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Single-molecule fluorescence microscopy has long been

appreciated as a powerful tool to study the structural dynamics

that enable biological function of macromolecules. Recent

years have witnessed the development of more complex

single-molecule fluorescence techniques as well as powerful

combinations with structural approaches to obtain mechanistic

insights into the workings of various molecular machines and

protein complexes. In this review, we highlight these

developments that together bring us one step closer to a

dynamic understanding of biological processes in atomic

details.
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Introduction
Biological processes rely on macromolecules that, to exert

their functions, often undergo structural transitions

between distinct conformational states. Linking this con-

formational choreography to the function of a biological

macromolecule paves the way for a detailed mechanistic

understanding of fundamental processes in biology. The

visionary physicist Richard Feynman therefore famously

conjectured that, ‘everything that living things do can be

understood in terms of the jiggling and wiggling of atoms’

[1]. An in-depth mechanistic understanding of biological

processes would no doubt be facilitated if one could shoot

an atomic-resolution movie of the relevant macromole-

cules that captures all of their distinct conformational

states and, at the same time, the dynamics with which

these structures interconvert and interact. Such complete

insight cannot be gleaned from any single experimental
www.sciencedirect.com 
technique currently, despite important advances in the

field of structural biology. Cryo-electron microscopy

(cryo-EM), for instance, has recently experienced an

impressive ‘resolution revolution’ [2,3] that makes it

possible to determine structural, near-atomic resolution

snapshots for a small number of distinct conformations of

a biological macromolecule. Cryo-EM can therefore pro-

vide important information on the structures of a subset of

accessible conformations explored by the macromolecule

at equilibrium. However, the order and timing of transi-

tions between these conformations cannot typically be

inferred from cryo-EM analyses. Moreover, capturing

interconversion dynamics for non-equilibrium processes

is challenging. To more readily infer molecular mecha-

nisms, biophysical assays are needed to report on the

dynamics that connect static structural snapshots.

Single-molecule techniques are ideally poised to satisfy

this need as they enable the real-time monitoring of

complex molecular processes, a direct observation of

transient kinetic intermediate states, and a complete

dissection of reaction pathways. The structural intercon-

version between distinct conformations of biological

macromolecules often brings about nanometer-scale dis-

tance changes (1�10 nm). At this length scale, Fluores-

cence Resonance Energy Transfer (FRET) [4,5] allows

the observation of distance changes in real time and with

high sensitivity. In this spectroscopic technique, a donor

and an acceptor fluorophore are introduced at sites of

interest, the distance between which is to be monitored.

Upon excitation of the donor fluorophore, its energy can

be transferred to the acceptor fluorophore in a nonradia-

tive process. The probability for this to occur, termed the

efficiency of energy transfer (E), depends sensitively on

the distance R between the two fluorophores according to

E = 1/{1 + (R/R0)
6}, where R0 is the Förster radius at

which E = 0.5 (Figure 1a). FRET measurements at the

level of single molecules (smFRET) make it possible to

record dynamics at a molecular scale that would otherwise

be obfuscated by random averaging in ensemble experi-

ments [6–8]. Given that they enable the real-time obser-

vation of conformational dynamics of individual mole-

cules, single-molecule techniques have become

invaluable for the mechanistic study of a host of important

biological systems.

FRET efficiencies can be recorded for freely diffusing

molecules when they pass through the observation vol-

ume of a confocal microscope. Such diffusion-based

smFRET has been applied with great success to
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mailto:anton.sabantcev@icm.uu.se
mailto:sebastian.deindl@icm.uu.se
http://www.sciencedirect.com/science/journal/0959440X/65
https://doi.org/10.1016/j.sbi.2020.10.002
https://doi.org/10.1016/j.sbi.2020.05.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sbi.2020.05.006&domain=pdf
http://www.sciencedirect.com/science/journal/0959440X


62 Protein nucleic interactions
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Cartoon schematic of smFRET detection with surface-immobilized molecules. (a) When donor (green) and acceptor (red) fluorophores are close

(<100 Å), excitation of the donor can result in acceptor fluorescence due to FRET. The efficiency of FRET sensitively depends on the distance

between the two fluorophores. (b) Time series of FRET efficiency can be recorded from individual surface-immobilized FRET-labeled molecules,

reporting on conformational dynamics at the single-molecule level on timescales ranging from �100 ms to tens of seconds. When a histogram of

individual FRET values from multiple molecules is plotted, distinct conformational states become apparent, which is not the case for bulk FRET.

