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ABSTRACT
Both NUMA thread/data placement and hardware prefetcher config-
uration have significant impacts on HPC performance. Optimizing
both together leads to a large and complex design space that has
previously been impractical to explore at runtime.

In this work we deliver the performance benefits of optimizing
both NUMA thread/data placement and prefetcher configuration at
runtime through careful modeling and online profiling. To address
the large design space, we propose a prediction model that reduces
the amount of input information needed and the complexity of the
prediction required. We do so by selecting a subset of performance
counters and application configurations that provide the richest
profile information as inputs, and by limiting the output predictions
to a subset of configurations that cover most of the performance.

Our model is robust and can choose near-optimal NUMA+Pre-
fetcher configurations for applications from only two profile runs.
We further demonstrate how to profile online with low overhead,
resulting in a technique that delivers an average of 1.68× perfor-
mance improvement over a locality-optimized NUMA baseline with
all prefetchers enabled.

CCS CONCEPTS
• Computer systems organization → Multicore architectures; •
General and reference → Performance; Measurement; • Soft-
ware and its engineering → Memory management; • Comput-
ingmethodologies→Cluster analysis; Supervised learning; Cross-
validation; Model verification and validation;Model development
and analysis.
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1 INTRODUCTION
High Performance Computing systems increasememory bandwidth
by providing local DRAM for each processor node with coherent
communications between nodes, and reduce memory latency by
providing prefetchers, which identify access patterns and fetch the
data ahead of time. Local DRAM increases overall bandwidth, but
results in non-uniform memory access (NUMA) behaviors: latency
and bandwidth depend on the node accessing the data and the node
where the data is stored. Prefetchers reduce latency, but increase
bandwidth and cache evictions if the predictions are inaccurate.

For both NUMA and prefetching, appropriately configuring the
system can lead to significant performance gains. NUMA optimiza-
tions have been explored extensively [9, 14, 15, 29, 39] and focus
on adjusting the thread and data placement across the nodes to
minimize latency and maximize bandwidth. These optimizations
are typically done via the operating system’s memory manager
and thread scheduler. Configuring prefetchers via hardware reg-
isters [20, 22] improves performance by adjusting where data is
prefetched and how aggressively it is fetched to match the applica-
tion and system cache hierarchy.

However, previous prefetcher studies have assumed fixed NUMA
configurations, and, likewise, previousNUMA studies have assumed
fixed prefetcher configurations. This leaves open the question as
to what benefits can be achieved by co-optimizing for both NUMA
(thread and data placement) and prefetchers.

https://doi.org/10.1145/3392717.3392765
https://doi.org/10.1145/3392717.3392765
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Figure 1: Normalized cycles (lighter is faster) for x_solve
from BT showing opposite effects of prefetchers depending
on NUMA configuration, using 32 contiguous threads. (16
prefetcher configurations: 0 enabled, 1 disabled).

In this work we study the interactions between NUMA and
prefetching. To appreciate the complexity of this optimization, con-
sider Figure 1, which shows how part of the BT benchmark [1] is
affected by prefetcher configurations (16 squares) depending on the
NUMA configuration (left: all data in one node, right: optimized for
locality). As the figure shows, while the middle row of prefetcher
configurations improves performance with the left NUMA configu-
ration, the same prefetcher configurations hurt performance for the
right NUMA configuration. The full complexity of this problem is
shown in Figure 2: 16 prefetcher configurations for each of 4 page
mappings across 5 combinations of thread/node parallelism and
mapping for 57 parallel benchmark regions. It is clear from this
figure that, while the benchmarks exhibit diverse behaviors across
the NUMA+Prefetcher configurations, there are clear patterns that
we can leverage for efficient optimization.

To address this large search space we develop models that can
choose near-optimal NUMA+Prefetcher configurations for applica-
tions. Our models use input profiles (performance counter values)
collected by executing parallel regions from the application un-
der a few specific NUMA+Prefetcher configurations. This provides
valuable information about the applications (as they are profiled
on multiple NUMA+Prefetcher configurations) at low cost (as only
a few configurations need be profiled). We demonstrate through
cross-validation that the resulting models are capable of accurately
predicting good NUMA+Prefetcher configurations for unseen appli-
cations, and we show how they can be gathered online at runtime.

Our contributions (summarized in Figure 3) are:
• Demonstrating that the co-optimization of NUMA and pre-
fetcher configurations can lead to a 1.77× average speedup
over a locality-optimized NUMA baseline with all prefetch-
ers enabled (Section 3), but that it requires the impractical
evaluation of 288 distinct configurations per parallel region
(Section 2).

• The design of a prediction model (Section 4) that requires the
evaluation of only 2 distinct configurations and achieves an
average of 1.68× (95% of the optimal performance) speedup
over a locality-optimizedNUMAbaselinewith all prefetcehrs
enabled (Section 5).

• A methodology for applying our model at online at runtime
that handles inter-region configuration conflicts. (Section 6).
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Figure 2: Normalized speedups (lighter is faster) of parallel
regions showing complex sensitivities to NUMA+Prefetcher
configurations on a Sandy Bridge system. Regions are clus-
tered according to similar speedup behaviors. Each vertical
line on a NUMA configuration (thread and page mapping) is
1 of 16 prefetcher configurations.
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2 SEARCH SPACE
The main challenge in optimizing applications for both NUMA
and prefetching is efficiently exploring the large number of con-
figurations. In this work we consider 18 (or 20, depending on the
system) state-of-the-art NUMA optimizations for thread- and page-
placement together with the 16 hardware prefetcher configurations
available on our system. This leads to a search space of 288 (or
320) NUMA+Prefetcher (thread+page+prefetching) configurations,
which would take over 4 months of execution time to explore di-
rectly for our benchmarks.

