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Abstract:

The aim of this work is to predict the influence of phonon modulations (Kozina et al. 2019

[1]) on the x-ray absorption near-edge fine structure of the Ti-L2,3-edge (Yamaguchi et

al. 1982 [2], Thole et al. 1985 [3], De Groot 1990 [4]) in cubic SrTiO3. Employing Density

Functional Theory in combination with Multiplet Ligand Field Theory (Haverkort et al. 2012

[5], Luder et al. 2017 [6]), previous experimental and theoretical data on the octahedrally

symmetric structure are reproduced with good agreement. Phonon modulations with a

maximum atomic displacement of 5% of the lattice parameter are shown to cause polarization-

dependent changes in the x-ray absorption spectra just within reach of experimental resolution.

This is suggested to reflect the strong susceptibility of the electronic structure to collective

lattice excitations in SrTiO3.
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1 Introduction

1.1 Predicting properties of real materials

It seems to be a deep-rooted instinct of mankind to try and understand the matter which
surrounds us, in order to eventually use this knowledge as a source of technological progress.
The materials we use dominantly shape the world around us to the extent that we even use
their names (stone, bronze, iron, glass, steel, maybe even plastic and carbon) to define historical
ages [7].

Now that the experimental and theoretical tools for investigation of condensed matter on
the microscopic level have been available for a century, the prediction of arbitrary macroscopic
observables from first microscopic principles (ab initio) has become one of the central goals
in materials theory. As a by-product of the intrinsic motivation to discover the fundamental
reasons for our perception of the material world, ab initio predictions have yielded direct
applications, such as Tunnel Magneto-Resistance (TMR) [8] with tremendous technological
relevance for read-heads in hard disk drives [9]. Numerical simulations of condensed matter
with increasing complexity are an important contribution to the development of novel materials,
e.g. for sustainable energy solutions [10].

Even though the microscopic principles in materials theory are very well known in form of a
Hamiltonian, and successful mean-field approximations exist, the treatment of strong Coulomb
interaction in many-body systems still remains an only partially resolved challenge [11, Preface].

Figure 1.1: Crystal structure of STO. Left: Sample of natural STO in form of the mineral
Tausonite [12]. Pure synthetics are usually transparent. Right: Unit cell of cubic
STO [13] drawn with VESTA [14]. Sr: green, Ti: blue, O: red, cubic lattice constant:
3.9 Å.
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1.2 Phonon modulations in SrTiO3

SrTiO3 (STO, Figure 1.1) has recently gained increasing attention in the materials theory
community due to its interesting properties arising from the interplay of strongly correlated
electrons and phonons. For instance, there is evidence of a cooperative effect at the FeSe/STO-
interface, suggesting that the coupling of STO phonons to electrons in FeSe leads to an increase
in the FeSe superconducting transition temperature to as high as 75 K [15].

STO occurs naturally in form of the mineral Tausonite. At room temperature, it has a cubic
perovskite sturcture with a structural phase transition to a tetragonal structure below 105K
[13]. Experimentally, it is now possible to drive phonon modes in STO by using electric fields in
the THz regime as pump pulses [1]. The modulation of the electronic structure in reaction to
the coherent distortions in the lattice can then be probed with a separate pulse as illustrated in
Figure 1.2. This setup can be used to investigate the coupling of electronic properties of STO to
the lattice in order to gain a better understanding of the microscopic reasons for the remarkable
properties of this material.

Figure 1.2: Schematic illustration of an experimental pump-probe setup (adapted from [1, Figure
1]). Phonons in a sample of STO are excited with a THz pump pulse with the effect
of distorting the lattice coherently. Electronic degrees of freedom are then addressed
with a separate probe pulse and the response of the material is observed.

It will be argued in Section 2.3.1 about Linear Response Theory that even though the
electronic structure is driven out of equilibrium by the probe pulse, the response of the system
can be approximated in terms of equilibrium expectation values for small enough field intensities.
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The experimental pump-probe setup, however, introduces an additional temporal aspect to the
problem, as the sample is driven out of equilibrium also by the previous pump pulse. As a first
(adiabatic) approximation, one can argue that the time-scales of lattice and electronic excitations
are separated by the large mass of the nuclei in comparison to electrons, M

m
∼ 103. For the

purpose of this study, it will hence be assumed that despite the presence of the pump, the
electronic structure is always in equilibrium. The response of the sample to the electronic probe
should in consequence reflect the equilibrium electronic structure for a coherently distorted
lattice geometry.

1.3 X-ray absorption spectroscopy

One experimentally relevant and theoretically interesting way to probe the electronic structure
of transition metal compounds such as STO is x-ray absorption spectroscopy (XAS), as reviewed
e.g. in [16]. The XA process for the 2p→3d (L-edge) transition investigated here is sketched in
Figure 1.3.

Figure 1.3: XA process 2p→3d (L-edge). In a simplified one-electron picture, an electron from
the well-localized 2p core states is excited to the unoccupied part of the 3d band
of the material by absorption of an x-ray photon. Through relativistic spin-orbit-
coupling of strength ζp, the 2p initial states are split into j = 1/2 and j = 3/2 levels
[6, Figure 1].
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Experimentally, XA spectra can be measured indirectly by recording energy-resolved beam
intensities before and after the sample (transmission mode) or by detecting decay products of
the core-hole created in the absorption process (e.g. Auger electron yield, flourescence yield).
Due to the strong dependence of the absorption energy Eb on atomic number, XAS is an
element-selective technique. In addition, the shape of the spectrum probes local symmetry and
nominal oxidation state of the selected site [4].

In a one-electron picture, XAS should measure the unoccupied density of states (green area
in Figure 1.3) of a material for photon energies exceeding Eb. However, electronic correlations
become particularly important for transition metal compounds such as STO in presence of
a core-hole: Because of the available phase-space for electron-electron scattering, the central
argument of Fermi-liquid theory [17, Section 1.1] is not applicable, mean-field approaches fail,
and a true many-body description is needed to predict the spectra of these so called strongly
correlated materials.

1.4 Outline of this work

experimental crystal structure, full Hamiltonian

electronic Kohn-Sham quasi-particle states

effective many-body model

effective many-body solution

observable

Density Functional Theory

exctraction of relevant parameters

exact diagonalization

Linear Response Theory

Figure 1.4: Workflow-diagram illustrating the research strategy [5, 6] applied in this work.

The aim of this work is the prediction (Section 1.1) of a direct experimental observable (the
x-ray absorption spectrum, Section 1.3) for a real material (STO, Section 1.2) from microscopic
principles. In particular, the influence of phonons on the L2,3-edge of Ti in STO (nominally
d0-configuration) will be investigated. Central research questions are: Are the approximations
made in this theoretical work adequate to reproduce previously established knowledge about
STO and its spectrum? Can the electronic effect of the atomic displacement caused by driving a
phonon mode in STO [1] be probed with XAS?, Is the adiabatic approximation (frozen phonons)
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sufficient to predict XAS or other probes of the modified electronic structure?

In order to address these questions, this report aims to guide through the work-flow diagram
sketched in Figure 1.4. The research strategy is adapted from [6], which is based on the Multiplet
Ligand Field Theory (MLFT) [5] approach to predict XAS of transition metal compunds.

Starting from the experimental crystal structure and the full electronic Hamiltonian, Density
Functional Theory (DFT, Section 2.1) will be used to obtain a mean-field description of the
electronic structure in terms of Kohn-Sham quasi-particle states. This level of approximation
will be further used to obtain parameters (Section 2.2.1) for an effective many-body model
(Section 2.2.3). For the concrete application in this work, the fact that the hole in XAS is created
in a state localized around a specific site is of great importance: The dimensionality of the
many-body-problem can thus be reduced to a level that is tractable by exact diagonalization. All
remaining sites, for which the influence of interaction on the final results is only marginal, will
be treated within the mean-field approach. Having the effective many-body solution available,
the observable of interest (here XAS), can be calculated using Linear Response Theory (Section
2.3.2).

All these aspects will be addressed from a theoretical perspective in Section 2, and the
underlying theory of statistical quantum mechanics, Green’s functions, linear response, phonons
and electron-phonon coupling will be summarized on the way.

Section 3 describes the computational implementation and lists the parameters used to obtain
the results presented and discussed in Section 4.

2 Theoretical background

The general Hamiltonian in a condensed matter system in non-relativistic, adiabatic (Born-
Oppenheimer) approximation is given by [18, Section 2.1]

H̃ = − ~2

2me

∑
i

∇2
r̃i

+ e2

4πε0

1
2
∑
i 6=j

1
|r̃i − r̃j|

−
∑
i,I

ZI∣∣∣r̃i − R̃I

∣∣∣ + 1
2
∑
I 6=J

ZIZJ∣∣∣R̃I − R̃J

∣∣∣
 , (2.1)

with a sum over all electrons i, and nuclei I in the system. This operator generates the electronic
dynamics of the system prepared in the many-body-state |ψ̃(T )〉 through the Schrödinger
equation (e.g. [19, §15])

i~ d

dT
|ψ̃(T )〉 = H̃ |ψ̃(T )〉 . (2.2)
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To choose convenient units, measure positions in units of a, i.e. r = r̃
a
, and divide (2.2) by the

suggested energy scale ρ = ~2

2mea2 to obtain

i d
dt

|ψ(t)〉 = H |ψ(t)〉 , (2.3)

with the dimensionless Hamiltonian H = 1
ρ
H̃, time variable t = ~

ρ
T , and ψ(t) = ψ̃(T ). With the

convenient choice a = 4πε0
~2

e2me
(Bohr radius), the Hamiltonian thus reduces to

H = −1
2
∑

i

∇2
ri

+ 1
2
∑
i 6=j

1
|ri − rj|

=w(i,j)

−
∑
i,I

ZI

|ri −RI |

=
∑

i
vext(ri)

+ 1
2
∑
I 6=J

ZIZJ

|RI −RJ |
irrelev. constant

≡ T + W + Vext, (2.4)

measuring energy1 in units of ρ =2Ry=2×13.6eV (Hartree atomic units [20, Section 3.1]).
This system of natural units also ensures that limits can be taken in a well-defined way.

