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Sverige, Stockholm, Sweden, 4 Department of Microbiology, National Veterinary Institute, Uppsala, Sweden,

5 Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden

* lisa.ekman@slu.se

Abstract

Udder cleft dermatitis (UCD) is a skin condition affecting the fore udder attachment of dairy

cows. UCD may be defined as mild (eczematous skin changes) or severe (open wounds,

large skin changes). Our aims were to compare the microbiota of mild and severe UCD

lesions with the microbiota of healthy skin from the fore udder attachment of control cows,

and to investigate whether mastitis-causing pathogens are present in UCD lesions. Samples

were obtained from cows in six dairy herds. In total, 36 UCD samples categorized as mild

(n = 17) or severe (n = 19) and 13 control samples were sequenced using a shotgun meta-

genomic approach and the reads were taxonomically classified based on their k-mer con-

tent. The Wilcoxon rank sum test was used to compare the abundance of different taxa

between different sample types, as well as to compare the bacterial diversity between sam-

ples. A high proportion of bacteria was seen in all samples. Control samples had a higher

proportion of archaeal reads, whereas most samples had low proportions of fungi, protozoa

and viruses. The bacterial microbiota differed between controls and mild and severe UCD

samples in both composition and diversity. Subgroups of UCD samples were visible, char-

acterized by increased proportion of one or a few bacterial genera or species, e.g. Coryne-

bacterium, Staphylococcus, Brevibacterium luteolum, Trueperella pyogenes and

Fusobacterium necrophorum. Bifidobacterium spp. were more common in controls com-

pared to UCD samples. The bacterial diversity was higher in controls compared to UCD

samples. Bacteria commonly associated with mastitis were uncommon. In conclusion, a

dysbiosis of the microbiota of mild and severe UCD samples was seen, characterized by

decreased diversity and an increased proportion of certain bacteria. There was no evidence

of a specific pathogen causing UCD or that UCD lesions are important reservoirs for masti-

tis-causing bacteria.
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Introduction

Udder cleft dermatitis (UCD) is a skin condition that affects the anterior parts of the udder in

dairy cows. It has been reported in the UK [1], the USA [2], Sweden [3, 4], Denmark [5], the

Netherlands [6] and Norway [7]. The prevalence varies between studies, but in high-preva-

lence herds, up to 60% of cows may be affected [8]. The UCD lesions vary in appearance and

may be classified as mild or severe, based on whether or not skin integrity is breached [4, 8, 9].

The etiology and pathogenesis of the lesions are still largely unknown. Recent studies indicate

a multifactorial origin of UCD, associated with both cow- and herd-related risk factors, such

as parity, breed, udder conformation, high herd-level production and type of floor in cubicles

[4, 6, 8, 9]. In addition, several infectious agents have been implicated in the development of

UCD, such as mange mites [10], Treponema spp. [11] and Bovine herpesvirus 4 [12], but the

true role of these agents in the etiology of UCD has not been proven. Moreover, culturing of

swab samples from UCD lesions has revealed a variety of aerobic and anaerobic bacteria, as

well as fungi [2, 3, 13], indicating that the lesions may be a reservoir for pathogens, potentially

increasing the risk of infectious diseases such as mastitis. In line with this, a few studies have

found associations between UCD, particularly severe cases, and an increased risk of clinical

mastitis [4, 14], but it is not known whether mastitis-causing pathogens are a common finding

in UCD microbiota. Previous microbiological investigations of UCD lesions have mainly been

performed through culturing [3, 13], microscopy [13] or Treponema-specific PCR assays [11,

15]. In recent decades, the use of culture-independent methods to identify the microorganisms

present in a sample or an environment has become increasingly common [16]. So far, few

studies have been performed on samples from UCD lesions, although a recent study used 16S

rRNA-amplicon sequencing to investigate the bacterial microbiota of UCD lesions and com-

pared it with that of healthy skin [17]. They found that certain bacterial genera were more

common in samples from UCD lesions, such as Fusobacterium, Helcococcus, Anaerococcus,
Trueperella and Porphyromonas, compared to samples from healthy skin. In the 16S rRNA-

amplicon sequencing method, specific regions the rRNA gene is PCR amplified and sequenced

of from bacteria, to assess the microbiota [18]. Shotgun metagenomic sequencing is an alterna-

tive method to analyze the microbiota in which total DNA is sequenced using only a limited

number of amplification cycles and this method can detect all types of microbes with improved

resolution down to the species and strain level [19, 20]. This method has been used in studies

on human gut [21] and bovine ruminal [22] microbiota, as well as in studies on human skin

microbiota, for example, in patients with atopic dermatitis [23], and the microbiota of human

chronic wounds, such as pressure wounds and venous leg ulcers [24]. We believe that shotgun

metagenomic sequencing has the potential to yield additional information on the microbiota

of UCD lesions and increase the understanding of the development and clinical course of

UCD and give indications how to treat these lesions.

Thus, the main objective of this study was to compare the microbiota of recently developed

mild and severe UCD lesions, and healthy skin at the same body site using shotgun metage-

nomic sequencing to investigate whether specific microbes are associated with UCD lesions.

We also wanted to investigate whether common mastitis-causing pathogens are present in

UCD lesions, which would indicate that UCD may be a reservoir for udder infections.

