
Boosting Store Buffer Efficiency with
Store-Prefetch Bursts

Juan M. Cebrian
Computer Engineering Department

University of Murcia

Murcia, Spain

Email: jcebrian@um.es

Stefanos Kaxiras
Department of Information Technology

Uppsala University

Uppsala, Sweden

Email: stefanos.kaxiras@it.uu.se

Alberto Ros
Computer Engineering Department

University of Murcia

Murcia, Spain

Email: aros@ditec.um.es

Abstract—Virtually all processors today employ a store buffer
(SB) to hide store latency. However, when the store buffer is full,
store latency is exposed to the processor causing pipeline stalls.
The default strategies to mitigate these stalls are to issue prefetch
for ownership requests when store instructions commit and to
continuously increase the store buffer size. While these strategies
considerably increase memory-level parallelism for stores, there
are still applications that suffer deeply from stalls caused by
the store buffer. Even worse, store-buffer induced stalls increase
considerably when simultaneous multi-threading is enabled, as
the store buffer is statically partitioned among the threads.

In this paper, we propose a highly selective and very aggressive
prefetching strategy to minimize store-buffer induced stalls. Our
proposal, Store-Prefetch Burst (SPB), is based on the following
insights: i) the majority of store-buffer induced stalls are caused
by a few stores; ii) the access pattern of such stores are
easily predictable; and iii) the latency of the stores is not
commonly hidden by standard cache prefetchers, as hiding their
latency would require tremendous prefetch aggressiveness. SPB
accurately detects contiguous store-access patterns (requiring just
67 bits of storage) and prefetches the remaining memory blocks
of the accessed page in a single burst request to the L1 controller.
SPB matches the performance of a 1024-entry SB implementation
on a 56-entry SB (i.e., Skylake architecture). For a 14-entry SB
(e.g., running four logical cores), it achieves 95.0% of that ideal
performance, on average, for SPEC CPU 2017. Additionally, a
20-entry store buffer that incorporates SPB achieves the average
performance of a standard 56-entry store buffer.

I. INTRODUCTION

Memory latency continues to limit the performance of

modern out-of-order cores, despite the efforts to hide load

and store latency. Load latency is hidden thanks to two well-

known techniques [13]: out-of-order execution of loads and

prefetching mechanisms. Out of order execution of loads is

achieved either by relaxing the consistency model provided

by the system (e.g., ARM and IBM Power), or through

speculative execution mechanisms when strong consistency

guarantees are provided (e.g., Intel’s and AMD’s total store or-

der – TSO) [13]. Regarding prefetching, considerable research

This work has been supported by the Spanish Ministerio de Economı́a, In-
dustria y Competitividad – Agencia Estatal de Investigación (grant ERC2018-
092826) and the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement
No 819134), the Vetenskapsradet project 2018-05254 and by the European
joint Effort toward a Highly Productive Programming Environment for Het-
erogeneous Exascale Computing (EPEEC) (grant No 801051).

efforts have been dedicated to develop effective strategies for

the different cache levels across the memory hierarchy [2]–[4],

[16], [17], [19], [21], [28]. Store latency has been traditionally

hidden by the store buffer (SB), which allow stores to commit

as long as the SB is not full. Stores are delayed in the SB while

other instructions (e.g., loads) can commit, effectively relaxing

the consistency model of the system (e.g., x86-TSO [25]).

However, when the SB fills (e.g., due to a cache miss), the

processor stalls. This scenario is common on store bursts,

shifting the processor bottleneck to the SB [9], [12], [23].

Research efforts regarding the efficient management of

stores in TSO focus on both store coalescing and performing

stores out of order without affecting consistency, but that

comes at the cost of increased complexity [24], [31]. Never-

theless, little effort has been directed at quantifying the impact

of store prefetching, usually by blindly applying the same

load prefetching strategies for stores. Specific techniques for

stores are almost absent in the literature, and focus mostly

on requesting the ownership (i.e., write permission) of the

memory block to be written before the write takes place but

after the actual store address is computed [13], [29].

Store prefetching [13], [29] is a fundamental technique for

enabling memory-level parallelism (MLP) for stores (more

specifically, store-level parallelism – SLP), especially in pro-

cessors that enforce the store→store order as the write-

permission request can safely resolve out of order. Intel’s

approach, as far as we can tell from published material,

consists of issuing the request for ownership when the store

instruction commits [15]. SLP increases using this technique,

but only for the stores that fit in the SB, which correspond to

only a few different memory blocks.

Even with the currently implemented store prefetching

strategies, the SB becomes a critical component in memory-

bound applications, reaching up to a third of the CPU stall

cycles on database applications [22]. Indeed, the SB size keeps

growing to prevent stalls, but its maximum size is limited

by CAM (content-addressable memory) access latency, since

every load must associatively search the SB for a matching

store [11]. For example, the number of entries of the SB in

Intel processors has increased from 32 to 56 in just 10 years,

which is significant considering the cost involved in enlarging

CAM structures. In fact, SB stalls are so critical that Intel has

568

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00054

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

���� ���� ���	

�

�

��

�

��

�

�

 ��������

�
�

��
�

��
��
�

�
��
�

�
�

�
�

�
��

��

�

�
�
�

�

�

Fig. 1: Ratio of stall cycles due to a full SB for SPEC

CPU 2017. “All” represents the average of all applications

in the benchmark suite while “SB-Bound” represents those

applications that exhibit more than 2% SB-induced stalls for

a 56-entry SB. Simulation details are given in Section V.

specifically classified them in their Top-Down model under

the memory-bound classification [33].

Furthermore, on processors that support simultaneous multi-

threading (SMT), the effective size of the SB is divided by the

number of hardware threads as the SB is statically partitioned

across threads (Section 2.6.9 of Intel’s optimization man-

ual [15]). This partitioning is related to the consistency model,

and in particular, to store atomicity semantics as dictated by

the read-own-write-early-multiple-copy atomic model (rMCA)

that is followed in actual x86-TSO implementations [1], [30].

SMT is usually enabled by default, so when not used some of

the processor resources are underutilized. Figure 1 shows how

the percentage of SB-induced stalls increases as the size of

the SB is reduced from 56 entries to one fourth (14 entries),

as it would happen in a SMT-4 processor.

In this work we propose Store Prefetch Burst (SPB), a

prefetching technique tailored to store instructions, that ef-

fectively removes SB-induced stalls. Our proposal is based on

three insights: i) only a few store instructions are responsible

for the majority of SB-induced stalls; ii) the access pattern of

the store instructions blocking the SB is easy to predict as they

frequently correspond to sequential memory-block accesses

(often as a consequence of data movement code); and iii) the

stores require a very aggressive prefetch degree, i.e, a large

amount of consecutive memory blocks have to be prefetched,

in order to hide their write latency. The latter is the reason

why standard prefetchers are unable to transform the majority

of store misses into hits, but, at best, into a limited number of

late prefetches, i.e., prefetches that should have been issued

earlier to hide the full latency.

SPB detects contiguous store access patterns in the SB and

predicts that the pattern will continue for instructions that are

not currently in the SB (due to size limits). At that point,

it triggers a store-prefetch burst in the L1 controller that

requests write permission for all the remaining memory blocks

within the current page. This prediction, differently from non-

predictive techniques [13], [29], allows SLP to be exploited

outside the code scope delimited by the SB.

Although in this work we present SPB on top of a TSO-

like SB, it can be generally applicable to SBs that relax the

store→store order, e.g., the ones implemented in ARM and

IBM Power architectures.

