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Proteins can, without any exaggeration, be called the "building blocks of life". Their physical
properties depend not only on the chemical structure but also on their geometric shape. In this
thesis, I investigate protein geometry using several different methods.

We start with a coarse-graining model to study the general behavior of polymers. For this
reason, we utilize an effective Hamiltonian that can describe the thermodynamic properties of
polymer chains and reproduce secondary and tertiary structures. To investigate this model, I
perform classical Monte Carlo simulations using my software package.

Another problem we address in this thesis is how to distinguish thermodynamic phases of
proteins. The conventional definition of phases of polymer systems uses scaling laws. However,
this method needs the chain's length to be varied, which is impossible to do with heteropolymers
where the number of sites is one of the system's characteristics. We will apply renormalization
group (RG) theory ideas to overcome this difficulty. We present a scaling procedure and an
observable through which RG flow can define a certain polymer chain's phase.

Another part of the thesis is dedicated to the method of molecular dynamics. Our focus is on
a novel experimental technique called Single Particle Imaging (SPI). The spatial orientation of
the sample in this method is arbitrary. Scientists proposed to use a strong electric field to fix
the orientation since most biological molecules have a non-zero dipole moment. Motivated by
this, we investigate the influence of a strong electric field's ramping on the orientation of protein
ubiquitin. For the same question of SPI and using the same protein, we study the reproducibility
of unfolding it in a strong electric field. With the help of a new graph representation, I show
different unfolding pathways as a function of the electric field's value and compare them with
thermal and mechanical unfolding. I show that the RG flow observable can also detect the
different ubiquitin unfolding pathways more simply.

The study described in this thesis has two types of results. One is a very concrete type, which
can be utilized right away in the SPI experiments, like MS SPIDOC on the European XFEL.
The other type of results are more theoretical and opens up a new field for further research.
However, all of them contribute to protein science, an area vital for humanity's ability to protect
us from threats such as the current COVID-19 pandemic.
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1. Introduction

Proteins are biological macromolecules that play a crucial role in Life. Our
health, behavior and mood entirely depend on them. They build our bodies
and regulate the processes in them. Almost all drugs produced by humans tar-
get one protein or another. Thus the protein research is not just important but
vital. At the time when this thesis is written, the question of the importance
of biophysics is obvious. In 2020, humanity met the new world pandemics
COVID-19, maybe the biggest since the Spanish flu pandemic one century
ago [1, 2]. The efficiency of the vaccine and how fast it was made will define
the whole world’s future for years or tens of years ahead. The better we un-
derstand proteins and can do computer simulations, the faster and cheaper we
can produce new medicines when it is needed.

ﬁx

- secondqg~ prlmcu‘g

tertiary.

Figure 1.1. Structures of proteins.

The proper behavior of all living organisms on Earth depends on the ap-
propriate conduct of all the proteins they consist of. And the latter depends
not only on the chemical structure of the macromolecules but on their three-
dimensional shape [3].
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Scientists usually define four levels of structuring of proteins (Figure 1.1):

1. Primary structure: the sequence of amino acids. Every amino acid
has one C, atom with a specific side chain connected to it. There are
only 20 different side chains, which define 20 amino acids responsi-
ble for all the variety in DNA encoded proteins.

2. Secondary structure: local geometrical patterns, which can be re-
peated along the protein. The most common are «-helices and -
sheets [4].

3. Tertiary structure: overall geometrical structure of the chain of amino
acids (or polypeptide chain), which defines its functions.

4. Quaternary structure: a structure of several polypeptide chains if the
protein has more than one chain.

The tertiary structure results from a process called protein folding [5]. The
folding process is fully defined by the primary structure (and the environ-
ment) [3]. This means that by knowing the amino acid sequence, we should
be able to predict the protein’s shape. However, this problem appeared to be
more complicated in practice, and the question of protein folding became a
Holy Grail for tens of years for scientists until the 30th of November 2020,
when it was finally found (maybe).