Surface immobilization allows for a continuous smFRET readout during buffer exchange, making smFRET detection with surface-immobilized

molecules particularly useful for the study of non-equilibrium processes.
investigate various fundamental biological processes,

including protein folding [9]. A key advantage of the

diffusion-based smFRET implementation is its ability

to access short-lived processes within the 10 ms–100 ms

time regime. However, non-equilibrium dynamics are not

accessible by diffusion-based smFRET.

SmFRET can alternatively be measured with surface-

anchored molecules, which enables the observation of

conformational dynamics on a slower time scale of 100

ms–10 s, where longer observation times are required.

Here, the temporal evolution of donor and acceptor fluo-

rescence emissions from individual surface-immobilized

molecules is directly recorded. The time trajectory of

FRET efficiency for an individual molecule and conse-

quently the dwell times it spends in the distinct FRET

states can thus be readily obtained and non-equilibrium

processes can be observed (Figure 1b). Usingthis approach,

rigorous control experiments are required to first establish

that the immobilization of the biological macromolecule

does not significantly impact on its function.

SmFRET has been successfully applied to a cornucopia

of biological systems including, among many others,

membrane transporters [10,11], receptors [12,13], chan-

nels [14,15], helicases [16–18], and CRISPR-associated

endonucleases [19,20]. Here, we will focus on recent

examples of how smFRET obtained from surface-
Current Opinion in Structural Biology 2020, 65:61–68 
immobilized molecules has been utilized to study pro-

tein-nucleic acid interactions. Given the extreme versa-

tility of this approach with a vast number of applications

[21,22��,23–25], we focus here on a small subset of recent

examples that serve to highlight particularly important

recent developments.

Multi-coordinate single-molecule FRET
experiments
Conventional two-color smFRET can only report on

distance changes along a single coordinate given by the

distance between the donor and acceptor fluorophores.

This limitation can impede the observation of more

complex interactions and conformational changes and

has prompted the development of more complex

approaches that seek to combine smFRET with other

single-molecule techniques.

Of particular note are combinations of single-molecule

fluorescence microscopy with force spectroscopy meth-

ods, including magnetic tweezers [26,27] and optical

trapping [28]. Such combined approaches have proven

highly efficient in addressing a vast array of biological

topics, such as the mechanical properties of various DNA

structures [29–31] and the mechanisms of action of

diverse nucleic acid-interacting proteins [32–34,35�]. Iva-

nov et al. have recently demonstrated a powerful combi-

nation of smFRET and rotor bead tracking, an advanced
www.sciencedirect.com
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magnetic tweezers technique [36] that allows the rota-

tional and translational movements of a DNA segment to

be tracked in real time [37��] (Figure 2a). In this

FluoRBT (Fluorescence Rotor Bead Tracking) approach,

a DNA molecule is tethered between the surface and a

magnetic bead. The magnetic bead can be used to apply

force and twist to the DNA, while a second, non-magnetic

(rotor) bead is attached to the side of the DNA molecule

to report on the rotation of the DNA as well as the

distance between the surface and the bead attachment

point. The power of this new technique is demonstrated

by simultaneously monitoring changes in DNA torque,

measured through the amplitude of the rotor bead rota-

tional motion, and structural rearrangements, reported by

FRET, during a transition between right-handed B-form

and left-handed Z-form in response to twist [37��]. More

recently, the Bryant and Doudna groups have leveraged

the potential of FluoRBT to investigate the mechanism

of DNA interrogation by Cas9 [38]. In the future,

a number of advanced optical trapping techniques,

including angular trapping [39] and high-throughput

nanophotonic trapping [40] could also form compelling

combinations with smFRET.
Figure 2
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Expanding the smFRET methodology to include additional readouts. (a) Flu

