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crystalline elastic parameters of Fe-rich solid solutions is reported. The approach integrates alloy theory for
chemical and magnetic disorders with accessible experimental data for the equilibrium volume and ferro-
magnetic phase transition, and is adopted to predict the temperature-dependent elastic parameters of the
body-centered cubic phase of three reduced activation steels, CLAM/CLF-1, F82H, EUROFER97, considered as
high-temperature material in power reactors. The predictions are assessed based on available experimental
data for a reduced activation steel and both experimental and theoretical data for pure Fe. Alloying effects on
the elastic constants relative to pure Fe are found to differ in the magnetically ordered and disordered phases.
Contributions due to loss of long-range magnetic order, volume expansion, and entropy are important in deter-
mining the temperature dependence of the elastic parameters in all investigatedmaterials. A previously reported,
peculiar magneto-volume phenomenon on the equation of state in pure Fe is gradually removed by alloying and
magnetic disordering, which requires particular attention when describing the thermo-chemical effects derived
from the equation of state in Fe-rich solid solutions.
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1. Introduction

Reduced activation steels are derivatives of body-centered cubic
(bcc), Fe-rich, Fe-Cr binary alloys with minor addition of low-
activation elements, such as V, Mn, Ta, W, Si, and C. These grades are
considered as candidate structural materials for first wall and
breeding-blanket applications in fusion power reactors [1–3], where
they will be subject to temperatures considerably above 300 K, and ex-
posed to plasma particles and neutron irradiation. Operation in such ex-
treme environmentsmakes it vitally important to understand how their
mechanical behavior degradeswith temperature and/or irradiation. The
technological challenge of designing reactors is compounded by the fact
that the mechanical properties of structural materials mainly limit the
temperature window of operation (approximately 620–820 K for re-
duced activation steels and somewhat higher in oxide-dispersion
strengthened grades).

Among the quantities characterizing mechanical behavior, the
knowledge of the elastic parameters is essential for alloy design, as
these coefficients directly provide information about themechanical re-
sponse under various loading conditions. Furthermore, the elastic pa-
rameters are crucial for multi-scale modeling of mechanical properties
including crystal plasticity [4,5] and phase-field models [6], modeling
fracture [7,8] and solid solution hardening [9,10], and estimating dislo-
cation core properties [11].

Where experimental data are missing or difficult to obtain, first-
principles calculations can provide the necessary information, in
addition to giving insight into microscopic mechanisms underlying
the trends predicted or observed. First-principles modeling of tem-
perature effects on the elastic parameters of Fe-based materials is,
however, difficult. The treatment of magnetic excitations remains a
serious challenge in the absence of a complete theory for itinerant
electron magnetism [12,13]. Furthermore, the variety of chemical
configurations and the large fraction of alloying elements present
in real alloy systems can typically not be sufficiently captured in tan-
gible simulation cells. The last decade has witnessed considerable
development in modeling the free energy of α-Fe enabling some
thermodynamic predictions [14–16]. These approaches remain,
however, in most cases laborious and computationally challenging
rather than being routine. The challenges mentioned practically
limit the investigations of solute-induces changes in elastic parame-
ters at finite temperature, and call for efficient, yet accurate, model-
ing approaches.

In this paper, we address these issues by combining first-principles
alloy theory for chemical and magnetic disorders, as treated by the
coherent-potential approximation (CPA) and disordered-local moment
(DLM) model, respectively, with experimental data for the equilibrium
volume and ferromagnetic phase transition. The modeling approach is
applied to compute the isothermal single-crystal and polycrystalline
elastic parameters of three reduced activation steels in the ferritic
(bcc) phase. Their chemical compositions are Fe0.8893Cr0.0963W0.0045

V0.0053Mn0.0046, Fe0.9077Cr0.0802W0.0060V0.0040Mn0.0021, and Fe0.8907
Cr0.0949W0.0033V0.0066Mn0.0045. These compositions are similar to those
of three reference reduced activation steel grades (main alloying ele-
ments) termed CLAM/CLF-1, F82H, and EUROFER97, respectively
[17,18]. Although these grades contain other substitutional or intersti-
tial elements in low concentrations, which are not considered here,
we adhere to these names for the sake of convenience. CLAM/CLF-1
(for brevity referred to as CLAM hereafter), F82H, and EUROFER97
were selected due to technology maturity. In order to assess the meth-
odology, our results are compared to available experimental results for a
reduced activation steel. However, due to the limited amount of data
available, α-Fe is also included in the assessment, since for this system
both theoretical and experimental data are available. We recently ex-
amined the zero-temperature properties of these grades in detail [19]
and concentrate here on the effect of finite temperatures up to slightly
above the magnetic ordering temperature.
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2. Linear elasticity

Let F= F(T,ε) be the Helmholtz free energy of a linear thermoelastic
solid for given temperature T and Eulerian strain ε. The isothermal
single-crystal elastic constants Cijkl

T are the expansion coefficients of
the Helmholtz free energy in terms of the strain components evaluated
at the reference state [20,21],

CT
ijkl ¼

1
V0

∂2F T , εð Þ
∂εij∂εkl

 !
T

: (1)

V0 is the volume of the reference state. Subscripts i, j,… indicate Car-
tesian components and each goes over three values. The dependence of
F on the volume of the reference state is not indicated explicitly.

Crystals of cubic symmetry possess three independent second-order
elastic constants (SOECs), C1111T , C1122T , and C1212

T . In contracted notation
used henceforth (CαβT , α, β={1…6}), they are denoted C11

T , C12T , and C44
T ,

respectively. The tetragonal shear elastic constant is defined by C'T =
(C11T − C12

T )/2 and the Zener anisotropy ratio is AZ = C44
T /C'T.

Single-crystal elastic constants determined experimentally by dy-
namic methods resemble to a larger extent isentropic conditions pro-
vided the frequency of vibration is sufficiently high (as in ultrasound)
[22]. A conversion from isentropic (CαβS ) to isothermal coefficients for
crystals of cubic symmetry can be obtained via [23,24],

CT
11 ¼ CS

11−Δ, CT
12 ¼ CS

12−Δ, CT
44 ¼ CS

44, (2)

where

Δ ¼
β BS
� �2

1þ βBS , β ¼ 9V0Tα2

cp
: (3)

Here,α is the true coefficient of thermal expansion, cp the specific heat
capacity at constant pressure, and B= (C11 + 2C12)/3 the bulk modulus
for either isothermal or isentropic coefficients. Since Δ is positive semi-
definite, C11S and C12

S have greater values at T > 0 than the isothermal
counterparts, and the difference is an increasing function of temperature.

