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Formation of spatial patterns by spin-selective excitations of interacting fermions
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We describe the formation of charge- and spin-density patterns induced by spin-selective photoexcitations of
interacting fermionic systems in the presence of a microstructure. As an example, we consider a one-dimensional
Hubbard-like system with a periodic magnetic microstructure, which has a uniform charge distribution in its
ground state, and in which a long-lived charge-density pattern is induced by the spin-selective photoexcitation.
Using tensor-network methods, we study the full quantum dynamics in the presence of electron-electron
interactions and identify doublons as the main decay channel for the induced charge pattern. Our setup is
compared to the optically induced spin transfer (OISTR) mechanism, in which ultrafast optically induced spin
transfer in Heusler and magnetic compounds is associated to the difference of the local density of states of the
different elements in the alloys. We find that applying a spin-selective excitation there induces spatially periodic
patterns in local observables. Implications for pump-probe experiments on correlated materials and experiments
with ultracold gases on optical lattices are discussed.
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I. INTRODUCTION

The emergence of order in nonequilibrium quantum sys-
tems has inspired a lot of experimental and theoretical
research. Examples are the recent observation of so-called
time-crystal phases in Floquet-driven systems [1–10], as well
as the experimental finding of metastable, ordered states
following a photoexcitation using ultrashort laser pulses in
pump-probe setups [11–32]. In these experiments, the possi-
ble observation of transient superconducting states at elevated
temperatures [22,23] or the transformation of charge-density
wave (CDW) states has been reported [25–27,29,30,33]. This
includes optically driven transitions between ordered states
[34], enhancement of existent order [26], or its melting
[27,29,30,35,36] due to an excitation. Identifying theoretical
mechanisms predicting the behavior in such nonequilibrium
situations is a major challenge and topic of ongoing research
[37–53].

Recently, a mechanism providing ultrafast control of mag-
netic subsystems via optically induced spin transfer (OISTR)
has been proposed theoretically [54,55] and was verified ex-
perimentally in Heusler materials and ferromagnetic alloys
[56–58]. Based on the existence of two magnetic sublat-
tices and mutually different local densities of states (DOSs)
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for minority- and majority-spin directions, optical excitations
cause spin currents between the subsystems on the time scale
of electronic dynamics, i.e., femtoseconds. Notably, the dif-
ferent DOSs in the minority- and majority-spin directions for
the different sublattices can be modeled in terms of lattice
electrons by means of a magnetic microstructure [59].

In this paper, we connect both aspects and ask for the
possibility of inducing periodic spatial patterns in OISTR-like
setups and find that a spin-selective photoexcitation is a suit-
able way to realize this. We study the underlying microscopic
dynamics in the idealized framework of one-dimensional (1D)
tight-binding electrons in the presence of a microstructure,
subject to a photoexcitation, and ask for the effect of strong
electron-electron interactions. We observe not only spin trans-
fer, but also the formation of a spatially modulated charge
distribution, which is stable on comparably long time scales.
Crucially, our microscopic picture does not only apply to mag-
netic microstructures, but also to systems with a modulation
of local chemical potentials, as realized in charge-transfer
salts [60] and, e.g., modeled by the so-called ionic Hubbard
model [60–62]. Also, the considerations are not restricted by
dimensionality of the system, so that we expect our scenario
to be valid for generic systems with a microstructure.

The paper is organized as follows. In Sec. II, we present the
physical mechanism leading to the formation of periodic pat-
terns and its general validity. Furthermore, we introduce the
spin-selective photoexcitation and present the general setup.
In Sec. III, we focus on a specific Hubbard-type model with
a magnetic microstructure as an example system. In Sec. IV
we discuss the stability and the decay channels for the charge-
density pattern (CDP) in the presence of interactions as well as
alternative scenarios by considering spin-dependent shaking
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FIG. 1. Illustration of the effect of spin-selective excitations, in
which only the spin-up electrons are affected. In these simple illus-
trations, we assume the excitation induces a local current moving
the spin-up electrons by one lattice site. In (a), the initial state is a
spin-density wave induced by a staggered magnetic field, which has a
homogeneous distribution of the electron density. The resulting state
has zero magnetization per site and a periodically modulated electron
density. In (b), we start from a state with zero on-site magnetization,
but a charge modulation caused by a staggered ionic potential. The
resulting state has a uniform charge distribution with staggered local
magnetizations.

of an optical lattice and single-photon excitations. In Sec. V
we conclude. The Appendices show detailed calculations
for an idealized kick excitation (Appendix A), a mean-field
decoupling of the Hubbard-type model at low fillings (Ap-
pendix B), and the definition of the k modes in the presence
of open-boundary conditions (OBC) (Appendix C).

II. FORMATION OF PERIODIC STRUCTURES

We assume a system of itinerant electrons, in which differ-
ent subsystems can be identified. Simple situations, in which
our setup is physically relevant, are lattice systems with a
superlattice structure, which is either formed by spontaneous
breaking of translational symmetry of the electronic system
(e.g., a charge density wave (CDW) or a spin-density wave),
or is present due to the general (lattice) properties of the
system. An illustration is given in Fig. 1, in which we display
two simple scenarios, for which the proposed spin-selective
excitation leads to a periodic pattern in the charge or spin
degrees of freedom, respectively, which is absent in the initial
state. In these examples, we excite only the electrons with
spin up.

We first consider systems of noninteracting electrons with
only nearest-neighbor hopping on a lattice with a superstruc-
ture, which is modeled by a periodically modulated on-site
potential. In this case, the Hamiltonian can be written as

Ĥ = Ĥ↑ + Ĥ↓,
(1)

Ĥσ = −thop

∑
〈i, j〉

(ĉ†
σ,iĉσ, j + H.c.) +

∑
j

�σ, j n̂σ, j,

with the usual annihilation (creation) operators ĉ(†)
σ, j for elec-

trons of spin σ on lattice site j, the particle-density operator
n̂σ, j = ĉ†

σ, j ĉσ, j , hopping amplitude thop, and on-site potentials
�σ, j experienced by electrons with spin σ on lattice site j.
Note that such a noninteracting system can be seen as two

independent lattices of spinless fermions. Since we can write
Ŝz

j = 1/2(n̂ j,↑ − n̂ j,↓) for the local spin operator, we realize
a Zeeman term by choosing �↓, j = −�↑, j . The case of a
periodically modulated Zeeman term we refer to in the fol-
lowing as a magnetic microstructure. Similarly, since the total
density on lattice site j is given by n̂ j = n̂ j,↑ + n̂ j,↓, the choice
�↓, j = �↑, j realizes a local chemical potential or a local
electrical field. In case of a periodic modulation, we call this
an ionic potential, as realized, e.g., in the Ionic Hubbard model
[60–62], which was introduced to model charge-transfer salts,
or the Fermi-Hubbard-Harper model [63], which is studied in
the context of topological phases in optical lattice systems.
While generically |�↓, j | �= |�↑, j | is possible, we focus on the
physically relevant cases of periodically modulated Zeeman
fields or ionic potentials with |�↓, j | = |�↑, j | and consider
systems in which the number of electrons for both spin direc-
tions is equal, N↑ = N↓, so that we have no net magnetization.
In the following, for the sake of simplicity we will focus
on local observables, i.e., the local magnetization 〈Ŝz

j〉 and
the expectation value of the local density 〈n̂ j〉, and leave
the behavior of further interesting properties, e.g., possible
topological features, to future work.