Before that historical date, the main tool for structure prediction was molec-
ular dynamics (MD). It is the most “honest” way to simulate proteins. MD
takes into account all physical forces in the system and thus provides the real
dynamics. One of MD’s problems is this “all physical forces”. Strictly speak-
ing, they are never possible to calculate exactly. The “art” of physics and the
physicist is to choose the right model that considers everything that is impor-
tant in a given problem and neglects everything that is not. The second problem
with MD is the size of the systems. Proteins have thousands and millions of
atoms plus thousands of atoms of water solution. So conventional MD is a so-
called “brute force” algorithm. It relies on computation power and is limited
by it.

Another way to simulate proteins is to use coarse-graining methods [6].
Instead of considering every atom, one can combine them into blocks and work
with these blocks. It solves the problem with an enormous amount of particles
to simulate but gives rise to an even more complicated question about which
model to use.

Independently of what simulation tactics you use, you will meet another big
conceptual problem. Apparently, a particular primary structure allows more
than one possible chain shape, called conformations. Native conformation is
a proper tertiary structure that provides the correct functioning of the concrete
protein. Other conformations are the result of misfolding of the protein. Such
molecule loses its native properties and can become toxic [7, 8]. There are
many diseases caused by protein misfolding [9, 10]. The most famous are
Alzheimer’s and Parkinson’s diseases [11], diabetes type I1[12], cataracts [13],
cystic fibroses [9] and some types of cancer [14].
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The ultimate assumption made in MD is that the native conformation is a
global minimum for the system. It seems very reasonable, but strictly speak-
ing, do not have to be true. Of course, we know the general physical concept
about the minimization of energy. But we also know that it must work only for
closed systems, which one single protein cannot be. It can turn out that native
conformation is a metastable state, with lifetime longer than the one for pro-
teins. Indeed, let us not forget that biomolecules are parts of living organisms.
They cannot live forever. Proteins are degraded continuously by the body and
replaced by new ones. For example, the average lifetime of the proteins in a
mouse brain is 9 days [15]. The protein with one of the longest observed life-
times is human eye lens crystallin. Some crystallins live with us all our life
and are never replaced [16]. At the end of our and their lives, crystallins are
folded wrongly (that is why we all will have problems with lens transparency
when we become old). More likely, this is a result of external factors. But we
do not know this. Theoretically, the natural conformation of crystallin can be
a metastable state with a lifetime of about 70 years.

When we do our simulations, we want to minimize the energy to find the
global minimum, but why does Nature do the same? Maybe local minimum
works well enough for her. Proteins are assembled in the body by the ribo-
some. And we do not know how exactly this process looks like and what laws
ribosomes are governed by.

Coming back to the Holy Grail, which was found (maybe). What did happen
on the 30th of November 2020? The two most influential scientific journals,
“Science” and “Nature”, published news that Google’s artificial intelligence
(A predicted a 3D structure of a protein from an amino acids sequence, and
it was indistinguishable from the experimental result. In other words, it solved
the protein folding problem for at least one specific protein. This is indeed
“a game changer” as the authors claimed. But we have to be very careful
with the results we get from Al. Any Al is trained on vast databases where
the right answers are already known. After the training, the machine is ready
to try to find an answer to an unsolved problem. Al works by recognizing
similarities by its complicated neural network built at the training phase. But
the machine does not “understand” any physics behind the phenomena. So
there is no reason why we can claim that if one solution was found correctly,
any other solution would be correct as well. This is a game of probabilities.
Al cannot give us 100% assurance that every other answer will be correct, no
matter how many were correct before. And here is a crucial difference with any
physical method. If we found the correct model, then we have 100% guarantee
that the answer is right. Because in the latter case, we found the underlying
principles for the process, while in the former case, we compare the outcomes
of those processes.