For isotropic polycrystalline aggregates, the (effective) shear modu-
lus G can be obtained from the single-crystal elastic constants through
averagingmethods, and the Voigt-Reuss-Hill (VRH) schemewasmainly
used here [25]. Several other averaging methods to define effective
moduli exist, and the Hashin-Shtrikman bounds [26] are also emplo-
yed to discuss our results. The (effective) Young modulus E and the
Poisson ratio ν are related to B and G through E = 9BG/(3B + G) and
ν=(3B− 2G)/(6B+2G). Note that the difference between isothermal
and isentropic coefficients cancels for C44, C′, and G.

3. Modeling framework and computational details

Let A be a unary material, and AxaBxbCxc . . . a substitutionally disor-
dered alloy, where xa, xb, xc… denote the atomic fractions of alloy chem-
ical species A,B, C . . ..

The description of the Helmholtz free energy F= F(T,ε) is based on
the adiabatic approximation, since magnetic, electronic, and vibrational
excitations in solids are connected with different time scales, viz.

F ¼ Fmag þ Fel þ Fvib: (4)

The lattice dynamics correspond to the slow degree of freedom and
should be described using a potential-energy surface equilibrated with
respect to the fast, i.e., electronic and magnetic, degrees of freedom. In
the harmonic or quasi-harmonic approximation, Fvib may be deter-
mined through calculation of the interatomic force constant matrix by
means of, e.g., the small displacementmethod. This approach seems fea-
sible as long as the number of atoms in the unit cell is small. If the alloy
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state and/or static finite-temperature magnetic state itself is repre-
sented by a super cell, this approach is obviouslymuch less feasible, ren-
dering accurate phonon calculations for magnetic alloys generally
difficult. Because of this computational and methodological challenge,
we did not further consider the explicit lattice vibrational contribution,
and approximate F by the partial magnetic and electronic contributions.
Nevertheless, the thermal lattice expansion is considered as elaborated
in Sec. 3.5.

We detail on the partial magnetic and electronic free energy contri-
bution in the following subsections. Section 3.3 introduces two sets of
isothermal elastic constants for the sake of discussion. As first-
principles modeling of the finite-temperature excitations in the whole
temperature interval considered is rather complicated, we partially em-
ploy experimental data including the thermal expansion.

3.1. Magnetic contribution

Our starting point are two well-established limits of the first-
principles formulation ofmetallicmagnetswith rather localizedmagnetic
moments, such as Fe [12]. On the one hand, we resort to the zero temper-
ature ground statewith total energy EGS= EGS(ε), which is assumed to be
magnetically ordered and described by spin density-functional theory
(DFT) considering collinear spin ordering. For themagneticmaterials con-
sidered here, bcc Fe orders ferromagnetically. Cr spins in Fe-rich, Fe-alloy
align antiparallel to Fe spins, whereasMn spins align parallel.W andV are
only slightly spin-polarized by Fe and orient similar to Cr.

On the other hand, we draw upon the DLM formalism, which is a
mean-field type electronic theory in the presence of static, random
transverse spin fluctuations [27–29]. The DLM state can be directly re-
lated to the finite-temperature paramagnetic state above the magnetic
ordering temperature. The total energy of a DLM paramagnet EPM =
EPM(ε) is most readily determined by means of Green's function based
electronic structure methods as employed here (Sec. 3.6). Using its
alloy analogy, the DLM state of materialA is represented by an equimo-
lar pseudo-binary alloy A"

0:5A↓
0:5, composed of equal fractions of atoms

with up spins (A") and down spins (A↓).
In order to investigate the material properties in between the limits

of complete magnetic order and random magnetic disorder, we apply
the partial DLM (PDLM) interpolation (or uncompensated DLM)
[30,31]. The PDLM interpolation is easily illustrated by way of the
alloy analogy. The pseudo-alloy representation of material A in a
completely ordered, partially or fully magnetically disordered state is
A"

1−ζA↓
ζ , where ζ is the pseudo-alloy concentration (0 ≤ ζ ≤ 0.5), and

the corresponding total energy is denoted EPDLM = EPDLM(ε,ζ). Obvi-
ously, EGS = EPDLM(⋅,0) and EPM = EPDLM(⋅,0.5) in the completely or-
dered limit (ζ = 0) and fully disordered limit (ζ = 0.5), respectively.
A partially magnetically disordered state (0 < ζ < 0.5) is interpreted
as amagnetic state similar to a finite-temperature state below themag-
netic ordering temperature.

The pseudo-alloy representation of the reduced activation steels
consideredwas described as (Fe1−ζ

↑ Feζ↓)1−x−y−z−u(Cr1−ζ
↑ Crζ↓)xWyVzMnu.

The magnetic elements Fe and Cr have identical pseudo-alloy concen-
trations on account of a singlemagnetic phase transition in their alloyed
form. AlthoughMn ismagnetic aswell, aMn pseudo-alloy is not consid-
ered due to its very low concentration in the compositions considered.

The magnetic free energy is,

Fmag ¼ EPDLM−TSmag, (5)

where the magnetic entropy

Smag=kB ¼ 2ζ ∑
i¼a, b, c...

xi ln 1þ μ ið Þ (6)

is derived from the mean-field expression [32,33], and interpolates be-
tween the limits of complete magnetic order and random magnetic
3

disorder. μi stands for themagnitude of localmagneticmoment (in units
of Bohr magneton) of species i in the material, and kB is the Boltzmann
constant. For a pseudo-alloy, μi is that of the majority component A".

3.2. Electronic smearing

Electronic excitations to the free energy are considered by way of
smearing the Fermi-Dirac distribution [34,35]. We may formally define
Fel as the energy difference between electronic smearing taken into ac-
count and not taken into account, viz.

Fel ¼ FPDLM T , ε, ζð Þ−EPDLM ε, ζð Þ: (7)

Here, the T-dependence of FPDLM enters through the Fermi-Dirac dis-
tribution and contains entropic effects.