2.1 NUMA Configurations
We focus on standard fork-join parallel HPC applications, e.g.,
OpenMP parallelized for-loops, as this results in predictable thread
assignments. The thread mapping defines how the application’s
execution threads are assigned to the hardware cores available in
the system1. Similarly, the page mapping defines how the applica-
tion’s memory pages are assigned to the processor nodes’ DRAM.

Except in the case of a single-node system, where all NUMA
configurations are equivalent, the different combinations of thread-
and page-mapping can give very different results in terms of data
locality, performance, and energy consumption for each application.

2.1.1 Thread Mapping. We consider three thread mapping parame-
ters: degree of parallelism (number of threads used), NUMA de-
gree (number of NUMA nodes used), and assignment algorithm
(how threads are assigned to cores on the nodes). We consider
two thread assignments: contiguous and scattered. Both evenly
distribute the threads across the nodes. However, scattered uses
round-robin to place the threads (e.g., if using 4 threads and 2 nodes,
threads 1 and 3 are mapped to the first node and threads 2 and 4
to the second) while contiguous places them iteratively (e.g., if
using 4 threads and 2 nodes, threads 1 and 2 are mapped to the first
node and threads 3 and 4 to the second). For the configurations
where we use only a subset of the cores, the remainder are idle. We
pin the threads to the specific cores to keep the mappings stable
throughout the execution.

2.1.2 Page Mapping. We consider 7 different page mappings, some
of which require detailed profiler/programmer information and
others which can be applied automatically by the system.

The automatic policies include: first touch (each page is allo-
cated on the node that first accesses it), single node (all pages
are allocated on one single node), and interleaved (pages are dis-
tributed in a round-robin fashion among the available nodes). We
additionally consider two additional policies when all threads are
in a single node: local (pages are allocated on the same node), and
remote (pages are allocated on a different node from the execu-
tion). Remote mapping is typically a bad configuration because it
increases access latency and reduces bandwidth, but is useful for
exposing NUMA sensitivity. It is important to note that even though
the first touch policy does not require any profiling or support from
the programmer, the result of this mapping is highly-dependent
on the application code, the thread mapping, and the scheduling
algorithm.

1We ignore hardware multithreading in our policies and experiments for simplicity.

The mappings that require detailed profiler/programmer support
include: locality (each page is allocated in the node of the cores
that will access the page the most), and balance (pages are spread
across the nodes in such a way that the total amount of memory
accesses to each node is approximately the same). These mappings
require profiling the application’s access pattern and implicitly
assume that the patterns are reasonably stable across different runs
and inputs, which has been shown to be a fair assumption for these
benchmarks [34, 40].

2.2 Prefetcher Configurations
The hardware prefetcher configurations provided by Intel2 for post-
Nehalem microarchitectures provide 4 bits (16 combinations) to
control four prefetchers [8, 18, 26]:

• DCU IP-correlated prefetcher: A stride prefetcher that
brings data from the L2 into the L1 (data cache unit, or DCU)
by correlating prefetches with the instruction pointer (IP, or
program counter).

• DCU prefetcher: A next-line L1 cache prefetcher.
• L2 adjacent cache line prefetcher: For every access it
brings the previous or next line (64 B) that completes a mem-
ory block aligned to 128 B.

• L2 streamer prefetcher: Detects data streams and fetches
the next predicted lines to the L2 cache. Similar to theDCU IP-
correlated prefetcher, but not using the instruction pointer.

2.3 Faster Evaluation: Sampling with Codelets
As executing the full applications for the complete set of NUMA+
Prefetcher configurations is impractical, we instead use a technique
called codelet execution [11, 34]. Codelet execution extracts hot
regions from the application as small, representative codelets and
uses them to characterize the application’s performance. Codelets
are on average 66× faster [35] to evaluate than running the full
application.

Codelet execution is faster because it only executes a few in-
stances of each region (instead of hundreds during the original run).
To ensure that the codelet execution matches the behavior of the
region within the application, codelets implement a short warmup
phase that configures the system state (e.g., caches) to match the
application’s native execution.

Codelets have been shown to be quite accurate for both micro-
architectural evaluation [12] and NUMA configuration studies [35].
This is because parallel regions typically exhibit similar behav-
ior [40]. For our fork-join applications, we extract codelets for
instances of each important OpenMP parallel region. This results in
57 codelets, which take approximately 2 days to execute across all
configurations, but would take over 4 months with full executions.

3 CHARACTERIZATION
To understand how we can simplify the search space, we first ex-
plore all NUMA+Prefetcher configurations via codelet exection.
This brute-force exploration allows us to identify common behav-
iors across codes and configurations, which we can then use to
build efficient models for choosing the best configuration.
2See https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-
on-some-intel-processors

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
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Table 1: Comparison of speedups between different opti-
mization searches against an optimized default (pages: lo-
cality, threads: scatter, prefetchers: on).

Speedup (geometric mean)
Optimization Sandy Bridge Skylake Average

Only NUMA 1.73 1.59 1.66
Only prefetchers 1.19 1.19 1.19

NUMA then prefetchers 1.78 1.66 1.72
Prefetchers then NUMA 1.75 1.67 1.71

Coupled search 1.82 1.73 1.77

3.1 Experimental Setup
For our experiments we use two machines: a four-node Intel Sandy
Bridge EP E5-4650 with 128GB of RAM and a dual-node Intel Sky-
lake Platinum 8168 with 188GB of RAM. Codelets are generated
using LLVM Clang version 3.8 [23, 33]. Our benchmarks come from
Rodinia [7] and the NAS C Parallel Benchmarks [1, 34] version 3.0,
along with LULESH version 2 [19, 21] and CLOMP [3].