Material and methods

Study design and participating cows

Seven Swedish dairy herds with free-stall housing and milking parlors were enrolled in the

study. Inclusion criteria were a previous UCD prevalence of 20–40% [8] and that they were
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located within 200 km of Uppsala, Sweden. The mean herd size was 125 cows (range 87–168

cows), mean herd level production was 10,204 kg milk/cow and year (range 7,680–11,534 kg)

and the most common breeds were Swedish Red and Swedish Holstein. Herd visits were per-

formed regularly from April 2018 to April 2019 as part of a longitudinal study of UCD (nine

visits per herd at six-week intervals). This study design made it possible to identify and sample

cows with recently developed UCD lesions. Ethical approval for this study was issued by a

regional Swedish Ethics committee (appointed by the Swedish Board of Agriculture). The herd

visits were conducted during one milking and all milking cows were scored for UCD (no, mild

or severe). All scoring and sampling were performed by a single researcher. Mild UCD was

defined as erythema and small papules or pustules, or small crusts, and severe UCD was

defined as a breach of skin integrity, often with large crusts and exudative or bleeding wounds

(Fig 1). Cows for sampling were chosen based on their UCD status. The criteria for sampling

was a cow with a previous status of no UCD that received a score of mild or severe UCD, as

well as a cow with a previous status of mild UCD that received a score of severe UCD. For

every cow with a sampled UCD lesion, the aim was to sample the skin from the same body site

(fore udder attachment and between the front quarters) of a control cow with no UCD. As far

as possible, control cows of the same breed and parity as the UCD cows were selected. At the

final herd visit, samples were also obtained from cows with previously registered UCD lesions

in order to achieve a total of approximately 10 samples per category (no UCD, mild UCD and

severe UCD) from each herd. Thus, cows that had been previously sampled could be sampled

again at the final herd visit.

Sampling procedure

Sampling was performed in the milking parlor, during milking or just after the milking unit

had been removed. Clean disposable gloves were used at all samplings and were changed

between cows. If the area for sampling (Fig 1) was visibly dirty, it was cleaned with paper (dry

or soaked in water) or sterile gauze compresses (dry or soaked in saline 0.9%, Fresenius Kabi,

Bad Homborg, Germany). Severe UCD lesions were always cleaned with sterile gauze com-

presses soaked in saline to remove loose crusts, necrotic tissue and pus. Finally, the area for

sampling was wiped with one dry sterile gauze compress just before sampling. This step was

Fig 1. Illustration of sampling site. Samples were taken from (A) healthy control skin at the fore udder attachment, (B) mild and (C) severe udder cleft dermatitis.

https://doi.org/10.1371/journal.pone.0242880.g001

PLOS ONE The microbiota of udder cleft dermatitis in dairy cows

PLOS ONE | https://doi.org/10.1371/journal.pone.0242880 December 2, 2020 3 / 22

https://doi.org/10.1371/journal.pone.0242880.g001
https://doi.org/10.1371/journal.pone.0242880


also performed before sampling mild UCD lesions and healthy skin. Each sample was taken

using a 50 cm2 sponge moistened with saline contained in a sterile Minigrip bag (TS/15-B:

NACL, Technical Service Consultants Ltd, Lancashire, UK) according to the manufacturer’s

instructions. The area for sampling was wiped using approximately 20 strokes, covering the

entire lesion and adjacent skin (approximately 1–5 cm of skin around the lesion, depending

on lesion size) or the ventral mid-area of the fore udder attachment and the area between the

front quarters for healthy skin samples (Fig 1). Samples were uniquely labeled and immediately

put on ice. They were kept cold (at 4˚C) during transportation and arrived at the laboratory

(Uppsala, Sweden) within 24 hours. A total of 184 samples were taken from cows with no

(n = 77), mild (n = 46) or severe (n = 61) UCD. As one herd had very few cases of UCD, the

samples from this herd (n = 5) were excluded, leaving 179 samples from 6 herds for further

analyses.

Sampling analyses

The samples were processed within a few hours of arrival at the laboratory. First, 50 ml of ster-

ile 0.9% saline (SVA, Uppsala, Sweden) was poured into the Minigrip bag. In order to dislodge

microorganisms from the sponge into the fluid, the bag was treated in a stomacher (230 rpm;

Stomacher1 400 Circulator, Seward, West Sussex, UK) for two minutes. The fluid was then

poured into a sterile 50 ml plastic tube (Sarstedt, Nümbrecht, Germany) and the tube was cen-

trifuged for 15 minutes at 2,000 g. Most of the supernatant was removed, leaving around 1–2

cm of fluid at the bottom of the tube and the pellet was dissolved in the remaining fluid

(approximately 2–5 ml). The solution was then transferred into a 2 ml sterile plastic microtube

(Sarstedt, Nümbrecht, Germany) and the samples were kept frozen at -23˚C for 1–8 weeks

before DNA extraction.

DNA extraction. The microtube samples were thawed at room temperature for 20–40

minutes, briefly vortexed and then centrifuged for two minutes at 2,000 g. The supernatant

was removed and the pellet was used for DNA extraction using the DNeasy Powerlyzer Power-

soil Kit (12855–100, Qiagen AB, Sollentuna, Sweden) according to the manufacturer’s instruc-

tions and with the following additions: solution C1 and solution C6 were heated to 65˚C

before use to avoid precipitation and the samples were heated to 100˚C before the bead-beat-

ing step to improve the lysis of cellular structures. The bead-beating step was performed using

a FastPrep -24™ homogenizer (MP Biomedicals, Irvine, CA, USA), with the settings 6.5m/s

and MP24x2, for 2x60 seconds. After the extraction, the DNA concentration of each sample

was measured by fluorometry using Qubit™ 1X dsDNA HS Assay Kit (Q33230, Thermo Fisher

Scientific, Waltham, MA, USA) and varied between 0 and 110 ng/μl. The extracted DNA was

stored at -23˚C until sequenced. From each herd and category (no, mild and severe UCD), 5–6

samples with sufficient DNA concentration were chosen for further analyses–a total of 96 sam-

ples. At the sequencing facility (SNP&SEQ Technology Platform, Uppsala, Sweden), the DNA

concentration was re-measured with Quant-iT™ (Thermo Fisher Scientific) and DNA frag-

mentation was analyzed with an Agilent Fragment Analyzer (DNF-467-kit, Santa Clara, CA,

USA). Some samples had a high degree of DNA fragmentation. We therefore chose 49 samples

with acceptable quality parameters for sequencing, 13 from healthy skin (controls), 17 from

mild UCD lesions and 19 from severe lesions.