As sketched in Fig. 1, for systems with magnetic mi-
crostructures, the local Zeeman terms usually lead to a
periodic pattern in the spin density with the same periodicity
as the on-site terms. Such a modulation of the spins is not
necessarily connected to a modulation of the charge density,
so that situations can be realized, in which a constant charge
density throughout the system is realized (up to boundary ef-
fects, which we neglect in the following), despite the periodic
Zeeman term. In complement to this, for periodic ionic poten-
tials, a modulation of the charge density is expected, while the
local magnetization can be zero throughout the system.

Having these setups in mind, one can now ask for the effect
of a spin-selective excitation. The simplest possible scenario
sketched in Fig. 1 is to assume an ad hoc excitation of the
system that shifts all particles of the same spin direction by
one lattice site. In the presence of magnetic microstructures,
the periodic spin density will be weakened, and at the same
time a periodic charge modulation can be induced, whereas
in the presence of ionic potentials the periodic density dis-
tribution will be weakened, and a periodic modulation of the
spin densities can be induced. Note that these considerations
can be easily extended to systems with larger unit cells and
in two or three dimensions. In the following we will show
that spin-selective photoexcitations, realizable by circularly
polarized monochromatic light (see, e.g., Ref. [64]), induce
this effect.

A. Photoexcitation in the noninteracting case

We start modeling the photoexcitation by Peierls substitu-
tion [65–67], which we apply to noninteracting electrons to
explore the general features sketched above. In this approach,
the incident light is considered as a classical field and in-
cluded in the Hamiltonian via minimal coupling [68], which
corresponds to a situation with large photon numbers or high
intensities of the applied light. In the following, we consider
a generalization of the usual ansatz and assume that the effect
of the light field can depend on the spin direction of the
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TABLE I. Wave package parameter resulting from h̄ = eel =
thop = 1 and a0 = 1[10−10 m].

c = 3374.85
[ a0 ·thop

h̄

]
gsμB = 13.04

[ eelthopa2
0

h̄

]
Wavelength λ ≈ 5000[a0] Amplitude E0 = 20

[ thop

eel

]
Width s = 6000[a0] Maximum τ0 = 10

[
h̄

thop

]

electrons. This is motivated by the realization of spin-selective
photoexcitations, e.g., in spin-polarized angle-resolved pho-
toemission spectroscopy (ARPES) experiments [69–72] and
through the tunability of parameters in experiments on optical
lattices [73]. The tunneling amplitude in equilibrium thop is
multiplied by a complex phase factor, which depends on the
position j, on time τ , and on the spin direction σ , leading to

thop
σ, j (τ ) = e−iασ

eela0
2h̄ [A( j,τ )+A( j+1,τ )] thop. (2)

The coefficient ασ takes either the value 1, if the light field
couples with the electrons of spin direction σ , or zero, if
the coupling is suppressed. The vector potential A( j, τ ) and
magnetic field B( j, τ ) are specified by

A( j, τ ) = E0λ

2πc
e− [a0 j−c(τ−τ0 )]2

s2 sin

[
2π

λ
(a0 j − cτ )

]
, (3)

B( j, τ ) = E0gsμB

c
e− [a0 j−c(τ−τ0 )]2

s2 cos

[
2π

λ
(a0 j − cτ )

]
. (4)

Here, c denotes the speed of light; λ is the wavelength of the
incoming light, which we assume for the sake of simplicity
to be monochromatic; eel is the charge of the electron; and
a0 is the lattice constant. We assume the light pulse to have
a Gaussian envelope with amplitude E0, peak at time τ = τ0,
and width s

c
√

2
in the time domain. We work in units in which

h̄ = eel = a0 = 1, leading to the values displayed in Table I.
These values are used throughout the paper for the photoexci-
tation if not stated otherwise.

Having introduced such a spin-dependent hopping ampli-
tude, we can now rewrite the Hamiltonian (1) as

Ĥσ (τ ) = −
∑
〈i, j〉

[
thop
σ, j (τ )ĉ†

σ,iĉσ, j + H.c.
] +

∑
j

�σ, j n̂σ, j

+
∑

j

B( j, τ ) Ŝz
j . (5)

B. “Kick”-like excitation

We ask now for a situation in which such an excitation is
easy to treat, and for the lifetime of the realized state. For this,
we consider a kicklike excitation, which can be regarded as
an idealized “Peierls pulse” (2) with a width of the Gaussian
envelope of the vector potential in Eqs. (3) s/c → 0; i.e., the
pulse duration, which we denote by δs, is small compared to
the time scale introduced by the microstructure δs · � 
 1
(see Appendix A). Note that in the long-wavelength limit
λ � c · δs the Peierls pulse reduces to a simple Gaussian. For
small durations δs or long enough wavelength λ the pulse can
be approximated by a box shape, which is used in Appendix A
to treat the kick excitation.

For the sake of simplicity we treat one-dimensional sys-
tems and exploit the fact that the two spin directions for
noninteracting electrons are completely decoupled. In the fol-
lowing, without loss of generality, we consider an excitation
only on electrons with σ =↑, a system with nearest-neighbor
hopping, and N unit cells with each containing M sites. Based
on Eq. (5), assuming the induced magnetic fields are neg-
ligibly small, such an idealized excitation can be modeled
by evolving the system with a modified hopping part of the
Hamiltonian:

T̂ϕ = −thop

∑
j,σ

(e−iϕδσ,↑ ĉ†
σ, j ĉσ, j+1 + H.c.). (6)

The phase factor ϕ is assumed to be constant due to the in-
finitesimally short pulse duration and the Kronecker delta δσ,↑
selects the spin direction. We assume no spatial dependence
of the perturbation or of thop.

For illustrative purposes, we apply this perturbation now
to an ionic system with a unit cell of M = 2 sites with
Hamiltonian

Ĥ ionic = T̂0 + �
∑

j

(−1) j n̂ j, (7)

which is the noninteracting limit of the ionic Hubbard model
[60] and which is one of the scenarios sketched in Fig. 1. In
the following, we consider half filling, so that the ground state
for one spin direction is

|ψ0,σ 〉 =
∏
kn

â†
σ,−(kn) |0〉 ,

kn = 2πn

MN
, n = −N, . . . , N − 1

(8)

with operators â(†)
σ,μ(k), μ = ± labeling the upper and lower

band and which diagonalize the Hamiltonian (7), as discussed
in Appendix A. In the atomic limit thop/� → 0, we can expand
the results in the small parameter ε ≡ 2thop/� to obtain compact
expressions, giving us direct insights into the behavior of the
system following the pulse (6). As discussed in Appendix A,
we obtain (labeling unit cells by l = 0, . . . , N − 1 and the
sites within the unit cells by m = 0, 1)

〈n̂σ,l,0〉 = 1 − ε2

8
, (9)

〈n̂σ,l,1〉 = 1 − 〈n̂σ,l,0〉 = ε2

8
, (10)

i.e., a charge density pattern (CDP) with amplitude of the
modulation aCDP := 〈n̂σ,l,0〉 − 〈n̂σ,l,1〉 = 1 − ε2

4 . Since we are
populating the kn modes symmetrically around k = 0, in the
ground state the value of 〈n̂σ,l,0〉 is maximized, while 〈n̂σ,l,1〉 is
minimal. Note that from the discussions in Appendix A it fol-
lows that a finite aCDP is obtained for all values of �/thop > 0
and not only in the atomic limit, which is related to the fact
that there is no phase transition as a function of � for this
system [61]. We hence see from Eqs. (9) and (10) that for
the ionic system in the ground state the expectation values
of the local densities 〈n̂σ,l,m〉 will alternate within a unit cell,
while the local magnetizations 〈Ŝz

l,m〉 are zero throughout the
system.