The notation t → ∞ (or in words ‘large t’) for a dimensionless external time variable t, for
instance, means in physical language T � τ ,i.e. the external time is large compared to the
natural time-scale of the system.

Relativistic corrections to the Hamiltonian (2.4), most importantly relativistic kinetic energy,
Darwin-term, and spin-orbit coupling, can be derived from the fully relativistic Dirac-equation
in the non-relativistic limit (e.g. [21, Section 2.2]). To keep the notation compact here, only
the spin-orbit coupling ξls will be explicitly added later. This correction becomes especially
important for core orbitals of heavy elements, for which the radial change in the potential is large.

In the framework of quantum statistical mechanics, outcomes of measurements in equilibrium
can be calculated as thermal expectation values of observables A: 〈A〉 = Tr{ρA} with ρ =
Z−1e−βH , Z = Tr

{
e−βH

}
[22, Chapter 8]. The trace is most easily evaluated in the many-

body eigenbasis of H, which means that once the spectral problem H |ψ〉 = E |ψ〉 is solved,
all measurement outcomes in equilibrium can be predicted in principle. Due to the high
dimensionality of the problem (even in discretized, periodic space), diagonalizing the full many-
body Hamiltonian is however intractable and one has to rely on approximations in practice [20,
Section 1].

1The inter-ion potential has been discarded here as an irrelevant constant contribution to the total energy, but
will be addressed again in Section 2.4 on phonons.
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2.1 Ab initio-foundation: Density Functional Theory

Density Functional Theory (DFT) in the formulation by Kohn and Sham is a successful method
to approach the complicated quantum-many-body problem on the mean-field level [20, Section
6]. DFT is based on the discovery by Hohenberg and Kohn [23] that the ground state electron-
density n0(r) = |ψ0(r)|2 uniquely determines Vext, hence the full Hamiltonian (2.4), and in
extension all properties of the specific condensed matter system. In addition, the ground
state electron-density can be determined from minimization of a nonlocal and nonlinear energy
functional E[n] of the electron density. The energy functional E[n] is independent of Vext and
in this sense universal.

The proofs of the Hohenberg-Kohn theorems (e.g. [20, Section 6.2]) are not constructive in
a mathematical sense, i.e. only existence of a universal functional is proven, but an explicit
expression is not derived. In general, the energy functional can be written as

E[n] = T [n] +W [n]
=F [n]

+
∫

r
dr Vext(r)n(r)

=Vext[n]

, (2.5)

F [n] = TS[n] + 1
2

∫
r,r′

drdr′ n(r)n(r′)
|r − r′|

+ Exc[n], (2.6)

where TS is the kinetic energy of a hypothetical non-interacting electron gas, and the classical
Coulomb interaction has been written explicitly to isolate any remaining exchange-correlation
contributions.

For instance, one can use the local density approximation (LDA) [18, Section 2.3.3],

Exc[n] =
∫

r
dr n(r)exc(n), (2.7)

where exc is the exchange and correlation energy per particle of a homogeneous electron gas
with density n, for which explicit expressions exist.

The density-functional for the single-particle kinetic energy TS[n], however, is not known
explicitly [18, Section 2.3.1]. If one tries to map the problem onto an auxiliary system of
non-interacting quasi-particles following the idea of Kohn and Sham ([24], reviewed e.g. in [20,
Section 7]) the variational procedure can be executed nevertheless. In the auxiliary system, the
energy functional is given by [18, Section 2.3.2]

E[n] = TS[n] +
∫

r
dr Veff(r)n(r), (2.8)

Veff = Vext +
∫

r′
dr′ n(r)

|r − r′|
+ δExc[n]

δn(r) . (2.9)

This transforms the complicated many-body problem into an effective single-particle formulation
in terms of non-interacting quasi-particles in an effective potential, which is also the reason why
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DFT is called a mean field technique in this thesis. Upon variation of the energy functional
[18, Section 2.3.2], one obtains the self-consistent2 Schrödinger-like Kohn-Sham equation for the
quasi-particle orbitals |ψi〉,

hMF |ψi〉 =
[
−1

2∇2 + Veff

]
|ψi〉 = εi |ψi〉 . (2.10)

In extended solids, one can exploit periodicity to further simplify these equations. Bloch’s
theorem, e.g. [25, Section 8], guarantees that solutions obey the property:

ψ(r +R) = eikR ψ(r) (2.11)

for any lattice vector R. The quasi-momentum k can be taken as a label for the states, and all
other degrees of freedom can be absorbed in the index n. One searches for a labelled eigenbasis
|ψn,k〉.

In order to solve (2.10) with i = (n, k) and 〈ψnk|ψn′k′〉 = δnk,n′k′ numerically for a given
k-point, expand the quasiparticle states in a basis |χL〉,

|ψnk〉 =
∑
L

cL,nk |χL〉 , (2.12)

thereby obtaining the standard homogeneous linear matrix equation

∑
L

〈χL|
[
hMF − εnk

]
|χL′〉 cL,nk = 0. (2.13)

One example of a possible basis are the linearized muffin-tin orbitals (LMTO) [20, Section
17.5]. The basic idea is to divide space in atomic-like regions of radius RMT and interstitial
regions, thereby reproducing the form of a muffin-tin in 2D. The basis is chosen to consist of
states that are solutions to an atomic Schrödinger equation inside the tin (MT heads), and
solutions to the free Helmholtz equation (tails) in the interstitial region. The two parts of the
wave-function need to be matched at the sphere boundaries. The basis |χL〉 can be labelled by
L = (R, τ, ξ, κ), ξ = (ν,m, l, σ), where R is the lattice site, τ the basis vector within the unit
cell, (ν,m, l) atomic quantum numbers for the head, σ the spin index, and κ defines the kinetic
energy of the tail. Note that this basis is manifestly energy-dependent, but it can be linearized
in energy to make the calculations computationally efficient. An advantage of this choice is that
the basis functions are quite similar to the expected self-consistent solution, so that a small
basis set is sufficient to make successful predictions [18, Section 5.1.6]. A detailed discussion of
LMTO can be found in [20, Sections 16,17], and details on the implementation in RSPt are
given in [18, Sections 5,6].

2Note that Veff depends on the solutions |ψi〉 through the density n0(r) =
∑

i |ψi(r)|2.
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After solution of (2.13) in a self-consistent cycle, a set of quasiparticle orbitals and correspond-
ing energies, (εnk, ψnk), is obtained, where the map nk 7→ εnk is referred to as band structure.
From this, several standard properties can be calculated [18, Section 4.4]:

The density of states (DOS) is a measure for the number of states at energy ω:

D(ω) =
∑
nk

δ(ω − εnk). (2.14)

To analyse the contribution of specific states |φ〉 to the total DOS, one can define the projected
density of states

pDφ(ω) =
∑
nk

|〈φ|ψnk〉|2δ(ω − εnk), (2.15)

where the choice |φ〉 = |mk′〉 and summation over mk′ recovers the total DOS

∑
mk′

pDmk′(ω) =
∑
mk′

∑
nk

δmk′,nkδ(ω − εnk) =
∑
nk

δ(ω − εnk) = D(ω). (2.16)

In particular, partial summation over k for selected n is possible in order to isolate the
contribution of a specific band.

Having a total of N electrons in the system, the Fermi-energy is determined as the largest
energy with occupied states at zero temperature,

N =
∫ EF

−∞
D(ω)dω. (2.17)

2.2 Beyond the mean-field approximation: Many-body theory for

correlated materials

Since the many-body problem has already been solved on a mean-field level by DFT, it can be
hoped that the quasiparticle states found there are a good starting point for the construction of
an effective many-body model. In order to keep this problem tractable, only a limited number
of states can be taken into account in this model, selected depending on the question of interest.

2.2.1 Second Quantization

In order to benefit from the full beauty of the available mathematical formalism, it is convenient
to work in a localized orthonormal basis |i, ξ〉. E.g., project onto the MT head [26, Section 3] of
the LMTO basis |R, τ, ξ, κ〉 introduced in Section 2.1. In real space coordinates ~r, with spherical
coordinates around the origin of the MTs, ~ri = ~r − ~Ri = (ri, θi, φi), and with ξ = (ν, l,m, σ),

ψi,ξ(~r) = 〈~r|i, ξ〉 =


fν,l,σ(ri)Yl,m(θi, φi), ri < RMT ,

0, otherwise,
(2.18)

page 12 of 42 – compiled February 1, 2021.

mailto:jonas.hoecht@physics.uu.se


Master project by Jonas Hoecht, Uppsala/Heidelberg, 08/2020 – 01/2021.

where the solution has been decomposed in a radial part f and a spherical harmonic Y . To
simplify the notation in what follows, a single multi-index i will be used for this new single-particle
basis, |i, ξ〉 → |i〉.

In the notation of second quantization (e.g. [27, Section 6], [28, Section 1]), one can introduce
fermionic creation and annihilation operators a†

i , ai, with
[
ai, a

†
j

]
+

= δij and [ai, aj]+ = 0, for
correctly symmetrized many-mody states resulting from this single-particle basis.