All speedups presented in the paper are against an execution
using all cores (32 for the Sandy Bridge and 48 for the Skylake),
scattered among all nodes, and a locality-optimized page mapping
with all prefetchers on. This is an optimized configuration which
tries to increase the bandwidth (scattered thread mapping and local-
ity page mapping) and reduce the latency (locality page mapping
and prefetcher activation) over a simple first touch policy.

3.2 Performance Opportunities
We first look at the overall speedups that can be obtained from
optimizing NUMA and/or prefetching in Table 1. NUMA optimiza-
tions alone (1.66× on average between Sandy Bridge and Skylake)
are more significant than prefetcher optimizations alone (1.19× on
average). The reduced NUMA sensitivity on Skylake is likely due
to its faster interconnection links between nodes. Moreover, Sandy
Bridge has more nodes, further increasing the severity of NUMA
effects. Interestingly, the benefit from optimizing prefetchers is the
same for both systems.

A greedy optimization for NUMA and prefetching (e.g., choosing
one first, then picking the best choice for the second) delivers
still better performance, but the best order depends on the system.
Exploring all combinations of NUMA and prefetcher configurations
(i.e., a coupled optimization) delivers slightly higher performance
of 1.77× vs. 1.72× for the greedy NUMA-first optimization (on
average). However, the majority of this benefit comes from one
benchmark, K-means, which is able to find a particularly efficient
configuration with the coupled optimization.

Figure 2 shows the per-region (rows) speedups (lighter is faster),
across all NUMAand prefetcher configurations (columns), for Sandy
Bridge. The results for Skylake follow a very similar structure. On
the left side, the regions have been clustered using Ward’s method
on the normalized speedup vectors, showing that many regions
share very similar speedup patterns across the configurations.

This representation allows us to see which regions benefit from
similar NUMA+Prefetcher optimizations. For instance, BT (x_solve,
y_solve and z_solve) has very similar behavior to MG residual,
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Figure 4: Maximum attainable speedup with respect to the
number of configurations.

as they have similar access patterns (when the pages are appropri-
ately mapped). As a result, they are clustered together. Similarly,
all CLOMP regions, except the barrier, show similar sensitivities
and are grouped together (Figure 2, top 10 rows).

Our clustering shows that many benchmarks share common
behaviors, suggesting that clustering behaviors or optimizations
may be effective.

3.3 NUMA+Prefetcher Configuration Diversity
Figure 2 showed that there is significant similarity in region behavior
across the NUMA+Prefetcher configuration space. In Figure 4 we
explore the similarity of optimized NUMA+Prefetcher configura-
tions across the parallel regions. This figure shows the speedup we
can achieve with a limited number of configurations compared to
the full exploration. Here we see that, by only allowing the subset
of the 11 best NUMA+Prefetcher configurations, we can achieve
over 98 % of the maximum speedup, and when considering the best
13, we can achieve 99 %. These results come about for two reasons:
the first is that regions have similar behaviors, as seen previously,
and the second is that in many cases different NUMA+Prefetcher
configurations give essentially the same performance benefit.

3.4 Takeaway
Our analysis shows that many benchmarks behave in similar ways
and that we can achieve nearly all of the speedup potential with a
very small set of NUMA+Prefetcher configurations. This suggests
that it will be possible to build a model that can recognize applica-
tion behaviors (since there is a limited number of them) and predict
a very good NUMA+Prefetcher configurations (as only a few are
needed to cover most of the benefit).

4 PREDICTION MODEL
A brute-force approach to optimizing NUMA+Prefetcher config-
urations would take as input the performance of all possible con-
figurations and choose the best one as output. This guarantees
the best performance but comes with the very high overhead of
evaluating all configurations. To address this overhead, we train a
prediction model that takes far fewer configurations as input but
can still choose among a large enough subset of all possible NUMA+
Prefetcher configurations as output to achieve good performance.

Building an effective model requires co-designing the subset of
the input configurations to evaluate and the output configurations
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Table 2: Prediction model parameters. Single/multi-label
models use the same parameters.

Model Parameter

ANN lbfgs, alpha=0.0001, hidden_layer_sizes=(7,)
Tree —
SVM gamma=scale, decision_function_shape=ovo
LR random_state=0, solver=lbfgs, multi_class=multinomial

Clustering Hierarchical Ward (Euclidian distance)

to choose from while training the model to accurately map between
them. The subset of inputs reduces the profiling overhead but still
allows us to observe application differences, while the subset of
output configurations allows us to simplify the model, while still
obtaining high performance.

4.1 Machine Learning Models
We use the Python scikit-learn [31] package to train multiple types
of models (Artificial Neural Network (ANN), Logistic Regression
(LR), Tree, Support Vector Machine (SVM), and Clustering) using
the parameters in Table 2. From Section 3 we saw that:

(1) Only 13 NUMA+Prefetcher output configurations are needed
to cover 99% of the potential performance gains (Section 3.3).

(2) Many codes behave in a similar way across different NUMA+
Prefetcher optimizations (Section 3.2).

These two observations guide our training of different types
of models. To take advantage of 1), we use supervised learning
(ANN, LR, SVM, Tree) to directly predict from among only the 13
overall most efficient configurations, instead of across all possible
configurations (288 for Sandy Bridge and 320 for Skylake). We also
train Tree and ANN models using multi-labels: all configurations
that perform within 95 % of the best configuration are labeled as
best, instead of just labeling the best one.

To take advantage of 2), we use unsupervised clustering to group
regions by similar optimization choices. Unlike supervised learning,
clustering cannot directly assign a configuration to a code. There-
fore, we select the centroid of each cluster (in the feature space)
and use its configuration across all the other regions within the
same cluster. We expect efficient features to gather together regions
that share the same optimal configuration. During validation we
measure the features of the new regions and assign them to an
existing cluster, and use its centroid-selected configuration.