illustrating an experiment with a DNA hairpin (left) and a B-form to Z-form tr

to Z transition in response to twist. Bottom: example DNA hairpin data show

opening and closing. Adapted with permission from Ref. [37��]. (b) Three-co

chromatin remodeling. Left: a schematic of the experiment showing the nuc

simultaneously resolve entry-side and exit-side FRET. Dotted circles repres

direction of DNA movements during remodeling. Note that the green dye is

color FRET trace that shows the coordination between entry-side and exit-s

first, while exit side moves after an ATP-dependent delay designated tlag. A

fluorescence microscopy is used to study the transition from initiation to elo

labeling scheme. Top center: ribosome states observed in the experiment. 

by cryo-EM. Bottom: example four-color single-molecule fluorescence time

complex. Note that 60S fluorophore undergoes photobleaching during the c

www.sciencedirect.com 
Another way to overcome limitations of conventional two-

color smFRET is to use additional fluorescence channels

to achieve three-color [41,42] and even four-color single-

molecule fluorescence microscopy [43]. Although techni-

cally challenging, these multi-color smFRET approaches

hold great potential for the dissection of the coordinated

motions that underlie the function of complex molecular

machines [44,45�,46–48,49��,50].

For example, Sabantsev et al. have recently developed a

three-color smFRET approach to monitor the coordi-

nated movements of DNA during nucleosome sliding

by chromatin remodelers [45�] (Figure 2b). By placing

two fluorophores on the DNA at opposite sides of the

nucleosome and a third fluorophore on the histone octa-

mer, the authors were able to independently monitor the

real-time movements of DNA relative to the histone

octamer on both sides of the nucleosomes. This enabled

the observation of a discontinuous DNA movement dur-

ing remodeling, where additional DNA first moves onto

the nucleosome from the entry side, while the exit side

DNA is pushed out of the nucleosome only after an ATP-

dependent delay. Together with cross-linking data, these
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oRBT combines rotor bead tracking and smFRET. Top left: schematic

ansition (right). Top right: correlated torque and FRET changes upon B

ing correlated FRET changes and rotor bead movements upon hairpin

lor smFRET sheds light on the coordination of DNA movements during

leosome labeling scheme and alternating laser excitation used to

ent the initial positions of DNA labels, while the arrows indicate the

 not excited by the red laser. Right: an example of a remodeling three-

ide DNA movements during remodeling. Entry side movement starts

dapted with permission from Ref. [45�]. (c) Multi-color single-molecule

ngation during translation. Top left: cartoon schematic of the ribosome

Top right: overlay of the initiation and elongation complexes resolved

 trace capturing the transition from the pre-initiation to the elongation

ourse of the recording. Adapted with permission from Ref. [49��].
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findings demonstrated that during remodeling, one or a

few additional basepairs of DNA are transiently buffered

on the nucleosome.

Multi-color single-molecule fluorescence microscopy has

also facilitated the study of the translation machinery

[47,48,49��]. A particularly elegant example is given by

recent work from the Puglisi group [49��]. Here, the

authors used smFRET with four-channel detection to

dissect the sequence of events during the initiation of

translation in yeast (Figure 2c). For multi-color detection,

both ribosome subunits, eukaryotic initiation factor 5B

(eIF5B), and the first elongator aminoacyl-tRNA were

labeled with different fluorophores. Zero-mode wave-

guides, photonic nanostructures that guide the excitation

light into highly confined optical observation volumes,

were then used to lower the background from fluorescent

molecules in solution despite their required relatively

high concentrations. This strategy provided a window

into the transition from pre-initiation complex to elonga-

tion in as-of-yet unprecedented detail. The study dem-

onstrated that eIF5B GTP hydrolysis and subsequent

dissociation serves as the checkpoint on the way to

elongation. Insights into the timescale of this process

from the single-molecule fluorescence microscopy data

also facilitated capturing a cryo-EM structure of the on-

pathway initiation complex. More specifically, the single-

molecule data informed on the ideal time point at which

to freeze ribosomes undergoing initiation, clearly illus-

trating the merits of an intimate connection between
Figure 3
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single-molecule fluorescence microscopy and structural

methods, in particular cryo-EM.