Our results show that a 56-entry SB, with the default

prefetch policy, is maximally-sized for today’s processors to

yield a 98.1% of the performance of an ideal (no-stalls) SB

implementation. With a simple implementation and minimal

hardware requirements (67 bits of storage), SPB achieves a vir-

tually identical performance than the ideal SB implementation

(100%). More importantly, SPB excels when SB resources are

limited, which makes it essential for both SMT and energy-

efficient designs. In fact, when halving the SB size (i.e., the

per-thread size of the SB if SMT-2 was enabled), the default

store prefetching strategy only achieves 93.6% of the ideal

SB performance, while SPB reaches 98.9%. For a 14-entry

SB (i.e., the per-thread size of the SB with 4 SMT threads, as

in Intel’s Knights Landing, IBM Power 9 or the rumored AMD

Zen 3 family), the default prefetching strategy achieves 85.9%

of the potential performance, while SPB achieves 95.4%, on

average, for all SPEC CPU 2017 applications (including those

that are not limited by SB-induced stalls). Alternatively, SPB

offers an opportunity to reduce the SB size for energy-efficient

implementations. Indeed, a 20-entry SB with SPB achieves the

same average performance than a standard 56-entry SB.

The main contributions of this paper are:

• First comparison of store prefetchers [13], [29], after an

accurate implementation in gem5.

• Deep analysis of the reasons for SB-induced stalls.

• A simple and efficient proposal to alleviate SB stalls.

• Analysis with standard and small SB sizes, showing that

SPB approaches ideal SB performance in all cases.

• Analysis of SPB with aggressive prefetching schemes,

showing that SPB is orthogonal to other prefetching

strategies, proving to be a good addition for improved

accuracy with minimal hardware resource requirements.

II. BACKGROUND

SB stalls can be critical when running memory-bound appli-

cations, especially those that require constant data movements

(e.g., databases, video compression, rendering). There are

three main alternatives to reduce SB-induced stalls: to increase

the effective size of the SB, to minimize the latency of the

stores via prefetching, and to allow stores to execute out-of-

order. The pros and cons of the first alternative have been

elaborated in the introduction and the last alternative will be

discussed in the related work. This section focuses therefore

on existing dedicated prefetching techniques for stores, which

we will use to compare our proposal with.

Two main alternatives for store prefetching initiated by

the processor can be found in the literature. In the first

one, proposed by Gharachorloo et al. [13], the prefetch for

ownership request is initiated as soon as the address of a store

instruction is computed. We will refer to this approach as at-
execute as addresses are commonly computed at the execute

pipeline stage. In the second one [15], [29], the prefetch is

initiated once the store instruction commits and it is inserted

in the SB. We name this alternative at-commit. In both cases

569

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

Pending Stores in the SB

0x0000
Address Block

0x0008
B0

0x0040 B1
0x0048 B1

0x01F0 B6
0x01F8 B6

0
SB Entry

1

8
9

54
55

0x0200 B70

...

...
Head

Tail

Head

B0

Fig. 2: Accesses to consecutive blocks in a 56-entry SB

we assume that the prefetch will allocate the block with write

permission in the L1 cache. Both techniques rely on the actual

address to perform the prefetch.

At-execute is the earliest time that a non-predicted prefetch

can be issued. The main advantage of this approach is that it

increases the chances that the ownership is ready at the L1

cache when the store reaches the head of the SB. However,

this policy issues prefetches when the store is still speculative

since stores may be later squashed for a several reasons,

e.g., stores belong to an incorrect path of execution due to

branch miss-prediction. This means that both energy and cache

resources may be wasted by moving unnecessary data through

the memory hierarchy. In addition, bringing the ownership of

the data to the L1 cache too early can lead to other accesses

evicting the block before the store performs.

On the other hand, the store prefetch requests sent at-

commit are not speculative, and it is certain that the store

will be performed (when it reaches the head of the SB).

Therefore, only useful data is stored in cache with this policy.

The drawback is that prefetching at commit can increase the

number of late prefetches when comparing to at-execute, thus

causing more stalls in the processor.

Both techniques, at-execute and at-commit, favor MLP,

allowing to bring more memory blocks in parallel to L1 cache.

Unfortunately, they limit the parallelism. At-execute can just

exploit parallelism for stores that have been executed and have

not yet been performed. At-commit exploits parallelism for a

lower number of stores, the ones committed but not performed

yet. In general, the window of opportunity to hide miss latency

is small for both approaches since prefetches are issued close

to the end of the instruction’s life cycle. In contrast, we

expand the prefetch window by accurately predicting future

store addresses.

III. MOTIVATION

A. Limitations of prefetching techniques

When no prefetching mechanism is employed stores are

serialized making the SB a serious bottleneck. Figure 2 shows

a common access pattern in which a large number of stores

perform 8-byte writes to contiguous addresses. If the store at

the head of the SB misses (block B0), the SB may fill up,

thus, stalling the processor pipeline.

Prefetching techniques for both loads and stores are usually

applied to all cache levels. Cache prefetchers can easily predict

a stride access pattern, bringing one or more memory blocks

depending on an adaptive throttling mechanism [28]. However,

the prefetching degree of the lower cache levels is usually low,

since, in the event of a prefetch misprediction, the cache can

be seriously polluted [14]. For example, an L1 prefetcher may

only prefetch the next block when the cache is accessed [15].

In that case, and following the example in Figure 2, when the

store in entry 0 performs (block B0), it will just prefetch block

B1. Block B2 will only be prefetched when the store in entry

8 (block B1) performs, which will be after bringing the block

B1 from memory to L1.

Store prefetch techniques such as at-execute and at-commit

further improve MLP, since several blocks are prefetched to the

L1 cache in parallel. Indeed, all the memory blocks required

by stores in the SB can be prefetched in parallel, as long as

hardware resources allow it. For example, assuming the same

example of a store instruction in a tight loop that generates

sequential stores to memory locations of 8 bytes, an at-commit

policy for a 56-entry SB will prefetch 7 blocks, assuming

64-byte blocks (Figure 2). When the oldest entry in the SB

is freed, a store instruction that uses block B7 is inserted.

At that point an at-commit prefetcher will request block B7

and, when the prefetch request succeeds, the L1 prefetcher

will also bring block B8, but that is as far as it will go. The

prefetching degree of at-commit and at-execute can be higher

than the one employed by prediction-based cache prefetchers.

However, assuming a best case scenario where all stores hit

in the L1 cache, only one entry from the SB will be released

every cycle. This means that the prefetcher will bring a new

block to L1 every 8 cycles (we assume 8 writes per memory

block in the example), going back to serialization and missing

MLP. In essence, having a big SB is especially useful on sparse

codes, but of limited gain on dense codes with store bursts.

B. Characterization of SB-induced stalls

We performed a detailed analysis of SB-bound applications

which revealed that: i) a limited number of program coun-

ters (PCs) caused most SB-induced stall cycles, ii) the code

sections where these PCs belong are mostly in the operating

system and system libraries, and iii) these codes write large

chunks of contiguous data.

In effect, Figure 3 shows that some of the SB-bound

applications spend most time stalled on stores that belong

to library calls (memcpy, memset, calloc) or the operating

system (clear page orig1). All these functions produce large

store bursts when applied to big data structures, causing stalls

in the pipeline once the SB fills up.

On the other hand, for applications like deepsjeng or roms,

most SB-induced stall cycles are produced by PCs from the

application itself. Indeed, store bursts are created by manually

moving data between data structures, or resetting a memory

allocation to constant values (e.g., 0).

1This function is called by the OS every time a page is assigned to user
code. It sets a memory page to zero for security reasons.

570

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

������ ���	
���
 ���� ������� ���� ��������� ��	������ ����
� !

�� !

�� !

�� !

"� !

#�� !
$������	���%&��� '����	���%�(�	��%)%�(�	��%*��������

Fig. 3: Location of stores causing SB-induced stalls for SB-

bound applications in SPEC CPU 2017

In addition, it is important to note that applications that rely

on STD containers (vectors, maps, etc), would be constantly

moving data around to resize the containers when required.

This issue will be exacerbated in big data applications, where

most of the data footprint does not fit in the last level cache.

The same will apply to high-level development environments

that manage memory transparently at runtime, such as Java

or C#, if they need to reallocate data or use their garbage

collection while the user application is running.