DNA sequencing. Sequencing libraries were prepared from 10 ng of DNA using the

SMARTer ThrupPLEX DNA-Seq kit (R400676, Takara-Clontech, Saint-Germain-en-Laye,

France) according to the manufacturer’s preparation guide #080818. Briefly, the DNA was

fragmented using a Covaris E220 system (Covaris Inc, Woburn, MA, USA), aiming at 400 bp

fragments. The ends of the fragments were end-repaired and stem-loop adapters were ligated
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to the 5’ ends of the fragments. The 3’ end of the stem loop was subsequently extended to close

the nick. Finally, the fragments were amplified and unique index sequences were introduced

using seven cycles of PCR followed by purification using AMPure XP beads (Beckman Coulter

Inc., Indianapolis, IN, USA). The quality of the library was evaluated using the Agilent Frag-

ment Analyzer system (DNF-910-kit). The adapter-ligated fragments were quantified by qPCR

using the Library Quantification Kit for Illumina (KAPA Biosystems/Roche, Wilmington, MA,

USA) on a CFX384 Touch instrument (BioRad, Hercules, CA, USA) prior to cluster generation

and sequencing. A 400 pM pool of the sequencing libraries in an equimolar ratio was subjected

to cluster generation and paired-end sequencing with a 150bp read length in a SP flowcell and

the NovaSeq6000 system (Illumina Inc., San Diego, CA, USA), using the v1 chemistry according

to the manufacturer’s protocols. Base calling was performed on the instrument by RTA 3.3.4

and the resulting.bcl files were demultiplexed and converted to fastq format with tools provided

by Illumina Inc., allowing for one mismatch in the index sequence. Additional statistics on

sequence quality were compiled with an in-house script from the fastq files, RTA and CASAVA

output files. Sequencing was performed by the SNP&SEQ Technology Platform (Uppsala, Swe-

den). The raw sequence data has been submitted to the Sequence Read Archive (SRA) and is

accessible via the bioproject PRJNA636289. The SRA accessions are listed in S1 Table.

Bioinformatic analyses. The fastq files were first trimmed using Trimmomatic [25]. The

parameters for Trimmomatic were "SE -threads 6 ILLUMINACLIP:adaptes.fa:2:30:10 LEAD-

ING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 X.fastq.gz X.trimmed.fastq.gz". To

remove contaminating cow sequences, the fastq files were then mapped to the Bos taurus
genome (ARS-UCD1.2) with Bowtie2 [26] using standard settings. The mapped and

unmapped reads were separated using Samtools [27]. Only paired reads where both were

unmapped to Bos taurus were kept. A Kraken2 database was built (Sep 2020) with Archaea,

Bacteria, fungi, protozoa, viral and UniVec Core sequences according to the instructions in

the manual, and used with Kraken2 [28]. The parameters for Kraken2 classifications were "—

db krakendb—threads 10—paired X_R1.fastq X_R2.fastq—report X.krakenreport.txt". The

Kraken results were then run through Bracken [29], to estimate Species, Genera and Phylum

level data. The parameters for bracken-build were "-d krakendb -t 10 -k 35 -l 150" and for

Bracken "bracken -d krakendb -i X.krakenreport.txt -o X.bracken.txt -r 150 -l (S or G or P)".

The results were visualized using Pavian, a web application for exploring metagenomics classi-

fication results [30]. Some of the severe samples showed pronounced elevated levels of the

intracellular parasite Babesia, which infects red blood cells. There was also a correlation

between the number of Babesia reads and the number of reads mapped to the cow genome in

the same sample. Given the association of Babesia with red blood cells and the correlation to

cow DNA, the Babesia reads were deemed as contamination due to blood in the sample and

were excluded from the analysis.

Statistical analyses

Custom Perl scripts were created to merge Kraken report files into a single table with clade

counts for each sample. Counts were expressed as a percentage of all classified reads identified

as Bacteria, Archaea, Eukarya (i.e. fungi or protozoa) or virus, and were analyzed descriptively

and compared between groups using the Wilcoxon rank sum test. A data dimensionality

reduction with principal component analysis (PCA) was performed on the bacterial phylum,

genus and species level. Bacterial phyla, genera and species that represented at least 10% in at

least one sample were analyzed for differences between control samples and mild and severe

UCD samples, respectively, using Wilcoxon rank sum tests and Bonferroni correction to

adjust for multiple comparisons. In addition, Fisher’s exact test was used to investigate the
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distribution of herd, breed and parity between the three groups. The alpha diversity of bacterial

species and genera was investigated by calculating Shannon diversity indexes for all samples

using H0 ¼ �
PR

i¼1
pi lnpi, where p = proportional abundance of each taxa. The diversity was

compared between sample types using Wilcoxon rank sum tests. Bacterial species considered

to be common mastitis-causing pathogens in Sweden [31] (listed in S2 Table) that represented

more than 1% of the classified reads in at least one sample were described and differences in

abundance were compared between control samples and mild and severe UCD samples using

the Wilcoxon rank sum test. Archaeal phyla and genera were investigated descriptively and by

PCA. Fungal reads were investigated descriptively. Two cows were sampled at two different

time points. One of these cows was sampled with a mild lesion, and then sampled again when

the lesion became severe. The other cow was sampled once when it had a recently developed

severe lesion, and then again at the last sampling, three months later, when the lesion was still

severe. These samples were investigated descriptively as they could yield information on how

the microbiota of UCD lesions can change over time. Statistical calculations were performed

using Stata (release 15.1; StataCorp LLC, College Station, TX, USA) and PCA and heatmaps

were generated using the TM4 Multiple experiment Viewer (MEV), version 4.8.

Results

An overview of the sequenced samples including cow information, UCD category, quality con-

trol results, numbers of sequenced reads and the proportion of reads that mapped to the

bovine genome is shown in S1 Table and detailed results from the classification by Kraken2

and Bracken in S2 Table. There were no associations between herd, breed or parity and sample

type (P = 0.96, P = 0.42 and P = 0.23, respectively).

Overall microbial abundance

Reads that could be classified to the domains of Bacteria, Archaea and Eukarya and to viruses

were used for an analysis of the microbiota composition. Eukarya was further divided into fun-

gal and protozoan groups. All samples were strongly dominated by reads from the Bacteria

domain, except for one sample (M6), which had almost 40% fungal reads (Fig 2A). However,

apart from this deviating sample, most samples had low (less than 1%) proportions of fungi.

