Zk,m,n, the chemical potential
shift 	k,m,n, and order parameter φk,m,n [20]. Via kernels

K (±)
q,l,n,n′ = V (eph)

q,l,n,n′ ± V (±)
q,l,n,n′ , (A21)

we treat all three bosonic Cooper pair mediators self-
consistently on the same footing.
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