Towards a close intermarriage of single-
molecule and structural approaches
Such close intermarriage between structural and single-

molecule approaches is extremely powerful. For one,

knowledge of the structures of biological macromolecules

facilitates the successful design of single-molecule

experiments. Single-molecule experiments in turn offer

the dynamic information required to correctly join static

structural snapshots together into a quantitative picture of

the underlying mechanisms. Recent work from several

groups has capitalized on this mutually beneficial combi-

nation of approaches.

For example, Stella et al. were able to dissect the activa-

tion pathway of the CRISPR-Cas12a endonuclease by

combining structural information from cryo-EM with

insight into conformational dynamics from smFRET data

[51��] (Figure 3a). Five distinct conformations of Cas12a

complexed with crRNA and target DNA could be

resolved that exhibited varying degrees of hybridization

between the crRNA and the target DNA strand. These

Cas12a structures highlighted regions that are involved in

target recognition and in triggering nuclease activity, and

demonstrated large-scale conformational flexibility of the

complex. smFRET revealed the thermodynamics and

kinetics of these conformational changes at different

stages of the reaction. Based on the smFRET data, in
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d structural methods. (a) Cryo-EM and smFRET were used to establish

inding. Top: Cas12a conformations observed by cryo-EM grouped

RET labeling scheme (left) and an example FRET trace demonstrating

on from Ref. [51��]. (b) The combination of smFRET and structural

y the antibiotic Lipiarmycin A3. Top: cryo-EM structure of RNA

onstrating how RNA polymerase conformational distribution changes

on of structural and dynamic information was used to clarify the

EM structure of the SWR1-nucleosome complex demonstrating DNA

robe unwrapping in solution. Bottom: a FRET trace demonstrating

Adapted with permission from Ref. [57��].
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the apo, crRNA-bound, and target-bound states, Cas12a

samples a number of different states with distinct FRET

efficiencies that could be assigned to specific conforma-

tions visualized by cryo-EM. An analysis of the dwell

times and transition rates for the different conformations

using Hidden Markov Modeling shed light on the path-

way leading to the enzyme activation upon target binding.

Lin et al. used a combination of cryo-EM and smFRET to

determine the mechanism by which Lipiarmycin A3

inhibits transcription [52��]. The authors obtained a struc-

ture of the drug-bound bacterial RNA polymerase

(RNAP), which adopts a catalytically incompetent

open-clamp conformation. Data from smFRET experi-

ments demonstrated that the addition of Lipiarmycin A3

freezes the RNAP in the open conformation, in stark

contrast to the multiple conformations that the clamp was

observed to sample in the absence of the inhibitor. Here,

smFRET data were able to directly correlate static struc-

tural information with function and thus helped to

uncover the mechanism of action for an important anti-

bacterial drug (Figure 3b).

The combination of cryo-EM and smFRET has been

particularly effective in studies of nucleosome remodel-

ing [53–55,56�,57��,58,59], for the following reasons. First,

the nucleosome structure can be affected by vitrification

[60,61]. Cryo-EM structures of vitrified nucleosome com-

plexes (reviewed in Ref. [62]) that display deviations from

the canonical nucleosome structure [63,64] should there-

fore be validated using solution methods, and smFRET

has proven highly efficient for this purpose [55,57��].
Second, chromatin remodeling as an essentially non-