The kick excitation will lead to a redistribution of par-
ticles to both bands, and since the densities were maximal
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(minimal) on the even (odd) sites within a unit cell, this means
that the amplitude of the density pattern will decrease. More
specifically, in the atomic limit ε 
 1 we obtain for the local
densities directly after the kick excitation

〈n̂σ,l,0〉 (ϕ) = 〈n̂σ,l,0〉 − δσ,↑t2
hop

δs2

4
sin2(ϕ/2), (11)

〈n̂σ,l,1〉 (ϕ) = 〈n̂σ,l,1〉 + δσ,↑t2
hop

δs2

4
sin2(ϕ/2) (12)

as discussed in more detail in Appendix A. Importantly, due to
the choice of a spin-selective excitation in Eq. (6), the redistri-
bution happens only for the ↑ particles, while the ↓ particles
remain unchanged. Thus, the effect of the kick excitation is a
weakening of the density modulation in each unit cell while
at the same time a spin-density pattern (SDP) forms with
amplitude

aSDP ∝ (thopδs)2 sin2(ϕ/2). (13)

Note that the induced SDP amplitude scales with t2
hop while the

dependence on ε is subleading [∼O(ε4)]. In contrast, exciting
both spin directions will not lead to a finite local magnetiza-
tion, since the densities for both spin directions would remain
equal. Hence, we need a spin-selective excitation to induce a
magnetization pattern.

Similarly, one can treat a system with a simple magnetic
microstructure by assuming a site-alternating Zeeman term,

Ĥmagnetic = T̂0 + �
∑

j

(−1) j Ŝz
j, (14)

at quarter filling. In this situation, in the ground state there is
the same particle density on each lattice site, and a finite local
magnetization caused by the local Zeeman term. A similar
reasoning as before shows that the initially present modula-
tion of the spin density is weakened, while a finite density
modulation is induced. Again, this only happens in case of
a spin-selective excitation, since otherwise the same change
of particle densities in both spin directions would lead to an
equal redistribution of both particle species.

These calculations on simple systems confirm the scenario
depicted in Fig. 1 for an idealized Peierls pulse. Usually, the
patterns induced in the charge and spin densities by such
spin-selective excitations will correspond to the patterns of the
on-site potentials �σ, j in systems described by Hamiltonians
of type (1). Such an excitation is, hence, a way to imprint or
enhance this pattern to observables, even if their expectation
values do not possess this pattern in the initial state. Similar
considerations can also be made in higher dimensions, since
the mechanism sketched above depends only on the existence
of an underlying structure in the local potentials, and on ex-
citing only one type of electrons.

As we have shown in Appendix A, in general the kick exci-
tation leads to a redistribution of populations of the k modes.
Since for the noninteracting system their number 〈n̂σ,μ(k)〉 =
〈â†

σ,μ(k)âσ,μ(k)〉 is a conserved quantity, the electrons will not
be able to relax back to the initial state, leading to a stable
state with new spin and charge distributions. Note that this
state can still be time dependent, as the excitation induces
superpositions of eigenstates of the system, but it will not
decay to a steady state due to the lack of scattering processes.

Typically, this will lead to oscillations in time of the local
observables, without destroying the generated charge and spin
patterns.

The above examples refer to idealized setups. The question
arises for a more realistic scenario, which we treat in the
following by applying Peierls pulses of duration ≈10 fs (using
the units and values of Table I), and for the role of interactions.
For a realistic system, the two main modifications are due to
electron-electron interactions, and phonons. We postpone the
investigation of the effect of phonons, which are difficult to
treat numerically in fully interacting electronic systems out
of equilibrium [74–77]. Instead, we investigate the effect of
electron-electron interactions on the possible realizations and
lifetimes of the above-mentioned patterns in a specific model
with a magnetic microstructure. We expect this to be a valid
analysis, as long as the coupling between phonons and itiner-
ant electrons is weak [78–80], and leave the strong-coupling
regime for future work. We also assume in the following the
magnetic microstructure to be unaffected by the photoexci-
tation on the time scales treated by us. This is justified by
the OISTR prediction, in which a time scale is identified,
on which the equilibrium DOS can be used to describe the
dynamics of the system [54,55]. As long as this is true, the
magnetic microstructure is present and our considerations are
applicable. At later times, once the local DOS might be modi-
fied by further effects like spin flips due to spin-orbit coupling,
one would need to take these also into account. However, as
in the experimental observation of OISTR [56–58], we expect
an extended time window, in which such more complicated
behavior is not active and in which the predicted effects should
be observable.

III. HUBBARD MODEL WITH MAGNETIC
MICROSTRUCTURE AND SPIN-SELECTIVE

PHOTOEXCITATION

We now discuss in detail the interplay of a mag-
netic microstructure, spin-selective photoexcitations, and
electron-electron interactions by considering a variant of the
one-dimensional Fermi-Hubbard model [81,82], which was
introduced in Ref. [59] as a 1D toy model for manganates.
We treat the Hamiltonian

Ĥ =
∑

j

{
−thop

∑
σ

(ĉ†
σ, j+1ĉσ, j + ĉ†

σ, j ĉσ, j+1)

+Un̂↑, j n̂↓, j + � j Ŝ
z
j

}
, (15)

where U is the strength of the Hubbard interaction, and the
sign of the spin-independent on-site potential � j is alternating
every two sites, (�, �, −�, −�), which defines a magnetic
microstructure with a unit cell of four sites. This model is
related to so-called block orbital-selective Mott insulators,
which are discussed in the context of ladder systems like
BaFe2Se3. These systems can be modeled by generalized
Kondo-Heisenberg models and possess phases, in which the
same magnetic microstructure is realized, but with a coupling
to the conduction electrons via a Heisenberg exchange term
rather than a Zeeman term [83].