Regardless of what was said before, there is no question about developing Al
methods for protein folding. They will have many practical applications. And
together with experimental methods, it can become a robust tool for protein
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studies. However, as scientists, we do not only want to know the correct result
but also to understand what leads to it. Thus no matter how good Al will fold
the proteins, we should keep developing the physical methods in the first place.

In this thesis, we use different methods to study proteins.

We will start with a simple model of proteins: polymer chains of C,, atoms.
For this simple model we present the effective Hamiltonian and investigate
the phase diagram it provides by classical Monte Carlo simulations. Besides
the collapsed phase and denatured phase, it can provide a-helices and several
interesting crossovers. This is a topic of Paper I and Part II of this thesis.
Part I is fully dedicated to classical Monte Carlo theory. We have to introduce
it here to be able to talk about the main problem we encounter in Part I1.

Further, in Part III we will try to solve the problem with phase definition
for heteropolymers using renormalization group theory. This is the question
we will naturally come to when we want to get the same phase diagram for
heteropolymers instead of simple homogeneous chains. This work yielded Pa-
per II and side Paper III about a new smoothing algorithm.

Both Parts II and III are based on original software written by me. It in-
cludes the main Monte Carlo code for polymer chains simulations PCMC (in
C++) [17], the code for performing renormalization of polymer chains (in
C++) [18], the plotter (in Python) [19] and the command line program for get-
ting the data from the Protein Data Bank and converting it to another human-
readable format which is used by all programs mentioned above (in C++) [20].
Everything is open-source and distributed under the Apache 2 license.

Part V of this thesis is dedicated to MD simulations. There we use the third-
party software GROMACS [21] which is one of the most popular open-source
tools for performing MD simulations. Paper VI will tell about our contribution
to the GROMACS framework. We wrote a code in Python which converts
experimental data from nuclear magnetic resonance to GROMACS format.

The last two studies focused on a concrete experimental technique, which
is discussed in a separate Part [V among the other experimental methods used
for protein structure recognition.

Paper IV is about the pathways of the unfolding of one concrete protein,
ubiquitin, in a strong electric field. The last Paper V concludes the thesis with
the research about the behavior of the same protein in a time-dependent strong
electric field.
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Part I:
Classical Monte Carlo






2. Games

The method I want to present in this chapter got its unusual name after the fa-
mous casino Monte Carlo in the Principality of Monaco. The idea belongs to
Metropolis, who, together with Ulam, published the original paper in 1949 [22].
The crucial point of this algorithm is a random number generator. And proba-
bly the most widely known random number generator for all times is a roulette.
And roulette is the most popular game in casinos. In Ulam’s autobiographic
book [23] he also mentions that Metropolis dedicated the name to his uncle,
who liked gambling.

Anyway, the Monte Carlo method is closely connected to games; that is why
we will also start with one described in Krauth’s book [24].

It is remarkable that even though the method got its name 70 years ago, the
game we will talk about is similar to experiments done by french mathemati-
cian Buffon in the XVIII century known as Buffon’s needle problem [25].

2.1 Direct sampling

Let us start by drawing a closed figure with chalk on the ground. It can be
any smooth shape like a circle, bean, two peanuts in a shell, etc. The rules are
simple: use whatever you need, do whatever you want to measure the figure’s
area. At first sight, the problem seems to be very complicated. What would
you need to perform the measurement? A ruler? A protractor? A flexible rod?
How do you want to do it? Would you try to cover the area with squares and
then try to approach the boundaries? Do you have enough will and time to
integrate over the curve? Would you prefer to employ physics: you can try
to build a small solid fence along the curve, pour a known amount of water,
measure the liquid column’s height, and finally find out the area. This method
is messy but could work as well, see Figure 2.1.

