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Organic Matter Degradation across
Ecosystem Boundaries: The Need for a
Unified Conceptualization
Highlights
Conceptualizations of organic matter
(OM) degradation are diverging within
and among the soil, freshwater, and
marine subdisciplines.

There is a need to step back from con-
ceptualizations specific to certain eco-
systems to holistically understand what
controls the degradation of OM, regard-
less of the ecosystem.

Ecosystem properties are changing rap-
idly due to anthropogenic stressors, and
we encourage the development of con-
ceptual and earth system models to be
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The global carbon cycle connects organic matter (OM) pools in soil, freshwater,
and marine ecosystems with the atmosphere, thereby regulating their size and
reactivity. Due to the complexity of biogeochemical processes and historically
compartmentalized disciplines, ecosystem-specific conceptualizations of OM
degradation have emerged independently of developments in other ecosystems.
Recent discussions regarding the relative importance of molecular composition
and ecosystem properties on OM degradation have diverged in opposing direc-
tions across subdisciplines, leaving our understanding inconsistent. Ecosystem-
dependent theories are problematic since properties unique to an ecosystem
may change in response to anthropogenic stressors, including climate change.
The next breakthrough in our understanding of OM degradation requires a shift
in focus towards developing a unified theory of controls on OM across
ecosystems.
more flexible and consider conditions
that may currently seem atypical for a
particular ecosystem.

We emphasize that the importance of
molecular composition in regulating OM
degradation should not be discarded,
but rather we should understand when
and why it appears more or less relevant
than ecosystem properties.
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What Controls Organic Matter Persistence and Reactivity?
The susceptibility of organic matter (OM) to either persist and accumulate as a long-term sink of
carbon, or cycle rapidly and becomemineralized (see Glossary) into atmospheric CO2, is a key
feature of carbon cycling across the biogeosphere. Yet, a seemingly simple question remains
unresolved across soil, freshwater, and marine biogeochemistry: what controls the degradation
of OM? We know that OM can be highly reactive, and is degraded within minutes in some soil
and freshwater environments. Alternatively, it can also be highly persistent, lasting for millennia
in soils, sediments, and the open ocean. Decades ago, the consensus would have been that
OM persistence is reflected by its molecular composition. In time, flaws in this thinking were
revealed, with the recognition that OM persists far longer than can be explained by molecular
composition alone [1]. With this insight and recent technological advances [2], the relative impor-
tance of OM composition has shifted in diverging directions over time (Box 1). Most notably, the
soil and freshwater lines of thinking are developing in opposing directions. The soil community
came from a history of considering that soil OM could progressively become ‘refractory’ due to
humification and selective preservation [3–5], with molecular composition (e.g., lignin:N) being
important for predicting degradation rates [6,7]. The soil community now increasingly recognizes
the importance of ecosystem properties [8], with molecular composition being less relevant [9].
By contrast, the freshwater community first proposed the river continuum concept during the
1980s [10], where shifts in the molecular composition of dissolved organic matter (DOM) with
movement downstreamwere expected due to the preferential use of substrates. This theory con-
tinues to be validated, evenwith high-resolutionmethods [11–13]. In themarine community, there
are debates about the relative importance of molecularly stable DOM [14] and environmental con-
straints [15–17] to understand why marine DOM has an average radiocarbon age of 6000 years
[18]. In marine sediments, the wide variability in OM preservation efficiencies continues to be
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Box 1. Diverging Historical Conceptualizations of OM Degradation in Soil, Freshwater, and Marine
Ecosystems over Time

The Soil Perspective: OM Persistence as a Function of Ecosystem Properties

Historically, the molecular composition of OM (e.g., lignin:N, aromatic content, solubility, molecular weight, or presence of
humic substances) was thought to make soil OM persist [65–68]. Accordingly, soil OM models assumed that decay rates
were linked to molecular structure [6,69]. These traditionally held viewpoints are now actively challenged [4,8,70], as
reviewed elsewhere [8] (Figure I). The long-term preservation of soil OM is increasingly recognized to be a function of its
ecosystem properties, such as temperature [71,72], biological inaccessibility due to adsorption to mineral surfaces
[8,60,73–75], and nutrient limitation [76], while molecular composition is considered less relevant [70]. A defining feature
of soils is the presence of mineral surfaces, whereby adsorption and physical encapsulation within micropore spaces
can retain OM [75,77,78], and protect it from biological degradation [3,4,70,79]. When stabilized, even ‘labile’ OM
becomes protected from enzymatic degradation. In fact, soil OM with a radiocarbon age of several thousand years can
be highly labile once destabilized back into solution phase [48], and likewise for thawing permafrost leachates [80,81].
Accordingly, it has been noted that radiocarbon age per se is not a good predictor of long-term persistence of soil OM [50].