On the constructed Fock space, any (correctly symmetrized) operator H = ∑
i h

(1)
i + 1

2
∑

i 6=j h
(2)
ij

up to two-particle order can be expressed as

H =
∑
ij

tija
†
iaj + 1

2
∑
ijkl

Uijkla
†
ia

†
jalak, (2.19)

tij = 〈i|H |j〉 =
∫

r
dr ψ?

i (r)h(1)(r)ψj(r), (2.20)

Uijkl = 〈ij|H |kl〉 =
∫

r,r′
drdr′ ψ?

i (r)ψ?
j (r′)h(2)(r, r′)ψk(r)ψl(r′). (2.21)

For the special case of Coulomb interaction with h(2)
ij = w(i, j) = 1

|ri−rj | , Uabcd can be expressed
in terms of integrals over spherical harmonics, called Gaunt coefficients ck(l,m; l′,m′), and radial
integrals Rk(nala, nblb, nclc, ndld) [29, Section 2.5.2]3:

Uabcd = δma+mb,mc+md

kmax∑
k=0

ck(la,ma; lc,mc)Rk(nala, nblb, nclc, ndld)ck(ld,md; lb,mb), (2.22)

ck(l,m; l′,m′) =
√

4π
2k + 1

∫ 2π

0
dφ
∫ 1

−1
d(cos θ)Y ?

l,m(θ, φ)Yk,m−m′Yl′,m′(θ,φ), (2.23)

Rk(nala, nblb, nclc, ndld) =
∫ ∞

0
r2dr

∫ ∞

0
r′2dr′fna,la(r)fnb,lb(r′) r

k
<

rk+1
>

fnc,lc(r)fnd,ld(r′), (2.24)

with kmax = min(|la + lc|, |ld + lb|) and r<(>) = min(r, r′) (max(r, r′)).
After considering all constraints in the above equations, the interaction can be described by a

finite number of Slater-Condon parameters of the form

F k(nl, n′l′) = Rk(nl, n′l′, nl, n′l′),

Gk(nl, n′l′) = Rk(nl, n′l′, n′l′, nl), (2.25)

for Coulomb and exchange integrals respectively. If the principal quantum number n is clear
from the context, it will be left out of the notation, F k

ll′ = F k(nl, nl′).
If part of the interaction is already taken into account in h(1) on the mean-field level (DFT), it

is necessary to substract this part when correlations are added in order to avoid double-counting.

3Note that the convention for the interaction integral (2.21) is in agreement with RSPt conventions [18], but
reversed w.r.t. [29], Uabcd ↔ Uabdc.
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Since the energy functional in DFT is nonlinear, it is a nontrivial and basis-dependent task to
decide which part of the interaction has effectively been taken into account. In this thesis, the
multiplet ligand field theory formula [6, Appendix B]

ΣDC = ndUdd + npUpd − δCT (2.26)

is used, where nd is the occupation of the d-orbitals, np = 6 is the occupation of the p orbitals,
Udd, Upd result from linear combination of the interaction parameters (2.25), and the free
parameter δCT accounts for charge-transfer. This double counting correction will act as a
chemical potential for the d states in the Hamiltonian (2.40).

In solids, the Coulomb interaction is screened by the surrounding environment [30, Section
12]. The constrained random phase approximation (cRPA) [31] is a method to take this effect
into account. Because this is an orbital-dependent procedure, predictions from the literature
can only provide an order of magnitude estimate, so that empirical screening rules are used in
practice, and especially F 0 is often treated as a free parameter [29, Section 2.5.2].

2.2.2 Green’s functions in operator theory

Since the dimensionality of the problem can be significantly reduced by using mean-field methods
and adding correlation effects explicitly only for a selected number of states, the many-body
spectral problem H |ψ〉 = E |ψ〉 is tractable and observables can be predicted as outlined in
the beginning of Section 2. To develop the necessary theory for this, convenient mathematical
language (e.g. [32]) is introduced in this section.

Let H be a bounded operator on a Hilbert-space H. Then z ∈ C is said to be in the resolvent
set, z ∈ ρ(H) def⇐⇒ (z −H) is a bijection with inverse RH(z) := (z −H)−1, which is called the
resolvent of H in z. σ(H) := C \ ρ(H) is called the spectrum of H.

The Hilbert space H is finite-dimensional in the numerical computations within this work,
so that linear algebra (e.g. [33]), is sufficient to describe the spectral properties of operators
on H. Indeed, dim H < ∞ ⇔ ∃!n ∈ N0 : H ∼= Cn, and the spectrum of an operator H on this
space is found as the set of values z for which the equation H |ψ〉 = z |ψ〉 ⇔ (z − H) |ψ〉 = 0
has a non-trivial solution H 3 |ψ〉 6= 0 ⇔ ker{z − H} 6= {0}. This occurs if and only if (iff)
(z − H) is not injective, which is true iff4 (z − H) is not bijective, i.e. det{z −H} = 0. The
last expression has as solutions the zeroes of a polynomial in z of degree n. According to the
fundamental theorem of algebra, these are exactly n (not necessarily mutually distinct) isolated

4Note that this equivalence is generally valid only in finite dimension, which leads to an interesting spectral
theory of operators on infinite-dimensional Hilbert-spaces, featuring, e.g., continuous spectrum [32].
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points, called the eigenvalues of H. From the point of view of complex analysis, the eigenvalues
of H are thus the poles of the resolvent RH(z) = (z − H)−1, which is a first motivation for
the ubiquitous application of resolvent techniques in this thesis. Note that if H = H†, then
σ(H) ⊂ R,i.e. all poles of RH(z) lie on the real axis.

After choosing a particular basis H ⊃ (|i〉)i∈Γ with 1H = ∑
j∈Γ |j〉 〈j| =: ∫Γ dj |j〉 〈j|, and an

operator H on H, the map Γ × Γ 3 (i, j) 7→ Hij = 〈i|H |j〉 ∈ C is called the kernel of H in
Γ-space. The name kernel is motivated by the “integral” kernel relation

C 3 (Hψ)(i) := 〈i|H |ψ〉 =
∫

Γ
dj 〈i|H |j〉 〈j|ψ〉 =

∫
Γ

djHijψ(j), ∀ |ψ〉 ∈ H. (2.27)

The Green’s function is defined as the kernel of the resolvent operator,

GH(i, j; z) := 〈i|RH(z) |j〉 = 〈i| (z −H)−1 |j〉 , z ∈ ρ(H). (2.28)

The significance of the resolvent is evident from its close connection to the time evolution via
the Laplace transform L of a state |ψ(t)〉 ∈ H.

L(H) 3 |ψ̂(z)〉 =
∫ ∞

0
dt eizt |ψ(t)〉

=
∫ ∞

0
dt eizt e−iHt

ei(z−H)t

|ψ(0)〉

= ei(z−H)t

i(z −H)

∣∣∣∣∣
∞

0
|ψ(0)〉 = . . . (2.29)

Note that convergence is guaranteed for z = ω + iη, η > 0. The result can be expressed as a
formal fraction of operators because numerator and denominator commute.

. . . = − [i(z −H)]−1 |ψ(0)〉

= i(z −H)−1 |ψ(0)〉 . (2.30)

This argument will be used and generalized to predict arbitrary measurements of equilibrium
observables in Section 2.3.1.

Using the distributional identity [34, Problem 1.3s]

lim
η→0+

1
x± iη = PV 1

x
∓ iπδ, (2.31)

the language of Green’s functions also yields a convenient formulation for the (p)DOS (2.15):

pDφ(ω) =
∑
nk

|〈φ|nk〉|2δ(ω − εnk)

= − 1
π

lim
η→0+

Im
∑

nk,mk′
〈φ|nk〉 (ω + iη − εnk)−1δnk,mk′ 〈mk′|φ〉
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= − 1
π

lim
η→0+

Im
∑

nk,mk′
〈φ| |nk〉 〈nk|(ω + iη − hMF )−1 |mk′〉 〈mk′| |φ〉

= − 1
π

lim
η→0+

ImGhMF (φ, φ, ω + iη). (2.32)

The choice |φ〉 = |mk′〉 and summation over mk′ according to (2.16) leads to the basis-
independent formula

D(ω) = − 1
π

lim
η→0+

∑
nk

ImGhMF (nk, nk, ω + iη)

= − 1
π

lim
η→0+

Tr ImRhMF (ω + iη) (2.33)

for the DOS (2.14). In practical calculations η will be kept finite. Also this result will be
generalized to an experimentally measurable spectral function (XAS) of a correlated system in
Section 2.3.2.

2.2.3 Single Impurity Anderson Model

Figure 2.1: Schematic illustration of the SIAM. An impurity with explicit on-site correlations
(circle) is coupled to a bath (background) that is treated on the mean-field level [35,
Figure 1.8].

With the language of second quantization (Section 2.2.1) and Green’s functions (Section 2.2.2)
at hand, the Hamiltonian of the effective many-body model can be constructed explicitly. As
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explained before, the aim is to treat as much of the system as possible on a mean-field level
and only include explicit correlations where it is necessary, i.e. in a selected subspace of the
full Hilbert space. The resolvent techniques developed in Section 2.2.2 provide an intuitive way
to achieve this. The model resulting from this discussion is a single-impurity Anderson model
(SIAM) [6], as illustrated in Figure 2.1.

Starting point is the resolvent of the mean-field Hamiltonian (2.10) expressed as a matrix in
k-space:

gk(z) =
[
z − hMF

k

]−1
, z = (ω + µ+ iη), η = 0+ (2.34)

An effective model for a selected lattice site R is obtained by projection of this Green’s function
onto a relevant subspace of localized orbitals |i〉 at R from (2.18) with projection operators
Pk,R = ∑

i |k〉 〈k|i〉 〈i|,
GR(z) =

∑
k

P †
k,R gk(z) Pk,R. (2.35)

The same is done for the mean-field Hamiltonian,

HR =
∑

k

P †
k,R hMF

k Pk,R. (2.36)

Note that the projected Green’s function contains more information than the projected Hamilto-
nian as it also takes into account the effect of the bath on the impurity in terms of a hybridization
function ∆R(z):

G−1
R (z) = [z −HR − ∆R(z)] , ∆R(z) = z −HR −G−1

R (z). (2.37)

∆R(z) describes how the propagation within the impurity-orbitals is modified due to hopping
from an impurity orbital to the bath and back to an impurity-orbital.

This can be seen more clearly by writing the Hamiltonian in an explicit matrix form:

H =



HR V

V †

ε1

ε2
. . .


(2.38)

with HR a Hermitian n× n matrix for n impurity orbitals, ε a real and diagonal m×m matrix
for m bath states, and V an n×m matrix of hopping amplitudes between the two subspaces.