Here, if not mentioned otherwise, we treat the system
at quarter filling and zero net magnetization, i.e., the total

235166-4



FORMATION OF SPATIAL PATTERNS BY … PHYSICAL REVIEW B 102, 235166 (2020)

(a)
Δ

E1

E2

(b)

16 17 18 19 20 21 22 23

−0.2

0

0.2

site j

n̂
j

1 /
2
,

Ŝ
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FIG. 2. (a) Sketch of the distribution of the electrons on the
magnetic microstructure in model (15) at quarter filling. Note that the
dashed arrows represent a local density of 1/2 for the corresponding
spin. (b) Density-matrix renormalization-group (DMRG) results for
the local densities 〈nj〉 and the local spin densities 〈Sz

j〉 in the ground
state at U/thop = 4, �/thop = 8 at quarter filling.

number of electrons N↑ = N↓, where the ground state can be
seen as a crystal of Zener polarons, as further discussed in
Ref. [59]. In the ground state, at finite values of �, this results
for all values of U in a homogeneous charge distribution in the
bulk and in a staggered local magnetization, which follows the
pattern of the microstructure [84]. This is illustrated in Fig. 2;
Fig. 2(a) summarizes the expected bulk behavior at quarter
filling, which is confirmed by matrix product state (MPS)
results for a chain with L = 40 sites, U = 4thop, and � = 8thop

in Fig. 2(b). When applying the Peierls pulse Eqs. (2) and (3),
we obtain a time-dependent Hamiltonian with spin-dependent
hopping amplitude, which can be rewritten as

Ĥ (τ ) = −
∑
σ, j

[
thop
σ, j (τ )ĉ†

σ, j ĉσ, j+1 + H.c.
]

+
∑

j

{
Un̂↑, j n̂↓, j + [� j + B( j, τ )] Ŝz

j

}
. (16)

This models the interplay of the magnetic microstructure
defined by � j , the electron-electron interaction U , and the
spin-selective photoexcitation in the course of time. Note that
with the values of Table I the magnetic field induced by the
pulse typically is B( j, τ ) 
 � and can therefore be safely
disregarded.

In the following, we treat the time evolution of ground
states of the Hamiltonian (15) subject to the time-dependent
Hamiltonian (16) using the time-dependent DMRG (tDMRG)
method [85–95]. If not stated otherwise, we use the time-
evolution matrix product operator (MPO) W II introduced in
Ref. [87] with a time step of �τ = 0.01. The time-dependent
MPO taking into account the spin and particle number con-
servation is built from a finite-state machine as described
in Ref. [96]. Due to the time dependence, a rebuild of the
MPO is necessary at every time step in order to reevaluate
the function A( j, τ ). A maximum bond dimension χ = 500
is sufficient to limit the discarded weight ε < 2 × 10−7 if not
stated otherwise.
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FIG. 3. Time evolution of system (16) with L = 40 sites from
tDMRG at quarter filling excited by a pump pulse as discussed in
the text. First column: Total energy of the system (black) and the
modulation of the vector potential (blue). Second column: Particle
density 〈n̂ j〉(τ ) in the bulk (sites 8–32). Third column: Local mag-
netizations 〈Ŝz

j〉(τ ), also in the bulk. The color bars on the right
indicate the values for 〈n̂ j〉(τ ) and 〈Ŝz

j〉(τ ), respectively. The top row
shows results for an excitation acting only on spin-down particles in
the absence of a magnetic structure, � = 0, and without interaction,
U = 0. The second row shows results for the same excitation, but
with �/thop = 8 and U = 0. In contrast, the third row shows results
for the same excitation and also �/thop = 8 but U = 4. The bottom
row shows results for an excitation acting on both spin directions for
�/thop = 8 and U = 4.

A. Charge-density patterns through spin-selective
photoexcitation

We first discuss the time evolution of the total energy of the
system and of local observables in real space, in particular the
particle and spin densities 〈n̂ j〉(τ ) and 〈Ŝz

j〉(τ ), respectively.
In Fig. 3, the first two rows display results at U = 0, and
�/thop = 0 and 8, which show the generic behavior when
applying a spin-selective photoexcitation discussed in Sec. II.
In the top panel of Fig. 3 (U = � = 0), the ground state
exhibits Friedel-like oscillations in the particle density [97,98]
but its overall time evolution is only weakly affected by the
pulse and in particular there is no enhanced charge ordering.
Furthermore, we note that there is no visible energy absorp-
tion after the pulse has passed. We attribute these observations
to our choice of parameters, for which the photoexcitation
has approximately no site dependence throughout the system,
so that no significant change in the local observables can be
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FIG. 4. Time evolution of system (16) with L = 40 sites from
tDMRG with a unit cell of two sites, i.e., � = {8, −8} at (top) U = 0
and (bottom) U/thop = 8 excited by a spin-selective pump pulse as
discussed in the text. First column: Total energy of the system (black)
and the modulation of the vector potential (blue). Second column:
Particle density 〈n̂ j〉(τ ) in the bulk (sites 8–32).

expected. For finite values of �, a gap opens, so that the
Friedel-like oscillations are strongly suppressed, leading to
the constant charge density in the bulk of the system discussed
above. As expected, the ground state shows a periodic pattern
in the local spin densities 〈Sz

j〉, which follows the magnetic
microstructure. A finite amount of energy is absorbed by the
system from the pulse, leading to a highly excited state. The
values of the local observables are significantly modified and
remain time dependent also after the pulse has left the system.
As discussed in Sec. II, a periodic pattern in the charge density
is induced, which follows the periodicity of the Zeeman term,
and is very stable on the time scales treated here. This is also
true at finite values of U , as shown in the third panel of Fig. 3,
indicating that including scattering between electrons does not
necessarily destroy the pattern, at least not on the time scale
shown. In all cases, the formation of this CDP occurs together
with the weakening of the spin pattern.

In the bottom panel of Fig. 3, we present the time evolu-
tion with the photoexcitation coupling to both spin directions
(�/thop = 8 and U/thop = 4). As expected from OISTR, we
observe a redistribution of magnetic moments, which lead to a
weakening of the spin pattern. Note that even though a signif-
icant energy absorption takes place, no stable charge pattern
is obtained. Hence, the spin-selective excitation is essential to
create the CDP.

Similar behavior is also obtained at other than quarter
filling, and when changing the periodicity of the magnetic
microstructure. For example, a CDP is also formed for Néel-
type single site magnetic structure (see Fig. 4).

As shown in Fig. 5 for U/thop = 4 and �/thop = 8 at quar-
ter and at half filling, on the time scale displayed, at both
values of the filling a CDP is obtained. However, as discussed
below, the dominant formation of doublons at half filling leads
to a faster decay of the CDP in this case.
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FIG. 5. Time evolution of system (16) with L = 40 sites from
tDMRG with U/thop = 4 and �/thop = 8 at (top) quarter filling and
(bottom) half filling excited by a spin-selective pump pulse as dis-
cussed in the text. First column: Total energy of the system (black)
and the modulation of the vector potential (blue). Second column:
Particle density 〈n̂ j〉(τ ) in the bulk (sites 8–32). Third column: Local
magnetizations 〈Ŝz

j〉(τ ), also in the bulk. The color bars on the right
indicate the values for 〈n̂ j〉(τ ) and 〈Ŝz

j〉(τ ), respectively. Note that
the maximum of the color bar for the particle density is doubled
compared to the other figures to capture the results at half filling.

B. Effect of the wavelength of the incident light

In Fig. 6 the amount of absorbed energy �E as a function
of the wavelength λ is shown for two interaction strengths
U/thop = 0 and 4. One obtains a nontrivial dependence of
the absorption from the parameters of the system. However,
at the wavelength of our choice (see Table I) λ = 500 nm,
a significant energy absorption in both cases takes place so
that we expect the effects studied at this value of λ to be
representative for the wavelengths, at which absorption takes
place.