IV. STORE-PREFETCH BURSTS

In this section we describe the concept and implementation

of SPB, based on the motivation and observations presented

in the previous section. The goal of SPB is to detect store

bursts to contiguous addresses and prefetch as many blocks as

possible within the current memory page.2

A first approach could be to detect a contiguous store access

pattern based on the memory addresses of stores. However,

we observed that detecting such contiguous access pattern is

very restrictive and misses many opportunities. The reason is

that store addresses are indeed shuffled by the compiler (e.g.,

reordering after a loop unrolling), and even though memory

blocks are fully accessed, addresses themselves do not follow

a contiguous accesses pattern.

In order to capture complex patterns, such as shuffling

and interleaving, while keeping an elegant implementation,

we propose to detect accesses to contiguous memory blocks

within a certain time frame (or number of stores). This allows

SBP to tolerate a certain degree of interleaving and shuffling,

as long as all accesses still map to the same memory block.

Once a contiguous access pattern is detected, SPB predicts

that this pattern will repeat for the whole memory page. Then

SPB issues a prefetch request for write permissions to the L1

controller for the remaining blocks in the page (forwards).

A. Micro-architecture

The implementation of SPB requires minimal hardware

modifications and resources. Figure 4-(top) shows a diagram of

the proposed micro-architectural extensions. SPB employs just

three registers to detect when to trigger the prefetch burst (a

2We did not explore in this work prefetching beyond page boundaries
despite our prefetcher can work with virtual addresses and overcome the
limitation of cache-level prefetchers: consecutive virtual pages could not map
to consecutive physical pages.

ROB

SB

Current T:8

ROB SB L1Controller

ST 0x000
ST 0x008
ST 0x010
ST 0x018
ST 0x020
ST 0x028
ST 0x030
ST 0x038
ST 0x040
ST 0x048
ST 0x050
ST 0x058

SPB

L1Controller

Prefetch Burst
Generator

SPB

Sat. Counter (4-bits):
Last ST (-bits): ST 0x000

ST 0x008
ST 0x010
ST 0x018
ST 0x020
ST 0x028
ST 0x030
ST 0x038
ST 0x040
ST 0x050
ST 0x058
ST 0x060

0x038
0

Commit

Store Count (5-bits): 8-
+

58

58 1

=N?

(1)

(2)

(3)

No Yes

++

=N/8?

Yes

Generate SPB

Reset

WritePF+SPB 0x040

T0: Commit
ST 0x000

TSOBlock = 1
Write 0x000

Last = 0x00
Sat. = 0
St Count = 1

Miss (0x000)
I->IM: Getx

T1: Commit
ST 0x008

TSOBlock == 1
WritePF 0x008

Last = 0x00
Sat. = 0
St Count = 2

IM->IM: PopReq.

T2: Commit
ST 0x010

TSOBlock == 1
WritePF 0x010

Last = 0x0
Sat. = 0
St Count = 3

IM->IM: PopReq.

T3: Commit
ST 0x018

TSOBlock == 1
WritePF 0x018

Last = 0x0
Sat. = 0
St Count = 4

IM->IM: PopReq.

T4: Commit
ST 0x020

TSOBlock == 1
WritePF 0x020

Last = 0x0
Sat. = 0
St Count = 5

IM->IM: PopReq.

T5: Commit
ST 0x028

TSOBlock = 0
WritePF 0x028

Last = 0x0
Sat. = 0
St Count = 6

IM->M: PopReq.

T6: Commit
ST 0x030

TSOBlock = 1
Write 0x008

Last = 0x0
Sat. = 0
St Count = 7

M->M

T7: Commit
ST 0x038

TSOBlock = 0
WritePF 0x038

Last = 0x0
Sat. = 0
St Count = 8

M->M: PopReq.

T8: Commit
ST 0x040

TSOBlock = 1
Write 0x010

Last = 0x0
Sat. = 1 -> 0
St Count = 0

Hit (0x010)
M->M

WritePF 0x030

WritePF+SPB 0x040

M->M: PopReq.

Hit (0x008)

I->PF_IM: GetPFx
I->PF_IM: GetPFx

I->PF_IM: GetPFx
............

Write 0x010

Misses (0x040+)

block 58

1

0

0

0

0

0

0

Fig. 4: SPB micro-architecture (top) and running example

(bottom). I, M, IM, PF IM, Getx, GetPFx and PopReq. are

gem5 MESI coherence protocol states and messages.

total of 67 bits). The first register, last block, stores the address

of the block being written by the last store that committed (58

bits). The second register is a saturated counter that tracks

consecutive blocks (4 bits). The last register, store count, keeps

the number of stores considered by SPB (5 bits).

When a store commits, SPB gets the address of the block

to be written by the store (omitting the six least significant

bits of the target memory address for 64-byte blocks) and

computes the difference with respect to the block address

of the last committed store (Figure 4-(1)). If the difference

is 0, both stores access the same block and the saturated

counter is not modified. If the difference is 1, the stores access

consecutive blocks, and the saturated counter is increased. In

any other case, the saturated counter is reset. After each store

computes the difference, the last block register is updated with

the current block address and the store count is increased.

571

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

Every N stores (where N is a configurable parameter), we

check the saturation counter (Figure 4-(2)). If the saturation

counter shows that we have accessed N/8 blocks (as a 64-byte

block can have 8 consecutive 8-byte stores), we infer that we

are storing data to consecutive locations and we predict that

there will be a store burst. It is relatively simple for SPB to

prefetch backward store bursts (e.g., to prefetch data from the

stack). However, we found no evidence that backward store

bursts cause SB stalls, so this extension is not considered in

this work, as it would not provide perceptible performance

improvements for the evaluated applications.

B. Running example
Figure 4-(bottom) shows a running example considering

the consecutive access pattern of 64-bit stores used in the

motivation section. To simplify the example, we assume that

the processor commits one instruction per cycle, that all stores

miss in L1, and that the L1 and L2 latencies are 1 and 4 cycles,

respectively. If SPB is configured to check the saturation

counter every 8 stores (N = 8), the differences computed

by SPB would be 0, 0, 0, 0, 0, 0, 0, 0, and 1 (Figure 4-

(1)). This means that we have accessed two different blocks

in the last 8 stores, and therefore, the saturation counter is

incremented by 1. During each cycle the SB continues to send

write prefetch requests using the default at-commit policy, that

will be discarded (PopReq) when they find that the requested

block is already in L1. Per-cycle coherence protocol state

transitions and messages are also shown in Figure 4. After 8

stores (T8), the saturation counter is compared to (8/8, Figure

4-(2)). Since the results match, SPB sends a prefetch burst

request to the L1 controller (Figure 4-(3)).

C. Sensitivity to parameters
We performed a sensitivity analysis with respect to the

choice of N. We found that the optimal N value varies

depending on the SB size, more specifically, optimal N is 48

for a SB of 14 entries, 24 for an SB of 28 entries, and 48 for

a SB of 56 entries. In general, values between 24 and 48 lead

to high performance. For our evaluation, we chose a value of

48 for N as the variability of the results for the 28-entry SB

is minimal, for N between 24 and 48.
We also considered an SPB variant that dynamically adapts

to different data sizes, not systematically assuming 8-byte

stores. That is, the saturation counter is not tested against

N/8, but to a dynamically adjusted threshold N/S, where S
depends on the data size of the stores in that window. Our

results showed that this variant performs worse than the simple

SPB presented in the previous subsection, due to adaptation

hysteresis and lost opportunity.