Explicit calculations for pure Fe showed that electronic excitations
constitute a minor effect on the elastic constants and can be neglected.
For instance, for pure Fe at T = 600 K (Wigner-Seitz radius, w=2.657
Bohr), electronic smearing increases C'T by approximately 1 GPa (or 2%
change) and C44

T by approximately 1 GPa (<1% change). The neglect is
justified by alloy disorder effects on the electronic structure (chemistry
and pseudo-alloying). For the sake of reducing the computational load,
we did not further consider Fel in our finite-temperature calculations
and all results presented in Secs. 4 and 5 were derived without consid-
ering electronic smearing.

3.3. Isothermal elastic constants: Two cases

Collecting the remainder of the partial contributions introduced
above, we first define a partial free energy Fmag that is parametric in
the pseudo-alloy concentration ζ as

Fmag T , ε, ζð Þ ¼ EPDLM ε, ζð Þ−TSmag

⇒CT ,ζ
αβ :

(8)

Isothermal elastic constants derived from Eq. (8) are denoted by CαβT, ζ

and may be obtained for a general state in (T,V0) space and for ordered,
partially or fullymagnetically disordered states. The purpose of defining
this Fmag and Cαβ

T, ζ is, for instance, to establish the effect of losing long-
range magnetic order on the elastic constants at constant reference vol-
ume, or to assess the effect of volume expansion on the elastic constants
in the magnetically ordered state.

When thermal equilibriumat zero pressure determines reference vol-
ume [V0 = V0(T)] and magnetic state [ζ = ζ(T)] at some temperature T,
we refer toℱmag(T,ε) defined by

Fmag T , εð Þ≡Fmag T , ε, ζ Tð Þð Þ
⇒CT

αβ :
(9)

Volume expansion of the reference state is assumed implicitly, and
any changes in volume may arise only from volumetric strain. Isother-
mal elastic constants derived fromℱmag are denoted by CαβT . In evaluat-
ing these, the effect of volume expansion via temperature-dependent
reference-state volumes, and the magnetic contribution via the PDLM
interpolation of the total energy and magnetic entropy are considered.

It is to be remarked that ζ is not a meaningful parameter of this
model when completely ordered and fully magnetically disordered
states are not stable for certain volumes or elastic strains, i.e., when
self-consistent calculations converge into a non-magnetic state with
zero local magnetic moment. This issue is avoided by considering do-
mains of volumes and elastic strainswhere ferromagnetic andparamag-
netic states are stable in self-consistent calculations.

The next section describes in more detail how the temperature is
mapped to the pseudo-alloy concentration.



Fig. 1. Grüneisen plots (lines) of the linear coefficient of thermal expansion for CLAM steel
compared to Fe (reproduced from Ref. [43]). The CLAM curve was obtained by fitting the
available experimental data reported in [44] to the Grüneisen expression [43]. Note that
the magnetic phase transition may produce changes in volume near Tord that are not
captured by the Grüneisen theory.
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3.4. Temperature dependence of magnetic state

Modeling the magnetic energy EPDLM due to gradual loss of long-
range magnetic order requires establishing the relation between the
pseudo-alloy concentration ζ and temperature T. This may be achieved
on the basis of the normalized order parameter for the magnetic
phase transitionm=Ms(T)/Ms0= f(ζ), whereMs is the saturationmag-
netization, Ms0 ≡ Ms(0K) the zero temperature saturation magnetiza-
tion, and 1 ≥ m ≥ 0.

The magnetization is the order parameter in the case of a ferromag-
net, and themagnetization curve connectsm to T. Magnetization curves
may be readily determined by solving a Heisenberg Hamiltonian with
first-principles derived exchange parameters through classical Monte
Carlo simulations. Previous research showed, however, that this ap-
proach does not reproduce the shape of the experimental magnetiza-
tion curve at low temperatures due to use of classical Boltzmann
statistics [36,37], while going beyond the Heisenberg Hamiltonian or
Boltzmann statistics is beyond the scope of this paper. Therefore, we
employ a simple analytical function [38],

m τð Þ ¼ 1−sτ3=2− 1−sð Þτp
h i1=3

, 0 ≤ τ ≤ 1, (10)

tomap the reduced temperature τ= T/Tord tom, where Tord denotes the
magnetic ordering temperature. For τ ≥ 1,m=0. s and p are parameters
with values 0.35 and 5, respectively, determined in Ref. [38] for bcc Fe
by fitting experimentally data to Eq. (10). In lack of experimental data,
we adopted the same values for s and p for CLAM steel.

In practice, for a given T ≤ Tord, we first determinem via Eq. (10), then
compute the zero temperature magnetization per unit cell, and finally
determine by variation that ζ that gives a Ms to Ms0 ratio equal to m.
To a good approximation,m = 1 − 2ζ.

We employed Tord = 1066 K for pure Fe (experimental value is
1043 K), previously determined theoretically by us [39]. Using the
mean-field approximation for the ordering temperature [40], we
found that the Curie temperatures of Fe and CLAM steel slightly differ
by ‐36 K, which is consistent with experimental observations for pure
Fe and the Fe-Cr binary with x ≈ 10 at.% Cr [41] (difference ≈−21 K).
For this reason, we used the same ordering temperature (Tord = 1066
K) for CLAM as well.

We should remark that themapping in Eq. (10) introduces a volume
and strain dependence of ζ, as Tord may depend on V0 and ε. Isothermal
strain derivatives of Fmag orℱmag should thus take into account the var-
iation of ζwith volume and strain under isothermal conditions. Our test
calculations using the mean-field approximation for the magnetic or-
dering temperature showed that elastic constants derived from strain
derivatives at constant ζ differ from those at constant T by at most
8 GPa. This is considered an acceptable error, and for the sake of re-
ducing the computational load, we assumed volume and strain in-
dependent Tord and ζ in our finite-temperature calculations presented
in Sec. 4.