The Freshwater Perspective: DOM Persistence due to Molecular Composition and Time

In stark contrast to soil ecosystems, emerging freshwater studies are reinforcing the long-held notion that molecular
composition is relevant to DOM degradation. DOM in freshwaters tends to be highly reactive (mean half-life of 2.5 years)
with water residence time emerging as a strong predictor of degradation rates across a range of water bodies [39]. Thus,
there is an inherent assumption that labile compounds are selectively consumed first, and the remaining OM is increasingly
difficult to degrade [11,82–86]. Recent high-resolution approaches have confirmed that, with time, there is a preferential
loss of oxidized, aromatic compounds of high molecular weight, whereas reduced aliphatic and N-containing compounds
are resistant to degradation or tightly cycled, and, thus, persistent [13]. As with soil studies, radiocarbon age is a poor
predictor of long-term persistence in lakes and streams [87,88].

Emerging Marine Perspective: Molecular Composition and Ecosystem Dependence

Two main lines of thinking, which are not exclusive of each other, prevail in the marine community, as reviewed elsewhere
[42]. The formation of refractory DOM during microbial and phtolytic degradation, as well as thermogenesis, is supported
by detailed molecular methods [14,89] (Marine 1; Figure I). Another theory suggests that environmental conditions are
relevant [17,42]. One example is the dilution theory [15,16], which suggests that highly dilute conditions of the deep sea
(DOC: <42 μM C) restrict decomposition, rather than compositional recalcitrance [16] (Marine 2; Figure I). In fact, the free
energy released from highly labile substrates such as glucose can be outweighed by the high energetic costs of concen-
trating the substrate within the cell before metabolism [90]. Given that DOM comprises several thousand individual
compounds [91], the low abundance of any individual compound under highly dilute conditions may limit specific catabolic
pathways. Consequently, some DOM compounds may persist almost indefinitely in the deep ocean.
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Figure I. Illustration of the Progression in our Conceptualization of Dominant Controls on Organic Matter
(OM) Degradation across Freshwater, Soil, and Marine Literature. Arrows running near the left suggest that
molecular composition is highly relevant for OM degradation, while arrows running to the right suggest that
environmental and biological controls dominate. The freshwater and soil literature diverge most prominently, while there
are two prevailing theories in the marine literature. This shows a lack of consensus across, and within, ecosystems.
Examples of literature driving the direction of arrows are indicated [1,8,10–13,15–17,39,70,89,91,93–95].
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Glossary
Activation energy (Ea): minimum
amount of energy required for a reaction
to proceed. Ea is an energy barrier that a
reaction must overcome while
transitioning from initial to final
thermodynamic state, and regulates the
rate of the reaction.
Chemical thermodynamics: field of
study dedicated to defining the criteria
responsible for predicting whether a
reaction is feasible and will proceed
spontaneously. The favorability of a
reaction to proceed thermodynamically
does not determine its rate.
Dilution theory: also known as the
molecular diversity hypothesis; suggests
that low concentrations, particularly for a
complex mixture, can limit the ability of
an organism to metabolize a substrate.
Ecosystem properties: include the
extrinsic environmental conditions that
could constrain the degradation of OM,
including abiotic and biotic factors.
Examples include temperature, pH,
oxygen availability, nutrients, adsorption
to minerals, and decomposer
community composition.
Functional groups: specific groups of
atoms or bonds within an organic
compound that are responsible for its
functional characteristics, including how
it is likely to react. Carboxyl and phenolic
groups are examples.
Gibbs free energy (ΔG): calculated as
the difference in free energy between
reactants and products for a given
reaction at constant temperature and
pressure. When ΔG is negative, the
reaction is spontaneous; when ΔG
reaches zero, the reaction has reached
chemical equilibrium.
Humification: breakdown and
transformation of organic material into a
complex mixture of humus that is
molecularly distinct from starting
materials and can persist in soils.
Isomeric diversity: range of structural
conformations for molecules with the
same molecular formula and mass; the
number of possible isomeric structures
increases with molecular mass and
could reflect functional diversity in terms
of susceptibility to degradation.
Mineralized/mineralization:
describes a set of biological and
physicochemical reactions degrading
OM into inorganic compounds
(e.g., carbon dioxide and methane).
Molecular composition: generic term
describing the chemical composition of
OM, including its chemodiversity, optical
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debated, with controlling factors ranging from molecular composition and age, to environmental
factors, such as association with mineral particles [19–23]. Thus, our fundamental conceptualiza-
tion of controls on OM degradation is fragmented and developing in an inconsistent manner
within and across ecosystems.