Finally, we note that some models take much more time to train
than others. For example, creating a single-label Tree model is 100×
faster than a multi-labeled ANN. This directly affects the number
of input feature pairs we can explore in training.

4.2 Model Generation and Inputs
As shown in Figure 5, the models we train take as input hardware
performance counter values for a region executed with different
NUMA+Prefetcher configurations and predict the best NUMA+
Prefetcher configuration for that region. We identify the best con-
figuration (correct prediction) through brute-force measurement a
of the execution time for all NUMA+Prefetcher configurations for
each region (see Section 2). Our training input features consist of

hardware performance counter measurements for each region for
all NUMA+Prefetcher configurations b . With these input features
c and the correct prediction data d , we can train a variety of
models e to predict the best NUMA+Prefetcher configuration3.

4.2.1 Model Inputs. Hardware performance counters provide pre-
cise information on the interaction between the application and
system. However, while these metrics are valuable for characteriz-
ing applications, they are not standard across systems. To address
this, we use Likwid 3.0 [41] to abstract them to higher-level per-
formance groups. We select memory-system related measurements,
resulting in 19 performance counters from the Likwid NUMA, L2
CACHE, and L3 CACHE groups, as well as energy/power measure-
ments from RAPL [10].

However, using only 19 data points for each application obtained
with a single NUMA+Prefetcher configuration is not sufficient to
train an accurate model (see analysis in Section 5.3). We therefore
collect performance counter data for all NUMA+Prefetcher config-
urations, which increases our training set by a factor of 288. This
is particularly valuable as we observe that the same performance
counter profiled with different NUMA+Prefetcher configurations
can return significantly different values, giving us information on
the impact of changing the NUMA+Prefetcher configuration.

This technique of amplifying application data by changing the
execution environment and observing the reaction is inspired by
previous work in compilers [6, 43]. That work measured execution
times across different compiler settings and built models to predict
configurations based on the programs’ reactions. We extend this
concept by considering more diverse metrics given by the hardware
performance counters (e.g., local accesses, bandwidth). This allows
us to feed our prediction model with more diverse information to
improve its accuracy.We call the resulting features reaction-based
performance counters as they show the reaction of hardware
performance counters to NUMA+Prefetcher configurations.

Unfortunately, while using reaction-based performance coun-
ters as input features to our models increases our data for train-
ing, collecting them can require up to 5472 executions for each
region (19 counters × 288 NUMA+Prefetcher configurations)4 to
measure the features and another 288 per code for measuring the
performance. However, these executions are a one-time cost for
generating training data for the model.

We can reduce the need for profiling by using the features from
one system to train models for another system. For instance, we can
use the reaction-based performance counter input features from
Sandy Bridge together with the ground truth (best configuration
execution time) from Skylake to develop a model for Skylake. This
reduces the overhead to only the 288 performance measurements
to train the Skylake model. We demonstrate the accuracy of this
cross-training in Section 5.1.2.

3We do not consider first touch as a possible page mapping because it assigns pages
based on how the developer designs the first accesses rather than on fixed rules.
Therefore, first touch page allocation strategy differs across applications, making it an
inconsistent choice for our model.
4On Intel machines this is reduced to 1440 executions as Likwid and RAPL measure
multiple counters at the same time. For codelets we require an initial warmup execution
prior to the profiling execution [11].
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Figure 5: Model training. Left: Training data collection, including brute-force evaluation of execution time for all configura-
tions. Right: Training each machine learning method across multiple subsets of the input features to identify the best combi-
nation of input features and model.

4.2.2 Feature Selection and Generation (Subsetting Features). To
reduce the input needed for the model, we train models using only
a subset of the input features for each region, specifically, two sets of
performance counters and NUMA+Prefetcher configurations5. This
allows us to benefit from the additional information provided by the
reaction-based performance counters while keeping the profiling
cost low: only two runs are required. To identify which subset of
two features is most effective (i.e., contains helpful information for
choosing configurations), we train models for many subsets of 2
input features and select the most efficient one. For each machine
learning method, choosing the best model requires training for
20.4 million subsets6. As part of training, we use a standard 10-fold
cross-validation (Section 5.1) to validate our models’ robustness.

5 PREDICTION RESULTS
We now evaluate the ability of our model to predict configurations
for new regions. We use the same system setup and regions pre-
sented in Section 3.1: we collect the reaction-based performance
counters (model input features) on Sandy Bridge and do a brute-
force execution time exploration for all configurations on both
Sandy Bridge and Skylake. With this data (input features and ex-
ecution times), we train models for predicting NUMA+Prefetcher
configurations for Sandy Bridge and Skylake. We then evaluate the
resulting predictions on both systems vs. the ground-truth brute-
force execution time exploration.

5.1 Model Evaluation
5.1.1 Model Validation. Each model takes as input two features
and provides a prediction of the best configuration. To evaluate the
quality of the models, we quantify the performance loss between
the model-predicted configuration and the brute-force best con-
figuration on unseen codes with cross-validation. Cross-validation
shuffles all codes and splits them into groups (folds) of similar size.
Each fold is then separately used as validation set for the model
5We empirically observed that two features provide good results from our models.
Adding more features may achieve higher accuracy but causes a combinatorial explo-
sion of the exploration space. We tried to only use subsets of many features collected
within a single NUMA+Prefetcher configuration, but did not achieve good results.
6The exploration considers 21 NUMA configurations instead of 18, separating single,
balance and interleave in 1-node settings, giving a total of 21 · 16 = 336 NUMA+
Prefetcher configurations, with 19 counters giving 336 · 19 = 6384 total features. This
results in

(6384
2
)
≈ 20.4M subsets of 2 features.
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Figure 6: 10-fold cross-validation showing robust prediction
across unseen regions and close to optimal predictions. Sky-
lake trained with Sandy Bridge profiles. (See Section 4.2.2.)

trained over remaining codes. If the training accuracy is consis-
tently high across the different folds, then it indicates that the model
is able to effectively generalize to unseen codes.