200 300 400 500 600
0

20

40

60

80

wavelength λ [nm]

Δ
E

U = 0 U/thop = 4

FIG. 6. Absorbed energy �E = |E0 − Et=20| as a function of the
wavelength λ. Here we used the parameters �/thop = 8, U/thop =
0, 4 with quarter filling. The Peierls phase is only acting on the spin-
down direction. Most of the calculations in this paper are performed
at λ ∼ 500 nm, so that a substantial amount of energy is absorbed.
Note that for clarity not all computed data points are shown; further-
more a spline interpolation (over all computed data points) is used as
a guide for the eye.
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FIG. 7. Fourier-transformed dynamics of 〈(Ŝz
j )

2 − (Ŝz
j+1)2〉 =

〈n̂ j − n̂ j+1 − 2(n̂↑, j n̂↓, j − n̂↑, j+1n̂↓, j+1)〉 with j and j + 1 on a dimer
in the center of the system, for different values of U with �/thop = 8.
The vertical lines correspond to the average band gap between the
first and the second band (red dotted), the first and the third band
(blue, dash-dotted), the second and the third band (green, dashed),
and the first and the fourth band (wine red, dash-dot-dotted). The
inset shows the band structure in the noninteracting case (also for
�/thop = 8). The transitions between the bands, corresponding to the
vertical lines in the main figure, are shown with the same styles at
k = �.

IV. STABILITY OF THE CHARGE-DENSITY PATTERNS IN
VARIOUS SCENARIOS

As we have seen in Sec. II we generically expect the forma-
tion of spatial patterns for spin-selective excitations. Without
interactions the band populations are conserved quantities.
Thus, excitations cannot relax back to the lowest band, and
the CDP remains stable up to arbitrary times, up to the afore-
mentioned oscillations. This is in agreement with the findings
of Fig. 3 for U = 0 and �/thop = 8 for a Peierls pulse of
finite duration on the time scales accessible to the tDMRG.
In Fig. 7 we further elucidate this scenario by considering the
frequencies of the density oscillations on a dimer, which we
obtain by first subtracting the double occupancies (see below)
and then Fourier transforming the result. The noninteracting
band structure at �/thop = 8 is shown in the inset, and the
results are compared to those at finite U . The oscillation
frequencies of the particle density within a dimer and the
associated averaged band gaps are marked and show excellent
agreement. This analysis for the noninteracting case can now
be used as a starting point to investigate the behavior in the
interacting case.

A. Effect of interactions

The main effect of a finite Hubbard interaction is to in-
duce scattering between the two fermion species and thereby
to transfer energy between them, opening a decay channel
for the CDP. However, the Hubbard term also enforces the
formation of local moments with finite Ŝ2

j , which lower the
energy in the staggered field and in this way stabilize the pe-
riodic pattern for each fermion species. Thus, localization of
single fermions within the dimers is enforced by the repulsion.
Therefore, we expect the description in terms of the noninter-
acting system to give at least a qualitative understanding of the
dynamics.

In order to better understand the connection between
the two limits we consider the mean-field decoupling for
thop 
 U in more detail. Decoupling in the spins (Ŝz

j =
〈Ŝz

j〉 + δŜz
j) shows that the Zeeman interaction is shifted

according to � → �̃ = 1
2 (� + 4U ) while a strong on-site

potential ∝ U localizes the fermions and correlates the motion
between the two species (see Appendix B). Within this limit,
a Peierls pulse redistributes the amplitude of the local mo-
ments (Ŝz

i )
2

over the dimers. The mean-field Hamiltonian (see
Appendix B) essentially resembles a Heisenberg XX chain
with a strong, staggered magnetic field �̃. Thus, relaxation
of the local moments after the quench is suppressed with
�̃. The corresponding observable can be written in terms
of the local particle densities via (Ŝz

j )
2 = 1

4 (n̂↑, j − n̂↓, j )2 ∝
n̂ j − 2n̂↑, j n̂↓, j . Since the states obtained after the excitation
are to a good approximation invariant under translation by
one unit cell at all instances of time, the total number of
particles in one unit cell can be considered to be conserved,
so that we can identify the doublon density n̂↑, j n̂↓, j and its
dynamics as the dominating decay channel. Subtracting the
doublon density from the local density, we expect to obtain
the single-particle dynamics. Indeed, in Fig. 7 we see that
on the time scales reached by our simulations, the doublon-
purified density follows the single-particle dynamics for any
value of the interaction strength. The question arises how
interaction effects during the pulse may correlate the two
fermion species, thereby reducing the amplitude of the CDP.
Note that a doublon consists of two particles of each spin
direction and has energy U , irrespective of its position. Thus,
in the large U limit, doublons can essentially move throughout
the magnetic microstructure at no energy cost. Therefore, we
expect that in the long time limit this yields a homogeneous
background particle density. On top of this background, we
expect the reappearance of the behavior of the noninteracting
system. Hence, the motion of doublons is one important mech-
anism for the decay of the CDP in the presence of interactions.
Consequently, creating fewer doublons is beneficial for the
strength of the CDP. In contrast, at half filling most of the
absorbed energy is used to form doublons, so that the CDP
will vanish on their delocalization time scale.

These considerations are further illustrated by Fig. 8,
where we show the behavior of the particle density, the double
occupancy, and the particle density after removing the double
occupancy for different values of the interaction U/thop =
0, 2, 4, 20, and 100 for longer times up to 401/thop ∼ 50 fs for
the parameters of Table I. The first observation is that at U = 0
all affected spin-down particles create double occupancies as
the particle density on the particle rich dimers stays constant
and the CDP is only visible due to the particle poor dimers
in the doublon-purified particle density. At finite interaction
this is no longer the case and the amplitude of the CDP is
increased. On the other hand, the creation of double occu-
pancies is suppressed with further increasing the value of the
interaction U/thop; a superposition of particles each located
on one of the sites of a dimer is preferred due to the repulsive
interaction.

Hence, subtracting the doublon contribution from the
charge density is insightful in the presence of interac-
tions, as the double occupancy will eventually spread
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FIG. 8. Local particle density (top), local double occupancy (middle), and the local, doublon-cleaned particle density (bottom) for systems
with �/thop = 8, L = 40, and U/thop = 0, 2, 4, 20, and 100. In the case of small but finite U the CDP seems to decay in the local particle
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in the first place. In order to obtain longer times the bond dimension χ is increased by a factor of 10, i.e., χ = 5000, to reach a discarded
weight ε < 10−7.

equally over the whole system as discussed above. There-
fore, the density after subtracting the double occupancy
part is indicative for the long time behavior of the
CDP.

B. Low photon densities

So far, we have considered Peierls pulses, which due to
their semiclassical ansatz model a situation with a high pho-
ton number, as realized in ultrafast pump-probe setups. In
contrast, e.g., photoexcitations by sunlight carry only a very
small number of photons per unit of time, so that it would
be interesting to check for the formation of the CDP in this
situation as well. Also, it is an important test to see whether
the observed effects are artifacts due to the generalized Peierls
substitution. We model such an excitation through the applica-
tion of creation and annihilation operators in k space, â(†)

σ,ν(k)
(see Appendix C for the definition of these operators for sys-
tems with OBC), to the ground state of the system |ψ0〉, where
in the noninteracting case, with periodic-boundary conditions
(PBC), the operators can be chosen such that the excitation
over a band gap without transfer of momentum is modeled.