Why Merge Insights across Ecosystems?
Soil, freshwater, and marine ecosystems are significantly different environments. Accordingly,
researchers in these areas have developed specialized terminology and experimental approaches,
and have unique histories that generated current theories. Each ecosystem is unique in terms of its
OM sources, decomposer communities, food-web dynamics, and ecosystem properties. These
differences inherently imply that the relative importance of the factors regulating OM degradation
may ‘appear’ to be unique to each ecosystem. Yet, regardless of the ecosystem, OM is
fundamentally a mixture of degradation by-products originating from living biomass. In fact,
aside from extreme cases [24], OM originates from cellular material, including biomolecules
(e.g., carbohydrates, proteins, lipids, nucleic acids, and lignin). Accordingly, we argue here
that the underlying controls of OM degradation should be universal, with the relative impor-
tance of individual controls enhanced or masked depending on local ecosystem properties.
We highlight the need to question why OM degradation ‘appears’ to be regulated differently
across ecosystems. Currently, the literature is full of stimulating discussions, and we have a
unique opportunity to consolidate newly acquired knowledge derived from one ecosystem to
help explain outliers in adjacent ecosystems. Ultimately, we encourage moving towards the
development of a more holistic perspective of OM degradation that is ecosystem independent,
and critical to the development of earth system models, particularly those linking terrestrial and
aquatic ecosystems [25].

Ideally, our conceptual understanding of OM degradation should be robust and flexible to
changing environmental conditions. Given that ecosystem properties are highly dynamic, the
fate of DOMhas important implications for ecosystem functioning, including whether it is a carbon
source or sink. Factors such as permafrost thawing, increased primary production, shifting
decomposer community composition, increased suspended sediment loads to aquatic systems
[26,27], eutrophication, ocean acidification [28], land-use change [29,30], and extreme climate
events [31,32] can shift OM degradation rates. These changes can traverse ecosystem boundaries.
Thus, a major challenge for earth system models is the incorporation of reliable estimates of OM
degradation rates across all ecosystems, particularly under changing environmental conditions.
Even small shifts in biosphere OM degradation rates can have large, nonlinear consequences on
the release of the greenhouse gases, CO2 and CH4 [33]. Thus, here we raise awareness of diverging
conceptualizations of OM degradation across ecosystems, identify features of emerging theories
that could be contributing to diverging viewpoints, and encourage future research efforts to develop
a more unified understanding of OM degradation.

The Complex Interplay between Molecular Composition and Ecosystem
Properties
In recent years, there has been a shift away from recognizing the role of OM composition in the
soil sciences, with emphasis on discrediting the humification theory [9]. In fact, ‘omitting any
emphasis on substrate composition’ has been suggested [9]. By contrast, the prevailing freshwa-
ter perspective and one marine perspective is that molecular composition remains highly relevant
to predicting OM degradation [13,14]. However, it is important to recognize that ecosystem
properties and molecular composition are not mutually exclusive and, at a given place and time,
one may ‘appear’ more relevant than another. Chemical thermodynamics states that, under
standard conditions, the molecular composition of a compound determines if mineralization is
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characteristics, elemental composition,
functional group composition, or
isomeric diversity.
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favorable. The thermodynamic favorability, orGibbs free energy (ΔG), considers bond energies,
the chemical structure of OM, functional groups, and the oxidation state of carbon [34]. When
ΔG is negative, the reaction proceeds spontaneously, and energy is released. However, in the
case of DOM, ΔG is generally positive [34] and, thus, requires coupling to the reduction of a
terminal electron acceptor or formation of a reduced carbon product [34]. However, thermody-
namics is not concerned with the metabolic pathway or kinetics of the reaction. Rather, a kinetic
energy barrier, called the activation energy (Ea), must be overcome, and this regulates the rate
of reactions. Thus, environmental conditions are relevant in constraining the rate of the reaction
and even ‘labile’ OM can persist in certain scenarios. If conditions change, such that a specific
enzyme becomes available for example, the activation energy is reduced allowing the reaction
to proceed rapidly. Thus, in some scenarios, a reaction can be thermodynamically favorable but
kinetically unfavorable. In such a scenario, even labile DOM can persist. Alternatively, a
nonthermodynamically favorable reaction can occur if the activation energy is low.