Luckily, another solution exists, where you need only a ruler and one small
stone like a pebble. The idea is presented in Figure 2.2. First, you should draw
a square around the figure. It does not matter how you place the figure inside;
the important thing is that the whole figure is within the square. Then you
measure the square area, which is just a2, where a is the side length. Now let
us randomly throw the pebble into that square and count: 1) N = all the times
it falls within the square, 2) M = all the cases when it falls within the drawn
figure. The crucial point is that the probability of hitting the figure in this game
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Figure 2.1. Different methods to measure the area of the drawn figure.

is proportional to its area. This means that the ratio M/ /N should be equal to
the areas of the figures:

M So So
- % _ =° 2.1
N Sog a? ’ @.1)

where the area of the drawn figure is denoted as S,. Knowing M, N and the
square’s area a’ we can easily find the unknown area of the drawn figure.

So with this very simple game of throwing a stone, we can solve the prob-
lem, which is very complicated to solve otherwise. As one can see, the crucial

Figure 2.2. Monte Carlo method: direct sampling.
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point here is the randomness of tosses and their equality. Only in this case, the
probabilities are proportional to areas, and Eq. (2.1) is valid.

The procedure we performed is the Monte Carlo algorithm. More precisely,
we should call it direct sampling, in contrast with the method we will present
next. It is essential for direct sampling that all our tosses were independent of
each other.

2.2 Markov Chain sampling

Now imagine another situation. Somebody drew some closed, smooth figure
around you, which is so big that you can freely walk inside. You even cannot
see the overall shape because of the size. The goal is the same: whatever you
need and do, just measure the drawn figure’s area.

This task is more difficult than the previous one because of the larger size.
Our former ideas from Figure 2.1 was hard to implement for the first version of
the game, but now we can expect even more troubles because the complexity
of the problem grows with the size of the figure’s area. What about our last
successful solution: a simple Monte Carlo algorithm with tossing a pebble?
Let us try to do the same trick again.

We again draw a square (or any figure with a known area) containing the
whole drawn figure. You start to throw a stone and soon will realize that the
tosses will be biased toward the spot you stand on. It happens because the field
is too big. Even if you are physically able to throw a stone from one side of
the playground to the other, you cannot reproduce the uniform distribution of
tosses among the whole field. You would be prone to make “easier” throws,
which require less energy from you. And if you think you can overcome this by
keeping in mind the previous statement, you are wrong again. Humans are very
bad at randomization and understating randomness. And as we understood
from the previous part, the proper random distribution is crucial for Monte
Carlo to work. Okay, your next idea more likely would be to somehow move
around the field to not always stand on the same sport. That is an excellent
thought which brings us closer to the correct solution!

The Monte Carlo algorithm we will use in this case is called random walk.
It works as follows. You throw a pebble inside the square with closed eyes
(the latter we need for the reason we mentioned: humans are imperfect at ran-
domness, especially when thinking about it). Then you go to the place where
it landed, pick it up, close your eyes and throw the pebble again in a random
direction. The rules now are this: count 1) N = number of all throws of the
stone, 2) M = events when the stone lands within the original figure. Continue
doing this a lot more times.

There is, however, a small but essential nuance here. Since you throw the
stone with closed eyes and in a random direction, it may land outside the
square. The first idea would be to exclude these cases and pretend that it has
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never happened. That is what we did in the previous game. There we only
counted the cases when the stone landed within the square and ignored the
opposite outcome. But we cannot do the same here! For the reasons we will
explain later, you should count this case as a throw to the same spot you are
standing now. So you should remember your spot and bring the pebble back
there, increasing /N by one and M if you are inside the figure. This sounds
counter-intuitive, but in the next section, we will make sense of it.

After playing this game for a long time, you can again use Eq. (2.1) and find
out the desired area.

Notice, this time, the trials are not independent. Each throw depends on the
previous one and only on the previous one. Such a sequence of events is called
a Markov chain after Russian mathematician Andrey Markov (1856 — 1922).
This is a very important notion in statistics. Markov chains have interesting
properties, which we will discuss further. This name will appear in this thesis
many times, even beyond the Monte Carlo framework.