The proportion of Archaea classified reads was lower in samples from mild and severe UCD

(means 2.8 (SD 1.5) and 0.5% (SD 0.4), respectively) compared to control samples (mean 4.1%

(SD 1.0); Fig 2B). The viral reads and the protozoan reads, after filtering out reads from the red

blood cell parasite Babesia, each constituted less than 1% of the reads within all samples (Fig

2B) and there was no clear pattern of differences between UCD lesions and control samples.

For these reasons, the protozoan and viral reads were not investigated further.

Bacteria

The unsupervised data dimensionality reduction with PCA on the phylum, genus and species

level revealed different subgroups of UCD samples (Fig 3). The major driving taxa affecting

the PC axes are shown in S1 Fig. On the phylum level (Fig 3A), the first PCA axis (PC1) sepa-

rated a large subgroup of both mild and severe UCD samples. Both the second (PC2) and third

(PC3) PCA axis separated other largely non-overlapping smaller subgroups of UCD samples,

one only including severe (PC2) and one mainly including mild (PC3) UCD samples. The

third PCA axis also separated the majority of the control samples, together with a few of the

mild UCD samples. Most, but not all, UCD samples were separated from the control samples

on at least one of the three first PCA axes.
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Fig 2. Microbial abundance. Distribution of reads classified as Bacteria, Archaea, fungi, protozoa and virus within each sample (A) and sample type (B and C) based

on samples from mild (M, n = 17) and severe (S, n = 19) udder cleft dermatitis (UCD) and samples from skin at the fore udder attachment from healthy controls (C,

n = 13). The P-values from comparing the abundance between sample types are denoted in the margins of B and C by ��� if P�0.001, �� if P�0.01 and � if P�0.05.

The exact P-values were for Bacteria: C/M P = 0.01, C/S P<0.0001, M/S P = 0.02, Archaea: C/M P = 0.0007, C/S P<0.0001, M/S P = 0.004, fungi: C/M P = 0.05, C/S P
= 0.0007, protozoa: C/M P = 0.04, and viruses: C/M P = 0.2, C/S P = 0.002.

https://doi.org/10.1371/journal.pone.0242880.g002
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On the genus level, the first PCA axis separated a large group of both mild and severe UCD

samples including one control sample (C12), while the other PCA axes separated smaller sub-

groups, mainly including mild or severe UCD samples (Fig 3B). The healthy control samples

were more strongly clustered than the UCD samples, except for C12 at PC1, and C9 and C13

at PC 4 and 5 (Fig 3B and S2 Fig). On the species level, the control samples were tightly clus-

tered close to the origin, while the UCD samples were separated into several different

Fig 3. Unsupervised analysis. Data dimensionality reduction with principal component analysis (PCA) performed on the bacterial phylum (A), genus (B)

and species level (C) for 49 samples from mild (n = 17) and severe (n = 19) udder cleft dermatitis and samples from skin at the fore udder attachment from

healthy controls (n = 13). The (%) given for each PCA axis indicates the variation explained by that specific axis. The fourth PCA axis on genus level separated

a subgroup of control samples and is presented in S2 Fig.

https://doi.org/10.1371/journal.pone.0242880.g003
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subgroups along the PCA axes (Fig 3C). Overall, the PCA analysis suggested that most of the

UCD samples were distinctly separable from the control samples, although there appeared to

be more than one subgroup of UCD samples. We found no indication that the clustering of

samples were related to herd, breed or parity of the animal, or that the extraction month had

an association with the results (S3 Fig).

Bacterial abundance. The control samples and the mild UCD samples were dominated

by three phyla, Actinobacteria, Firmicutes and Proteobacteria (Fig 4A). Although there was no

overall difference between sample types, a substantial number of both mild and severe UCD

samples showed a markedly higher proportion (around 80% or higher) of Actinobacteria com-

pared to control samples. The group of samples with a high proportion of Actinobacteria cor-

responded to the samples separated by the first PCA axis on the phylum level (Fig 3A). A

subgroup of the severe UCD samples had a markedly high proportion of the phyla Fusobac-

teria and Bacteroidetes compared to other samples (Fig 4A). This subgroup largely corre-

sponded to the samples separated by the second PCA axis on the phylum level (Fig 3A). In the

most pronounced cases, around one third of the bacterial reads belonged to Fusobacteria or

Bacteroidetes. Another group of samples, mainly from mild UCD, was reflected in the third

PCA axis on the phylum level and had a relatively high proportion of Firmicutes compared to

other UCD samples. The third PCA axis also separated the majority of the control samples,

together with a few of the samples from mild UCD and in general, a higher proportion of Pro-

teobacteria was seen in control samples compared to mild and severe UCD samples (Table 1).

On the genus and species level, the taxa that represented more than 10% in at least one sam-

ple were visualized (Fig 4B and 4C), and differences in abundance of these taxa between sam-

ple types are presented in Table 1. In many UCD samples, a single genus represented a larger

proportion of the reads compared to control samples (Fig 4B). The specific genus and species

that had increased in proportion differed between samples, but some subgroups were visible.