5.1.2 Cross-Validation. We illustrate in this section how cross-
validation evaluates a model. We take as an example our best model
for both Sandy Bridge and Skylake, Tree single-label (see Table 3).

Figure 6a presents the cross-validation for Sandy Bridge. It shows
the results of training the model on the benchmarks in the other
folds and then using the resulting model to predict the best config-
uration for the remaining fold. Here all but 2 folds (6 and 9) show
small differences between the model prediction and the brute-force
best choice, indicating that the model has generalized well. The
comparison of the predicted configuration to the best configuration
(dark) shows the model is effective, obtaining 95 % of the possible
speedup. The reason why folds 6 and 9 show worse prediction
results is because CG residual and K-means, respectively, have dis-
tinct behaviors (see Figure 2), and they were not included in the
benchmarks used for training in these cases. However, the predicted
configuration is still equivalent to or better than just optimizing
for NUMA (page and thread mapping), and we expect that these
mispredictions would be addressed by training on more codes.

Figure 6b shows the validation of the model which predicts con-
figurations on Skylake based on performance counters collected
from Sandy Bridge: i.e., the two input features are from reaction-
based performance counters on Sandy Bridge, with only the output
configuration performance measured on Skylake. This model has
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Table 3: Best model parameters for each ML method, including the reaction-based performance counters selected as the two
profile inputs. (Thread mappings: remote, locality, single, interleave, balance, contiguous. Number of model evaluations in
the 2-day training period.) While the DRAM Power performance counter was selected for many of the models, the second
performance counter (and the NUMA+Prefetcher configurations) varied significantly.

First feature (best model) Second feature (best model)

NUMA configuration NUMA configuration

System ML method Perf. counter HW pf. # th. # nodes Th. map. Page map. Perf. counter HW pf. # th. # nodes Th. map. Page map.
Model
speedup

# eval.
models

Sandy
Bridge

Tree_s Package Power 1111 8 1 — local Package Power 1011 16 2 contig. balance 1.76 20 368 k
LR_s DRAM Power 0110 8 1 — local Package Power 1011 32 4 scatter locality 1.43 3349 k

Clustering DRAM Power 0001 8 1 — remote DRAM Power 1101 8 1 — remote 1.56 641 k
ANN_m DRAM Power 1011 8 1 — remote Remote DRAM BW 1011 16 2 scatter interl. 1.65 146 k
ANN_s DRAM Power 0101 8 1 — local Energy 0001 32 4 scatter interl. 1.66 284 k
SVM_s Core Power 0100 8 1 — local Core Power 1010 8 1 — local 1.70 20 043 k
Tree_m Energy 1100 16 2 scatter single Package Power 1010 32 4 contig. locality 1.74 11 075 k

Skylake Tree_s Package Power 1101 16 2 contig. locality L3 miss ratio 1110 16 2 scatter single 1.60 20 368 k
LR_s DRAM Power 1101 8 1 — remote Package Power 1011 8 1 — local 1.40 3349 k

Clustering DRAM Power 1001 8 1 — local L2 miss ratio 1111 8 1 — local 1.40 643 k
ANN_m DRAM Power 1100 8 1 — local L2 miss ratio 0110 32 4 contig. locality 1.51 144 k
ANN_s DRAM Power 0111 8 1 — remote DRAM Power 1101 32 4 scatter locality 1.53 293 k
SVM_s DRAM Power 1001 8 1 — remote Local DRAM BW 1001 16 2 scatter balance 1.52 20 236 k
Tree_m Energy 1111 16 2 contig. interl. Remote DRAM Volume 1010 8 1 — local 1.59 11 094 k

higher variability between the folds and the best configuration, indi-
cating the model is less-well generalized, and slightly less effective
(92 % of the possible speedup). This is likely due to Skylake-specific
behavior that is not visible in the Sandy Bridge performance coun-
ters used for training, and shows the trade-off for reducing the
training overhead by reusing the Sandy Bridge input data.

Our models’ geometric mean performance gains, over a locality-
optimized baseline with all prefetchers enabled, are 1.76× (Sandy
Bridge) and 1.56× (Skylake) across all the folds. This shows that our
best models provide significant speedups while remaining robust
across new unseen benchmarks.

For Skylake, the selected input features are L3 Miss Ratio and
Package Power, but with very different prefetcher and NUMA
configurations (see Table 3). Package Power measures the power
consumption of an entire node, including cores, last level cache, and
memory controller. It is interesting to note that for Sandy Bridge the
selected input features also measure Package Power, but profile it
on two very different configurations (i.e., different prefetchers, core
counts or nodes). In other words, the performance change across
configurations is a useful information to guide the configuration
prediction. This illustrates how the reaction-based performance
counters allow us to include sensitivities to system configurations
as model inputs.

5.2 Comparing Machine Learning Methods
5.2.1 Performance Gains. We evaluate the 7 different machine
learning methods described in Section 4.1. For each method and
system, Figure 7 reports the geometric mean performance gain
across all folds of the most efficient model.