Monte Carlo algorithms with Markov Chains sampling are called Markov
Chain Monte Carlo (MCMC)

2.3 Boundary problem

Figure 2.3. Boundary problem.

In the previous section, we had a special rule when the stone is thrown out-
side the square. Now we will explain why we had to count those cases as a
throw on the same spot. The problem we have here is a problem with bound-
ary conditions. Let us take a look at another game: chess with a single king on
the board Figure 2.3. If we randomly move the king (according to the chess
rules: one step a time in any direction, and in our case, we allow to take a step
outside the chessboard), then we come to the discrete version of our previous
game.
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If the king stands on, say, the c3 square, it has 8 possible moves. Or the
other way around: there are 8 ways how the king can come to the ¢3 square.
The same we can say about the squares d2, f5, ... and any of the squares of
the board. The different situation happens when we talk about the edge or
boundary squares. There we have always less than 8 neighbor squares. Cl,
for example, has only 5 neighbors. It means that there are only 5 possible
moves that can lead the king to this square. But for the c3 there are 8 such
moves. This means that we are biased toward the inner squares now. But as
we mentioned above, the crucial thing for us in the game is equally distributed
sampling. The solution we already described, but let us repeat it once more.
If the king stands on c1 then there are 8 — 5 = 3 moves, which lead the king
outside the board. So if we convert these 3 moves into moves that lead to the
cl square itself, then we come to 8 possible ways to come to this square. It
means that the king will be in ¢l with the same probability as in any inner
square. This rule should work for all boundaries: if the king moves outside
the chessboard, we should consider it as a move from the square to the same
square.

That was how we solved the boundary problem and made the probability
distribution equal within the whole playing area.
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3. Games over

In this chapter, we will see that everything we did in chapter 2 has a wonderful
mathematical description.

3.1 The probability density function

In the game from the previous chapter, we aimed to calculate the area of the
figure. This is a two-dimensional problem. Let us for the simplicity consider a
one-dimensional case first. And soon I will show that all our reasoning works
for 2D as well. From a mathematical perspective, our game in 1D means to
calculate an integral

b
S:/ f(x)dx; b>a (3.1
a

where f(z) is a function of the boundary curve!. To evaluate this integral
we randomly tossed pebbles. Whenever we talk about a random process, we
always can associate the probability density function p(x) with it. A probability
density function by definition should satisfy two conditions on the segment
where it is defined: 1) to be not negative on the interval, 2) the full probability
to find the value on the interval should be 1:

p(x) > 0; (3.2)
b
/ p(x)dx = 1. (3.3)
a
In the case of our simple game, this probability distribution is a flat function:

all the outcomes were equally possible: p(x) = const.
The area integral in Eq. (3.1) can be rewritten as

b b
S:/ f(:z)dx:/ iggp(x)d:c ) (3.4)

which is by definition the expectation value for the value f(z)/p(x).

'For example, let a vertical line with the given x-coordinate cut the boundary from y = —oo
toy = oo. Let {ym } be the collection of points where the line crosses from the inside to the
outside of the boundary, while {y, } are the collection of points where the line passes from the
outside to the inside. Then f(z) =" ym — 2, Yn is a valid choice of such function.

22



Summarizing what we said we can formulate our problem as following:

z(x)z% (3.5)
S= [} f@)de = [} 2(x)p(z)dz = (2) (3.6)
p(z) : {p(z) > 0; [} p(w )da:— 1} on [a,]. (3.7)

3.2 The Law of Large Numbers

We just have learned that instead of taking the integral, we can calculate some
quantity’s expectation value. But how can we do it in practice? When we
calculated the area in the game, we counted all the throws as N and then suc-
cessful throws (when the stone landed within the drawn shape) as M and took
their ratio M /N. Let us introduce the function z; which is

. { 1, 1if¢-th stone is within the figure ' (3.8)

0, otherwise

If ¢ is a trial’s number, then M can be expressed as a sum over ¢ of our new
function

N
And the area of the figure S, can be found as
So
=z 3.10
T o

where according to the rules of the game, S — the area of the square around the
figure — is known. Thus in the game, we calculated the arithmetic mean value
of the function z. And the throws were sampled from the uniform distribution
p(x).