The subgroups were also defined by hierarchical clustering (S4 Fig). The largest subgroup had

a high proportion of Corynebacterium spp. and corresponded to the samples separated by the

first PCA axis on the genus level (Fig 3B and S1 Fig). In addition, this was largely the same

group of samples that was dominated by Actinobacteria on the phylum level. Different Coryne-
bacterium species dominated in different samples but, in most cases, one or two species repre-

sented a major proportion (>50%) of the Corynebacterium associated reads within each

sample (Fig 4C). The first PCA axis on species level separated a group of mainly severe UCD

samples with a high proportion of Corynebacterium lactis, whereas Corynebacterium urealyti-
cum, C. xerosis and C. camporealensis contributed to the separation of several mild and severe

UCD samples by the third PCA axis (PC3, Fig 3C and S1 Fig). Several of these Corynebacte-
rium spp. differed significantly between sample types (Table 1). A few samples had a higher

proportion of Brevibacterium, mainly Brevibacterium luteolum (Fig 4B and 4C), which corre-

sponded to the second PCA axis on the genus and species level (Fig 3B and 3C and S1 Fig). In

a third subgroup, mainly including mild UCD lesions, an increased proportion of Staphylococ-
cus spp. was seen (Fig 4B and 4C). This group corresponds to the samples separated by the

third PCA axis on the genus level (Fig 3B and S1 Fig) and largely represents the group in

which Firmicutes had expanded on the phylum level (Fig 3A). The fourth identified subgroup

only comprised severe UCD samples and had a high proportion of anaerobic or facultative

anaerobic bacteria, including the genera Trueperella, Fusobacterium and Porphyromonas (Fig

4B and 4C). This group was separated on the fifth PCA axis on the genus level and largely cor-

responded to the group characterized by Fusobacteria and Bacteroidetes on the phylum level

(Fig 3B and S1 Fig). The most dominating species in this group was Porphyromonas asaccharo-
lytica, Trueperella pyogenes, and Fusobacterium necrophorum and the latter two also affected

the fourth PCA axis on species level (Fig 3C and S1 Fig). Several control samples had a
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Fig 4. Bacterial abundance. Distribution of bacterial phyla (A), genera (B) and species (C) representing�10% of the classified reads in at least one sample out of 49

samples from mild (n = 17) and severe (n = 19) udder cleft dermatitis (UCD) lesions and skin samples from healthy controls (n = 13) in a study of the microbiota of

UCD in comparison to healthy skin using shotgun metagenomic sequencing. On the species level (C), the order of the samples was changed to highlight the major

subgroups that were distinguishable, and the red colour indicates the percentage (0–15%) of the bacterial reads for each species within each sample.

https://doi.org/10.1371/journal.pone.0242880.g004
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relatively high proportion of Bifidobacterium spp. and these samples were separated by the

fourth PCA axis on genus level (Fig 4C and S2 Fig). The abundance of several genera and spe-

cies distinguishing these subgroups differed significantly between UCD categories and control

samples (Table 1).

Bacterial diversity. On the genus level, the mean Shannon diversity index was signifi-

cantly higher in controls compared to UCD samples, with a mean of 4.7 (SD 0.8) for control

samples, 3.3 (SD 1.0) for mild UCD samples and 2.8 (SD 0.8) for severe UCD samples (Fig

Table 1. Comparison of UCD samples and healthy skin.

Ranka Taxa Control Mild P (M) Severe P (S)

P Bacteroidetes 2.07 0.72 0.001 2.26 0.54
G Bacteroides 0.22 0.07 0.04 0.50 0.60
G Porphyromonas 0.04 0.17 0.07 0.75 0.01
S Porphyromonas asaccharolytica 0.02 0.01 0.06 0.54 0.006
P Fusobacteria 0.16 0.07 0.03 0.86 0.009
G Fusobacterium 0.10 0.04 0.03 0.83 0.005
S Fusobacterium necrophorum 0.03 0.01 0.03 0.78 0.002
P Proteobacteria 17.27 8.23 0.002 5.03 <0.0001
P Actinobacteria 50.55 60.78 0.07 77.04 0.06
G Brachybacterium 1.43 0.58 0.23 0.17 0.0007
G Brevibacterium 1.18 1.19 0.90 0.62 0.45
S Brevibacterium luteolum 0.36 0.25 0.80 0.35 0.79
S Brevibacterium sp. W0024 0.02 0.02 0.74 0.02 0.25
G Bifidobacterium 5.52 1.51 0.02 0.32 0.0001
S Bifidobacterium angulatum 1.01 0.11 0.03 0.05 0.002
G Corynebacterium 11.68 27.06 0.02 37.96 0.0001
S Corynebacterium camporealensis 0.33 0.50 0.10 0.60 0.02
S Corynebacterium frankenforstense 1.18 0.63 0.46 0.33 0.04
S Corynebacterium jeikeium 0.20 1.25 0.0007 0.62 <0.0001
S Corynebacterium lactis 0.23 0.25 0.28 4.27 <0.0001
S Corynebacterium sp. LMM-1652 0.05 0.24 0.001 0.17 <0.0001
S Corynebacterium resistens 0.03 0.38 <0.0001 0.25 <0.0001
S Corynebacterium urealyticum 0.10 0.24 0.04 0.77 <0.0001
S Corynebacterium xerosis 1.10 0.84 0.26 1.69 0.88
G Trueperella 0.17 0.12 0.17 2.87 <0.0001
S Trueperella pyogenes 0.13 0.10 0.28 2.87 <0.0001
P Firmicutes 27.31 23.99 0.68 10.47 0.002
G Staphylococcus 1.40 2.86 0.14 1.08 0.91
S Staphylococcus agnetis 0.005 0.008 0.21 0.007 0.27
S Staphylococcus auricularis 0.12 1.28 0.18 0.11 0.57
S Staphylococcus capitis 0.03 0.07 0.54 0.04 0.29
S Staphylococcus chromogenes 0.01 0.03 0.32 0.04 0.36
S Staphylococcus hominis 0.05 0.06 0.93 0.02 0.03

Bacterial phyla, genera and species representing at least 10% of the classified reads in at least one sample of samples from mild (M, n = 17) and severe (S, n = 19) udder

cleft dermatitis (UCD) and 13 control (C) samples from cows without UCD. The 49 samples were obtained from 47 cows in six Swedish dairy herds. The median

proportion of classified reads for each bacteria and sample type is presented. Differences in abundance between control samples and mild (M) UCD, and between

control samples and severe (S) UCD samples were analyzed using the Wilcoxon rank sum test. A P-value�0.002 was considered significant due to multiple testing

according to the Bonferroni correction.
aP = Phylum, G = Genus, S = Species.

https://doi.org/10.1371/journal.pone.0242880.t001
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5A). Also, on the species level, there was significantly higher diversity in control samples

(mean 6.6, SD 0.7) compared to mild (mean 5.1, SD 1.2) and severe (mean 4.3, SD 0.8)) UCD

samples, as well as a higher diversity in mild compared to severe UCD samples (Fig 5B).