3.5. Thermal expansion

The thermal lattice expansion was considered on the basis of the
Grüneisen theory for the true linear coefficient of thermal expansion
[42,43]. Some experimental linear expansion coefficients are avail-
able for CLAM steel at elevated temperatures (573–973 K) in Ref.
[44]. Using a least-square method, we fitted these experimental
data to the Grüneisen expression [43] in order to determine the linear
coefficient of thermal expansion in an extended temperature interval.
The resulting Grüneisen plot for CLAM shown in Fig. 1 follows the ex-
perimental data in 573–973 K closely. However, the expansion coeffi-
cient at low temperature appears to be too low (in a Debyemodel, the
Debye temperature would be too high indicating a too stiff lattice),
but the fit could be improved given additional experimental data
4

points. In lack of experimental data and due to similar composition,
we adopted the same linear expansion coefficients for F82H and
EUROFER steels.

In the case of Fe, we employed the result of Nix and MacNair [43],
who fitted experimental data measured in the temperature interval of
92–958 K to the Grüneisen expression. The Grüneisen plot for Fe is
reproduced in Fig. 1.

Previously reported averaged expansion coefficients for Fe-rich fer-
rite [45] allow to verify our results obtained from the Grüneisen theory,
since the chemical compositions of CLAM (main alloying elements) and
Fe90Cr10 are close. The direct experimental assessment [45] shows that
the linear thermal expansion coefficient, averaged between room tem-
perature and 865 K, decreases by approximately −1.8×10−6 K−1

upon alloying Fe with 10 at.% Cr. From the Grüneisen plots we deter-
mined the temperature-averaged coefficients (293–865 K) of
12.9×10−6 K−1 and 11.7×10−6 K−1 for Fe and CLAM, respectively.
With a change of−1.2×10−6 K−1, we find ourselves in good qualitative
agreement with the results of Hull et al. [45].

All theoretical, finite temperature Wigner-Seitz radii were obtained
by rescaling the calculated equilibrium Wigner-Seitz radii (in the mag-
netically ordered phase) with the above linear thermal expansion
coefficients.
3.6. Methodological details and electronic structure method

For clarity, we summarize the principal steps necessary to deter-
mine ℱmag(T,ε) for any of the considered materials and whose theo-
retical equilibrium volume is assumed to be determined. For a chosen
temperature T, first determine the reference state volume V0(T) (Sec.
3.5). Second, determine the order parameter m and the pseudo-alloy
concentration ζ of the pseudo-alloy representing the material's mag-
netic state at T (Secs. 3.1 and 3.4). Third, perform total-energy calcu-
lations for the pseudo-alloy, using alloy theory as detailed below, for
a set of strains ε applied to the reference state, considering the Fermi-
Dirac distribution at T (Sec. 3.2). Finally, extract the local magnetic
moments and add the (strain-dependent) “−TSmag” term (Sec. 3.1).
The steps to determine Fmag(T,ε, ζ) are similar except that V0 and T
are treated as independent variables (Sec. 3.3). The following part de-
scribing the determination of the elastic constants applies to both
Cαβ
T and Cαβ

T, ζ.
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The three cubic elastic constants, or combinations thereof, were ob-
tained by applying homogeneous strains to the bcc crystal structure,
and fitting the resulting energy change as a function of distortion. Spe-
cifically, we employed volume-conserving orthorhombic and mono-
clinic strains to calculate C'T and C44

T , respectively (for details, we refer
the reader to Ref. [46]). The bulk modulus of the bcc phase (at V0,
which does not need to coincide with the minimum of the partial free
energy) was derived from a third-order Birch-Murnaghan equation of
state (EOS) [47]. Default fitting comprised seven total energy data for
a Wigner-Seitz radius in the range of 2.58–2.70 Bohr (equi-distant
steps of 0.02 Bohr). These settingswere deliberately chosen after careful
testing as to maintain a high goodness of fit; cf. discussion in Sec. 5.3.

All present DFT calculations were performed using the all-electron,
exact muffin‑tin orbitals (EMTO) method [48–50]. Scalar-relativistic,
self-consistent calculations were carried out using the local-density ap-
proximation by Perdew and Wang [51], whereas the total energy was
determined via the full charge-density technique [52] in combination
with the Perdew-Burke-Ernzerhof gradient-corrected functional [53].
The soft-core basis set included the default s, p, d, and f orbitals. The
CPA [54–56] was employed to describe compositional disorder (includ-
ing the DLM state and the PDLM interpolation). An electrostatic correc-
tion to the single-site CPA was described using the screened impurity
model with screening parameter of 0.602 [57,58]. Short-range order ef-
fects and local-lattice relaxation were not considered due to single-site
nature of the CPA. This approximation is alsomotivated by the relatively
low concentrations of the alloying additions. The Brillouin zones were
sampled by approximately 20,000–27,000 uniformly distributed k-
points to ensure the required accuracy in the single-crystal elastic con-
stant calculations.
4. Results

We begin by examining the isothermal elastic properties of the re-
duced activation steels in the limits of complete magnetic order at 0 K
and random magnetic disorder at 1120 K. We then turn to their
temperature-dependent elastic properties in the range of 0 to 1120 K.
The temperature of 1120 K was chosen on account of available experi-
mental data used to discuss the modeling approach (Sec. 5). For refer-
ence and to establish alloying trends, we include results for pure Fe.
Table 1
Isothermal single-crystal elastic constants and polycrystalline elasticmoduli for bcc CLAM, F82H
tal data for Fe and a RAFM steel are shown for comparison. Temperature T (in units of K), Wign
ordered paramagnetic state) specify the conditions under which the calculations were perform
(matrix indices omitted). All elastic parameters are in units of GPa.

Material State Elastic param

T w MS Type C11 C12

CLAM 1120 2.684 disord. CT 178 12
0 2.654 ord. CT 285 12
0 2.654 disord. CT,ζ=1 200 15

F82H 1120 2.685 disord. CT 174 12
0 2.655 ord. CT 282 12
0 2.655 disord. CT,ζ=1 197 14

EUROFER97 1120 2.683 disord. CT 177 12
0 2.653 ord. CT 284 12
0 2.653 disord. CT,ζ=1 200 15

RAFM, Expt. [64] § ~1100 n/a disord. CT n/a n/a
Fe 1120 2.677 disord. CT 166 12

0 2.642 ord. CT 289 13
0 2.642 disord. CT,ζ=1 192 15

Fe, Expt. [62] † 1113 n/a disord. CT 147 11
1133 n/a disord. CT 145 11

Fem Expt. [63] ‡ 1043 n/a disord. CT 189 15
1173 n/a disord. CT 190 16

§ Impulse excitation technique. Data were read from figure and converted to isothermal coeffi
†Ultrasonic measurement. Data were converted to isothermal coefficients, and VRH averaging
‡Neutron scattering with a Born-von Kármán model. VRH averaging was applied.
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4.1. Elastic properties of reduced activation steels in the magnetically
ordered and paramagnetic states

Table 1 lists the isothermal theoretical single-crystal elastic con-
stants and derived polycrystalline moduli for bcc CLAM, F82H, and
EUROFER97 at 0 and 1120 K.We first observe that the solid solution de-
scription of these three reduced activation steels results in rather similar
elastic properties due to similar chemical compositions.