We present our results in Fig. 9, where a system of L = 40
sites is excited via

|ψ (τ = 0)〉 = â†
↑,2(π/41) â↑,1(π/41) |ψ0〉 . (17)

In order to better compare our findings, we discuss the same
setups as in Fig. 3 (without loss of generality we apply the
excitation here to ↑ electrons). In the top row of Fig. 9 we first

show results for the noninteracting system in the absence of a
magnetic field, i.e., U = � = 0. As expected, the Friedel-like
oscillations in the particle density induced by the OBC [98]
are not destroyed; however, for this choice of parameters, they
are slightly enhanced, and due to an absorption of energy be-
come weakly visible also in the local spin densities. For finite
values of �/thop as in the second row of Fig. 9, the findings
are very similar to the ones of Fig. 3: The periodic pattern
in the local spin densities 〈Ŝz

j〉, which follows the magnetic
microstructure, is weakened after the excitation and, again, a
long-lived CDP in the charge density 〈n̂ j〉 is induced following
the periodicity of the Zeeman term. In particular, this is also
obtained at finite values of U/thop as is depicted in the third
panel. In contrast, similar to the findings of Fig. 3, exciting
↑ electrons and ↓ electrons at the same time does not lead
to a charge modulation, but solely to a weaker spin pattern,
as seen in the bottom panel of Fig. 9. We hence conclude
that also for very weak excitations we find qualitatively the
same behavior as in the case of a Peierls substitution. Due
to the lower energy density of the excitations the emerging
structures are less pronounced; however, this indicates that the
observed features are not an artifact of the generalized Peierls
substitution ansatz Eq. (2), but seem generic to spin-selective
photoexcitations.

Note that in the case of low photon densities details of the
charge-density pattern depend on peculiarities of the excita-
tion, e.g., whether it is at the edge of the Brillouin zone or
close to the center as discussed in this section, and also on the
number of electrons excited. This is left for future research.
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FIG. 9. Time evolution of system (15) with L = 40 sites from
tDMRG at quarter filling following the operator-based spin-selective
excitation discussed in the text and Appendix C at time τ = 0.
Analogous discussion to Fig. 3. First column: Total energy of the
system. Second column: Particle density 〈n̂ j〉(τ ) in the bulk (sites
8–32). Third column: Local magnetizations 〈Ŝz

j〉(τ ), also in the bulk.
The color bars on the right indicate the values for 〈n̂ j〉(τ ) and 〈Ŝz

j〉(τ ),
respectively. The top row shows results for an excitation acting only
on spin-up particles in the absence of a magnetic structure, � = 0,
and without interaction, U = 0. The second row shows results for
the same excitation, but with �/thop = 8 (and, thus, for adjusted
operators) and U = 0. In contrast, the third row shows results for
the same excitation and also �/thop = 8 but U = 4. The bottom row
shows results for an excitation acting on both spin directions for
�/thop = 8 and U = 4. The time evolutions are obtained employ-
ing the time-dependent variational principle (TDVP) in its two-site
implementation with a time step �τ = 0.05, a maximum bond di-
mension χ = 1000, and a discarded weight of ε < 10−12. For better
comparison to Fig. 3, we show for times τ < 0 the expectation values
for the unperturbed ground state.

C. Alternative mechanism: Periodic modulation of the lattice
in cold-gases experiments

The question arises, if these findings can be realized also
for even more generic excitations. In Fig. 10 we present our
results, in which the spin-selective photoexcitation is emu-
lated by a periodic modulation of the lattice of only one
fermionic species, which can be realized in experiments with
ultracold quantum gases on optical lattices [99–102] with a
superlattice [62,103–111]. As can be seen, the CDP emerges
also in this setup, indicating that the details of the excitation
are not crucial, as long as it is acting on only one fermion
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FIG. 10. Periodic modulation of the lattice of only one species
of particles also leads to a CDP. Left: Energy of systems with
�/thop = 8 and (top) U/thop = 0 and (bottom) U/thop = 8. Center:
Particle density for these systems. Right: Spin density for the systems
above. In the interacting case (U/thop = 8), the discarded weight ε

grows rapidly and reaches a value of ε ∼ 10−5 at the end of the
simulation.

species. This opens the path for studying the formation of
periodic charge and spin patterns in nonequilibrium situations
in state-of-the-art experiments with ultracold gases.

V. CONCLUSION AND OUTLOOK

A spin-selective photoexcitation in the presence of a mi-
crostructure leads to the formation of periodic spin or charge
patterns on femtosecond time scales. Our scenario connects
to the recently introduced OISTR effect [54,55], in which
ultrafast spin transfer is predicted theoretically using ab initio
methods, and was observed experimentally in Heusler and
magnetic materials [56–58]. In the OISTR setup, the site-
dependent difference of the local DOS of the minority and
majority spins in equilibrium is found to be the reason for
ultrafast transfer of magnetic moments. Such a difference in
the local DOS corresponds to the microstructures treated by
us on the level of tight-binding and Hubbard-type models. We
propose that in these setups when applying a spin-selective
excitation in addition the formation of stable spatial patterns
will be obtained.

We used MPS to study the dynamics of a Hubbard-type
model with a magnetic microstructure. For this system, we
modeled high intensity light pulses of duration ≈10 fs by
a generalized Peierls substitution ansatz. The patterns are
formed during the application of the pulse, and have a lifetime
much longer than the pulse duration afterwards. For nonin-
teracting systems, we study analytically an idealized “kick”
excitation for systems with magnetic and ionic backgrounds.
In these systems stable charge or spin patterns, respectively,
are induced: a light pulse leads to a redistribution of k modes,
which here are conserved quantities, so that without further
effects no decay mechanism could lead to a destruction of the
spatial patterns. This is a generic picture valid also beyond
one dimension. We find that electron-electron interactions
can induce a decay channel for these patterns, which for
our Hubbard-type system is realized via freely propagating
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doublons. However, we find that on the time scales treated by
us, a “backbone” remains. To better estimate the lifetime of
the patterns further effects, like phonons, need to be included,
which is left for future research.

We find a similar formation of spatial patterns also for other
excitations, e.g., a single-photon excitation, in which at fixed k
one particle is excited over a band gap, and also for a periodic
shaking of the lattice. However, in all cases treated, it was
crucial to apply a spin-dependent excitation in order to induce
the spatial patterns; otherwise, the absorbed energy leads to
an unstructured redistribution of the particles over the lattice.

In experiments on materials, spin-selective excitations can
be realized via circularly polarized monochromatic light [64].
We thus suggest to test for the possible formation of periodic
patterns on suitable materials showing OISTR. In addition, it
would be interesting to study the transformation of density
modulations following such a spin-selective photoexcitation,
e.g., in charge-transfer salts [60,112] or in cuprates [113–122],
which possess locally alternating chemical potentials or CDW
states, respectively. For the latter case, we envisage that our
scenario will hold also on initial states, in which a spontaneous
breaking of translational symmetry leads to a true CDW. An
alternative realization is in cold-gas experiments, where the
underlying magnetic (or ionic) pattern can be realized by a su-
perlattice [62,103–111]. For the spin-selective photoexcitation
one can treat a more simplified situation, in which the lattice
of only one species is shaken [99–102], and the subsequent
dynamics can be investigated using quantum-gas microscopes
[123–128]. It would be interesting to study these effects also
for systems with more than only two species of particles, e.g.,
SU(N) systems [129]. Our scenario hence opens the path to
study the formation of spatial charge and spin patterns in
ongoing experiments.
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APPENDIX A: KICK EXCITATION FOR THE
IONIC CHAIN

Introducing operators

b̂†
σ,m(k) := 1√

N

N−1∑
l=0

eikrl ĉ†
σ,m,l (A1)

with rl = aMl and m ∈ {0, . . . , M − 1} we can rewrite
Hamiltonians of the type (1) with periodic boundary
conditions in the presence of N = L/M unit cells with each
possessing M sites to

Ĥ = 1

N

∑
k,σ

M−1∑
m,m′=0

hσ,m,m′ (k) b̂†
σ,m(k)b̂σ,m′ (k), (A2)

with spacing of k points �k = 2π
aNM , and k ∈ [−π/Ma, π/Ma).