The Green’s function in the subspace of the impurity is then given by

GR(z) = (z −H)−1
∣∣∣∣
R
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=

z −HR −V

−V † z − ε


−1 ∣∣∣∣∣∣∣∣

R

= (z −HR − V (z − ε)−1V †

≡∆R(z)

)−1. (2.39)

A small number of bath states per impurity orbitals is often enough to capture the essential
features of the hybridization function ∆R(z) as obtained from (2.37) [6]. After fitting the
corresponding bath energies ε and hoppings V , explicit interaction terms U can be added in the
manner of Section 2.2.1. For the concrete application to 2p→3d excitations at Ti in this work,
the resulting effective Hamiltonian can be expressed as [6, Section B]:

H =
∑
ij

εdi,j
d†

idj +
∑

i

εbi
b†

ibi +
∑
ij

Vi,j(d†
jbi + b†

idj)

+
∑
ijkl

Udd
ijkld

†
id

†
jdldk −

∑
i

ΣDCd
†
idi +

∑
ijkl

Upd
ijkld

†
ip

†
jpldk

+
∑

i

εpp
†
ipi + ξp

∑
ij

〈pi| l · s |pj〉 p†
ipj, (2.40)

where p†, d† create states in p,d-orbitals on the impurity, b† creates a state in the bath. Note
that a finite spin-orbit coupling strength ξ for the p-orbitals is added as an explicit relativistic
correction and ΣDC according to (2.26) is used to compensate double-counting of the mean-field
part of the interaction.

2.3 Calculation of observables: Linear Response Theory

The prediction of macroscopic observables from microscopic principles is a central aim of
materials theory (Section 1.1). This connection is established in the framework of Linear
Response Theory (e.g. [28, Section 5,6,8]) using Green’s function methods [34].

2.3.1 Green’s functions as correlation functions

Let a physical system be described by the Schrödinger Hamiltonian HS,0 and density matrix
ρS,0 = Z−1

0 e−βHS,0 , Z0 = Tr e−βHS,0 in equilibrium at time t → −∞. Consider a perturbation
VS = f(t) ·BS, where BS is a Schrödinger operator and f(t) a classical function of time with
f(t → −∞) = 0. Suppose, the experimental setup is designed so that changes in the observable
A are measured: ∆A(t) = Tr{ρS(t)AS} − Tr{ρS,0AS}, with ρS = Z−1 e−βHS , Z = Tr e−βHS .
Then, to linear order in f , the experimental outcome will be:

∆A(t) =
∫

dt′Gr
A,B(t, t′)f(t′), (2.41)
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where the retarded Green’s function associated to A and B is defined as

Gr
A,B(t, t′) = −iθ(t− t′) Tr

{
ρS,0[AH,0(t), BH,0(t′)]−ζ

}
=:〈
[
AH,0(t),BH,0(t′)

]
−ζ

〉

= θ(t− t′){−i 〈AH,0(t)BH,0(t′)〉
=:G>

AB(t,t′)

−(−ζ) i 〈BH,0(t′)AH,0(t)〉
=:G<

AB(t,t′)

}, (2.42)

with ζ = ±1 for bosonic (fermionic) operators and the subscript H, 0 indicating the Heisenberg
picture w.r.t. HS,0. This result is known as the Kubo formula (detailed discussion and proof e.g. in
[28, Section 6.1]). Note that to first order in the coupling field f , the non-equilibrium expectation
value can indeed be evaluated in terms of equilibrium observables, which is a remarkable result.
The retarded Green’s function enforces causality and is a first-order expression in correlators
〈AB〉. By cyclicity of the trace and the fact that ρS,0 commutes with the time-evolution operator
U = e−itHS,0 , Gr

A,B(t, t′) = Gr
A,B(t− t′), which is a manifestation of time-translation invariance of

the system in equilibrium. Note that because A is an observable/Hermitian, f is a real function,
and the integral measure in (2.41) is real, also Gr

A,B(t− t′) has to be real-valued.
In order to relate this to the resolvent operator introduced in Section 2.2.2, Laplace transform

G+
AB(t) = θ(t)G>

AB(t) [36, Section 1] with z = ω + iη:

G+
AB(z) = −i

∫
dt eizt G+

AB(t)

= −i
∫ +∞

0
dt eizt 〈A(t)B(0)〉 = . . . , (2.43)

and by taking the trace in the many-body eigenbasis |n〉 of H,

. . . = −i
∫ +∞

0
dt eizt

∑
n

e−βEn

Z
〈n| eiHtA e−iHt B |n〉

= −i
∫ +∞

0
dt
∑

n

e−βEn

Z
〈n|A ei(z+En−H)t B |n〉 = . . . (2.44)

Because the decay is sufficient for η > 0, one may commute summation with integration and
arrive at

. . . = −i
∑

n

e−βEn

Z
〈n|A ei(z+En−H)t

i(z + En −H)

∣∣∣∣∣
+∞

0
B |n〉 = . . . (2.45)

Note that this result may be written formally as a fraction of operators, because numerator and
denominator commute in this case.

. . . =
∑

n

e−βEn

Z
〈n|A [z + En −H]−1

=RH(z+En)

B |n〉 (2.46)
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finally shows the connection to the resolvent operator from Section 2.2.2. Similarly, one finds
for G−

AB(t) = θ(t)G<
AB(t),

G−
AB(z) =

∑
n

e−βEn

Z
〈n|A [−z + En −H]−1

=RH(−z+En)

B |n〉 . (2.47)

For the retarded Green’s function, this means:

Gr
A,B(z) = G+

AB(z) − (−ζ)G−
AB(z)

=
∑

n

e−βEn

Z
〈n|A

[
[z + En −H]−1 − (−ζ) [−z + En −H]−1

]
=Rr

H(z)

B |n〉 . (2.48)

It is instructive to introduce identities 1 = ∑
m |m〉 〈m| to further evaluate Rr

H in the many-
body eigenbasis of H:

Gr
A,B(z) =

∑
n,m,l

e−βEn

Z
〈n|A |m〉 〈m|Rr

H(z) |l〉
=〈m|Rr

H(z)|m〉δm,l

〈l|B |n〉

=
∑
n,m

e−βEn

Z
〈n|A |m〉 〈m|B |n〉 〈m|Rr

H(z) |m〉

=
∑
n,m

e−βEn

Z
|〈n|A |m〉|2 〈m|Rr

H(z) |m〉 , (A† = A = B) (2.49)

for the highly relevant case of common operators.
The matrix elements of the retarded resolvent in the many-body eigenbasis of H are

〈m|Rr
H(z) |m〉 = 1

ω + iη + En − Em

− (−ζ) 1
−ω − iη + En − Em

, (2.50)

so that the imaginary part of (2.49) is identified as

Im
{
Gr

A,A(z)
}

= −π
∑
n,m

e−βEn

Z
|〈n|A |m〉|2

× [Lη(ω + En − Em) − (−ζ)Lη(−ω + En − Em)] , (2.51)

where Lη(E) = 1
πη

η2

E2+η2 is a Lorentzian peak at E = 0 with scale parameter η (half width at
half maximum). Note that the contribution from G+

AA is peaked at energies ω + En = Em

(absorptive) while the contribution from G−
AA is peaked at −ω + En = Em (emissive).

By interchanging n and m in the second term, it can be seen that for large frequencies ωβ � 1,
the thermal occupation factor separates the sum over many-body states into two practically
distinct sets of initial and final states respectively:

Im
{
Gr

A,A(z)
}

= −π
∑

n∈I,m∈F

e−βEn −(−ζ) e−βEm

Z
|〈n|A |m〉|2Lη(ω + En − Em)
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≈ −π
∑

n∈I,m∈F

e−βEn

Z
|〈n|A |m〉|2Lη(ω + En − Em), (2.52)

so that only the absorptive part arising from G+
AA survives. In the computationally convenient

[37] notation of (2.46),

Im
{
Gr

A,A(z)
}

≈
∑
n∈I

e−βEn

Z
Im 〈n|A [ω + iη + En −H]−1 A |n〉 . (2.53)

In practice, the operators in this equation will be furthermore restricted to the relevant subspaces
I(F ) of initial(final) states respectively, thereby replacing A by a non-hermitian operator a
posteriori,

Im
{
Gr

A,A(z)
}

≈
∑

n

e−βEn

Z
Im 〈n|A† [ω + iη + En −H]−1 A |n〉 . (2.54)

2.3.2 Transition rate in an external field

As an explicit example [11, Section 7], consider the coupling of a system to an external
electromagnetic field,

H ′ = H + fω(t)T, (2.55)

with fω(t) = Re
{
E0 eiz?t

}
for a monocromatic field, which is adiabatically turned on in the

distant past, z? = ω− iη. In dipole approximation in the regime of x-ray absorption [38, Section
4.1], T ∝ ε · p, where ε is the light polarization vector and p the momentum operator.

The aim is to calculate the rate of energy transfer between the system and the external field,

Q̇ω = 〈∂H
′

∂t
〉 = ḟω(t) 〈TH(t)〉 . (2.56)

An average over a full cycle of the field oscillation ∆t = 2π
ω

yields

Q̇ω = 1
∆t

∫ ∆t

0
dtḟω(t) 〈TH(t)〉

= 1
∆t

∫ ∆t

0
dtḟω(t)

[
〈TH(−∞)〉 +

∫
dt′Gr

T T (t− t′)fω(t′)
]

= . . . (2.57)

Neglecting terms of order η, the equilibrium part 〈TH(−∞)〉 is averaged out,

. . . = 1
∆t

∫ ∆t

0
dtḟω(t)

∫
dt′Gr

T T (t− t′)fω(t′) + o(η)

≈ 1
4∆t

∫ ∆t

0
dt
(
iωE0 eiz?t −iωE?

0 e−izt
) ∫

dt′Gr
T T (t− t′

=τ

)
(
E0 eiz?t′ +E?

0 e−izt′)+ o(η)

≈ 1
4∆t

∫ ∆t

0
dt
(
iωE0 eiz?t −iωE?

0 e−izt
) ∫

dτGr
T T (τ)

(
E0 eiz?(t−τ) +E?

0 e−iz(t−τ)
)

= . . . ,

(2.58)
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Recognize the Laplace transform of the Green’s function,

Gr
T T (z) =

∫
dτGr

T T (τ) eizτ , Gr
T T (−z?) =

∫
dτGr

T T (τ) e−iz?τ = Gr
T T (z)?, (2.59)

because Gr
T T (τ) is real according to the Kubo formula. Therefore,

. . . = 1
4∆t

∫ ∆t

0
dt
(
iωE0 eiz?t −iωE?

0 e−izt
) (
E0G

r
T T (z)? eiz?t +E?