D. Discussion: Software alternative
An alternative to SPB would be to perform aggressive

software prefetching in code sections where the programmer

thinks that there would be store bursts (e.g., system libraries

or kernel functions).
However, there are several reasons why a hardware imple-

mentation is a better choice. First, programmers may not rely

TABLE I: Configuration parameters

Chip details
Core 1 and 8 out-of-order cores, 2.0GHz

Core details
Fetch, decode, rename width 4 instructions
Dispatch, issue, commit width 4 instructions
TLB 8 way, 1KB
Branch predictor L-TAGE 64KB
Branch target buffer 8K+8K entries
Fetch buffer, decode buffer 16B, 56-μops
Fetch, load and store queues 32 entries, 72 entries, 56 entries
Physical registers 180 integer + 180 floating point
Issue queue, re-order buffer 97 entries, 224 entries
Functional units 1 Int ALU + 3 Int/FP/SIMD ALU
Instruction latencies (int) add (1c.), mul (4c.), div (22c.)
Instruction latencies (fp) add (5c.), mul (5c.), div (22c.)
L1 instruction cache 32KB, 8-way, latency: 1 cycle
L1 data cache 32KB, 8-way, latency: 4 cycle
L1 prefetcher Stream prefetcher (stride)
L2 cache 1MB, 16-way, latency: 14 cycle
L3 unified cache 16MB, 16-way, latency:36 cycle
MSHR entries 64 per cache (per bank at L3)

on library calls, performing the memory copies manually with

”for” loops (e.g., deepsjeng and roms). Second, introducing

many software prefetching instructions would fill the pipeline

with ”useless” instructions (e.g., 64 prefetch instructions per

memory page). Third, software prefetches will not have any

effect if they entail page faults. Fourth, software prefetchers

would bring the block to cache, but not necessarily this write

permission.

V. METHODOLOGY

We employ the widely used gem5 [6] simulator modeling a

x86 full-system environment. We simulate single- and multi-

core processors using the detailed out-of-order CPU and

memory hierarchy of gem5. Table I summarizes the main sim-

ulation parameters The simulated system runs Ubuntu 16.04

with Linux kernel 4.9.4. We developed extensions to simulate

an x86 Skylake-X processor. Execution and issue latencies

are modeled as measured on real hardware by Fog [10]. We

modified gem5 to support pipelined L1 accesses for stores.

Energy consumption is evaluated with McPAT [18] using

a process technology of 22nm (minimum available in the

current version), a voltage of 0.6V and the default clock gating

scheme. We incorporate the changes suggested by Xi et al. [32]

to improve the accuracy of the models. We model the extra

accesses to the L1 and the prefetch requests generated by SPB.

The cost of the registers introduced by SPB and the logic to

calculate the block difference is negligible compared to the

rest of the structures in the core.

gem5 does not include a specific store prefetching (but a

generic L1 stream prefetcher for both loads and stores). The

lack of a dedicated store prefetcher causes serialization of the

stores, and leads to sub-optimal performance. We have imple-

mented an at-commit prefetch strategy [15], [29], according

to the specification from the Intel optimization manual (Sec.

2.1.5.1), showing speedups of 15%, on average, for SPEC

CPU 2017 and the system configuration described in Table I.

We employ the at-commit implementation as our baseline

572

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

system as it is the default option available in real hardware.

We also implemented the at-execute prefetch policy [13] as

an academic alternative. Finally, we also compare our results

against an ideal SB implementation (Ideal) that has no stalls

due to SB capacity issues and all blocks in the SB are

prefetched for permissions in parallel.
In addition to the three different prefetching strategies (at-

commit, at-execute and SPB), we consider three different SB

sizes in our evaluation: a 56-entry SB (SB56), a 28-entry SB

(SB28), and a 14-entry SB (SB14).
We run the whole SPEC CPU 2017, compiled using GCC

5.5 with -O2 optimization flags. Statistics are gathered for the

Region of Interest (ROI) of the benchmarks. The ROI begins

after the initialization phase of the application and ends before

any final output. We simulate 2 billion instructions inside the

ROI, after a brief warm-up of the caches for 100 million cycles

within the ROI.
We define as SB-bound applications those that show more

than 2% of SB-induced stalls for our baseline configura-

tion: bwaves, cactuBSSN, x264, blender, cam4, deepsjeng,

fotonik3d, and roms. For the sake of clarity we only show per-

application results for SB-bound benchmarks. Nevertheless,

all figures include a bar that represents the geometric mean

for all (ALL) benchmarks in the SPEC CPU 2017 suite, as

well as a bar that isolates only the SB-bound (SB-BOUND)

benchmarks.
In addition, we run all the applications from the PAR-

SEC [5] multi-threaded benchmark suite with eight threads and

simlarge inputs (except freqmine and raytrace that did not run

correctly under gem5). We measure performance within the

region of interest (ROI), that is, all instructions executed after

initialization and before output. Statistics are gathered after

100 million cycles within the ROI to warm up the caches.

The SB-bound applications in PARSEC are bodytrack, dedup,

ferret, and x264, according to our criteria of more than 2%

SB-induced stalls in the baseline configuration.

VI. EVALUATION

In this section we show in detail how SPB outperforms

all previous prefetching strategies in terms of both execution

time and energy consumption. In addition, we show how all

prefetching approaches behave regarding the reduction of SB-

induced stall cycles at issue, as well as how reducing SB

stalls affects overall issue stalls due to other resources (e.g.,

registers, reorder buffer, load queue, etc). Next, we show how

SPB behaves as a prefetcher, showing the success rates as well

as the increment in prefetch network traffic and L1 accesses

(to tags). Finally, we show how this increment in traffic and

L1 accesses affects the performance of the applications. To

do so, we rely on Intel’s Top-Down model information [33].

More specifically we will focus on execution stalls while there

are L1D misses pending. This statistic is used to define the

level of memory-boundness of the application [20].

A. Performance and energy
Figure 5 shows the execution time normalized to an ideal

1024-entry SB for all the evaluated prefetching strategies and

��� ������	
 ��� ������	
 ��� ������	

���� ��
� ����

����

����

����

����

����

����
��������� ���������� ���

	
�
��

�
�

�
�!

�
��

 "
#
�
$
%
&�

�
��

 �
'
 (

�
��

�
�)

Fig. 5: Norm. performance to Ideal for different SB sizes

different SB sizes. For a SB of 56 entries, our proposal

achieves 100.5% of the performance of an ideal SB. This

provides an additional 2% performance improvement over

Intel’s strategy (at-commit - 98.1%). The performance gap

between at-commit and SPB increases to 6.8% for SB-bound

applications, where SPB also achieves 102.3% of the the

ideal SB performance. This super-linear speedup comes from

the predictive nature of SPB. Although initially unintended,

SPB brings cache blocks to L1D that are also used by loads

in the application. This reduces the average wait time of

loads (as we will see later in Figure 14), and that results

in a reduction of misspeculated instructions. Indeed, up to

10% misspeculated instructions are no longer executed, since

branches are resolved faster with SPB.

When we move to SB28, SPB can provide additional 5.2%

performance when compared to at-commit for all SPEC CPU

2017. For this SB size we manage to achieve 98.9% of the

ideal SB performance. If we focus only on SB-bound applica-

tions, SPB outperforms at-commit by 13.80% (98.7% of ideal).

Finally, in the case of SB14, the use of advanced prefetching

strategies becomes critical. In this scenario, the at-commit

strategy barely reaches 85.9% or the ideal SB performance,

70.1% if only SB-bound applications are considered. On the

other hand, SPB raises those numbers to 95.4% and 92.6%,

respectively. This translates into an improvement of around

9.5% for all the SPEC CPU 2017, and 22,5% for SB-bound

applications.

The advantages of SPB are, therefore, clear. SPB allows

for smaller SB sizes while keeping performance levels much

closer to an ideal implementation. Indeed, a 20-entry SB with

SPB suffices to achieve the same average performance as a

standard 56-entry SB.

Figure 6 shows the per-benchmark performance improve-

ments for SB-bound applications. For cactuBSSN, blender,

cam4, deepsjeng and fotonik3d, the SB can be shrunken down

to 14 entries without major performance penalties. However,

for the rest of applications, having a 14-entry SB will pose

a serious performance penalty. There are several applications

that show better performance for SPB than the ideal SB. As

mentioned previously, this is due to a beneficial side effect

on L1 load hit rate for some configurations. In roms the

compiler has interleaved many stores from loop unrolling,

573

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

������ ���	
���
 ���� ������* ���� ��������� ��	������ *���
����

����

����

�� �

��!�

"���

"�"�

"���
#	$%����	 #	$&���
	� �'�

�
*�

�+
'
�
*�
�+
	�

+,
�
�
�
�+
-�

�
*�

+�
�
+�
�
		
�
*.