Mastitis-causing bacteria and spirochetes in UCD samples. Among the pathogens that

are considered to be common mastitis-causing bacterial species in Sweden, Escherichia coli,
Staphylococcus chromogenes, Staph. epidermidis, Staph. haemolyticus, Staph. simulans and

Trueperella pyogenes were represented by at least 1% of the reads in at least one sample. There

was a higher proportion of Escherichia coli in the control samples compared to mild (P =
0.006) and severe (P<0.0001) UCD samples, although the proportion generally was low in all

sample types. For Staph. epidermidis there was a tendency towards higher proportions in the

control samples (P = 0.02). For the other Staphylococcus spp. mentioned above, no differences

between sample types were seen. Trueperella pyogenes was more frequent in samples from

severe lesions (mean 7.1%, SD 9.3, P<0.0001), P = 0.0001) compared to samples from control

cows (mean 0.1, SD 0.06), whereas there was no significant difference between controls and

mild UCD samples (mean 0.3. SD 0.5, P = 0.28). The Spirochaetes proportion of the classified

reads ranged from 0.01 to 0.4% (mean 0.2%) and Treponema spp. reads constituted between

0.002 and 0.2% of the classified reads, with a very low abundance in all sample types.

Other microorganisms

Archaea. As concluded above, there was a lower proportion of sequence reads classified

as Archaea in UCD samples compared to control samples (P = 0.007 for mild and P<0.0001

for severe UCD samples; Figs 2B and 6A). Most of the severe UCD samples and a subset of the

mild UCD samples had a very low proportion of archaeal classified reads, i.e. less than 0.5%

(Fig 6A). These samples were also different in the relative composition of archaeal genera (Fig

6B). In the control samples and some of the UCD samples, reads classified to the genus Metha-
nobrevibacter dominated. In the other UCD samples, two subgroups were distinguishable.

One group, including both mild and severe UCD samples, was characterized by a high relative

proportion of halophilic archaea (e.g. Halorobrum and Halobacterium) and the other, includ-

ing severe UCD samples only, by an increased proportion of Methanosarcina (Fig 6B). The

Methanosarcina subgroup was largely the same as the subgroup characterized by elevated lev-

els of anaerobic bacteria described above. A PCA on the genus level separated samples with

low abundance of archaea on the first PCA axis and the halophilic and Methanosarcina sub-

groups on the second PCA axis (Fig 6C).

Fig 5. Bacterial diversity. Box plot of the Shannon diversity index for bacterial genera (A) and species (B), in samples from mild (n = 17) and severe

(n = 19) udder cleft dermatitis (UCD) and samples from skin at the fore udder attachment from healthy controls (n = 13).

https://doi.org/10.1371/journal.pone.0242880.g005
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Fungi. The fungal reads represented a mean of 0.5 (SD 0.4), 2.6 (SD 9.2) and 0.2 (SD

0.1)% of the classified reads in control samples, mild UCD, and severe UCD, respectively. Con-

trol samples had a higher proportion of fungal reads, compared to mild (P = 0.05) and severe

(P = 0.001), but we found no indication of any specific genera and species that differed

between sample types. Fusarium was the most frequently classified genus with a mean of 12,5

(SD 3.2), 10.3 (SD 4.2) and 10.2 (SD 2.3)% of the fungal reads for control, mild and severe sam-

ples, respectively. One sample was responsible for the numerically higher mean abundance in

Fig 6. Archaeal abundance. The archaeal proportion of all classified reads within each sample (A), the distribution of archaeal genera representing�5% of the

archaeal reads in at least one sample (B) and a principal component analysis (C), based on samples from mild (n = 17) and severe (n = 19) udder cleft dermatitis

(UCD) and samples from skin at the fore udder attachment from healthy controls (n = 13).

https://doi.org/10.1371/journal.pone.0242880.g006
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samples from mild lesions (Fig 2A). In this specific sample, the majority of the classified fungal

reads belonged to the genus Candida, with the species Candida orthopsilosis representing 69%

of the fungal reads.

Differences in microbiota between different time points–two examples

In two cases, the data included samples of the same UCD lesion from two different time points.

In the first case, the sample (M7) was first identified in December 2018 as a recently developed

mild lesion (Fig 7A). Six weeks later, the lesion was scored as a recently developed severe UCD

lesion and was therefore sampled again (sample S10; Fig 7B). In both samples, bacteria

Fig 7. Example 1. Sankey visualization (obtained by the metagenomics tool Pavian) of the microbiota in a mild (A) and a severe (B) udder cleft dermatitis

lesion in the same cow, sampled in December 2018 and six weeks later in January 2019. The flow diagram illustrates the proportion of bacterial reads assigned

to a specific taxon at domain (D), kingdom (K), phylum (P), family (F), genera (G) and species level.

https://doi.org/10.1371/journal.pone.0242880.g007
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constituted more than 99% of the classified reads and the proportion of archaeal reads was

low. Both samples had a high relative abundance of Actinobacteria and Corynebacterium (Fig

7). However, in the severe UCD sample S10, the proportion of Corynebacterium spp. had

increased (60.5 of classified reads) compared to the initial mild UCD sample M7 (37.3% of

classified reads), with Corynebacterium camporealensis being mainly responsible for the differ-

ence (4.6% of classified reads in M7 compared to 16.3% in S10) (Fig 7). The species level Shan-

non diversity index was also numerically higher in sample M7 (5.7) compared to sample S10

(4.9). Thus, the microbiota in this UCD lesion shifted over time towards a lesion containing

mainly Corynebacterium.