0G
r
T T (z) e−izt

)
= . . . (2.60)

Due to 1
∆t

∫∆t
0 dt einzt = δn,0 + o(η), n ∈ Z, only terms ∼ |E0|2 survive,

. . . = iω |E0|2

4 [Gr
T T (z)? −Gr

T T (z)] + o(η)

≈ ω
|E0|2

2
1
2i [Gr

T T (z) −Gr
T T (z)?]

= ω
|E0|2

2 Im{Gr
T T (z)}. (2.61)

Since Q̇ω describes the rate of energy transfer at frequency ω, Q̇ω

ω
∝ Im{Gr

T T (z)} is proportional
to the rate µω of corresponding many-body excitations (each costing the energy ω5), thereby
recovering a generalized version of Fermi’s golden rule through (2.51).

Combining this result with (2.54) from Section 2.3.1 (βω � 1 is valid in the regime of XAS),
the transition rate measured in XAS experiments can be efficiently predicted as

µω ∼
∑

n

e−βEn

Z
Im 〈n|T † [ω + En − (H − iΓ)]−1 T |n〉 . (2.62)

Note that the infinitesimal decay parameter η = 0+ in (2.54) – introduced to simulate adiabatic
coupling to an external source (2.55) and hence make the Laplace transform of the Green’s
function (2.43) convergent – has been absorbed in a finite decay parameter Γ in the space of final
states m ∈ F , which has been introduced a posteriori6. This free parameter accounts for decay
of the final states according to e−i(H−iΓ)t |m〉 = e−iEmt e−Γt |m〉 via channels that the present
model does not capture. The effect on the resulting spectra is a Lorentzian peak-broadening
according to (2.52).

5Since this work does not employ a quantum-field-theoretic description of the environment, this part of the
argument has to remain semi-classical: Even though coupling to an external source was introduced in terms
of a classical field f(t), the quantum nature of light is used as an additional input.

6How the decay channels can be introduced consistently a priori remains unaddressed in this work, but would
be an interesting extension of the project. It is clear that the derivations reviewed here rely on Hermitizity
of the Hamiltonian, so that one cannot naïvely add an imaginary decay matrix to the Hamiltonian in the
beginning.
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2.4 Phonons and electron-phonon coupling

To take into account the effect of lattice vibrations on the electronic structure [28, Section 3],
expand the inter-ionic potential around its equilibrium position, R = R0 + uR. Because the
equilibrium position is an energetic minimum by definition, the linear term vanishes and one
obtains

Vion =
∑

R0 6=R′
0

V (R −R′)

=
∑

R0 6=R′
0

V (R0 −R′
0) + 1

2
∑

R0 6=R′
0,µν

uµ
R

∂2V

∂uµ
R∂u

ν
R′

∣∣∣∣∣
u=0

uν
R′ + o(u3)

=
∑

R0 6=R′
0

V (R0 −R′
0) + 1

2
∑
q,µν

uµ
−qV

(2)
qµνu

ν
q + o(u3), (2.63)

after transformation to Fourier space. The dynamical matrix V (2)
qµν is symmetric and can therefore

be diagonalized in an orthonormal basis of modes uqλ with eigenvalues Mω2
qλ, where λ is a

polarization index. Note that in insulators such as STO, a dipole-interaction contribution to
the dynamical matrix gives rise to a splitting between the longitudinal and transversal optical
branches (LO-TO splitting) [39].

After bosonic quantization, the resulting phonon Hamiltonian reads

Hph =
∑
qλ

ωqλ

(
b†

qλbqλ + 1
2

)
, (2.64)

and the displacement operator in real space is given by

uR(t) =
∑
qλ

(
1

2MNωqλ

) 1
2

(bqλuqλ e−iωqλt +b†
−qλu−qλ eiωqλt) eiqR0 . (2.65)

For later reference, note that for q → 0 (Γ-point of the Brillouin zone), and after restriction to a
single mode u0λ, the displacement scales as

uR0λ ∝ M− 1
2u0λ, (2.66)

where M is the mass of the ion at position R.
Harmonic expansion of Vext around the equilibrium positions in terms of the introduced phonon

modes makes the interaction between electrons and phonons of the form ∼ c†
k+qck(bq + b†

−q)
apparent, which is also the starting point for the BCS theory of superconductivity [28, Section
3.6].

Within this work, the electron-phonon interaction will be treated in adiabatic approximation,
i.e. the atomic displacements due to a phonon mode qλ will be used as parameters in (2.4),
and the electronic observables will be calculated for different values of the displacement (frozen
phonon model).
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3 Computational Methods

This section contains details about the implementation of the theoretical methods explained in
Section 2. Following the workflow diagram Figure 1.4, the starting point of the numerical study
is an experimental structure of STO in the cubic phase, obtained as a .cif-file from the ICSD
database [13]. Using the code cif2cell [40], this document is converted into a format suitable for
the electronic structure code RSPt.

3.1 RSPt

RSPt [41] is an implementation of DFT using a LMTO basis as described in Section 2.1. The
code can be obtained from [42] after registration via e-mail to rspt.admin@physics.uu.se. RSPt
is here used to calculate the density of states (2.32,2.33), the local Hamiltonian (2.36) and
hybridization function (2.37) for the Ti 3d orbitals in STO, as well as the spin-orbit coupling
ξ for the p-orbitals and most of the interaction parameters in the Hamiltonian (2.40). An
introduction to the code is given in the selection of tutorials [43]. Calculations within this
work are based on these and use their default settings if not else specified. A linear grid of
12 × 12 × 12 k-points is used to sample the Brillouin zone. For all quantities extracted from the
mean-field Green’s-function, the energy axis is sampled by 1001 linear points from -1 Ryd to 1
Ryd. The distance from the real axis is chosen as η = 0.01 Ryd, and the SIAM is constructed
within an energy window of -0.4 Ryd to 0.7 Ryd. The calculations were executed on the high
performance computer cluster Rackham [44], using up to 20 cores for one hour.

3.2 rspt2spectra

rspt2spectra [45] implements the discretization of the hybridization function as described in
Section 2.2.3 and acts as an interface between RSPt and impurityModel (Section 3.3). 3-4
bath states per impurity orbital were fitted in energy-windows selected by hand to capture the
essential features of the hybridization function. Output of the calculation is the non-interacting,
non-relativistic part of the Hamiltonian (2.40). Because this part of the calculation is not very
expensive, execution on a personal computer is sufficient.

3.3 impurityModel

The code impurityModel [46] implements the calculation of the XA spectral function (2.62). It
takes as input the Hamiltonian constructed by rspt2spectra and adds the significant spin-orbit
coupling and interaction-terms to arrive at (2.40). With the notation d for an electron in a
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d-orbital and b for a hole in the bath, the configurations dnbbnb , nb = 0, 1, 2 are taken into
account to construct the lowest energy-eigenstates |n〉 using the Lanczos-algorithm [29, Appendix
A]. The XA spectral function is calculated for a range of incoming photon energies and for
different polarization directions. The absolute position of the spectrum – corresponding to
the energy of the core orbitals – is not respected in this implementation, but later fitted to
experimental data. The temperature was set to T = 300 K and a peak broadening Γ = 0.05
eV was used to account for the decay of the final states, but also to resolve differences in the
spectra due to lattice distortions. The spin-orbit coupling and interaction parameters are listed
in Table 3.1.

F 0
dd F 2

dd F 4
dd F 0

pd F 2
pd G1

pd G3
pd δCT ξp

5.19 8.57 6.02 6.0 4.20 2.73 1.54 1.5 3.83

Table 3.1: Computational parameters used in the impurityModel calculation, all values in eV.
The heavily screened F 0

dd is approximated by a literature result [47], F 0
pd and δCT are

extrapolated from the trend in [6, Table 1]. F 2
dd and F 4

dd are empirically [6] screened
by 0.82, 0.88 of their RSPt values. All other values are directly obtained from RSPt.

The calculations were performed on the high performance computer cluster Tetralith [48] on
up to 64 cores for up to 3 hours.

4 Results and Discussion

In order to validate the construction of the theory on the mean-field level, this Section will
start out by comparing the electronic structure obtained from DFT calculations in this work
to previous experimental and theoretical results on STO in the bulk [49]. These investigations
have shown that STO is an insulator with a direct band gap of 3.75 eV and indirect band gap
of 3.25 eV, which is consistent with the observation from Section 1.2 that pure STO is perceived
as transparent in the visible regime with an energy range of roughly 1.5 − 3.25 eV [50]. It is
well known [49, Section III.C.] that DFT in the LDA (2.7) tends to underestimate the band gap
of STO by about 1.5 eV, so that one would expect to see a gap of ∼ 1.75 eV = 0.13 Ryd in the
DOS at the LDA level, which is discussed in detail below.
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4.1 Density of states
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Figure 4.1: DOS and pDOS of STO calculated with RSPt via (2.32). The contribution of the
Sr 4d, Ti 3d and O 2p orbitals are shown as pDOS for the corresponding sites.
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Figure 4.2: DOS and pDOS of STO calculated with RSPt using an implementation of (2.15).

Figure 4.1 shows the (p)DOS (2.32),(2.33) of STO as obtained from RSPt. The results reproduce
the qualitative features in previous literature [49, Figure 11] well. Around EF = 0, Figure 4.1
shows a non-vanishing density of states, which is an effect of Lorentzian tails resulting from the
imaginary offset η = 0.01 Ryd. Effectively decreasing η → 0 by direct integration of (2.15), also
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the density of states goes to zero at the Fermi energy (Figure 4.2), and an indirect band gap of
∼ 0.13 Ryd is observed as anticipated before.

Convergence of the electronic structure with respect to the number of k-points was verified
by increasing to 24 × 24 × 24 and comparing the resulting pDOS to the data shown here. The
essential features did not change visibly, so that reasonable convergence can be assumed. Since
the hybridization function (2.37) will also be calculated from the Green’s function (2.34), Figure
4.1 allows for an estimate of the main hybridization contributions for the local Ti 3d orbitals.
This is how the energy window (-0.4 Ryd to 0.7 Ryd) for construction of the SIAM is motivated.