Choosing Cαβ
T of CLAM as example, the 1120 K and 0 K values for C11T

differ strongly by 107 GPa, whereas C12T and C44
T are rather similar. C'T

at 1120 K decreases to about a third of the 0 K value, whereas the
Zener ratio triples. The polycrystalline moduli BT, GT, and ET at 1120 K
are approximately 21%, 34%, and 32% lower, respectively, than their
zero temperature values in the ferromagnetic state, and both νT and
BT/GT increase moderately by 11% and 17%, respectively.

For reference, we also list our results for pure Fe in the paramagnetic
and ferromagnetic states in Table 1.We notice that the present theoret-
ical data for pure Fe are similar to those published previously
[15,19,59,60].Minor differences arise due to the use of theoretical or ex-
perimental lattice parameters, different exchange-correlation func-
tionals, fitting with different EOSs, or inclusion of longitudinal spin
fluctuations in the paramagnetic state (Refs. [59, 60]).

Relative to paramagnetic Fe at 1120 K, the compositional effect of
the main alloying elements characteristic of the three reduced activa-
tion steels is a change of C11T , C12T , C44T , and C'T by at most 8%, −2%,
−3%, and 36%, respectively. In contrast, the three isotropic moduli BT,
GT, and ET are larger in the steels, in particular Young's modulus. Both
νT and BT/GT differ by approximately 5%.

We find that the compositional trends on the elastic constants and
moduli differ in themagnetically ordered and disordered phases. For in-
stance, the three steels have a larger (smaller) C11T than Fe in the para-
magnetic (magnetically ordered) phase, while C12

T of Fe is smaller than
that of the steels at both 0 K and 1120 K. In addition, the magnitude of
the alloying effect in the paramagnetic phase can be very different
from that in the magnetically ordered phase, e.g., as evident in the
case of C44T .

For later purpose (Sec. 5.2),we determined all the elastic parameters
in the magnetically disordered state at zero temperature and corre-
sponding theoretical equilibrium volume. These values are listed in
Table 1 and denoted by CT, ζ=1.
, and EUROFER97 from present theory. Present theoretical for Fe, and previous experimen-
er-Seitz radiusw (in units of Bohr), and magnetic state (MS; ordered ground state or dis-
ed or the experiments (Expt.) were conducted. Elastic parameter type indicates CT or CT,ζ

eter

C44 C′ Az B G E v B/G

2 118 28 4.2 140 67 174 0.29 2.1
5 120 80 1.5 178 102 257 0.26 1.8
0 133 25 5.3 167 69 183 0.32 2.4
2 118 26 4.5 139 65 170 0.30 2.1
5 119 79 1.5 177 101 254 0.26 1.8
9 133 24 5.5 165 68 180 0.32 2.4
2 118 27 4.3 140 66 172 0.30 2.1
5 120 80 1.5 178 102 257 0.26 1.8
0 133 25 5.3 166 69 182 0.32 2.4

n/a n/a n/a n/a 51 123 n/a n/a
4 121 21 5.8 138 62 161 0.31 2.2
4 106 78 1.4 185 94 240 0.28 2.0
7 140 17 8.1 168 64 170 0.33 2.6
6 100 15 6.6 126 49 129 0.33 2.6
6 100 15 6.8 125 48 127 0.33 2.6
7 107 16 7.0 168 52 140 0.36 3.2
6 118 12 11.7 174 51 139 0.37 3.4

cients.
was applied.
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4.2. Temperature-dependent elastic properties of reduced activation steels

The elastic properties of the three reduced activation steels are sim-
ilar in both their magnetically ordered and paramagnetic states
(Table 1) due to similar chemical composition. We thus expect that
the elastic parameters of these alloys exhibit similar temperature de-
pendences, and investigated these only for CLAM steel.

Fig. 2 shows the isothermal single-crystal elastic constants of
CLAM steel in the temperature interval of 0–1120 K. The derived
polycrystalline moduli are shown in Fig. 3. We find that C11T and C'T de-
crease monotonically and strongly with increasing temperature below
Tord. In contrast, C12T and C44

T are with a maximum variation of less
than 10 GPa nearly stable with temperature. Upon approaching the
Curie temperature from below, the rates of change of C11T and C'T, and
to a lesser extent also C44

T , increase. The Zener anisotropy exhibits a
significant increase with temperature. In passing through the ordering
temperature, all CαβT show clear kinks. Above the magnetic transition,
the rate of change of all the elastic constants is significantly lower
than slightly below Tord, and mainly determined by volume expansion
only.

BT, GT, and ET of CLAM decrease with increasing temperature. The
BT/GT and νT have similar trends versus temperature: they are virtually
invariant in the interval of 0–600 K, exhibit a progressively increasing
trendbetween approximately 600 K and Tord, and showaweakdecrease
in the paramagnetic phase up to 1120 K.
Fig. 2. Isothermal single-crystal elastic constants of CLAM from present theory as a
function of temperature. Present theoretical data and experimental data [61–63] for Fe
are shown for reference. The experimental data were determined from ultrasonic
methods [61,62] and converted to isothermal coefficients, or neutron scattering [63].
Lines guide the eye and the legend applies to all panels.
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In order to clarify the alloying effects, theoretical results for bcc Fe
are also shown in Figs. 2 and 3. The elastic constants of pure Fe show
an overall temperature dependence similar to CLAM steel. Specifically,
we find a pronounced softening of C11T and C'T, which accelerates upon
approaching the ordering temperature. C12T and C44

T arewith amaximum
variation of less than 10 GPa nearly stable with temperature. A notable
difference is that BT/GT and νT of Fe show non-monotonic trends in the
partially magnetically disordered domain.