Now we come to the central point part of the whole Monte Carlo idea — the
Law of Large Numbers [26] which says: in a limit of infinite number of sam-
ples N, the arithmetic mean value almost always converges to the expectation
value

lim z = (z). (3.11)

N—o0

“Always almost” stands there to stress that there are some very special cases
when this will not work, but this is out of the scope of this thesis.

Finally, the Law of Large Numbers binds together the integral in Eq. (3.1)
which we want to calculate and the arithmetic mean in Eq. (3.9), which we can
obtain by throwing random numbers according to a certain distribution.

The last step we will need to do for completing the example with the game
is to show that z; in Eq. (3.9) is indeed the same function as z(x) in Eq. (3.5).
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3.3 Why did it work?

Let us come back to two dimensions. Without loss of generality, we will con-
sider a circle as the figure of interest. The area of a circle with diameter 1 can
be found as

5 [ sz 1
S:/ / F(:L‘,y)d:ndyZ/ / H(Z—xQ—yQ)d:Edy:wQ, (3.12)

1 1
2772
where we used Heaviside step function defined as

1, ifz>0
9(:::)_{ 0 ifr<0 (3.13)

The probability density function in Eq. (3.7) for tosses of stones was inde-
pendent of the coordinates: p(z,y) = p. The value of the constant should be
found from normalization

/2 /2pdxdy:1:>p:1. (3.14)

1 1
2 2

Our z(z,y) function defined in Eq. (3.5) is now just Heaviside function

F(x,y) 1

_ 22
o(z.0) —9(1 xc —y°). (3.15)

z(z,y) =

How can we calculate the arithmetic mean of z(x,y)? According to the
Heaviside function definition, it should be equal to 1 when z? + y? < 1/4
and 0 otherwise. This condition exactly describes the rule for the game we
consider: we counted M as a number of events when the stone landed within
the circle. By dividing M over the total number of events, we come to the
arithmetic mean for function z(z, y), which is equal to its expectation (due to
the Law of Large Numbers), which is equal to the original integral .S

| X
2(z,y) = NEZ(!EM%)
|| by the Law of Large Numbers
3 [ oz o1
<2(:c,y)>:/1 1Z(x,y)p(w,y)dxdy:/l/l9(4—xQ—yz)dwdyE
(3.16)

And that is what we wanted to get.

We showed the pictorial example of the Monte Carlo process and explained
why it worked. Now we can talk about the optimization of the method and
consider the sampling procedure more carefully.
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3.4 Precision

In the formulation of the Law of Large Numbers, Eq. (3.11), we say that it
works in a limit of an infinite number of samplings. This can never be the case
in practice: our N is always finite. Then the question is: how big N we should
take to have the correct answer. And the answer is: we will never get a correct
answer, but we can approach the correct answer with any given precision.

~68%

M-8 M p+E

|

Figure 3.1. Almost 68% of the area under a normal distribution belongs to the one-
sigma region.

We can claim this because of another very important law in statistics: the
Central Limit Theorem [26]. It can be formulated like this: The averages of
a big number of independent random values almost always tends to a normal
distribution. No matter from what distribution the random values are picked
from, the averages tend to a normal distribution anyway. The phrase “almost
always” again indicates that it is not an absolute law, and there are some pecu-
liar cases when it can be violated.

This gives us the estimation of the error of Z as the standard deviation of the
mean

) N
0(z) = Z U\%) => N(Nl—l)(zi —7)2. (3.17)

=1 =1

One sigma gives the confidence of 68%, while 3 sigma gives 99% and 4
sigmas 99.99%. So the interval [Z — o(Z) , Z + o(%)] contains the true answer
with probability almost 70% (Figure 3.1).