4.2 Phonon spectrum and lattice modulation

This section discusses the adiabatic phonon modulation in STO (experimental setup similar to
Figure 1.2) assuming a pump peaked around a frequency of 3 THz (Figure 4.3).

Figure 4.3: Frequency spectrum of an experimental pump pulse peaked around 3 THz [by
courtesy of Stefano Bonetti].

To identify which phonon modes are excited by this pump, the dominant resonant modes are
identified in the phonon spectrum of STO shown in Figure 4.4.
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Figure 4.4: Phonon band structure of STO obtained from VASP[51]+phonopy[52] calculations
[by courtesy of Xin Shen]. A term correction [39] was applied to account for long-
range dipole-dipole interactions, so that the longitudinal and transversal optical
phonon branches split. Negative frequencies around M and R indicate unstable
imaginary modes driving the structural phase-transition to a tetragonal structure
below 105K (Section 1.2). Neglecting the momentum transferred by a photon in
comparison to the size of the Brillouin zone, a pump peaked around 3 THz would
excite the pair of degenerate transversal optical modes at (q → 0, 2.68 THz) (blue
circle).

The frequencies in the phonon spectrum presented here do not completely agree with pre-
viously reported data in the literature. [1, Figure 1a and Supplementary Information] based
on earlier experimental data [53, 54, 55] finds a lowest optical frequency of 0.93 THz at Γ,
but points out that the frequency of this mode depends sensitively on temperature [56]. [57,
Figure 2] predicts an instability at the Γ-point. Since the phonon modulation is here treated
on an adiabatic level, only the symmetry of the distorted structure (not so much the phonon
frequency) is relevant in the steps following, and a more detailed analysis of the discrepancies in
the phonon spectra will be postponed.
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Taking into account the mass-normalization (2.66) of the corresponding eigenvectors, an
atomic displacement in real space for one of the degenerate phonon modes at (q → 0, 2.68 THz)
is calculated from the phonopy output and illustrated in Figure 4.5.

Figure 4.5: Atomic displacements (blue arrows) corresponding to a transversal optical phonon
mode at (q → 0, 2.68 THz). Coordinates are normalized to the lattice parameter 3.9
Å of the cubic unit cell [13]. The maximum displacement is set to δ = 5%, which
is a guess based on experimental investigations [1]. Different sizes of the spheres
indicate their mass ratio.

4.3 Discretization of the hybridization function

Figure 4.6 shows the hybridization functions (2.37) of the Ti 3d orbitals in a basis of cubic
harmonics (eg and t2g orbitals) as calculated with RSPt for the experimental crystal structure
[13] of STO, and for the structure distorted according to Figure 4.5. The eg orbitals (dz2 and
dx2−y2) hybridize more strongly with the environment than the t2g orbitals (dyz,xz,xy), which is
consistent with the crystal structure shown in Figure 1.1.
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Figure 4.6: Diagonal part of the hybridization functions calculated with RSPt. The offdiagonal
elements vanish in the undistorted case and are ∼ 1 eV in the distorted case. Left:
Hybridization of eg orbitals (violet) and t2g orbitals (blue) in the cubic structure,
i.e. displacement δ = 0. Right: δ = 5% maximum displacement. The two eg orbitals
(dz2 brown, dx2−y2 violet) are clearly inequivalent.
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Figure 4.7: Discretization of the hybridization function in the undistorted case by fitting bath
energies and hopping parameters to its imaginary part. Left: eg orbitals. Right: t2g

orbitals.

The discretization of the diagonal elements of the hybridization function with rspt2spectra
according to Section 2.2.3 is shown in Figure 4.7 for the undistorted case, and in Figure 4.8 for
a δ = 5% distortion. The energy windows were selected to achieve a good fit in the undistorted
case and then also used for the distorted case to make the results comparable. Optimizing the
fit separately for the distorted case only leads to minor changes in the resulting spectra and
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does not change the final interpretations.

6 4 2 0 2 4 6 8 10
energy [eV]

0

5

10

15

20

25

30

35

hy
br

id
iza

tio
n 

[e
V]

= 0.05

original
model

6 4 2 0 2 4 6 8 10
energy [eV]

0

5

10

15

20

25

30

35

hy
br

id
iza

tio
n 

[e
V] = 0.05

original
model

6 4 2 0 2 4 6 8 10
energy [eV]

0

2

4

6

8

10

hy
br

id
iza

tio
n 

[e
V]

= 0.05

original
model

Figure 4.8: Discretization of the hybridization function in the case of δ = 5% distortion. Upper
row: eg orbitals dz2 (left) and dx2−y2 (right) with visible differences in hybridization.
Lower plot: one of the (practically equivalent) t2g orbitals.

Whereas the hybridization matrix is diagonal in the undistorted case, the phonon distortion
breaks the local octahedral symmetry, which leads to small off-diagonal elements (∼ 1 eV). Most
importantly, the two eg orbitals are not any more degenerate, and their hybridization with the
O 2p orbitals below the Fermi level (see DOS Figure 4.1) changes significantly.

4.4 X-ray absorption spectra

After construction of the SIAM (2.40) with the output from rspt2spectra and the parameters
specified in Table 3.1, the calculation of the x-ray absorption spectral function (2.62) with
impurityModel yields the results shown in Figure 4.9 for octahedral symmetry (δ = 0).
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Figure 4.9: XAS of STO for δ = 0 with peak broadening Γ = 0.2 eV in comparison to data
digitized from previous experimental [58, Figure 1] and previous theoretical [5, Figure
7] work.

Especially the peak position reproduces well previous experimental and previous theoretical
results. The shape of the spectrum is typical for the L2,3-edge of nominally d0 compounds in
octahedral symmetry [4, Section C]. The constant lifetime-broadening Γ = 0.2 eV underestimates
the values observed in experiment for almost all peaks. In the following analysis, however, it
will be decreased even further to resolve any sensitivity of the spectra to phonon modulations.

Whereas the relative intensity of most of the peaks is satisfactory and confirms the choice of
parameters, the intensity of the first peak is clearly underestimated. However, the results shown
here are not very sensitive to the free parameters in Table 3.1, as also previously reported for
other materials [6]. This is an indication that the approach used in this work underestimates
the absolute value of the crystal field parameter 10Dq, which is a standard parameter in atomic
multiplet calculations describing the splitting of eg and t2g orbitals in the non-interacting limit
[38]. As [4, Figure 3] suggests, a larger absolute value 10Dq would increase the intensity of the
first peak. Due to the presence of strong correlations in the system, this would happen in a
non-linear way. In this approach, 10Dq is not a free parameter, but the effect of the crystal field
is taken into account by the hybridization function (2.37). In principle, one could compensate
the underestimated crystal-field splitting by adding a correction term with cubic symmetry to
εdi,j

in (2.40), but at the cost of introducing an additional free parameter to the theory. Another
option would be to try if another projection scheme for obtaining a local basis set (ORT [26]) is
more suitable to capture the crystal field effect correctly or if the choice of free parameters can
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be slightly improved. Since the main interest of this work is however in relative changes of the
XAS after distortions, the absolute precision of the results is not crucial.

According to the group-theoretical arguments in [4, Sections C,D], breaking the octahedral
symmetry by a phonon modulation should lead to further splitting parameters as well as
polarization-dependence in the XA spectra.
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Figure 4.10: Phonon modulated XAS of STO. Left: Full view for Γ = 0.2 eV. In the distorted case,
additional shoulders emerge on the previously observed peaks. Right: Detailed view
of the second large peak (blue rectangle in the left panel) for reduced broadening
Γ = 0.05 eV. δ increases with intensity of the color.

456 458 460 462 464 466 468
photon energy  [eV]

0.0

0.2

0.4

0.6

0.8

1.0

tra
ns

iti
on

 ra
te

 
 (n

or
m

al
ize

d)

= 0.05 eV,
= 0

experiment
this work
x
y
z

456 458 460 462 464 466 468
photon energy  [eV]

0.0

0.2

0.4

0.6

0.8

1.0

tra
ns

iti
on

 ra
te

 
 (n

or
m

al
ize

d)

= 0.05 eV,
= 0.05

experiment
this work
x
y
z

Figure 4.11: Polarization dependence in XAS of STO. In the case of octahedral symmetry (δ = 0,
left panel), all polarization directions are equivalent within numerical precision.
Breaking the octahedral symmetry (δ = 5%, right panel), a nontrivial polarization
dependence is observed in the simulated spectra. Experimental data [58, Figure 1]
measured on the undistorted structure is shown for reference in both panels.
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Figure 4.10 shows the effect of the phonon modulation (Figure 4.5) on the XAS results as
predicted by RSPt+impurityModel. One can deduce that with increasing δ, the peaks split and
new features emerge in a nonlinear way. This is in agreement with the discussion in [4, Section
C]: just as the crystal-field splitting 10Dq causes a branching from spherical to octahedral
symmetry, lowering the symmetry further down (e.g. to c4v) leads to additional branching effects.
Also the polarization dependence anticipated in [4, Section D] is observed, as reported in Figure
4.11.

4.5 Experimental applications

A natural experimental application of this work would be the attempt to detect the signatures
predicted in Figures 4.10, 4.11 by forcing large coherent displacements in the lattice using a
pump-probe setup as sketched in Figure 1.2.

Even though Figure 4.11 indicates that the experimental resolution from 1996 [58, Figure 1]
would not be sufficient to resolve the changes in the spectra (the experimental peak broadening
is large compared to the peak splittings), some changes of the features clearly exceed thermal
effects (∼ kT = 0.025 eV), and are just in reach of state of the art experimental resolution
(∼ 0.1 eV [59]). In addition, one could exploit the polarization-dependence of the spectra and
compare measurements with different probe-polarizations in order to isolate the changes more
reliably. The short life-time of the core-hole, ~

τ
= Γ ∼ 0.1 eV [16, Section 2.1.2]), remains the

fundamentally limiting factor. Including the most relevant decay channels in the calculations
would permit a more precise, energy-dependent estimate of the peak-broadening.