Since OM is a complex mixture of compounds, each with its own ΔG and Ea, it is useful to
consider a continuum of thermodynamic and kinetic factors at play. Accordingly, the net effect
might be that one ‘appears’ more relevant than another at a particular place and time. For
instance, if compounds are approaching thermodynamic control rather than kinetic control, the
overall reaction rate of the OM pool might reflect energy differences between reactants and
products. In this case, the molecular composition can appear to be important to the ‘apparent’
rate of the bulk DOM reaction [scenario (i) in Figure 1]. In this case, more bioavailable and
photolabile compounds might be degraded first, followed by less biolabile and photolabile
compounds. When environmental constraints are imposed (such as limitations to the decom-
poser community), the activation energy increases, resulting in slower kinetics [scenario (ii) in
Figure 1]. Within any pool of OM, there can be competing factors at play. For instance, the quality
of plant litter in soils could contribute to OM pools spanning across a range of kinetics from
scenario (i) to (iii) depending on how they form associations with mineral surfaces [35]. Tempera-
ture is relevant, being imbedded in the calculation of ΔG, and being relevant to kinetics, such as
for enzymatic degradation [36,37]. Likewise, a range of other environmental factors, such as pH,
nutrients, oxygen availability, soil moisture, the absence or presence of solar radiation, and
adsorption to mineral surfaces, can shift kinetics. Under highly constrained environmental
Net degradation rates
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Figure 1. Title. Scenarios depicting
pools of organic carbon across a
continuum of degradation rates and
masses under conditions that are
(i) not constrained by environmenta
and biological conditions and highly
reactive, resulting in a small mass o
stored carbon, such as in freshwaters
(ii) an intermediate scenario whereby
some environmental constraints slow
degradation rates (such as nutrien
limitation), resulting in a larger poo
size; and (iii) a scenario under highly
constrained conditions whereby organic
matter (OM) is difficult to access
and degradation rates are reduced

substantially resulting in an accumulation of organic matter (e.g., sediment, mineral soils, or peatlands). The reversible arrows
indicate that conditions are fluid across a continuum of scenarios and dynamic, with the potential to be interchangeable. Fo
instance, if environmental and biological constraints placed on scenarios (ii) and (iii) are lifted, degradation rates can shift to
scenario (i) whereby the decomposer community is optimized, and degradation rates increase. In this conceptualization, we
assume that production rates are constant across the continuum.
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conditions, such as anoxia in peatlands or permafrost soils, the kinetic barrier increases such that
OM can persist for centuries or millennia [scenario (iii) in Figure 1]. This scenario is particularly
relevant where OM is physically separated or protected from enzymatic or solar photochemical
degradation. As degradation rates slow, the size of the OM pool can be expected to increase
[from (i) to (iii) in Figure 1]. A key point to recognize is that a single pool of OM can encounter a
full range of constraints as it travels within or between ecosystems, and interchangeably appear
to be regulated more, or less, by molecular composition [38] relative to ecosystem properties. For
instance, OM frozen in permafrost [scenario (iii)] can become biological available upon thawing
[scenario (i)], and once again be buried in lake sediment upon forming associations with particu-
late material [scenario (iii); Figure 1]. Likewise, DOM in a soil environment can be adsorbed to
minerals and protected from decomposition [scenario (iii)] and subsequently desorbed back
into solution phase [scenario (i), Figure 1].