For performance analysis we provide two baselines that use our
brute-force evaluation to pick the best configuration across subsets
of the whole NUMA+Prefetcher search space. We define best of 2
and best of 13 as optimization strategies to compare with. Best of
13 selects the best optimization for each region from the 13 output
NUMA+Prefetcher configurations that our models choose among.
As illustrated in Figure 4, best of 13 provides similar performance
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Figure 7: Geometric mean performance gains of the most ef-
fective predictionmodel for eachMachine Learningmethod.
_s/_m refer to single label/many-labeled training.

to a full brute-force exploration and is therefore used as oracle. Best
of 2 picks the best configuration from only the two most efficient
overall configurations. That is, best of 2 has the same input overhead
as our models: the user runs two configurations and picks the best
one. This allows us to separate out the contribution of the model
from the choice of model inputs.

Figure 7 shows that there is a significant difference across the the
models: 1.2× between the best (Tree) and worst (Logistic Regres-
sion). However, the methods show similar relative results across the
systems. In both cases, Tree (both single and many-labeled) gives
the most efficient model while Logistic Regression is the worst. Fi-
nally, SVM and Tree outperform the best of 2 brute-force approach
on both systems, demonstrating our model capabilities.

5.2.2 Understanding Why Some Methods Are More Efficient. To un-
derstand why Tree is the most efficient method, we need to describe
in details how we train. Each method iterates over the subsets of
2 input features, trains a model for those input features, and then
does a cross-validation for the resulting model. For each method,
the best performing set of input features is chosen. This process
takes longer for methods that are slower to train, which therefore
limits the number of input feature subsets that can be evaluated.
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Figure 8: Single-configurationprofiling vs. the bestReaction-
based Performance Counter approach (Tree_s React.).

For each method we allocated a budget of 2 days of training per
system. This limits the number of input subsets explored for the
methods that take longer to train. Table 3 shows the size of this
effect.

We observe that Tree_s was able to evaluate the whole search
space of input subset features, thus exploring 100× more input
subsets than ANN many-labeled in the 2 day training time. As a
result, it is possible that the more time-consuming methods did not
have a chance to evaluate some particularly good combinations
of performance counters. To partially mitigate this, we explored
over 10 000 random subsets, as well as trying the best input subset
from Tree_s with the ANN. Unfortunately, these approaches did
not improve the performance, suggesting that input features need
to be selected together with the method for best efficiency. This is
particularly interesting as we see that some performance counters
such as DRAM Power (included in 5 out of 7 models) carry valuable
information, but are not used in Tree_s.

We conclude that Tree is not necessarily the best method, but its
combination of faster training time and good prediction allows it
to beat other models that may be more accurate, but take longer to
train. Therefore, investing more time to train more time consuming
methods such as ANN may further improve the gains7.

5.3 Reaction-Based Performance Counters
Improve Modeling

In the previous results, our models were all trained using the reac-
tion-based performance counters (e.g., inputs were a performance
counter measured on a specific NUMA+Prefetcher configuration).
To quantify the value of this measuring the performance counter
on the default NUMA+Prefetcher configuration, we compare our
results with models that are only allowed to choose their 2 input
features from a single NUMA+Prefetcher configuration.

Single-configuration profiling drastically reduces the number
of model inputs to only 19 · 19 = 361. As a result, each machine
learning model was able to evaluate all possible 2-input feature
subsets. Figure 8 compares single-configuration-trained models8
to our reaction-based performance counter models. We see that
training on only a single configuration significantly hurts perfor-
mance (down to 93 % of the Reaction-Based Performance Counter
approach for Tree_s), even thought it is able to explore all possible
input combinations. This showcases that the overhead of having to
evaluate codes on multiple configurations pays off in better model-
ing, which leads to better performance.

7We did not consider Deep Neural Networks due to our small input training set of
only 57 parallel regions.
8Single-configuration for Sandy Bridge: 32 threads, 4 nodes, scatter, locality, and all
prefetchers on.

5.4 Takeaway
We have shown that our Tree-based model can robustly predict
combined NUMA+Prefetcher configurations that deliver a geomet-
ric mean speedup of 1.74× (compared to 1.82× for an oracle), even
against a locality-optimized baseline with all prefetchers enabled.
We observe that the Tree model wins out due to combination of
faster training (which allows greater exploration of input combi-
nations) and good prediction accuracy. Further, we have shown
that the reaction-based performance counters provide significant
benefits by exposing sensitivity to system configurations.

In this study we also observed that the Package Power perfor-
mance counter appears to provide the best indication of overall con-
figuration fitness, as it is chosen as an input to the best-performing
machine learning models. This choice is unexpected, as IPC (in-
structions per cycle) or MPKI (misses per thousand instructions)
are typically chosen to represent overall performance. Our analysis
is that Package Power performs better as it takes into account both
CPU activity (as IPC does) and cache behavior (as MPKI does), as
well as CPU idle times, link utilization, and DRAM accesses, making
it a robust overall metric.

6 OPTIMIZING APPLICATIONS ONLINE
6.1 Online Profiling and Optimization
The method described up until now makes predictions using infor-
mation from offline profiling: first, extract codelets of the OpenMP
regions and execute them with the two selected NUMA+Prefetcher
configurations while recording the appropriate hardware perfor-
mance counters, then use the model to predict the best NUMA+
Prefetcher configuration. However, as the application itself consists
of repeated executions of the OpenMP regions, we can move this
profiling online by carefully setting the NUMA+Prefetcher configu-
rations between the OpenMP region executions as the application
runs and profiling online. Doing so allows us to collect the required
input information online with only the overhead of changing the
configuration for the two regions and appropriate warmup.