In the second case, a sample (S6) was taken from a cow first identified as having a recently

developed severe UCD lesion (Fig 8A), and the cow was then sampled again, around three

months later at the final herd visit (sample S7; Fig 8B). As was seen in the previous example,

bacteria constituted most of the classified reads, 99.6% of S6 and 97.6% of S7. Among the bac-

teria, Brevibacterium luteolum was most prevalent in S6, representing 49.2 of the classified

reads, but only 0.1% in S7. Corynebacterium was common in both samples, representing 23.7

and 38.0% in S6 and S7, respectively, with the most abundant species identified as Corynebac-
terium lactis in S6 (6.4% compared to 1.9% in S7) and Corynebacterium urealyticum in S7

(14.9% compared to 0.2% in S6). Apart from these differences, Porphyromonas asaccharolytica
(0.1 and 5.0% in S6 and S7, respectively) and Fusobacterium necrophorum (0.6 and 2.7% in S6

and S7, respectively) had increased in S7 compared to S6. Thus, the microbiota in this lesion

shifted towards a higher proportion of anaerobic bacteria, and the species level Shannon diver-

sity index shifted from 3.5 in S6 to 5.9 in S7.

Discussion

To our knowledge, this is the first study to investigate the microbiota of UCD lesions using a

shotgun metagenomic sequencing approach, and it provides an increased understanding of

the microbiological differences in mild and severe UCD lesions compared to healthy skin. Our

results show an altered microbiota in both mild and severe UCD lesions compared to the con-

trol samples, manifested by decreased bacterial diversity and an increased proportion of cer-

tain bacterial genera and species. In line with our results on diversity, Sorge et al. [17] found a

lower bacterial diversity in samples from UCD lesions compared to control samples. A similar

finding was also reported in a study on digital dermatitis, in which bacterial diversity decreased

as the digital dermatitis lesions progressed in severity [32]. In metagenomic studies of the

human skin, a high diversity is characteristic of a healthy skin microbiota [33], whereas a loss

of diversity and increased proportion of pathogenic or opportunistic bacteria can be defined as

dysbiosis [33, 34]. Decreased diversity and dysbiosis are associated with numerous skin condi-

tions, such as atopic dermatitis in humans and dogs [35, 36]. A lower diversity has also been

found in diabetic foot ulcers and in the healthy skin of diabetic patients compared to non-dia-

betic controls [37]. However, it has not been established whether the dysbiosis is a cause or a

result of the pathological condition, and further studies within this area are required. We also

found that a few of the UCD samples, mainly from mild UCD, had similar microbiota to con-

trol samples, indicating that an altered microbiota is not always present in mild lesions.

Bacterial abundance and subgroups of UCD samples

Apart from the decreased diversity, we found an increased proportion of certain bacterial gen-

era and species in the UCD samples compared to the controls. Noticeably, it was not always

the same species that increased in different samples. In our dataset, we observed four broad

subgroups of UCD samples with different types of dysbiosis. In the largest subgroup, the genus
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Corynebacterium contributed to a high proportion of reads, although differences in species

were seen between samples. In another subgroup of samples, mainly from mild lesions, Staph-
ylococcus spp. represented a relatively high proportion of the classified reads and contributed

to the decreased diversity. Several staphylococcal species were found but, in most cases, only

one or two staphylococcal species represented more than 1% of the reads within the same sam-

ple. Both Corynebacterium spp. and Staphylococcus spp. have previously been identified in

UCD lesions through culturing [3, 13]. The genera Corynebacterium and Staphylococcus are

also associated with bovine healthy skin from teat apices [38, 39] and, in contrast to our results,

Sorge et al. [17] found a higher abundance of Corynebacterium spp. in controls than in UCD

Fig 8. Example 2. Sankey visualization (obtained by the metagenomics tool Pavian) of the microbiota of a severe udder cleft dermatitis (UCD) lesion sampled

at two different time points from the same cow, in October 2018 (A) and in January 2019 (B). The flow diagram illustrates the proportion of bacterial reads

assigned to a specific taxon at domain (D), kingdom (K), phylum (P), family (F), genera (G) and species level.

https://doi.org/10.1371/journal.pone.0242880.g008
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samples. These bacteria are also common in human chronic ulcers, as well as being a common

finding in healthy skin microbiota in humans [37]. Staphylococcus spp. are also associated with

atopic dermatitis in both humans and dogs [23, 35] and are also known to be involved in bio-

film formation in human chronic ulcers [40]. A few samples, (three mild and one severe UCD

samples) had a high proportion of Brevibacterium (i.e. Brevibacterium luteolum), a coryneform

bacteria that, to our knowledge, has not been previously identified in UCD lesions. Brevibac-
terium is a known skin commensal in humans that, in similarity to corynebacteria, may act as

an opportunist, mainly in immunocompromised individuals [41, 42]. The high proportion of

common skin bacteria found in UCD samples in the present study implies that, under certain

circumstances, skin commensals may increase in relative abundance, resulting in a decreased

diversity indicative of an impaired microbiota, or dysbiosis. Such circumstances may include

an altered local environment, for example, changes in pH, oxygen levels or humidity. The pres-

ence of a dysbiotic microbiota involving common skin bacteria is also seen in human chronic

wounds for which there are underlying causes, such as diabetes or venous insufficiencies [24,

37]. In the fourth subgroup indicating dysbiosis, including several severe, but no mild, UCD

samples, a more anaerobic microbiota was observed, including bacterial species such as True-
perella pyogenes, Fusobacterium necrophorum and Porphyromonas asaccharolytica. These bac-

teria have previously been identified in bacteriological studies of UCD [2, 3] and, in line with

our results, Sorge et al. [17] found a higher abundance of these bacteria in UCD samples com-

pared to control samples. Finding these opportunistic bacteria in severe UCD lesions is not

surprising as they are associated with several bacterial conditions in ruminants, such as inter-

digital phlegmon, abscesses and wound infections [43, 44]. In chronic wounds, the local envi-

ronment is associated with low oxygen levels that enable the growth of these bacteria [40]. In

addition, Fusobacteria and Porphyromonas are commonly found in combination and, in a lab-

oratory setting, have been shown to form biofilm and could therefore impair the healing of

wounds [45]. In line with this, the severe sample (S7) that was re-sampled after a wound dura-

tion of around three months showed an increased proportion of these two bacteria. The clini-

cal appearance of the wound that was sampled after three months also showed more

characteristics associated with human chronic wounds, such as a lack of granulation tissue,

presence of necrotic tissue and fibrin [46], compared to when it had recently developed. The

importance of the higher abundance of Bifidobacterium spp. found in control samples is not

known, but it could be speculated that these bacteria have a protective effect on the skin bar-

rier. Sorge et al. [17] also found Bifidobacterium spp. to be significantly more common in con-

trols compared to UCD samples. Bifidobacteria produce lactic acid and are commonly used as

a probiotic treatment in the restoration of gut microbiota [47]. Although previous studies have

suggested an association between UCD and Treponema spp. [1, 15], we found no evidence of

Treponema spp. being involved in UCD lesions, as the abundance of this genus was low in all

samples, which was also seen in a previous study of UCD [17].