(a) 14-entry SB

������ ���	
���
 ���� ������* ���� ��������� ��	������ *���
����

����

��"�

����

����

����

����
��	
���
� ��	������� ���

�
�
��

��
�
�
��
��
��
��
�
�
�
��
��

�
��
�

�
�
�
��
�
�!

(b) 28-entry SB

 "�#�� ��������� ��$% ��&��� ���% ���'�(�&) ����&
��� ����
��$�

����

��"�

����

����

����

����
��	
���
� ��	������� ���

�
�
��

��
�
�
��
��
��
��
�
�
�
��
��

�
��
�

�
�
�
��
�
�!

(c) 56-entry SB

Fig. 6: Performance of SB-Bound applications normalized to

an ideal SB

and prefetches by SPB produce additional L1 misses (conflict

misses more specifically).

Finally, Figure 7 shows the effects of SPB in cache dynamic

energy consumption, total core dynamic energy consumption

and overall core energy consumption (dynamic + static).

SPB slightly reduces the dynamic energy consumed by all

cache levels. While SPB increases prefetching traffic and

block replacements (between 0.4% and 1.1%), there is also

a significant reduction on L1D cache accesses coming from

misspeculated instructions. Given that we are executing less

misspeculated instructions, the overall dynamic energy is

reduced. Therefore, the net energy savings for all SB sizes

are positive. Moreover, the reduction in total leakage energy

due to the performance improvements given by SPB offsets the

increase in cache dynamic energy, thus further reducing energy

consumption. More specifically, net savings for SB sizes of 14,

��� ������	
 ��� ������	
 ��� ������	

�������	
�����

���	 �������	
�����

���	 ������

���	�

��	
��������������

���

���

���

���

���

��

��

��

��

�

�

��
�
�

��
��
�

�!
�!
�

��
��
�

��
�
"

��
�
��
�

��
�"
�

��
��

��
�
�

��
��
�

�!
��
"

�#
��

��
��
�

��
��
�

��
�
�

��
��
�

��
�"
�

��
�!
�

�
��

��
��
�

��
��

��
��
!

��
��
�

��
�#
"

�
��
�

��
��
�

��
��
"

��
��
#

��
�!
�

��
�!
�

�
��
�

��
�!
�

��
��
�

��
�"
"

��
��
�

��
�#

�$%�&��%�� �$%�&��%�� �$%�&��%"�
'���&��%��
'���&��%��
'���&��%"�

(
�
��

�
��)
�
*
��

�
��
	
��
�
��
��
�
�
�
�
��
��

/
�

Fig. 7: Normalized energy to at-commit (less is better).

Breakdown in cache dynamic energy (L1+L2+L3), total core

dynamic energy and total energy (dynamic + static)

+,, �%�%-.(� +,, �%�%-.(� +,, �%�%-.(�
�%�� �%
� �%�$

�

��

���

��$

���

�

��

+��������� 	
�

�

��
��
	
�
��
��
���
��

��
��
�

�
�
��
��
��
�
�
��
�
��
�
��
�
��

Fig. 8: Normalized SB stalls to at-commit for several SB sizes

(less is better)

28 and 56 entries are 6.7%, 3.4% and 1.5% respectively. The

benefits reach 16.8%, 9% and 4.3% respectively for SB-bound

applications. This shows that SPB is not only faster than at-

commit and at-execute strategies, but also saves energy (both

static and dynamic). At-Execute (Exe. in the Figure) barely

has any impact on energy consumption, with savings around

1%.

B. Impact on SB-induced stalls

The next step is to show the reduction of SB-induced stalls

on the processor. Figure 8 shows the normalized SB stalls to at-

commit strategy for different SB sizes. SPB manages to drop

the average SB related stalls by 24% (worst, SB56) to 37%

(best, SB28). However, we are still far from completely re-

moving SB-induced stalls. Most of the remainder SB-induced

stalls are either ”cold” stalls (before SPB detects the pattern),

late prefetches (to be discussed later), or code sections that

do not follow a pattern we can capture. Figure 9 shows the

normalized stalls for SB-bound applications.

Looking at performance numbers in the previous section, we

can observe that removing additional SB related stalls (Ideal

SB) would only move the bottleneck to a different resource.

Indeed, Figure 10 shows the normalized issue stalls to at-

commit for all the studied SB sizes. The normalized values

are broken down based on the source of the stalls, that can

be either the SB, or another resource (Other) (e.g., reservation

574

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

���#�� �������� !"#$ ���&��� ���$ ���'�(�&) ����&
��� ����
�

��"

��$

��#

���

�

���
���	
��
�� ���

�
�
��

��
�
�
��
��
���
��
�
��
��
�
�
�
�
��
��
��
�
�
��
�
��
�
��
�
��

(a) 14-entry SB

������ ����
����
�� ���!"�� ��� "��#�$�!% &���!���" ����
�

���

��

���

���

�

���
���	
��
�� ���

�
�
��

��
�
�
��
��
���
��
�
��
��
�
�
�
�
��
��
��
�
�
��
�
��
�
��
�
��

(b) 28-entry SB

������ ����
����
�� ���!"�� ��� "��#�$�!% &���!���" ����
�

���

��

���

���

�

���
���	
��
�� ���

�
�
��

��
�
�
��
��
���
��
�
��
��
�
�
�
�
��
��
��
�
�
��
�
��
�
��
�
��

(c) 56-entry SB

Fig. 9: Per SB-Bound application normalized SB stalls to at-

commit for different SB sizes

stations, reorder buffer, load queue, registers, etc). For exam-

ple, for a SB of 14 entries (Figure 10-a), and considering

the geometric mean of all SPEC CPU 2017, the ideal SB

manages to reduce the total issue stalls by 69.3% compared to

at-commit. The source of that reduction comes solely from SB

stalls. At the same time, the ideal SB increases the total issue

stalls by 22.1% because of lack of other resources. This leads

to a net stall reduction of 47.2% at issue stage. On the same

scenario, SPB is able to reduce 31% issue stalls related to

the SB, while also decreasing issue stalls due to lack of other

resources by 3.7%. This is related to the super-linear speedup

of some applications (e.g., fotonik3d), since store prefetches

reduce the wait times of future loads that would otherwise miss

in L1, thus releasing ”Other” resources faster than the ideal

SB. This leads to a net stall reduction of 34.7%, 12.5% below

the Ideal SB. Figures 10-b and 10-c also show net savings

+,, 	���-.�� +,, 	���-.�� +,, 	���-.��
	��	��

� �����	
��

� ����
��

�

	
��

	��

	��

	��

	��

�

��

��

	�
�

�

	�
��
�

��
��

��
��

	

��
�

	

��
�

	�

�
��

	�
��
�

	�
��
�

	�
��
�

	�
��
�

	�
��
��

	�
��
��

	�
��
��

��
�

��
��
�

	�
��

�

	�
��
��

��	�������
�� � ��

�
!
�"

��
#�
�
�
�
��
��

�
��
!
��
�	
�
!
"
"
#�
�$
%
&

(a) 14-entry SB

�''
�	��(�) �''
�	��(�) �''
�	��(�)

�	
��

� �����	
��

� ����
��

�

	
��

	��

	��

	��

	��

�

��

��

��

	�
��

�

��
��

�

���
�

��
��

	

��
�

	

��
�	

�

��
��

��

�	

�

��
��

�

���
�

��
���

��

�	

�

��
���

�

��

�

����
�

����
�

��

��

��

�	

�

���������� ��� ����

�
�

��
��

 !
!

�
�

�!
��

!
��

�
��

��
�

�
�

�
 �

�"
#

$

(b) 28-entry SB

�%% ����&'�(�%% ����&'�(�%% ����&'�(
������

! &�)������

! �������

!

����

���

�
�

�	�

���

�

��

	�

�

��
��

�

�	
��

�

��
��

�

���
�

��
��

�

��
��

	

�

��

�

��
���

�

��
��

��
�

�

�

�

�

�	
��

�

��
���

�

��

�

� �
�

� ����

�

��
��

�

��
���

�

���������� ��� ����

�
�

��
��

 !
!