Figure 9a illustrates the online profiling of OpenMP region A as
the application executes. The first instance of region A is used to
collect the access patterns (Address Trace) needed for the NUMA
locality and balance policies9. We then need to execute the region
for each of the two input NUMA+Prefetcher configurations required
for the model (conf. 1 and conf 2. in the Figure). However, this incurs
two sources of overhead: First, we may need to migrate threads and
pages if the current configuration does not match the configuration
we need to measure. And, second, we execute the OpenMP region
once before measuring to warmup the caches, and this execution
may experience significant cache misses due to the migration. After
that setup, we profile the next execution of the region (Profile) and
use the model to predict the best configuration. With the model
prediction, wemigrate pages and threads as needed (Migration), and
then execute with the chosen configuration (Optimized execution).
This approach assumes that parallel regions have similar behavior,
which is quite common in our benchmark applications [34, 40].

9The overhead of collecting this information can be reduced to 12% [40], but in this
work we use Pin directly, which is around 10× slower.
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Figure 9: Online evaluation of different configurations.

6.2 Whole-Application Optimization
While our prediction model finds the most efficient configuration
for each parallel region, it does not consider how regions interact.
This is a problem if the NUMA page optimizations for one region
hurt the performance of another region as explicit page migration
between regions is generally too costly [27]. Prefetching and thread
configurations can be changed with little overhead between regions,
making them less problematic.

Such inter-region configuration conflicts have been shown to
have a small impact on overall performance10. Popov et al. [35]
reported that only a few applications in the NAS and Rodinia bench-
marks, such as BT ans SP, are significantly affected, and the overall
reduction in speedup when accounting for inter-region conflicts
was only 6%. We therefore evaluate the impact of inter-region con-
flicts on our online profiling approach for both BT and SP.

Our approach is similar to the one proposed by Popov et al. [35].
First, we select the best configuration for each region individually.
We then check the configurations for conflicts (i.e., pages mapped
to different nodes). If conflicts are found, we cross-evaluate the
configurations of the conflicting regions and select the best overall
performing configuration. Figure 9b shows the phases of this cross-
evaluation: migration, warming, and profiling A and B with A’s
configuration (left) and, similarly, migration, warming and profiling
A and B with B’s configuration (right).

The cost and accuracy of online cross-evaluation is shown in Fig-
ure 10 for the x_solve region in BT (top) and the y_solve region
in SP (bottom). The figures show cycle counts for each step in the
cross-evaluation of those two regions. From left to right: the region
is first executed twice with first touch to observe the non-optimized
configuration behavior, followed by migration/warmup/execution
of the region with the configurations for the rhs, x_solve, y_solve
and z_solve regions. For example, A / B / C in the top figure show
A the cycles for migrating pages for the rhs NUMA+Prefetcher
configuration, B the cycles for executing the x_solve region with
the rhs configuration for cache warmup, and C the cycles for the
profiling of the x_solve region with the rhs configuration. The
accuracy of the resulting online profile can be seen by comparing

10Speedups reported so far are for regions and do not include these effects. In this
section we evaluate two applications where these effects are significant.

Table 4: Execution times (billions of cycles) of BT and SP re-
gion conflicts and online profiling. The overhead is quickly
amortized since each region is called hundreds of times.

Locality, 32 threads, Ignoring Offline best Online best
scatter (baseline) inter-region inter-region inter-region

BT 33.5 16.3 (2.1×) 22.9 (1.5×) 23.9 (1.4×)
SP 179.8 45.2 (4.0×) 53.5 (3.4×) 54.9 (3.3×)

the online measured execution time for the region with the dif-
ferent configurations to the offline profiled one (e.g., for the rhs
configuration, this is comparing the online measured time in blue,
left, to the offline measured time, blue, right).

Figure 10 shows that there are many more cycles spent in migra-
tion for BT (top) than SP (bottom). This is because BT’s x_solve
region has a different access pattern from its y_solve and z_solve
regions [27], causing more pages to be migrated. Conversely, the
three regions from SP all use a single NUMA node optimization,
significantly reducing the migration cost.

For online profiling/optimization to be effective, the overhead
needs to be less than the benefits. Our approach has three sources
of slowdown: migration, warmup, and profiling11. These overheads
are only paid once at the beginning of the application and we find
they are quickly amortized by the speedups obtained.

Table 4 shows the execution time of the applications BT and
SP with four configurations: our locality-optimized baseline ap-
plied to the whole application, ignoring inter-region conflicts and
using each region’s best configuration, the best overall configu-
ration found offline, and the best overall configuration found on-
line, including profiling overhead. For both applications there are
enough page conflicts that the cost of migrating pages between
regions to use each region’s independently optimal configuration
is prohibitive. However, our online approach finds the overall best
configuration and delivers 95 % of the offline performance.

11Note that the cross-evaluation profiling itself will incur slowdowns if the configu-
rations being cross-evaluated are a poor match for the region being evaluated. E.g.,
y_solve takes over three times as long to complete when being profiled with the rhs
configuration (Figure 10 bottom, “Profile rhs”).
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achieved without the overhead of migrating pages.

6.3 Per-Region NUMA Optimization
The overhead of page migration makes it too expensive to adapt
on a per-region basis. However, it can be profitable to change the
thread mapping on a per-region basis, once the overall best page
mapping has been chosen. As an example, our method identifies
a case in the SP benchmark where different regions should have
different degrees of parallelism. This is shown in Figure 11, for the
case of the rhs region when executed on the Sandy Bridge system.

In this case, the best configuration for rhs uses 32 threads and
maps the pages across the whole system, while x_solve, y_solve,
and z_solve optimally use only 8 threads and map all pages to just
one node. Changing the page mapping between these regions costs
more than the potential gains, but the reconfiguration overhead of
changing the threadmapping is negligible. By reconfiguring threads,
but not pages, we can avoid the costly page migration while retain-
ing many of the benefits from the better thread mapping (3.9× im-
provement from changing just the thread-mapping on a per-region
basis vs. 4.4× for changing both thread- and page-mapping on a per-
region basis, compared to the overall best all-region configuration),

which also outperforms the baseline locality-optimized mapping.
The end result is that the page mapping is stable throughout the
execution of the application while we change the thread mapping
on a per-region basis, at a negligible cost.