With increasing N, the value of the standard deviation o(z), according to
the Central Limit Theorem, tends to a constant value, which is a dispersion
of some normal distribution. Hence the error of our mean value Z drops as
V/N. So if you want to decrease the error by two times, you should increase
the number of samples by four times.
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3.5 Importance sampling

We always considered the uniform distribution p(x) so far, because the game is
a trivial example of the Monte Carlo technique. In most other cases, the choice
of p(x) to be uniform is not optimal. Thus we come to the idea of importance
sampling, where we try to use more samples for more “important parts” of the
region and less samples for less important. Let us see how it works in practice.
Our integral of interest is

b
I= / f(x)dx. (3.13)
Let f(z) be factorizable like

f(z) = p(x)p(2). (3.19)

We can again multiply and divide the integral by some p(z) as we did in
Eq. (3.4) or we can let one of the subfunctions in f(x) be a probability density
function. This is kind of a “natural way” of doing things.

It becomes more clear if we consider thermodynamic problems, where you
have to find the average parameters over some ensemble. It can be pressure,
energy, temperature or any specific value. Any thermodynamic value A is
defined as an expectation value

(A) = / A(z)p(x)da. (3.20)

The concrete form of the probability density function p(z) depends on the sys-
tem. For example, a gas in a thermostat is described by the canonical Gibbs
distribution. The probability that the system will be found in a microscopic
state with energy Fj; is

1
pi = e Bf (3.21)

where we use a common notation for 5 = 1/kgT’; kp is the Boltzmann con-
stant, and 7" is the temperature. The normalization factor Z is called the par-

tition function
Z=Y e BP=3"We PP (3.22)

W is a weight function for the state with energy Ej, i.e. how many microscop-
ical states provide the given energy. This is the statistical meaning of entropy:

S;=kghnW; | (3.23)
then

7= Wie PP = 3 BB Y HETS) 30y
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Using the definition of free energy for the system with a fixed number of par-
ticles

F=FE-TS | (3.25)
we can finally rewrite the partition function as
Z =Y e (3.26)
E;

Converting the summation into an integral the thermodynamic value in Eq. (3.20)
can be expressed as
_ JA@p@)dr _ [ A@w)e "Pdr [ Ax)e P da
N Z ~ [ePE@dr [ eFFEGE

(A) (3.27)

And as far as we already know, Monte Carlo will estimate this integral as
the average for the value A

_ 1 X
A—N;&, (3.28)

where A; is distributed according to Eq. (3.21).

This is actually a great result! We have not only calculated the average. We
got our system in the equilibrium state (at average!). Indeed, from Eq. (3.21)
one can see that the most likely states are ones with lower energies. However,
it is very important to remember that not every configuration is in the energy
minimum. The statement is valid only from a stochastic point of view. What
can it give to us? Once you have found the configurations with the correct
distribution, you can calculate not only Eq. (3.28), but any thermodynamic
value you want, without the need to run a new Monte Carlo simulation like
you would do for calculating regular integrals. This fact makes Monte Carlo a
very powerful tool for physical calculations.

3.5.1 Ergodicity

Let us come back to the game from the previous chapter.

Imagine that now we have a big obstacle, maybe a lamp post in the center
of the game field like on the left side of Figure 3.2. The cross-section of the
obstacle is known (which means we know its area). Now, if we perform the
same algorithm of random walk form section 2.2, sometimes the stone will
bounce from the post. This kind of event should be calculated in a special way
that we already mentioned and will discuss in more detail in the next section.
The point we want to make now is the following. Look again at Figure 3.2. If
your pebble is in the point a, then there is no way to come to point b in one
step, even if it was possible to do without the lamp post.

27



Figure 3.2. Obstacles on the game field.