�
�

�!
��

!
��

�
��

��
�

�
�

�
 �

�"
#

$

(c) 56-entry SB

Fig. 10: Normalized issue stalls to at-commit for different SB

sizes. X axis breaks down the source of the stalls, as well as

shows the net stall reduction.

very close to the ideal SB, even outperforming this approach

for SB-bound applications when using a SB of 56-entries.

C. Accuracy and overheads

We have described how SPB affects performance and issue

stalls. The next step is to break down how it behaves as a

prefetcher compared to our default strategy (at-commit).

Figure 11 shows successful, late and early prefetches (either

from invalidation or replacement), and never used blocks. For

all applications SPB outperforms at-commit strategy in terms

of accuracy. Success rate reaches 45% to 50% on SB-bound

applications, while when considering all applications in the

SPEC CPU 2017 suite, the success rate drops to around 30%.

This is much higher than the success rates of at-commit, that

ranges between 5 and 10%. Indeed, most prefetches performed

575

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

�%
��
�&

'�
'�

(�
��

)

*
�

��
�!
"�
�

'�
�

"�
�#

&$
�!
%

&�
��
!�

��
"

��
�

&
'��

����
�

�
�

	

��

��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

��

���������� ������0���� !1�� �� ��0���� !1�� �"!!���

�
 #

��
�0

��
��

 !
1

��
��

�
�
�

#
$

%

(a) 14-entry SB

&$
���

�

!�
!

"����
'�

��

&��
%���

!�
(

�

���)�*�
%+

�#
 #

%,�
��

�#
(

�
-��

����
�

�
�

	

��

��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

��

���������� ������0���� !1�� �� ��0���� !1�� �"!!���

�
 #

��
�0

��
��

 !
1

��
��

�
�
�

#
$

%

(b) 28-entry SB

&$
���

�

!�
!

"����
'�

��

&��
%���

!�
(

�

���)�*�
%+

�#
 #

%,�
��

�#
(

�
-��

����
�

�
�

	

��

��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

��

���������� ������0���� !1�� �� ��0���� !1�� �"!!���

�
 #

��
�0

��
��

 !
1

��
��

�
�
�

#
$

%

(c) 56-entry SB

Fig. 11: Breakdown of store requests at L1D level (first bar

for at-commit, second for SPB).

by at-commit are late prefetches, since the prefetch request

is generated at the end of the store’s live cycle. On the

other hand, SPB prefetches blocks much earlier assuming a

sequential access pattern, increasing success rate (and also

early prefetches by 2.5%). Note that this Figure considers all

stores in the application, not only those that stall the pipeline.

It is also interesting to consider the impact on network traffic

that SPB generates. A possible drawback of SPB would be the

extra traffic generated by “false positive” prefetch requests.

Our evaluation showed that over 97% of the prefetched bytes

in each store burst are completely written by the application,

while around 2% are almost completely written (98% of the

bytes prefetched in the burst are actually written).

Figure 12 shows normalized prefetch block requests incre-

ment (to at-commit) from the CPU to the L1 controller (REQ).

All these requests will check the tags to find a matching block.

��� ���� ��� ���� ��� ���� ��� ���� ��� ���� ��� ����
�		 �
�
�
�� �		 �
�
�
�� �		 �
�
�
��

�
�� �
�� �
��

�

��

��

��

��

���

��
� ��
��

��
� ��
�

��
� ��
��

��
� ��
�

��
� ��
��

��
� ��
���
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

���������� �

�
!
"#
�$
%
"�
&�
��
'
$�
"(
&&
)�
$�
!
$(
��
�
!
#
#
)�
$*
+
,

Fig. 12: Normalized prefetch traffic. Requests sent by the CPU

(REQ) and blocks requested to the L2 (MISS)

�%% ����&'�(�%% ����&'�(�%% ����&'�(
���� ��*� ����

�

�

��

��

*�

��
� *�

�

��
� ���

��� ������

	��

�

�	��

���

	�	

�
������
� ���

�
�

��
�

�
�

�

�
�
 �

�
�

�
�

�

�
 �

�
�

�
�

�

 !

"
#

Fig. 13: Normalized L1 overhead (TAG accesses in L1D)

However, only those that miss will generate a L2 request and

network traffic along the memory hierarchy (MISS). In relative

terms (accounting prefetch accesses to the L1D cache), SPB

generates additional 3.4% tag checks compared to at-commit

for a SB of 14 entries, 7.7% for a SB of 28 entries and 3.5% for

a SB of 56 entries (Figure 13). Prefetch traffic is higher for SB-

bound applications, since SPB is enabled more often. In this

scenario, prefetch traffic increases by 8.6%, 18.9% and 8.8%

for SB sizes of 14, 28 and 56 entries respectively. However,

since we are significantly reducing the amount of load requests

to the L1D cache from the wrong path of execution, the overall

access count to the L1D is reduced. Indeed, for store buffers

of sizes 14 and 28, the average L1D access reduction is close

to 1% for SPB. For a 56-entry store buffer, the net L1D access

reduction reaches 2%. This, as we have seen, decreases slightly

the power used by the L1D cache.

In order to show if SPB has any negative impact on L1D

stalls due to additional network traffic we will rely on Intel’s

Top-Down model information. More specifically, in the metric

execution stalls while there are L1D misses pending. Figure

14 shows how SPB additional traffic not only does not affect

performance for most applications, but it also has a positive

effect on the total amount of execution cycles the processor

is stalled while waiting for L1D misses to be attended.

Indeed, for a SB of 14 entries SPB reduces execution stalls

by 27.2% compared to at-commit for all SPEC CPU 2017.

When focusing on SB-Bound applications, the difference is

significantly higher, reaching 52.8%. For a SB of 28 entries

576

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

&$���$ %�% "���� '��& &��%��� %�(& ���)$*�%+ �# #%,��� �#($
*'�

���

���

���

�

��

��
��
	

�
�

��
�

��
��

��
�	

��
�

��
��

	�
�

�	
	�
�

�

��

��
�

�	
��
	

��
��

��
	�
	

��
��
�

��
��
��������� ���

�
�
��
��
�
��
���
�
�
�
��
�
�
!�
"
�#
	
$
��
!�
�
�%
�
&
'
!&
(

��
�
��
��
�
�
�
�
!�
�)
*
+

Fig. 14: Execution stalls with L1D misses pending

execution stalls are reduced by 12.2% and 30.4% respectively,

while for a SB of 56 entries we reach some reasonable 3.9%

and 12.6% reduction on execution stalls while there are L1D

misses pending to be attended.

Figure 15 shows the per SB-bound application breakdown

of execution stalls with L1D cache misses pending. As ex-

pected from the performance results, all the SB-bound ap-

plications except roms benefit from SPB. This is due to an

artifact/pathology caused by SPB, that forces useful memory

blocks out of the L1D in roms. More specifically, conflict

misses increase by 10.3% for roms compared to the 1.2% on

average for all SPEC CPU 2017 for a SB of 28 entries (10.6%

to 1.9% for a SB of 56 entries).

D. Aggressive cache prefetchers

SPB is a highly selective and aggressive prefetching mech-

anism tailored to reduce SB-induced stalls. SPB requires

little hardware modifications compared to other aggressive or

adaptive prefetching schemes, such as the ones presented by

Srinath et al. [28]. Moreover, these prefetching mechanisms

apply load strategies blindly to stores.

This section compares SPB to sophisticated prefetching

techniques presented in the literature [28]. For the technique

in [28], we implement both the aggressive scheme and the

adaptive prefetcher with the specified thresholds and modes.

These cache prefetchers obtain better performance than our

baseline stream (stride) prefetcher. Our goal is, however, to

show that the use of SPB is still necessary to reduce SB-

induced stalls even on top of aggressive cache prefetchers.

Figure 16 normalizes the performance to our ideal SB with

the same generic prefetcher (stream, aggressive or adaptive).

This way, we can see how far is each configuration from the

ideal case, for each prefetcher and for at-commit and SPB.