The Relationship between Residence Time and Reactivity
In cases where the molecular composition is found to regulate degradation, as in freshwater
ecosystems [13,39,40], there is a strong negative relationship between degradation rate and
water residence time [39] (Figure 2A). This negative relationship between residence time and deg-
radation rates has also been observed for marine sediments [20,41], but at far longer timescales.
DOM in freshwater ecosystems is largely accessible to biological and photodegradation, lying
conceptually near scenario (i) in Figure 1. However, even in freshwaters, a sizable fraction of the
relationship between water residence time and degradation rates remains unexplained (59%)
[39], suggesting that environmental constraints contribute to the unexplained variability in
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Figure 2. Title. Illustration of (A) the
relationship between residence time
and reactivity (e.g., [39]) with minima
environmental constraints, and (B) unde
a scenario where degradation is
disrupted by ecosystem properties
making organic matter (OM) inaccessible
for biological degradation for an
extended period of time (pink-broken
line), before becoming accessible
once again. Using radiocarbon dating to
predict reactivity in scenario (B) would
likely misrepresent the amount o
time OM was exposed to degradation
processes.
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degradation rates. In a complimentary study of whole-lake dissolved organic carbon (DOC)
budgets, reactivity was strongly related to water residence time, and nutrient status helped
predict whether the lake was a carbon source or sink [40]. In the ocean, initial degradation
rates of algal DOM are also rapid, with residence time likewise being inversely linked to reactivity
[42]. In fact, most marine DOM is generated from primary productivity and consumed within
weeks, with only ≈1% left after a decade [42]. Only an extremely small fraction of the DOM pool
accumulates, ultimately persisting for millennia. In soil environments, when the opportunity to
be physically protected by mineral surfaces is removed, soil DOM can have similar degradation
rates (<0.001–0.30 d–1) [43] to its freshwater counterpart (0.001–0.50 d–1) [44,45]. Intriguingly,
the molecular composition of soil DOM can help predict how it functions; for example, whether
associations with mineral surfaces will form [43,46,47]. (See Figure 3.)

When Time Stands Still: Disconnecting Chronological Time (14C) from Reactivity
In the subsoil environment, soil OM with a radiocarbon age of several thousand years has been
found to be highly ‘labile’ once destabilized into solution [48], as for shale degradation [49].
This observation was previously interpreted as a reason to discredit the consideration that
residence time is a predictor of OM reactivity [50]. In consolidating this apparent discrepancy, it
appears that ,when OM is biologically inaccessible, the relationship between residence time
and reactivity may be disrupted (Figure 2B). When the opportunity for enzymatic degradation,
for example, is eliminated, the time–reactivity clock is effectively paused. Yet, chronological
time continues, and the time–reactivity relationship resumes once the constraint is lifted. The
chronological age of OM is reflected by radiocarbon dating of 14C; a proxy for the time since
the original plant tissue fixed atmospheric CO2, and continues irrespective of degradation.
Thus, when OM is biologically inaccessible due to physical and chemical factors, such as occlu-
sion in mineral pore spaces [51], extremely dilute conditions [15,16], being frozen in permafrost
[52], or anoxia [53], the radiocarbon date is irrelevant to its reactivity or degradation rate.

Recognition that a residence time–reactivity clock operates independently from chronological
time is a relevant consideration and helps consolidate the fact that OM can persist in some envi-
ronments for a long time. We emphasize that it would be erroneous to disregard the role of time in
predicting OM reactivity and stress that effort should rather be placed on understanding when
and why the residence time–reactivity clock is paused.
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Figure 3. Title. The current
conceptualization of the dilution
theory (arrow 1) suggests that
bacterial growth is limited below a
threshold dissolved organic carbon
concentration found in the deep sea
(black-broken line, 42 uM C [16]),
even if the molecular composition
of the organic matter (OM) remains
labile with progressive decomposition.
An alternative theory in freshwater
is that the molecular composition
of OM becomes progressively less
reactive with degradation (arrow 2).
It remains unclear whether the
dilution theory holds in ecosystems
outside of the deep sea and
where the minimum threshold

concentration for effective bacterial growth lies for freshwater ecosystems, such as glacial meltwaters.
Figure inspired by [92].
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Outstanding Questions
For those working, or planning on
working, across ecosystem boundaries,
how do we overcome the set of
experimental challenges of working with
OM across highly contrasting ecosys-
tems, such as matrix effects?

What is the best measure of OM reac-
tivity that can be used in a consistent
manner across soil, freshwater, and
marine subdisciplines? Since the reac-
tivity of OM is highly variable and can be
measured as radiocarbon age, turnover
time, half-lives, and degradation rates, a
common descriptor of OM reactivity is
required to effectively compare reactiv-
ity across ecosystems.

How can we accurately measure the
distribution of OM degradation rates
across soil, freshwater, and marine
ecosystems?

How do earth system models
accommodate a flexible conceptualization
of controls onOMdegradation and include
a universal measure of molecular
composition?

How can we most effectively reduce
the uncertainty associated with
degradation rates entered into earth
system models?