For the ionic chain with the staggered potential as given in (7)
we set M = 2. The Hamiltonian for a single unit cell and k
point is hσ,m,m′ (k), and for the ionic model (7) one obtains

h↑(k) = h↓(k)

=
( −� −2thop cos(ka)

−2thop cos(ka) �

)
. (A3)

Diagonalizing this Hamiltonian, we find
1∑

m′=0

hσ,m,m′ (k)Tσ,m′,±(k) = ±Tσ,m,±(k)εσ (k), (A4)

with bands ±εσ (k) = ±�
√

1 + ε2 cos2(ka), which are the
same for both spin directions and ε = 2thop

�
. Introducing

operators

â†
σ,±(k) =

1∑
m=0

b̂†
σ,m(k)Tσ,m,±(k), (A5)

we finally diagonalize the Hamiltonian

Ĥ ionic =
∑
σ,k

εσ (k)[â†
σ,+(k)âσ,+(k) − â†

σ,−(k)âσ,−(k)]. (A6)

The eigenvectors Tσ,m,± are given by

T σ,±(k) = 1√
2

⎛
⎝∓

√
1 ∓ �

ε(k)√
1 ± �

ε(k)

⎞
⎠, (A7)

so that the ground-state expectation values for the density
in k space taking into account the different sublattices are
given by

〈n̂σ,0(k)〉 = 1

2

[
1 + �

εσ (k)

]
, (A8)

〈n̂σ,1(k)〉 = 1

2

[
1 − �

εσ (k)

]
. (A9)

In the following, we treat the system in the atomic limit ε 
 1
and expand the expectation values to first order in ε2:

〈n̂σ,0(k)〉 = 1 − ε2

4
cos2(ka) + O(ε4), (A10)

〈n̂σ,1(k)〉 = ε2

4
cos2(ka) + O(ε4). (A11)

Then, the occupation per sublattice is obtained in the ther-
modynamic limit at half filling by integrating the sublattice
occupations over the first Brillouin zone:

〈n̂σ,0〉 = a

π

∫ π/2a

−π/2a

〈n̂σ,0(k)〉 dk = 1 − ε2

8
, (A12)

〈n̂σ,1〉 = a

π

∫ π/2a

−π/2a

〈n̂σ,1(k)〉 dk = ε2

8
. (A13)

235166-10



FORMATION OF SPATIAL PATTERNS BY … PHYSICAL REVIEW B 102, 235166 (2020)

For the system being translationally invariant with respect to
a shift of M = 2 lattice sites these values yield the particle
number densities in real space for the two sublattices. Having
in mind the Peierls substitution ansatz Eq. (2), the kick ex-
citation transforms the Hamiltonian of a unit cell in k space
into

h
σ

(ϕ) =
( −� −2thop cos(ka + ϕ)

−2thop cos(ka + ϕ) �

)
.

(A14)

Accordingly, the transformed eigenvectors are given by
T σ,±(k + ϕ

a ) with single-particle energies εσ (k + ϕ

a ). From
this, the time evolution with respect to the kick excitation
can be evaluated by expanding h

σ
(ϕ) in its eigenbasis. We

model the excitation using a rectangular pulse shape ϕ(t ) =
ϕ[θ (t − δs) − θ (t )] on a finite time interval t ∈ [0, δs). Defin-
ing kϕ = k + ϕ

a the action of the kick operator acting only on

σ =↑ electrons is given by

|ψ (ϕ)〉 = e−iδs
∑

k

∑
μ=± ±ε(kϕ )â†

↑,μ(kϕ )â↑,μ(kϕ ) |ψ (0)〉 , (A15)

where |ψ (0)〉 = |ψ0,↑〉 ⊗ |ψ0,↓〉 is the unperturbed ground
state of the entire system obtained via Eq. (8). For a single
k mode of the perturbed ground state this evaluates to

e−iĤϕ (k) |ψ (0)〉 = e−iδs
∑

μ=± ±ε(kϕ )â†
↑,μ(kϕ )â↑,μ(kϕ ) |ψ (0)〉 ,

(A16)

yielding contributions

∏
k′ �= k

σ =↑, ↓

â†
σ,−(k′)

(∑
μ=±

e−iμε↑(kϕ )δsαμ(k, ϕ)â†
↑,μ(kϕ )

)
|0〉 ,

(A17)

with the definition αμ(k, ϕ) = T †
↑,μ(kϕ )T ↑,−(k). The local-

density expectation values 〈n̂↑,m(k)〉 (ϕ) after the kick exci-
tation are then given by

〈n̂↑,m(k)〉 (ϕ) =
∑
μ=±

T↑,μ,m(kϕ )αμ(k, ϕ){T↑,μ,m(kϕ )αμ(k, ϕ) + cos[2ε↑(kϕ )δs]T↑,μ,m(kϕ )αμ(k, ϕ)}; (A18)

with the definition μ = −μ and abbreviating ξk = �
ε↑(k) , this evaluates to

〈n̂↑,0(k)〉 (ϕ) = 1

2

⎧⎨
⎩1 + 1 + ξkϕ

ξk + 1/2 cos(2ε↑(kϕ )δs)(ξkϕ
− ξk )ξkϕ(

1 + ξ 2
kϕ

)√
1 + ξ 2

k

⎫⎬
⎭, (A19)

and 〈n̂↑,1(k)〉 (ϕ) = 1 − 〈n̂↑,0(k)〉 (ϕ), respectively.
Expansion to first order in ε2 yields

〈n̂↑,0(k)〉 (ϕ) = 1 − 1

2

[
cos2(ka)

2
+ 2 cos(ka + ϕ)[cos(ka + ϕ) − cos(ka)] sin2(�δs)

]
ε2 + O(ε4), (A20)

〈n̂↑,1(k)〉 = 1

2

[
cos2(ka)

2
+ 2 cos(ka + ϕ)[cos(ka + ϕ) − cos(ka)] sin2(�δs)

]
ε2 + O(ε4). (A21)

Integrating over the first Brillouin zone we finally obtain for
the σ = ↑ electrons the particle number density per sublattice
site in the thermodynamic limit after the excitation:

〈n̂↑,0〉 (ϕ) = 1 − ε2

8
[1 + 2 sin2(�δs) sin2(ϕ/2)], (A22)

〈n̂↑,1〉 (ϕ) = ε2

8
[1 + 2 sin2(�δs) sin2(ϕ/2)]. (A23)

Note that from the above expressions the maximal charge
redistribution is reached if ϕ = qπ with q ∈ Z. Considering
the limit of short pulse durations compared to the energy
scale set by the microstructure �δs 
 1 we can expand these
expressions:

〈n̂↑,0〉 (ϕ) = 1 − ε2

8
[1 + 2(�δs)2 sin2(ϕ/2) + O(�δs)4],

(A24)