Presence of mastitis-causing bacteria

A low abundance of the bacteria considered to be important mastitis-causing pathogens in

Sweden (apart from Trueperella pyogenes) was seen. Thus, our results do not indicate that

UCD lesions act as a reservoir for such pathogens. Trueperella pyogenes is a mastitis-causing

pathogen [44], typically infecting heifers and cows in the dry period during the summer. In

such “summer mastitis”, it is generally believed that flies are responsible for the transmission

of the pathogen. This opportunistic bacterium is also common in several other conditions,

such as abscesses and pneumonia [44], and we do not believe that the presence of Trueperella
pyogenes in severe UCD lesions has any significant effect on the risk of mastitis in dairy herds.
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However, during the summer, an increased presence of the bacteria in cows with severe UCD

could increase the risk of this specific type of summer mastitis if flies are present in the envi-

ronment. It is not clear, however, whether such a route of transmission could partly explain

the association between UCD and mastitis found in previous studies [4, 14].

Abundance of other microorganisms

To our knowledge, the presence of Archaea on bovine skin has not been previously investi-

gated. These single-celled microorganisms have previously been identified in different envi-

ronments, including the bovine rumen [48] and the human gut and skin [49]. Methanogens,

such as Methanobrevibacter, have been found to play a role in ruminal microbial metabolism,

by using hydrogen for their growth, and reducing carbon dioxide to methane [48]. The pres-

ence of Methanobrevibacter in our samples could be the result of contamination from faeces or

the environment, but it is also possible that these archaea are part of the bovine skin micro-

biota. Archaea have been proposed to play a role in ammonia metabolism in human skin [49]

and it could be speculated that they might play a similar role in pH regulation of bovine skin,

although this requires further studies. We found differences in archaeal abundance between

controls and mild and severe UCD samples, but the importance of these differences is not

known as archaeal function is still a poorly explored area of research. Our results suggest that

fungi are not associated with UCD lesions in most cases, as the fungal reads represented a low

proportion of the majority of samples. However, one mild UCD sample had a high proportion

of fungal reads, which indicates that opportunistic fungi may be part of a shift towards a

decreased diversity of the microbiota in UCD lesions. In this sample, one specific fungal spe-

cies was responsible for 69%of the fungal reads. We found low proportions of viral and proto-

zoan reads in all samples, which imply that these agents are not a common part of the UCD

microbiota or healthy bovine skin. However, the methods used for preparing samples for

DNA extraction might have affected the viral content of the samples, as small virus particles

could have been lost prior to DNA extraction. An alternative methodology would probably be

needed for specific analysis of the viral content of the samples. Another pathogen that has been

associated with UCD is the mange mite, Chorioptes bovis [10]. As Chorioptes bovis is a com-

mon finding in Sweden, it would have been interesting to see whether DNA from this patho-

gen was present in our samples. As no genome sequence was available from the NCBI, no such

analysis was performed. In addition, as several studies did not find any evidence of an involve-

ment of mange mites in UCD [2, 5], we do not believe that they are of major interest.

Final remarks

The methods used in this study, regarding both the sampling and laboratory procedures, as

well as shotgun metagenomic sequencing, have been scarcely explored for bovine wound

microbiota. Shotgun metagenomic sequencing has, however, been shown to enhance the

detection of bacterial species compared to 16S amplicon sequencing, in which the selection of

primers may affect the results [19, 50]. Contaminating DNA in laboratory reagents may influ-

ence the taxonomic classification of metagenomics results [51]. In this study, we did not

include negative controls and this constitutes a limitation when interpreting the results. This is

especially true when looking at low abundance groups. However, in this study we focus mainly

on the most dominating taxa and their proportions. Our results are generally in line with a

previous study using 16S amplicon sequencing to investigate UCD lesions in comparison with

control samples [17], suggesting that these two studies have increased the understanding of the

microbiota of UCD lesions in comparison to healthy skin at the fore udder attachment. In

addition, our results demonstrate that mild UCD lesions also display a dysbiotic microbiota
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and, in combination with the fact that mild UCD lesions often develop into severe lesions [14],

this suggests that mild lesions should not be ignored.

Conclusions

The results of this study indicate that the microbiota of UCD lesions is different to that of

healthy skin from the same body site, with a dysbiosis manifested as reduced diversity and

increased proportions of certain bacteria in mild and severe UCD lesion samples. It is, how-

ever, not known if the dysbiosis is a contributing cause to, or a result of, the UCD lesions, and

these associations require further investigations. In this study we identified three broad catego-

ries of dysbiosis characterized by different groups of bacteria. Although several bacterial spe-

cies were more frequently identified in the UCD samples, the overall interpretation is that no

specific pathogen is involved in the development of UCD, as the bacteria differed between

samples. We found no evidence of UCD lesions acting as a reservoir for mastitis-causing bac-

teria, as such bacteria were found in low proportions in most samples.
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Pringle, Bo Segerman.

Data curation: Lisa Ekman, Bo Segerman.

Formal analysis: Lisa Ekman, Bo Segerman.

Funding acquisition: Karin Persson Waller.

Investigation: Lisa Ekman, Ann Nyman, Karin Persson Waller.

Methodology: Lisa Ekman, Elisabeth Bagge, Ann Nyman, Märit Pringle, Bo Segerman.
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