In moving forward, how do we best
design empirical studies focused on
unifying controls on OM reactivity that
cross ecosystem boundaries?

Trends in Ecology & Evolution
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The Need to Test Theories across Ecosystem Boundaries
As our understanding of OM degradation dynamics progresses, it becomes clear that some
concepts are inconsistent across subdisciplines, and carefully designed cross-ecosystem
studies are required. Ideally, emerging studies would include OM from several sources and differ-
ent environmental conditions and challenge previously proposed hypotheses by testing their
strengths and limitations across ecosystem boundaries. The dilution theory is one example of
a theory that could benefit from being tested outside the marine environment. The dilution
hypothesis expresses that, at concentrations typical of the deep sea (42 μM C), DOM
compounds are in fact labile, but individual substrate concentrations lie below the threshold of
energetic requirements of prokaryotes [16]. When DOM from the deep sea was concentrated
up to a factor of 10, Arrieta et al. [35] found enhanced bacterial activity. This led to the conclusion
that concentration was limiting bacterial utilization of DOM. However, comparable freshwater
studies found that, under increasingly dilute conditions (down to 40 μM C), prokaryotic activity
was not constrained [38,54]. In addition, highly reactive OM has been found in glacial meltwaters
at concentrations similar to, or far lower than, the deep sea (11 μMC) [55,56]. Thus, it is possible
that the threshold concentration relevant for the deep sea (42 μM C) does not apply across
ecosystems and is composition dependent.

One cross-ecosystem study testing the dilution theory found that DOM from deep ocean waters
exhibits higher isomeric diversity than lake DOM. High isomeric diversity greatly reduces the
concentration of any individual compound down to picomolar concentrations, and thereby a
priori supports the dilution theory. However, the freshwater lake sample had a higher number
of chemical formulas assigned, suggesting a wider diversity of molecules but at higher concentra-
tions individually [57,58]. Thus, it is vital to recognize that the threshold concentration may be
variable in other environments. Whether this is due to DOM composition or environmental
constraints needs to be answered through a common effort. Likewise, it would be useful to
develop a better understanding of how effective a particular enzyme, or set of enzymes, might
be at cleaving the numerous structural isomers represented within a single mass to charge
peak in a mass spectrum.

Concluding Remarks
Resolving discrepancies, such as when and why a particular theory holds, is relevant for
predicting future global carbon fluxes. This is particularly important where slight shifts in the
reactivity of large pools of organic carbon can have substantial consequences to the flux of the
greenhouse gases, CO2 and CH4. For instance, it is useful to understand when and why
residence time and reactivity are connected and disconnected, and when and why molecular
composition appears to be more relevant than ecosystem properties. Cross-ecosystem studies
are critical to making the next set of important breakthroughs in our understanding of controls on
OM degradation [39,59,60]. Cross-ecosystem studies may be experimentally challenging at
times [61], yet, have previously proven to give a deeper andmore holistic understanding in the fields
of nutrient limitation and understanding of the role of extracellular enzymes [62,63]. Eventually,
these more robust theories can be incorporated into earth system models.

Although we acknowledge that ecosystem properties vary widely across ecosystems, we argue
that fundamental controls on OM degradation are universal. This boundless property [64],
whereby carbon exchanges across ecosystems indiscriminately, forces us to more rigorously
challenge the validity of concepts that have diverged in adjacent ecosystems. To unify this
fragmented understanding, we should recognize that the importance of molecular composition
can appear to be ‘masked’, because ecosystem properties are possibly limiting degradation,
and alternatively, where molecular composition appears to regulate degradation, ecosystem
Trends in Ecology & Evolution, Month 2020, Vol. xx, No. xx 7
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properties could be providing the opportunity for more rapid degradation. Since the same pool of
OM might be exposed to either extreme (fast or slow kinetics), our conceptualization should be
flexible enough to include both molecular composition and ecosystem properties as relevant
controls, and switch back and forth as needed.

Rather than complacently accepting diverging ‘ecosystem specific’ viewpoints, we suggest chal-
lenging and testing existing theories across ecosystem boundaries to reveal more universal
mechanisms behind OM preservation and reactivity. We give several examples of questions
that remain to be addressed (see Outstanding Questions). To address these, we encourage
collaborative research from scientists across ecosystems, interactions between experimentalists
and modelers and efforts to use more accessible terminology. Ultimately, we propose striving
towards a conceptualization of OM degradation that is independent of the ecosystem and flexible
to changing ecosystem properties.
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