The aggressive and adaptive prefetchers do not have much

impact in reducing the SB-induced stalls. These prefetching

schemes still suffer from the same limitation as the stream

prefetcher: prefetching requests are limited to those generated

by the stores in the SB. The only difference is that they ”shift”

the prefetching window depending on how aggressive they are.

On the other hand, SPB prefetches blocks for all addresses

within the currently accessed memory page, going beyond the

scope of the SB and performing an aggressive, yet controlled,

prefetching only when a store burst is detected.

,�� �-�-&'�� ,�� �-�-&'�� ,�� �-�-&'��
�-�� �-�	 �-��

���

���

���

���

���

���

�

��

��
��

��
�

��
�	

��
�

��
��

��
�

��
	�
�

��
��
�

��
��
�

��
��

��
��

��
��

���������� ���

�
�
��
�
�
��
��
�
�
�
��
�

!�
"
 #
�
$

 �
!�
�
 %
�
&
'
!&
(

 �
�
 �
��
�
�
�
�
!�
)
*

.

(a) 14-entry SB

& ���+ ,�,������ ��
� &��&'�� ,��� '��%+.�&(/���&!��' ���+
�-�

�
�

���

���

�

��

��

+
#

+
#

��
��

�#
��

��
��

��
��

�#
��

�#
��

��
��
	

��

�
�

��
#�
�

��
��
�

��
#�
�

��
��

�

��
��
�

��
�

���
������ ���

�
�
��

��
�
��
���
�
�
�
��
�
��
��

�!

#
"
��

��
�
�#
�
$
%
�$
&

��
�
��
��
�
�
�
�
��
�'

/
(

(b) 28-entry SB

)��*�� ��������� ����)��$%�� ���� %��#�+�$& ,���$���% ����
��

��

��

��

�

�

��
�

��
�

��
��

��
�-

��
��

��
��

��
��

��
��

��
	�

�

��

�
	

��
��
�

��
	�
�

��
��
	

��
��
�

��
	�
�

��
��

��������� ���

�
�
��
��
�
��
���
�
�
�
��
�
�
!�
"
�#
�
$
��
!�
�
�%
�
&
'
!&
(

��
�
��
��
�
�
�
�
!�
�)
*
+

(c) 56-entry SB

Fig. 15: Per SB-Bound application normalized (to at-commit)

execution stalls with L1D misses pending.

TABLE II: Configurations for the sensitivity analysis

Name ROB IQ LQ SQ Width
SLM 32 15 10 16 4
NHL 128 32 48 36 4
HSW 192 60 72 42 8
SKL 224 97 72 56 8
SNC 352 128 128 72 8

E. SPB and core aggressiveness

This section discusses the effects of SPB on different core

configurations, from simple and energy-efficient to complex

high-performance cores. For this evaluation we consider 5 core

configurations: Silvermont (SLM), Nehalem (NHL), Haswell

(HSW), Skylake (SKL) and Sunny Cove (SNC). Sizes for the

reorder buffer (ROB), the issue queue (IQ), the load queue

(LQ), the store queue (SQ) and the back-end per-stage width

(width) are shown in Table II.

577

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

,## �-�-&'�$,## �-�-&'�$,## �-�-&'�$
�-�
 �-�� �-��

����

����

����

����

����

����
,����..��/����0. ,����..��/,11��((��� �������	�
���
� ���
������ ���
�������	�� ���
���
�

�
�
��

��
�
�
��
��

��
��
�
�
�
��

Fig. 16: Normalized execution time to Ideal + Prefetcher (stream, aggressive, adaptive) respectively

��� �������� ��� �������� ��� ��������
���� ��� ��!

"#$"

"#��

����

����

����

����
�	
��
 �	
���� ��	��
 ��	���� �����
 ������� ��	��
 ��	���� ��
��
 ��
����

�
�
��
��
�
�
��
��
��
��
�
�
�
�

Fig. 17: Normalized execution time to Ideal for different core configurations

Figure 17 shows the normalized execution time (to an ideal

SB), for the at-commit and SPB prefetch strategies. Results

show that the performance gap between the ideal SB and the

at-commit strategy increases as we move to energy-efficient

core designs. However, SPB maintains ideal performance

levels regardless of the architecture for the default SB size, and

near ideal levels for a SB of half the size. Interestingly, SPB

slightly outperforms the ideal SB for SNC, SKL and HSW-

like configurations. As we showed in Section VI-C, this is

because SPB reduces the waiting time of L1D misses (and that

includes loads). SPB, as opposed to the ideal SB, aggressively

prefetches memory blocks that are speculative, while both

at-commit and ideal only prefetch memory blocks as stores

commit. For reduced SB sizes, SPB delivers at least 89% of

the ideal SB performance, while for that same configuration

at-commit only manages to yield 67% of the ideal.

F. SPB in parallel applications

This section evaluates SPB for the parallel applications of

the PARSEC benchmark suite for the purpose of showing that

(i) multi-threaded applications also contain store bursts and

(ii) SPB does not introduce a negative coherence effect.

Figure 18 shows the average performance both for all and

for just the SB-bound PARSEC applications (i.e., bodytrack,

dedup, ferret, and x264). As it happens for the sequential

applications, SPB outperforms at-commit by 1% on average,

and 1.1% if we only consider SB-bound applications. For a

reduced SB size of 14 entries, SPB achieves 18.5% improve-

ments for SB-bound applications, and around 4.3% on average

for all benchmarks. There is no benchmark that suffers from

performance degradation compared to the baseline for SPB,

which shows that SPB is coherence-friendly. The reason is that

(i) SPB is only enabled on a store burst scenario and (ii) store

�		 ����� �! �		 ����� �! �		 ����� �!
��"# ��$� ����

%��

%�%

%��

%��

"�%
������	� ���

�
�
��
�	
�

��
�	

��
	�

�
�

Fig. 18: Normalized execution time to Ideal for PARSEC

benckmarks with 8 threads

bursts do not happen for contended memory addresses, at least

for the analyzed PARSEC benchmarks and inputs. Moreover,

SPB does not produce cache pollution (at least for 8 threads),

that would otherwise slow down performance.

VII. RELATED WORK

A. Aggressive prefetchers

Cache prefetchers are usually applied over addresses that

have been requested by either loads or stores. This means

that they help to reduce issue stalls caused by both the filling

of the load buffer or the SB. These prefetchers commonly

employ a throttling mechanism to adjust the aggressiveness

(degree) of the data prefetcher dynamically. Some prefetchers

opt for being aggressive by default and reduce aggressiveness

on cache pollution [28]. Other prefetchers on the other hand

start with a low prefetching degree and seek for opportunities

to increase aggressiveness over time [14]. SPB is always

aggressive but highly selective, as it is specialized on a

particular access pattern (stores to contiguous blocks), this it

is less frequently triggered than generic cache prefetchers.

578

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

Spatial prefetchers are aggressive by default [7], [8], [27].

They collect the accessed blocks within a page and prefetch

them again on the first access to that page. On the other hand,

SPB targets stores to contiguous blocks that may happen due

to a memory copy or a memory initialization. This may happen

only once in the execution of a program, so learning the page

is not an effective mechanism for SPB. Additionally the size

of our prefetcher is minimal as it does not requires the tracking

of previously accessed pages.

An alternative to prefetching blocks closer to the core is to

send all data blocks directly to the last-level cache. That is the

case of the store miss accelerator (SMA) [9]. In this proposal,

the last-level cache serves as a buffer to stores that have an

off-chip miss. When the associated block arrives to the last-

level cache, the store data is combined with it. In contrast, we

achieve virtually the same benefits (with respect to SLP) as

SMA with a far simpler and cost-effective approach.

B. Reducing SB-induced stalls

There are other alternatives for reducing SB-induced stalls.

The scalable store buffer (SSB) [31] eliminates stalls in the SB

by maintaining stores in a large FIFO structure (1K entries).

These stores write directly in the L2 cache. However, this

alternative requires many hardware changes, including the

coherence protocol, to address the invalidation of modified

blocks in a cache.