Section 5.3 discusses a technical issue with obtaining precise theo-
retical values for C11T , C12T , and BT for pure Fe below about 350 K, which
is responsible, at least in parts, for the non-monotonic temperature
trends determined in the low-temperature region.

5. Discussion

This work has explored the effect of temperature on the elastic pa-
rameters of reduced activation steels. In what follows, we first discuss
howabovemodel results comparewith experimental observations. Sec-
ond, we discuss the relative importance of the partial contributions to
the temperature dependences of the elastic parameters. In the third
part, we analyze the effects of chemical alloying and magnetic
disordering on a peculiar magneto-volume phenomenon appearing on
the equation of state in pure Fe, and discuss its consequences for an ac-
curate equation of state fitting.

5.1. Comparison with experimental observations

The model results are compared with experimental elastic parame-
ters for reduced activation steels. Since the available literature data is
limited to two polycrystalline moduli, we include the single-
crystalline elastic constants and polycrystalline moduli of pure Fe in
the model validation. This also enables comparison of the theoretical
and experimental alloying effects.

Tripathy et al. determined the isentropic shear and Young's moduli
for the ferritic phase of a reduced activation ferritic/martensitic steel
(referred to as RAFM hereafter) by a resonant impulse excitation tech-
nique (IET) [64]. The effective chemical composition of the RAFM
steel, Fe0.8914Cr0.0974W0.0030V0.0025Mn0.0057, is similar to that of the
CLAM steel, when a total of 0.6 at.% minor alloying elements is
neglected. Although the microstructure of the RAFM steel contained a
small volume fraction of carbides, Tripathy et al. reasoned that the elas-
tic properties of the ferrite+ carbide phase do not differ much from the
pure ferrtic phase.

For a useful comparison with the theoretical isothermal elastic con-
stants, we converted the isentropic experimental values [64] using ex-
perimental data for the thermal expansion of CLAM (Fig. 1) and, due
to lack of data, the heat capacity of Fe [65,66]. Using the heat capacity
of Fe is justified since differences between the heat capacities of Fe
and RAFM steel are expected to result in less than 1 GPa difference be-
tween the isothermal and isentropic Young's moduli, which is largest
deviation between these moduli we determined for pure Fe. For ease
of comparison, the converted data for the RAFMsteel in the temperature
domain of 298 to ~1100 K was added to Fig. 3 and ~1100 K data to
Table 1.

As is evident, the theoretical GT and ET systematically overestimate
the experimental values. The agreement is the closest at ~400 K (15%
overestimation) and the least satisfactory in the paramagnetic state
(30% and 40% for GT and ET, respectively). The theoretical temperature
dependences of both moduli for CLAM are qualitatively consistent
with the converted IET data for RAFM, but quantitative differences in
the temperature dependence of the slopes occur, both below and
above Tord. Whereas the experimental GT and ET showminor anomalies
in passing through the Curie temperature, the present theoretical re-
sults show clear kinks at the (theoretical) Curie temperature. The
kinks in the model predictions are attributed to the magnetic energy
(cf. discussion in Sec. 5.2). In this context it should be realized that ζ



Fig. 3. Isothermal polycrystalline elastic moduli and Zener anisotropy of CLAM from present theory and experimental data for the ferritic phase of an RAFM steel [64] (from IET, read from
figure, converted to isothermal coefficients) as a function of temperature. Present theoretical data and experimental data [61–63] for Fe are shown for reference. The experimental data for
Fewere obtained throughVRH averaging from the single-crystal datameasured by ultrasound [61,62] (after conversion to isothermal coefficients) or neutron scattering [63]. Themarkers
correspond to Hill averages or experimental data. The colored, shaded regionswith high transparency correspond to theVoigt and Reuss bounds on ET andGT, thosewith low transparency
correspond to the tighter, Hashin-Shtrikman bounds. Lines guide the eye and the legend applies to all panels.
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increases rapidly just below Tord (cf. Sec. 3.4). Besides, residualmagnetic
short-range order [67,68] and longitudinal spin fluctuations above the
ordering temperature, which are not considered in the present model,
are suggested to account for part of the deviation.

Tomeasure the performance of the theoretical predictions for CLAM
steel, we extend the comparison between theory and experiment by
considering experimental single-crystal elastic constants of Fe, which
were either derived from ultrasonic measurements [61,62] and resem-
ble to a larger extent isentropic elastic constant, or neutron scattering
(Born-von Kármán model fitted to phonon dispersion relations) [63].
We converted the isentropic coefficients to isothermal coefficients
using the heat capacity [65,66] and thermal expansion of Fe [43].We es-
timated the isothermal elastic moduli through VRH averaging. For ease
of comparison, these data for Fe was added to Figs. 2 and 3, and Table 1.

In the paramagnetic state, the present theory gives 10–21% larger
values for C11T , C12T and C44

T and a 12% lower Zener anisotropy in compar-
ison to the ultrasonic data [62]. The three polycrystalline moduli
are overestimated to similar degree. In comparison to the neutron
scattering data from Ref. [63], the present results, however, underesti-
mate C11

T , C12T , and BT. The effect of temperature on the strongly
temperature-dependent C11T and C'T is well captured by our model.
The model does not satisfactorily capture the weak decreases of
C12
T and C44

T with temperature. The incorrect theoretical trend for C44T fol-
lows from the fact that this parameter is larger in the paramagnetic
phase than in the ferromagnetic state at zero temperature, attributed
to a failure of semi-local exchange-correlation functionals [15,69]. The
effect of temperature on the derived polycrystalline moduli and Zener
anisotropy is reproduced, as their variation with temperature is mainly
7

determined by the strongly temperature-dependent elastic constants.
The present theoretical temperature dependences for pure Fe are simi-
lar to those published previously (C′, C44, B, AZ) [15], despite methodo-
logical differences.