A more sophisticated approach would be to consider which
subsets of threads, pages, and prefetchers should be optimized
across conflicting configurations, but we leave that for future work.

7 RELATED WORK
Our work uses online performance prediction models to optimize
both NUMA configurations and prefetching. Surveys of these broad
areas were done by Diener et al. [16] and Mittal [30], respectively,
and an overview of closely related work is presented in Table 5.

Online methods [4, 9, 38, 45] profile and make optimization de-
cisions as the application runs. However, this necessitates very low
overhead profiling to avoid outweighing the optimization gains.
Offline [2, 15, 40] methods avoid the need for low-overhead pro-
filing, but require an additional execution and can be sensitive to
changes in input data.

Direct Performance Evaluation methods measure the per-
formance of configurations [37, 45] across a search space, which
requires an effective search strategy. While accurate, this can be
time consuming as it requires executing all or part of each applica-
tion for each configuration. Performance PredictionModels use
input features to predict the best configuration [24, 44]. Commonly
used features include thread access patterns [13], performance
counters [26, 42], static code properties [44], and page/thread or
inter-thread communication and sharing [15].

NUMA - Prediction Models. Performance counters are com-
monly used inputs to performance models. Wang et al. [42] use
Integer Programming to predict bandwidth usage and thread alloca-
tion across different degrees of NUMA nodes, while Denoyelle et al.
[13] add thread and page mappings. They conclude that perfor-
mance counters and thread access patterns provide similar results
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Table 5: Related prediction approaches. (Castro et al. [5] explore Round-Robin and Scatter, which produce the samemappings
on our systems with private L2s. Wang and O’Boyle [44] evaluated scheduling policies.)

Optimizations
Inputs Models Evaluated Parallelism Thread Placement Page Placement Prefetch

Denoyelle et al. [13] Performance Counters,
Thread Access Patterns LR, SVM, Random Forest, ANN Scatter, Contiguous First touch, Interleave

Wang et al. [42] Performance Counters Integer programming Threads, Nodes

Wang and O’Boyle [44] Performance Counters,
Static Code Metrics ANN, SVM, Decision Trees Scatter, Contiguous

Castro et al. [5] Microarchitecturally-
independent metrics Analytical Threads

Liao et al. [26] Performance Counters NN, Naive Bayes, ANN, Tree,
Ripper Classifier, SVM, LR Intel

Hiebel et al. [18] Performance Counters Smooth 0-1 Loss Approximation Intel

This Work Reaction-based
Performance Counters LR, SVM, ANN, Tree, Clustering Threads, Nodes Scatter, Contiguous Interleave, Locality,

Balance, Single, Local Intel

as inputs. In both cases, inputs are collected by executing the appli-
cation. Piccoli et al. [32] proposes migrating pages for locality by
estimating array reuse during execution. Similarly, Carrefour [9]
triggers page migration for page balance by monitoring memory
performance counters. However, they only target a subset of the
NUMAmappings we consider (specifically not locality and balance)
and therefore miss opportunities.

NUMA - Performance Evaluation. Direct execution avoids
the inaccuracies of modeling, but costs time to execute the applica-
tion for each configuration. Exploration strategies have evaluated
different thread mappings [36, 37] and degrees of parallelism [17].
CERE [33, 35] used codelets to more rapidly evaluate configura-
tions, allowing the simultaneous exploration of thread and page
mappings for further benefit.

Prefetching - Prediction Model. Liao et al. [26] proposed a
tuning frameworks that predicts the best prefetching based on
performance counters. Hiebel et al. [18] extended this prediction
to target more fine grained phases of execution.

Prefetching - Evaluation. Adaptive prefetching schemes [20,
22, 45] have been proposed to directly evaluate different configu-
rations. These approaches optimize only prefetching, which can
lead to sub-optimal performance on NUMA systems, as seen in the
K-means application.

Prefetching for NUMA. Disabling all prefetching on NUMA
systems can improve performance for irregular access patterns [28].
Moreover, prefetching can also increase the contention and hurt
performance [25]. By ignoring the full spectrum of NUMA effects
on hardware prefetchers, previous works sacrificed significant per-
formance potential, as described in Section 3.2.

8 CONCLUSION
In this work we have shown that there is a significant perfor-
mance benefit from optimizing the NUMA configuration (paral-
lelism, thread-, and page-placement) together with hardware pre-
fetcher configurations (L1, L2). However, this benefit comes at the
cost of a very large design space to explore. We tackled this prob-
lem by developing an efficient and robust performance model. We
reduce the overhead of collecting data for the model by identifying
two reaction-based performance counter configurations (combi-
nations of NUMA+Prefetcher and performance counters) which

allow our model to accurately predict the best configuration, and
reducing the number of configurations the model has to choose
among by analyzing how we can reduce the configuration space
without losing performance. During training, we saw the impor-
tance of selecting the correct reaction-based performance counters
as inputs for each specific model type and system and how we can
do more efficient cross-system training by reusing input data. We
then demonstrated how this approach can be applied for online
profiling and optimization to deliver an average of 1.68× perfor-
mance increase over a NUMA-locality-optimized baseline with all
prefetchers enabled. Finally, we observed that in rare cases applica-
tions can suffer from inter-region page-mapping conflicts. Using
the best overall configuration and changing parallelism across re-
gions partly overcomes the performance loss and improves over
the already-optimized baseline.
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