Another alternative is to detect stores to blocks at compile

time that can safely be performed out of order [26]. However,

in the case of prefetch burst, all stores will miss in the L1

cache (and probably L2 and L3 too), and little benefit can

be obtained from reordering. Finally, coalescing stores [24]

can reduce the number of entries occupied by stores in the

SB. Coalescing up to a memory block size, however, would

entail to increase the size of the SB significantly. In contrast,

we obtain performance figures very close to the ideal with

minimal hardware overhead.

VIII. CONCLUSIONS

The size of the store buffer has been a critical factor for

performance. Proof of this is the increment in SB size in

Intel processors (from 32 to 56 entries) in just 10 years. Store

prefetching is a fundamental technique for enabling MLP for

stores. However, this MLP is restricted to the stores that fit in

the store buffer, corresponding to just a few memory blocks.

Store Prefetch Burst (SPB) improves MLP outside the code

scope delimited by the SB size. It detects the few store

instructions that are responsible from most SB stalls, which are

those that access contiguous memory blocks as a consequence

of a memory copy or initialization. Then, it triggers an highly

selective but aggressive prefetch request to the L1 controller

that asks for all the remaining memory blocks in the current

page. SPB is able to remove practically all SB-induced stalls

and it is orthogonal to other cache prefetching strategies,

proving to be a good addition for improved accuracy with

a memory overhead of just 67 bits.

With SPB, a 56-entry SB reaches 100.5% of an ideal SB,

and a 20-entry SB achieves the performance of a 56-entry

SB with an at-commit prefetching policy. SPB excels for

limited SB sizes. In a 14-entry SB scenario, prefetching at

commit only achieves 85.9% of the ideal performance, while

SPB achieves 95.4%, on average. SPB improvements are not

limited to performance, but also apply to energy efficiency

as it can achieve energy savings of 6.7% for a 14-entry SB,

reaching 16.8% for SB-bound applications.

REFERENCES

[1] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” IEEE Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996.

[2] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo spatial data prefetcher,” in 25th Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb. 2019, pp. 399–411.

[3] R. Bera, A. V. Nori, , O. Mutlu, and S. Subramoney, “Dspatch:
Dual spatial pattern prefetcher,” in 52nd IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), Oct. 2019.

[4] E. Bhatia, G. Chacon, S. H. Pugsley, E. Teran, P. V. Gratz, and D. A.
Jiménez, “Perceptron-based prefetch filtering,” in 46th Int’l Symp. on
Computer Architecture (ISCA), Jun. 2019, pp. 1–13.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in 17th Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT), Oct.
2008, pp. 72–81.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7,
May 2011.

[7] J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Stealth prefetching,” in
12th Int’l Conf. on Architectural Support for Programming Language
and Operating Systems (ASPLOS), Oct. 2006, pp. 274–282.

[8] C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos, “Accurate and
complexity- effective spatial pattern prediction,” in 11th Int’l Symp. on
High-Performance Computer Architecture (HPCA), Feb. 2004, pp. 276–
287.

[9] Y. Chou, L. Spracklen, and S. G. Abraham, “Store memory-level par-
allelism optimizations for commercial applications,” in 38th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), Nov. 2005, pp. 183–196.

[10] A. Fog, “Instruction Tables. Instruction latencies, throughputs and
micro-operation breakdowns,” 2018, Available at http://www.agner.org/
optimize/instruction tables.pdf.

[11] A. Gandhi, H. Akkary, R. Rajwar, S. T. Srinivasan, and K. Lai, “Scalable
load and store processing in latency-tolerant processors,” IEEE Micro,
vol. 26, no. 1, pp. 30–39, Jan 2006.

[12] K. Gharachorloo, A. Gupta, and J. Hennessy, “Performance evaluation
of memory consistency models for shared-memory multiprocessors,”
SIGPLAN Not., vol. 26, no. 4, pp. 245–257, Apr. 1991.

[13] ——, “Two techniques to enhance the performance of memory consis-
tency models,” in 20th Int’l Conf. on Parallel Processing (ICPP), Aug.
1991, pp. 355–364.

[14] W. Heirman, K. D. Bois, Y. Vandriessche, S. Eyerman, and I. Hur, “Near-
side prefetch throttling: Adaptive prefetching for high-performance
many-core processors,” in 27th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Nov. 2018, pp. 28:1–28:11.

[15] Intel, “Intel® 64 and ia-32 architectures optimization reference manual,”
www.intel.com, 2019.

[16] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson,
and Z. Chishti, “Path confidence based lookahead prefetching,” in 49th
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Oct. 2016, pp.
60:1–60:12.

[17] J. Kim, E. Teran, P. V. Gratz, D. A. Jiménez, S. H. Pugsley, and C. Wilk-
erson, “Kill the program counter: Reconstructing program behavior in
the processor cache hierarchy,” in 22nd Int’l Conf. on Architectural
Support for Programming Language and Operating Systems (ASPLOS),
Apr. 2017, pp. 737–749.

579

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

[18] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in 42nd
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Dec. 2009, pp.
469–480.

[19] P. Michaud, “Best-offset hardware prefetching,” in 22nd Int’l Symp. on
High-Performance Computer Architecture (HPCA), Mar. 2016, pp. 469–
480.

[20] D. Molka, R. Schöne, D. Hackenberg, and W. E. Nagel, “Detecting
memory-boundedness with hardware performance counters,” in Proceed-
ings of the 8th ACM/SPEC on International Conference on Performance
Engineering, 2017, pp. 27–38.

[21] S. H. Pugsley, Z. Chishti, C. Wilkerson, P. fei Chuang, R. L. Scott,
A. Jaleel, S.-L. Lu, K. Chow, and R. Balasubramonian, “Sandbox
prefetching: Safe run-time evaluation of aggressive prefetchers,” in 20th
Int’l Symp. on High-Performance Computer Architecture (HPCA), Feb.
2014, pp. 626–637.

[22] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso,
“Performance of database workloads on shared-memory systems with
out-of-order processors,” SIGPLAN Not., vol. 33, no. 11, pp. 307–318,
Oct. 1998.

[23] P. Ranganathan, V. S. Pai, and S. V. Adve, “Using speculative retirement
and larger instruction windows to narrow the performance gap between
memory consistency models,” in Symp. on Parallel Algorithms and
Architectures (SPAA), 1997, pp. 199–210.

[24] A. Ros and S. Kaxiras, “Non-speculative store coalescing in total store
order,” in 45th Int’l Symp. on Computer Architecture (ISCA), Jun. 2018,
pp. 221–234.

[25] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-
TSO: A rigorous and usable programmer’s model for x86 multiproces-
sors,” Communications of the ACM, vol. 53, no. 7, pp. 89–97, Jul. 2010.

[26] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi,
“End-to-end sequential consistency,” in 39th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2012, pp. 524–535.

[27] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” in 33rd Int’l Symp. on Computer Architec-
ture (ISCA), Jun. 2006, pp. 252–263.

[28] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in 13th Int’l Symp. on High-Performance Com-
puter Architecture (HPCA), Feb. 2007, pp. 63–74.

[29] Thin-Fong Tsuei and W. Yamamoto, “Queuing simulation model for
multiprocessor systems,” IEEE Computer, vol. 36, no. 2, pp. 58–64,
Feb 2003.

[30] C. Trippel, Y. A. Manerkar, D. Lustig, M. Pellauer, and M. Martonosi,
“TriCheck: Memory model verification at the trisection of software,
hardware, and ISA,” in 22nd Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS), Apr. 2017,
pp. 119–133.

[31] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Mechanisms
for store-wait-free multiprocessors,” in 34th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2007, pp. 266–277.

[32] S. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying
sources of error in McPAT and potential impacts on architectural
studies,” in 21st Int’l Symp. on High-Performance Computer Architecture
(HPCA), 2015, pp. 577–589.

[33] A. Yasin, “A top-down method for performance analysis and counters
architecture,” Int’l Symp. on Performance Analysis of Systems and
Software (ISPASS), pp. 35–44, 2014.

580

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on July 13,2022 at 10:04:36 UTC from IEEE Xplore. Restrictions apply.