Lastly, we compare the theoretical and experimental alloying effects
on ET and GT. We recall that the experimental moduli for Fe are effective
moduli, which we estimated through VRH averaging, whereas the ex-
perimental values for the RAFM steel are for bulk polycrystals. We
thus account for bounds on the effective moduli of Fe. We find from
Fig. 3 that ET and GT of the RAFM steel lie within the Voigt and Reuss
bounds on the effective moduli of Fe for all considered temperatures.
That is, definite answers on the experimental alloying trend are difficult
owing to the width of Voigt and Reuss bounds. However, using the
tighter Hashin-Shtrikman bounds for the effective moduli of Fe, ET and
GT of RAFM are larger than the corresponding upper bound for Fe
below ~850 K and lie within the Hashin-Shtrikman bounds for temper-
atures above. That is, the theoretical and experimental alloying effects
are consistent below ~850 K, whereas definite conclusions on the
alloying trend above that temperature are difficult.

Contrasting the theoretical and experimental temperature trends
for CLAM and Fe, we conclude that the present theoretical approach
has similar performance in the case of complex alloys as for pure bcc
Fe. The deviations are mainly due to basic DFT errors (exchange-cor-
relation approximation) or the neglect of magnetic short range order
in the paramagnetic regime. More importantly, the experimentally
detected alloying trends are well reproduced by our theory espe-
cially at temperatures up to slightly below the magnetic transition
temperature.
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5.2. Significance of partial contributions to temperature dependence of
elastic parameters

In what follows we disentangle the partial contributions from vol-
ume expansion and magnetism to the temperature-dependent elastic
parameters of the reduced activation steels to discuss their relative im-
portance. The effect of loosing complete long-range magnetic order can
be isolated by contrasting the above results (Table 1) in the magneti-
cally ordered andparamagnetic states for invariant volume and temper-
ature. On the other hand, the combined effect of volume expansion and
entropy can be separated out by comparing the paramagnetic results for
the two tabulated volume-temperature pairs.

As is evident, the relative significance of long-range magnetic order
and the combined effect of volume expansion and entropy varies starkly
with elastic parameter. Neither of these two partial contributions has a
dominating effect on the temperature dependence. Specifically, the ab-
sence of long-range magnetic order reduces C11T and C'T and increases
C12
T and C44

T relative to the magnetically ordered state. Volume expan-
sion and entropy decreases C11T , C12T , and C44

T , whereas C'T remains nearly
invariant. Thus, the total temperature effect on C'T primarily originates
from loss of long-rangemagnetic order. Volume expansion and entropy
fully and partially override, respectively, the increasing trend set by the
loss of long-range magnetic order for C12T and C44

T , whereas both partial
contributions reinforce each other in the case of C11T . We note that sim-
ilar conclusions are reached for the effective moduli. Furthermore, anal-
ysis of our data showed that volume expansion gives a larger
contribution than magnetic entropy.

The regular temperature dependence (mainly due to explicit lattice
contributions and volume expansion) of the three cubic elastic constant
C11, C12, and C44 in nonmagneticmetals is a power-lawdependence on T
at very low temperatures and a linear decrease with T at high tempera-
tures [70]. Assuming that Fe and CLAM steel in the paramagnetic state
follows this regular behavior (volume expansion and entropy were
shown to lead to a quasi-linear dependence of C44T in iron [15]), the pro-
nounced non-linearities observed in the ferromagnetic region (Fig. 2,
theoretical data) are attributed to the loss of long-range magnetic
order. This is consistent with Dever's reasoning [62] that the nonlinear
temperature dependence of the measured single-crystal elastic con-
stants in Fe is associated with the degree of ferromagnetic ordering.

5.3. Stability of the bulk modulus from EOS fitting

Commonly employed EOSs (e.g., Morse, Murnaghan, Birch-
Murnaghan) applied to ferromagnetic bcc Fe yield values of the bulk
modulus that are unusually sensitive to the fitting interval chosen
[71]. The underlying, physical reason is a rapid change of the magnetic
moment occurring at volumes slightly above the theoretical equilibrium
volume, the effect of which on the total energy-volume data is not cor-
rectly captured by these common EOSs. Including these volumes in the
fit (unintentionally or not) tends to underestimate the bulk modulus of
Fe and yields a poor goodness of fit compared to excluding the larger
volumes.

Whether the same issue applies to Fe at finite temperature and
CLAMsteel, and its significance for the derived single-crystal elastic con-
stants, is discussed in the following. In order to distinguish any influence
of the physical effectmentioned above on the quality offit froma typical
error associated with least squares EOS fitting (which includes, for in-
stance, numerical errors), we estimate the mean squared error (MSE,
also chi-squared per degree of freedom),

MSE ¼
∑N

n¼1 F nð Þ
mag T ,0, ζð Þ−F nð Þ

EOS

� �2
N−p

: (11)

Here, N − p is the number of degrees of freedom, N the number of
free energy-volume data points at a temperature T, p the number of
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parameters [p = 4 for all EOSs mentioned here (bulk modulus and its
pressure derivative, volume, and energy at equilibrium)]. FEOS refers to
the EOS fitted. We also deemed that a scatter of the bulk modulus in
the order of 2 GPa over the different intervalwidths considered is an ap-
propriate and acceptable theoretical error.

Fig. 4(a) shows the isothermal bulk moduli of Fe and CLAM steel in
the temperature interval of 0–600 K obtained by fitting the Birch-
Murnaghan EOS to free energy data in five different interval widths.
The lower boundary is identical to 2.58 Bohr in each case, while the
upper boundary is gradually extended. The step size is 0.02 Bohr in
each case. Fig. 4(b) shows the corresponding MSEs.

It is obvious that the bulk moduli of Fe scatter significantly at zero
temperature (≈ 13 GPa), 200 K (≈ 8 GPa), and 350 K (≈ 3 GPa) over
the interval widths considered. At 400 K and 600 K, the difference be-
tween the largest and smallest value is ≲ 2 GPa. In contrast, the scatter
of the bulk moduli for CLAM amounts to ≲1 GPa at any of the tempera-
tures considered. Note that for the sake of clarity, only a single curve for
CLAM steel is shown in Fig. 4(a), whereas the size of the symbols repre-
sents the scatter of BT over the five interval widths.

Using other common EOSs (Morse, Murnaghan, Vinet, and Poirier-
Tarantola), we found that these EOSs lead to very similar results as
shown in Fig. 4(a) for the Birch-Murnaghan EOS.