The theoretical simulations in this work predict potentially observable changes in the XAS
of STO even for small coherent distortions in the lattice structure, which reflects the strong
susceptibility of the electronic structure to excitations of the crystal lattice. Experimental XAS
measurements on phonon-modulated STO could not only be used to test this direct result, but
also to test the applicability of the adiabatic approximation to phonon-modulations in STO in
general, and therefore validate further theoretical studies of other modulated observables, such
as the dielectric tensor in the optical regime.

5 Conclusion

In this work, the Multiplet Ligand Field Theory approach [5, 6] was used to analyse the
influence of phonon modulations [1] on the x-ray absoprtion near-edge fine structure of the
Ti-L2,3-edge in SrTiO3. Previous experimental [58] and previous theoretical [5] data on the
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cubic structure were reproduced with good agreement. Even small phonon modulations with a
maximum atomic displacement of 5% of the unit cell were shown to cause potentially observable,
polarization-dependent changes in the x-ray absorption spectra. This illustrates the strong effect
of lattice modulations on the electronic structure of SrTiO3.

The intensity of the first large peak in the absorption spectrum was underestimated in compar-
ison to experiments, which is indication that the crystal-field splitting 10Dq is underestimated
in the construction of the single-impurity Anderson model. One should check if another RSPt
projection scheme (ORT [26]) is more suitable to capture the crystal field effect correctly, or if
modifications in the fit of the hybridization function and free parameters are needed. At the
cost of introducing an additional free parameter to the theory, one could even add a correction
term with cubic symmetry to εdi,j

in (2.40).

A detailed understanding of the x-ray absorption spectra in the symmetry-broken structure in
terms of selection rules and group theory is still outstanding, but desired to check and support
the numerical simulations. To reduce the complexity of this analysis, one could restrict it to
T = 0 and then discuss the transition matrix elements under branching of octahedral symmetry
to, e.g., c4v.

Including the relevant decay-channels of the core-hole in the calculations would be a way to
give a more reliable estimate of the energy-dependent peak-broadening.

An experimental test of the predictions made here, namely polarization-dependent changes
in the x-ray absorption spectral function of SrTiO3 as a result of collective lattice excitations,
is desirable also to validate further theoretical predictions of other observables in the frozen
phonon approximation.

As this work will be continued collaboratively in Uppsala and Heidelberg until September
2021, there might also be time to start an investigation on resonant inelastic x-ray spectroscopy
by collective magnetic excitations, based on [26, 60]. In combination with the work presented
here, this analysis could be a contribution to the understanding of how x-ray-spectroscopy can be
used to investigate collective spin- and lattice- excitations in real materials. From an educational
point of view, the theoretical workflow (Figure 1.4) applied here seems to be easily transferable
to other problems in modern materials theory and is therefore an excellent introduction into
this field of research.

page 35 of 42 – compiled February 1, 2021.

mailto:jonas.hoecht@physics.uu.se


Master project by Jonas Hoecht, Uppsala/Heidelberg, 08/2020 – 01/2021.

Acknowledgments

This work was organizationally and financially supported through scholarships by Erasmus+
and Cusanuswerk e.V.

I am deeply grateful to my supervisors Maurits Haverkort and Olle Eriksson for their
joint effort to make this work possible as a collaborative project. This is not only a benefit for
my academic education, but also a valuable experience for life.

Many thanks to Oscar Grånäs and Patrik Thunström for their proposals, patience,
support, and feedback on a daily basis. Each of you is a great supervisor, and I enjoyed it even
more to work with the two of you in combination.

I want to thank my colleagues Kristofer Björnson, Johan Jönsson, Chin Shen Ong,
and Xin Shen for their contributions to this work through input, theoretical discussions, and
computational troubleshooting. Furthermore, I thank Stefano Bonetti and Sergei Butorin
for their input from the experimental point of view, Susanne Mirbt for her readiness to
examine this work on short notice, and the Erasmus physics team, Dimitri Arvanitis and
Rabab Elkarib, for help with the formal aspects.

A big thank you to the whole materials theory division for providing this inspiring and
caring environment for successful research and education!

For helping me to cope with the challenges of living abroad, I want to thank Freja W. and
the people at Uppsala ju‑jutsuklubb (ujjk), who made me feel at home in Uppsala, as well as
Benwermarna for offering great dancing courses when it was still possible, and for stopping
them at a sensible time in the interest of protecting ourselves as well as other people.

Last but not least, I thank my family and friends in Germany for their continuous love and
support before and during my stay in Sweden (hopefully also beyond). I am grateful and happy
to have you as a good reason to come back home.

page 36 of 42 – compiled February 1, 2021.

mailto:jonas.hoecht@physics.uu.se
https://ec.europa.eu/programmes/erasmus-plus/node_en
https://www.cusanuswerk.de/startseite
mailto:M.W.Haverkort@thphys.uni-heidelberg.de
mailto:olle.eriksson@physics.uu.se
mailto:oscar.granas@physics.uu.se
mailto:patrik.thunstrom@physics.uu.se
mailto:kristofer.bjornson@physics.uu.se
mailto:johan.jonsson@physics.uu.se
mailto:chinshen.ong@physics.uu.se
mailto:xin.chen@physics.uu.se
mailto:stefano.bonetti@fysik.su.se
mailto:sergei.butorin@physics.uu.se
mailto:susanne.mirbt@physics.uu.se
mailto:erasmus@physics.uu.se
mailto:erasmus@physics.uu.se
https://www.physics.uu.se/research/materials-theory/
https://ujjk.se/
https://www.facebook.com/groups/1401391100110510/


Master project by Jonas Hoecht, Uppsala/Heidelberg, 08/2020 – 01/2021.

List of Figures

1.1 STO crystal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Pump-probe experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 XA process 2p→3d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Research strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Schematic illustration of the SIAM . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 DOS and pDOS of STO, via Green’s function . . . . . . . . . . . . . . . . . . . 26
4.2 DOS and pDOS of STO, directly integrated . . . . . . . . . . . . . . . . . . . . 26
4.3 Frequency spectrum of a THz pump pulse . . . . . . . . . . . . . . . . . . . . . 27
4.4 Phonon band structure of STO . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Atomic displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Hybridization functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Discretization of the hybridization function, undistorted case . . . . . . . . . . . 30
4.8 Discretization of the hybridization function, distorted case . . . . . . . . . . . . 31
4.9 XAS of STO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.10 Phonon modulated XAS of STO . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.11 Polarization dependence in XAS of STO. . . . . . . . . . . . . . . . . . . . . . . 33

List of Tables

3.1 impurityModel parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

page 37 of 42 – compiled February 1, 2021.

mailto:jonas.hoecht@physics.uu.se


Master project by Jonas Hoecht, Uppsala/Heidelberg, 08/2020 – 01/2021.

References

[1] Michael Kozina et al. “Terahertz-driven phonon upconversion in SrTiO 3”. In: Nature
Physics 15.4 (2019), pp. 387–392.

[2] T Yamaguchi, S Shibuya, S Suga, and S Shin. “Inner-core excitation spectra of transition-
metal compounds: II. pd absorption spectra”. In: Journal of Physics C: Solid State Physics
15.12 (1982), p. 2641.

[3] BT Thole, RD Cowan, GA Sawatzky, J Fink, and JC Fuggle. “New probe for the ground-
state electronic structure of narrow-band and impurity systems”. In: Physical Review B
31.10 (1985), p. 6856.

[4] FMF De Groot, JC Fuggle, BT Thole, and GA Sawatzky. “L 2, 3 x-ray-absorption edges
of d 0 compounds: K+, Ca 2+, Sc 3+, and Ti 4+ in O h (octahedral) symmetry”. In:
Physical Review B 41.2 (1990), p. 928.

[5] MW Haverkort, M Zwierzycki, and OK Andersen. “Multiplet ligand-field theory using
Wannier orbitals”. In: Physical Review B 85.16 (2012), p. 165113.

[6] Johann Lüder et al. “Theory of L-edge spectroscopy of strongly correlated systems”. In:
Physical Review B 96.24 (2017), p. 245131.

[7] Nick Smith. “The Seven Ages of Materials”. In: Engineering & Technology 14.9 (2019),
pp. 22–25.

[8] WH Butler, X-G Zhang, TC Schulthess, and JM MacLaren. “Spin-dependent tunneling
conductance of Fe| MgO| Fe sandwiches”. In: Physical Review B 63.5 (2001), p. 054416.

[9] Sining Mao et al. “Commercial TMR heads for hard disk drives: characterization and
extendibility at 300 gbit 2”. In: IEEE transactions on magnetics 42.2 (2006), pp. 97–102.

[10] Uppsala University. Materials for Sustainable Energy Solutions. url: https://www.

physics.uu.se/research/materials-theory/ongoing-research/materials-for-

sustainable-energy-solutions/ (visited on 2020-01-25).

[11] Paul M Chaikin, Tom C Lubensky, and Thomas A Witten. Principles of condensed matter
physics. Vol. 10. Cambridge university press Cambridge, 1995.

[12] Mindat.org mineralogy database. Tausonite. 2002. url: https://www.mindat.org/min-

3895.html (visited on 2020-12-21).

[13] GM Meyer, RJ Nelmes, and J Hutton. “High-resolution (direct space) studies of anharmonic
motion associated with the structural phase transition in SrTiO3”. In: Ferroelectrics 21
(1978), pp. 461–462.

page 38 of 42 – compiled February 1, 2021.

mailto:jonas.hoecht@physics.uu.se
https://www.physics.uu.se/research/materials-theory/ongoing-research/materials-for-sustainable-energy-solutions/
https://www.physics.uu.se/research/materials-theory/ongoing-research/materials-for-sustainable-energy-solutions/
https://www.physics.uu.se/research/materials-theory/ongoing-research/materials-for-sustainable-energy-solutions/
https://www.mindat.org/min-3895.html
https://www.mindat.org/min-3895.html


Master project by Jonas Hoecht, Uppsala/Heidelberg, 08/2020 – 01/2021.

[14] Koichi Momma and Fujio Izumi. “VESTA 3 for three-dimensional visualization of crystal,
volumetric and morphology data”. In: Journal of applied crystallography 44.6 (2011),
pp. 1272–1276.