〈n̂↑,1〉 (ϕ) = ε2

8
[1 + 2(�δs)2 sin2(ϕ/2) + O(�δs)4]. (A25)

The previous calculations allow us to compare the redis-
tribution of particle and magnetization densities between the
sublattices induced by the pulse. We consider the magnetiza-
tion density of the sublattices before 〈Ŝz

m〉 and 〈Ŝz
m〉 (ϕ) after

the excitation. Defining the enhanced staggered magnetiza-
tion density induced by the spin-selective pulse acting on ↑
electrons only as

δSz(ϕ) = ∣∣ 〈
δŜz

0

〉
(ϕ) − 〈

δŜz
1

〉
(ϕ)

∣∣
= 1

2

∣∣ 〈
δn̂↑,0

〉
(ϕ) − 〈

δn̂↑,1
〉
(ϕ)

∣∣ (A26)

using 〈δŜz
m〉 (ϕ) = 〈Ŝz

m〉 (ϕ) − 〈Ŝz
m〉 and a similar definition for

the electron densities we find

δSz(ϕ) = 1

2
− ε2

8
[1 + 2(�δs)2 sin2(ϕ/2)]. (A27)
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APPENDIX B: MEAN-FIELD DECOUPLING
AT LOW FILLINGS

We discuss the limit thop/U 
 1 in which we can rewrite
the Hubbard interaction in terms of local spin operators:

n̂↑, j n̂↓, j = −1

2
[(n̂↑, j − n̂↓, j )

2 − (n̂↑, j + n̂↓, j )] (B1)

= 1

2
n̂ j − 2

(
Ŝz

j

)2
(B2)

⇒ Ĥ = −thop

∑
σ, j

(ĉ†
σ, j ĉσ, j+1 + H.c.)

+
∑

i

� j Ŝ
z
j + U

[
1

2
n̂ j − 2

(
Ŝz

j

)2
]

︸ ︷︷ ︸
Ĥint

. (B3)

We note that for large U the formation of local moments (Ŝz
j )

2

with strong polarization in the expectation values of Ŝz
j min-

imizing the Zeeman coupling is beneficial. Therefore we can
perform a mean-field decoupling around the saturated local
expectation values Ŝz

j = 〈Ŝz
j〉 + δŜz

j and neglect contributions
∝ δ2, leading to

Ĥint
∼=

∑
j

δŜz
j

(
� j − 4U

〈
Ŝz

j

〉) + · · ·

+ 〈
Ŝz

j

〉(
� j − 2U

〈
Ŝz

j

〉) + U

2
n̂ j . (B4)

Inserting for the local expectation values the pattern of the
Zeeman terms in a unit cell, 〈Ŝz

j〉 = m(−1/2, −1/2, 1/2, 1/2),
where m is to be determined self-consistently, we see that
the second summand is only a constant. Defining the renor-
malized Zeeman coupling �̃ = 1/2(� + 4U ) and �̃σ, j =
�̃ jsgn(σ ) we obtain

Ĥint =
∑
σ, j

n̂σ, j

(
U

2
+ δ�̃σ, j

)
+ const (B5)

and thereby (up to an on-site potential ∝ U ) we rewrote the
interaction in terms of an effective Zeeman coupling for which
we can use the noninteracting solution.

APPENDIX C: DEFINITION OF K MODES FOR OBC

We illustrate the construction of operators â(†)
σ,ν(k) diagonal-

izing the noninteracting, i.e., U = 0, Hamiltonian (15) for the
case of OBC.

For the excitation treated in Sec. IV B, it appears conve-
nient to employ the same procedure as outlined in Appendix A
obtaining again Eq. (A5) with adjusted tensors Tσ, j,ν (k). In-
deed, similar calculations have been performed in Ref. [59]
yielding the operators â(†)

σ,ν(k) for PBC. However, the occu-
pation 〈n̂k〉 of the so-obtained k modes is not a constant of
the motion when using OBC for the computation of the time
evolution due to the different choice of boundary conditions.

Hence, to benefit from the significantly better scaling of
MPSs for systems with OBC, we adapt the operators â(†)

σ,ν(k)
to OBC. In the absence of a magnetic field, i.e., � = 0, this

leads to the sine transform â(†)
σ (k) =

√
2

L+1

∑
j sin (k j)ĉ(†)

σ, j

(see, e.g., Ref. [131]), with

k = π p

L + 1
, p ∈ {1, . . . , L}, (C1)

L being the system size. This needs to be generalized to
the present case with a four-site unit cell when � �= 0. For
the sake of generality for further system types (e.g., in the
presence of disorder), we do this here numerically. We begin
by noting that the noninteracting part of Hamiltonian (15) can
be expressed through

Ĥ0 =
∑

σ

∑
i, j

Hσ
i, j ĉ

†
σ,iĉσ, j (C2)

with the Hamiltonian matrix Hσ , which we diagonalize via

Hσ = Pσ Dσ Pσ† ⇔ Hσ
i, j =

∑
m

Pσ
i,mDσ

m,mPσ∗
j,m, (C3)

with D being a diagonal matrix and P Hermitian. Renaming
m → k and Dσ

m,m → εσ(k), and defining

â
σ,k =

∑
j

Pσ∗
j,k ĉσ, j, and â†

σ,k =
∑

j

Pσ
j,k ĉ†

σ, j (C4)

we arrive at

Ĥ0 =
∑
σ,k

εσ(k)â†
σ,kâ

σ,k . (C5)

We note that this procedure gives the same eigenvalues εσ(k)
as the sine transform for � = 0. The crucial difference is that
this comes without any order of the eigenvalues, that is, a
priori it is not clear what eigenvalue εσ(k) belongs to what
momentum k. Due to the existence of only nearest-neighbor
hopping in (15), we know that the dispersion relation (in the
extended zone scheme) will be cosinelike. Hence, for k � 0 it
is monotonously increasing, allowing us to arrange the eigen-
values εσ(k) ascendingly and identify them as corresponding
to the momenta from (C1).

We further know that, because the unit cell of (15) is
composed of four sites, for � = 0 the system will exhibit
a four-band structure. Therefore, we may fold the operators
back to the first Brillouin zone through

â(†)
σ,ν(k

′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

â(†)
σ,k′ , ν = 1

â(†)
σ,(L/2+1)π/(L+1)−k′ , ν = 2

â(†)
σ,(L/2)π/(L+1)+k′ , ν = 3

â(†)
σ,π−k′ , ν = 4 ,

(C6)

having introduced the band index ν and calculating the mo-
menta k′ with (C1) for p′ ∈ {1, . . . , L/4}. This procedure,
hence, allows us to define suitable operators for the photoex-
citation treated in Sec. IV B.

Note that the above defined scheme only diagonalizes
Hamiltonian (15) at U = 0 exactly through the operators
â(†)

σ,ν(k
′). Nevertheless, we will use these operators for the

interacting system (15). This is an approximation due to
the presence of scattering between the bands induced by
the finite interaction. However, in particular for the case of
quarter filling, it is to be expected that a finite interaction
strength U/thop > 0 will only slightly affect the spectrum,
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since double occupancies—and hence scattering processes
of the electrons—are strongly suppressed. Hence, we expect

this approximate description to be a useful modeling of the
photoexcitation.
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