equilibrium process typically relies on multiple ATP

hydrolysis cycles for completion [45�,65]. Cryo-EM stud-

ies have captured structures of remodeler-nucleosome

complexes in several different nucleotide-bound states

and provided invaluable insights into the structural rear-

rangements associated with a single ATP hydrolysis cycle

of the remodeler ATPase motor [56�]. However, a com-

plete understanding of the remodeling mechanism addi-

tionally requires knowledge of the remodeling intermedi-

ates that are formed during consecutive cycles of ATP

hydrolysis, and smFRET can provide a window into these

intermediates [45�,65–68]. The power of combining both

cryo-EM and smFRET for studying chromatin remodel-

ing was recently highlighted in an elegant study on the

yeast SWR1 remodeler that facilitates the exchange of

canonical H2A/H2B dimers for Htz1/H2B in an ATP-

dependent manner [57��]. The authors reported a cryo-

EM structure of the nucleosome-SWR1 remodeling com-

plex with the transition state analog ADP-BeF3 bound in

the active center (Figure 3c). The structure showed that

binding of ADP-BeF3-complexed SWR1 to the nucleo-

some causes substantial DNA unwrapping and a single-

base pair DNA translocation from the entry side towards

the site where the ATPase motor subunit engages the
www.sciencedirect.com 
nucleosome, at superhelical location 2 (SHL2). This

mode of engagement suggested unwrapping-induced

exposure of the H2A/H2B dimer interface as an integral

part of the histone exchange mechanism. Indeed, such

unwrapping of nucleosomal DNA was directly observed

in solution using smFRET experiments. Upon SWR1

binding to the nucleosome in the presence of ATP or

ATP-g-S, conformational dynamics of the nucleosomal

DNA were markedly increased. Notably, binding of the

remodeler in the absence of nucleotides did not yield any

FRET change, whereas under both ATP and ATP-g-S
conditions, nucleosomal DNA reversibly visited up to

four distinct unwrapped states. The smFRET data

revealed that ATP binding was both necessary and suffi-

cient for unwrapping, even though ATP hydrolysis was

required for histone exchange. Together, cryo-EM and

smFRET data provide an unprecedented window into

the SWR1 remodeling mechanism.

Future directions
With the advent of commercial equipment, smFRET is

becoming more and more widely accessible, emphasizing

the importance of common standards for smFRET

experiments. The reproducibility of smFRET measure-

ments has been recently assessed in an important multi-

laboratory benchmark study [69] that suggested unified

protocols and analysis methods for accurate and repro-

ducible measurements of FRET efficiency. In principle,

FRET can also be used to measure the actual distance

between fluorophore attachment points, yielding direct

structural information [70] (see Ref. [22��] for additional

discussion).

The essentially single-molecule nature of cryo-EM

makes it suitable for the analysis of heterogeneous popu-

lations of macromolecules, allowing in some cases for a

number of distinct conformations within a single sample

to be distinguished. However, the distinction between

different conformations crucially relies on them exhibit-

ing sufficient structural differences that can be detected

at the level of individual particle images. As such, this

fascinating capability of single-particle analysis cryo-EM

is currently limited to the study of especially favorable

contrast-rich specimens. We therefore find it intriguing to

speculate on a possible future correlative smFRET-cryo-

EM approach. Here, smFRET could report specifically

and more sensitively on macromolecular conformation at

the single-molecule level and therefore greatly enhance

particle classification in cryo-EM samples. Improved par-

ticle classification might enable, for instance, the specific

enrichment of a rare short-lived conformational state that

is otherwise indistinguishable from the rest, but may play

a critical mechanistic role.

Clearly, combining smFRET with structural methods

such as cryo-EM represents a powerful means for dis-

secting the molecular mechanism of biological
Current Opinion in Structural Biology 2020, 65:61–68
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macromolecules and complexes. Nonetheless, how they

structurally transition between the most prominent con-

formations, that is, what short-lived structural intermedi-

ates exist, typically remains inaccessible. Molecular

dynamics (MD) simulations hold great potential for filling

in this remaining gap on the way to a dynamic and atomic-

level understanding of macromolecular mechanisms [71–

74]. Although successful examples are scarce as of yet, we

anticipate that in the future, MD simulations will play a

more important role in complementing static structural

information and dynamics revealed by smFRET. Increas-

ing computational power and the development of spe-

cialized MD clusters continuously improve both length

and time scales of MD simulations. We eagerly await

direct comparisons between all-atom MD simulations of

slow conformational changes on the millisecond time

scale with smFRET data.
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