[15] Q Song et al. “Evidence of cooperative effect on the enhanced superconducting transition
temperature at the FeSe/SrTiO 3 interface”. In: Nature communications 10.1 (2019),
pp. 1–8.

[16] Frank d. Groot and Akio Kotani. Core level spectroscopy of solids. Vol. 6. Boca Raton:
CRC Press, 2008.

[17] Lev Davidovich Landau, Evgenij Mihajlovič Lifšic, Evgenii Mikhailovich Lifshitz, and
LP Pitaevskii. Statistical physics: theory of the condensed state. Vol. 9. Butterworth-
Heinemann, 1980.

[18] John M Wills et al. Full-Potential Electronic Structure Method: energy and force calculations
with density functional and dynamical mean field theory. Vol. 167. Springer Science &
Business Media, 2010.

[19] Lev D. Landau and Evgenij M. Lifšic. Quantum mechanics: non-relativistic theory. Vol. 3.
London: Pergamon Press, 1958.

[20] Richard M Martin. Electronic structure: basic theory and practical methods. Cambridge
university press, 2020.

[21] Patrik Thunström. “Correlated Electronic Structure of Materials: Development and
Application of Dynamical Mean Field Theory”. PhD thesis. Acta Universitatis Upsaliensis,
2012.

[22] Kerson Huang. Statistical mechanics. 2. New York: Wiley, 1987.

[23] Pierre Hohenberg and Walter Kohn. “Inhomogeneous electron gas”. In: Physical review
136.3B (1964), B864.

[24] Walter Kohn and Lu Jeu Sham. “Self-consistent equations including exchange and correla-
tion effects”. In: Physical review 140.4A (1965), A1133.

[25] Neil W. Ashcroft and N. D. Mermin. Solid state physics. Saunders College, 1976.

[26] Yaroslav O Kvashnin et al. “Exchange parameters of strongly correlated materials: Ex-
traction from spin-polarized density functional theory plus dynamical mean-field theory”.
In: Physical Review B 91.12 (2015), p. 125133.

[27] Richard Feynman. Statistical mechanics: a set of lectures. advanced book classics, 1998.

page 39 of 42 – compiled February 1, 2021.

mailto:jonas.hoecht@physics.uu.se


Master project by Jonas Hoecht, Uppsala/Heidelberg, 08/2020 – 01/2021.

[28] Henrik Bruus and Karsten Flensberg. Many-body quantum theory in condensed matter
physics: an introduction. Oxford university press, 2004.

[29] Johan Schött. “Theoretical and Computational Studies of Strongly Correlated Electron
Systems: Dynamical Mean Field Theory, X-ray Absorption Spectroscopy and Analytical
Continuation”. PhD thesis. Acta Universitatis Upsaliensis, 2018.

[30] Alexander L. Fetter and John Dirk Walecka. Quantum theory of many-particle systems.
eng. Corr. repr. Mineola, N.Y.: Dover Publ., 2003, XVI, 601 S.

[31] F Aryasetiawan, Krister Karlsson, O Jepsen, and U Schönberger. “Calculations of Hubbard
U from first-principles”. In: Physical Review B 74.12 (2006), p. 125106.

[32] Michael Reed and Barry Simon. Methods of modern mathematical physics. vol. 1. Functional
analysis. Academic San Diego, 1980.

[33] Siegfried Bosch. Lineare Algebra. ger. 5., überarb. u. erweiterte Aufl. 2014. SpringerLink:
Bücher. Berlin, Heidelberg: Springer Spektrum, 2014, Online–Ressource (X, 385 S, online
resource). url: http://dx.doi.org/10.1007/978-3-642-55260-1.

[34] Eleftherios N Economou. Green’s functions in quantum physics. Vol. 7. Springer Science
& Business Media, 2006.

[35] Johan Jönsson. Electronic transitions and correlation effects: From pure elements to
complex materials. Vol. 2053. Linköping University Electronic Press, 2020.

[36] Peter Schmitteckert. “Calculating Green functions from finite systems”. In: Journal of
Physics: Conference Series. Vol. 220. 1. IOP Publishing. 2010, p. 012022.

[37] Y Lu, M Höppner, O Gunnarsson, and MW Haverkort. “Efficient real-frequency solver for
dynamical mean-field theory”. In: Physical Review B 90.8 (2014), p. 085102.

[38] FMF De Groot. “X-ray absorption and dichroism of transition metals and their compounds”.
In: Journal of Electron Spectroscopy and Related Phenomena 67.4 (1994), pp. 529–622.

[39] Xavier Gonze, J-C Charlier, DC Allan, and MP Teter. “Interatomic force constants from
first principles: The case of α-quartz”. In: Physical Review B 50.17 (1994), p. 13035.

[40] Torbjörn Björkman. “CIF2Cell: Generating geometries for electronic structure programs”.
In: Computer Physics Communications 182.5 (2011), pp. 1183–1186.

[41] J.M. Wills et al. RSPt. 2017. url: https://www.physics.uu.se/research/materials-

theory/ongoing-research/code-development/rspt-main/ (visited on 2020-12-07).

[42] J.M. Wills et al. RSPt v1.1 2017. 2017. url: https://github.com/uumaterialstheory/

rspt (visited on 2020-09-07).

page 40 of 42 – compiled February 1, 2021.

mailto:jonas.hoecht@physics.uu.se
http://dx.doi.org/10.1007/978-3-642-55260-1
https://www.physics.uu.se/research/materials-theory/ongoing-research/code-development/rspt-main/
https://www.physics.uu.se/research/materials-theory/ongoing-research/code-development/rspt-main/
https://github.com/uumaterialstheory/rspt
https://github.com/uumaterialstheory/rspt


Master project by Jonas Hoecht, Uppsala/Heidelberg, 08/2020 – 01/2021.

[43] Johan Schött. RSPt-tutorials. 2018. url: https://github.com/RSPt-tutorials (visited
on 2020-09-07).

[44] Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX).
Rackham. url: https://uppmax.uu.se/support/user-guides/rackham-user-guide/

(visited on 2020-12-17).

[45] Johan Schött. rspt2spectra. 2018. url: https://github.com/JohanSchott/rspt2spectra

(visited on 2020-09-25).

[46] Johan Schött. impurityModel. 2018. url: https://github.com/JohanSchott/impurityModel

(visited on 2020-09-25).

[47] Joseph W Bennett et al. “A systematic determination of hubbard U using the GBRV
ultrasoft pseudopotential set”. In: Computational Materials Science 170 (2019), p. 109137.

[48] National Supercomputer Centre at Linköping University. Tetralith. url: https://www.

nsc.liu.se/systems/tetralith/ (visited on 2020-12-17).

[49] K Van Benthem, C Elsässer, and RH French. “Bulk electronic structure of SrTiO 3:
Experiment and theory”. In: Journal of applied physics 90.12 (2001), pp. 6156–6164.

[50] DH Sliney. “What is light? The visible spectrum and beyond”. In: Eye 30.2 (2016), pp. 222–
229.

[51] Georg Kresse and Jürgen Furthmüller. “Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set”. In: Physical review B 54.16 (1996), p. 11169.

[52] A Togo and I Tanaka. “First principles phonon calculations in materials science”. In: Scr.
Mater. 108 (2015), pp. 1–5.

[53] RA Cowley. “Lattice dynamics and phase transitions of strontium titanate”. In: Physical
Review 134.4A (1964), A981.

[54] VN Denisov, BN Mavrin, VB Podobedov, and JF Scott. “Hyper-Raman spectra and
frequency dependence of soft mode damping in SrTiO3”. In: Journal of Raman spectroscopy
14.4 (1983), pp. 276–283.

[55] AS Barker Jr. “Temperature Dependence of the Transverse and Longitudinal Optic Mode
Frequencies and Charges in SrTi O 3 and BaTi O 3”. In: Physical Review 145.2 (1966),
p. 391.

[56] Premysl Marsik et al. “Terahertz ellipsometry study of the soft mode behavior in ultrathin
SrTiO3 films”. In: Applied Physics Letters 108.5 (2016), p. 052901.

page 41 of 42 – compiled February 1, 2021.

mailto:jonas.hoecht@physics.uu.se
https://github.com/RSPt-tutorials
https://uppmax.uu.se/support/user-guides/rackham-user-guide/
https://github.com/JohanSchott/rspt2spectra
https://github.com/JohanSchott/impurityModel
https://www.nsc.liu.se/systems/tetralith/
https://www.nsc.liu.se/systems/tetralith/


Master project by Jonas Hoecht, Uppsala/Heidelberg, 08/2020 – 01/2021.

[57] Michael Porer et al. “Ultrafast Relaxation Dynamics of the Antiferrodistortive Phase in
Ca Doped SrTiO 3”. In: Physical review letters 121.5 (2018), p. 055701.

[58] Y Uehara. “Resonant inelastic scattering at the L edge of Ti in Barium Strontium Titanate
by soft X-ray fluorescence spectroscopy”. In: Applied Physics A 65.2 (1996).

[59] Daniel J Higley et al. “Femtosecond X-ray magnetic circular dichroism absorption spec-
troscopy at an X-ray free electron laser”. In: Review of scientific instruments 87.3 (2016),
p. 033110.

[60] MW Haverkort. “Theory of resonant inelastic X-ray scattering by collective magnetic
excitations”. In: Physical review letters 105.16 (2010), p. 167404.

page 42 of 42 – compiled February 1, 2021.

mailto:jonas.hoecht@physics.uu.se

	Introduction
	Predicting properties of real materials
	Phonon modulations in SrTiO3
	X-ray absorption spectroscopy
	Outline of this work

	Theoretical background
	Ab initio-foundation: Density Functional Theory
	Beyond the mean-field approximation: Many-body theory for correlated materials
	Second Quantization
	Green's functions in operator theory
	Single Impurity Anderson Model

	Calculation of observables: Linear Response Theory
	Green's functions as correlation functions
	Transition rate in an external field

	Phonons and electron-phonon coupling

	Computational Methods
	RSPt
	rspt2spectra
	impurityModel

	Results and Discussion
	Density of states
	Phonon spectrum and lattice modulation
	Discretization of the hybridization function
	X-ray absorption spectra
	Experimental applications

	Conclusion