The fitting to a narrower interval is accompanied by a smaller MSE
[Fig. 4(b), Fe data], thus an improved goodness of fit. For the data at
600 K (small scatter of BT), the MSE for the interval of 2.58–2.70 Bohr
is approximately 10 times smaller than that of 2.58–2.80 Bohr, but it is
approximately a 100 times smaller at 0 K (large scatter of BT). The inter-
val of 2.58–2.70 Bohr has the smallest MSEs. We recall that this interval
was the default setting employed to obtain all results presented in Sec.
4. For CLAM, we found that 1 ⋅ 10−10 ≤ MSE ≤ 1 ⋅ 10−8 eV2 (typically
the smallest MSE occurred for the widest interval), and one representa-
tive case is shown in Fig. 4(b).

These results confirm the finding from Zhang et al. [71] that includ-
ing large Wigner-Seitz radii in the EOS fit tends to decrease the bulk
modulus of Fe at zero temperature. By doing so, the theoretical and
experimental values can be brought near coincidence [see Fig. 4(a)],
but results in a poorer goodness of fit. Besides, we find the same effect
on BT in our finite temperature calculations below approximately
350 K, although a systematic overestimation of the experimental
value remains.

Fig. 4(c) shows an increasingmagnetization (magnetic moment per
site)withWigner-Seitz radius for both Fe and CLAM steel. An increasing
trend for Fe is expected from a band theory point of view. Interestingly,
in the magnetically ordered state, the magnetic moment of pure Fe ex-
hibits a rapid transition between 2.70 and 2.74 Bohr due to a band struc-
ture effect near the Fermi level [71]. A similar, but diminished change in
themoment between 2.70 and 2.74 Bohr occurs for Fe at 200 and 400 K,
whereas no such feature appears on the 600 K curve. We recall that the
higher the temperature, the larger the pseudo-alloy concentration.
Thus, the rapid transition is gradually removed due to magnetic disor-
der (i.e., pseudo-alloying) effects on the electronic states. The transition
is completely absent in paramagnetic Fe (not shown) andCLAM steel ir-
respective of temperature/magnetic state [zero Kelvin magnetically or-
dered state is shown in Fig. 4(c)]. In the case of CLAM steel, the high Cr
content (chemical composition close to Fe0.9Cr0.1) induced strong disor-
der effects in themajority spin channel near the Fermi level, where elec-
tronic states loose their band character, but largely preserves their band
character in the minority spin channel [72].

As is evident, the smoothing of the magnetic moment curve with
temperature, the decrease of the scatter in the bulk modulus (at fixed
temperature) over extending the fitting interval, and the improvement
of the goodness of fit appear simultaneously. The common EOSs accu-
rately fit the free energy-volume data when the physical reason for
the deviation disappears, i.e., magnetic and/or alloy disorder effects re-
move the rapid change of the magnetic moment occurring at volumes
slightly above the theoretical equilibrium volume.



Fig. 4. (a) Isothermal bulkmoduli of Fe and CLAM steel versus temperature obtained from
fitting the Birch-Murnaghan EOS to free energy data in varying interval widths as
indicated in the legend (Wigner-Seitz radii). For the sake of clarity, only a single curve
for CLAM steel is shown, where the size of the symbols represent the scatter of BT over
the five interval widths (≲1 GPa). The experimental data for Fe were determined from
ultrasonic methods [61,62] and converted to isothermal coefficients. (b) MSEs of the
least squares EOS fit corresponding to (a). (c) Magnetization of Fe and CLAM steel in the
magnetically ordered states at zero temperature, and of Fe for various degrees of partial
magnetic disorder indicated by the temperature as a function of the Wigner-Seitz
radius. Lines guide the eye.
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The scatter of BT with interval width leads to equal changes in
C11
T and C12

T derived from BT, since

CT
11 ¼ BT þ 4

3
C0T and (12)
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CT
12 ¼ BT−

2
3
C0T : (13)

As is evident from Fig. 1, a smaller BT for bcc Fe (e.g., due to including
largeWigner-Seitz radii in the EOSfit)would reduce the overestimation
of the experimental C11T and simultaneously lead to a more stable C12

T

with temperature.
An alternative strategy suggesting itself is to avoid any EOSfitting. To

test this hypothesis, we derived the linear combination C11 − C12 from
the strain energy change for applied strain ε = diag (ε,−ε,0) (all
other settings were identical to those of determining C'T). We obtained
BT = 186 GPa for Fe at zero temperature, which is virtually identical
to the result obtained with the Birch-Murnaghan EOS.

6. Conclusions

The isothermal single-crystal and polycrystalline elastic parameters
of three Fe-rich reduced activation steels, CLAM, F82H, and EUROFER97
(main alloying elements), have been determined in their magnetically
ordered (0 K) and paramagnetic bcc phases (1120 K). The temperature
dependence (T ≤ 1120 K) of these micro-mechanical properties has
been investigated for CLAM based on a finite-temperature modeling
approach.

Based on the results obtained the following important conclusions
are drawn:

(i) The assessment for a RAFM steel shows that themodel approach
captures the effect of temperature on the available data for ET and
GT. In the case of Fe, the effect of temperature on the strongly
temperature-dependent elastic constants C11T and C'T, and the de-
rived polycrystalline moduli and Zener anisotropy is reproduced.
The weak changes of C12T and C44

T with temperature do not follow
the experimental trends.

(ii) Relative to pure Fe, the effects of themain alloy additions charac-
teristic of the three reduced activation steels on the elastic prop-
erties differ in the magnetically ordered and disordered phases.

(iii) Contributions due to loss of long-range magnetic order and the
combined effect of volume expansion and entropy are important
in determining the temperature dependence of the elastic pa-
rameters in all the materials investigated. The relative signifi-
cance of the two partial contributions is specific to each elastic
constant, but similar in the reduced activation steels and Fe.

(iv) The bulk modulus of Fe below about 350 K was found to be un-
usually sensitive to thefitting interval chosen infittingwith com-
mon EOSs. The effect is absent in CLAM. The large sensitivity was
ascribed to a rapid change of the magnetic moment on volume
increase, the effect of which on the energy is not captured by
common EOSs. Similar effects may exist in other itinerant mag-
nets. This is important since erroneous EOS fitting should be
avoided in order to assess the performance of common
exchange-correlation functionals in predicting basic ground-
state properties.
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