The situation can be even worse if the obstacle has a more complicated
shape, for example, as on the right side of Figure 3.2. If both obstacles to
the left and to the right are of the same area, then the drawn picture’s resulting
areas should also be the same. However, in the case of the wall, it is hard to
get inside, and once you are there, it is hard to go out. Now the trajectory of
the random walk from point @ to b can be very long.

Thus instead of having a uniform distribution like it is supposed to be, the
probability will be biased, depending on the obstacle shape. The weight of
states inside the obstacle will be artificially increased because we are stuck
there, but not because it reflects any physics.

There are no problems from the theoretical point of view: the statement
about correct stationary distribution for a MCMC is made for an infinite time.
Everything will work for us in infinite time as well. But in a real experiment,
we can only approach infinity. It is intuitively clear that in the last example, the
time we have to spend performing Monte Carlo is longer than in the situation
with the round obstacle.

Here we met the difference between theory and practice, which may lead
to an incorrect answer. This is the most dangerous problem of MCMC called
the ergodic problem. Unfortunately, there is no universal and straightforward
solution to it, so each case should be considered separately.

Finally, we can summarize: on the one hand, MCMC allows you to get the
answer without knowing the system s overall profile, but on the other hand, you
have to know the details of your configurational space to not run into ergodic
problems.
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3.5.2 Detailed balance

When we talk about the random walk, we always face the boundary problem.
In section 2.3 we showed with a simple example that a mistreatment of bound-
aries would lead to a wrong stationary distribution for MCMC and hence to
the wrong answer. There we talked about the edges of the game field or chess-
board.

In the previous section, we met another kind of boundaries: obstacles. From
the mathematical point of view, there is no difference between those two cases.
Both kinds of boundaries define the domain of the function. Nevertheless,
practically they are different: one is a drawn line, and the other is a solid ob-
stacle. How should we treat the situation when the stone bounced from the
lamppost? We can do the same as we did with the playground boundaries:
take the stone and put it in the same position as before the last throw and incre-
ment the number of throws by one. However, it is not the only correct solution.
Another way is to do nothing! It might seem strange initially, especially be-
cause we proved that this tactic was wrong for our flat boundaries. However,
this time, it will lead us to the correct stationary distribution, which means the
correct answer. This happens because of the amazing physical principle: the
angle of incidence is equal to the angle of reflection. What we want to do,
after all, is to balance the distribution. The way how exactly we will do it is
not important. For instance, if in the example in Figure 2.3 every time when
the king moves onto the square cO (i. e., outside the chessboard) from c1, we
would put it on bl instead of returning it to c1 and other way around, then there
would be no problems.

The formal rule for what we just discussed is called the detailed balance
condition: The probability to come to the state B through the state A should
be equal to the probability to come to the state A through the state B. In the
case of the Markov chain, when the probability depends only on one previous
step, the detailed balance condition can be written as

P(A)P(A — B) = P(B)P(B — A), (3.29)

where P(A) is the probability of the system to be in state A and P(A — B)
is the probability of the transition. Notice that the probability of transition is
important, but the full probability also includes the probability of appearing
in the initial state. This is very clear in our example with chess in Figure 2.3.
The probability of transition c2—cl is the same as vice versa: cl—c2, so in
Eq. (3.29) right term from each side will be canceled out. But the probability
of the king to be in the square c1 is not the same as to be in the square c2, as
we showed in section 2.3 and Figure 2.3. To make these probabilities equal,
we have to set special rules for the boundaries.

Any solution which satisfies the detailed balance condition is a correct one.
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3.6 Algorithms

We will present two MC algorithms of the importance sampling for solving
thermodynamic integrals which we discussed in section 3.5

(A%:;/Aukﬁﬂﬂw. (3.30)

By solving this problem we will also get the thermodynamic equilibrium states
of the system as ones that provide the lowest energy and hence are more likely
to appear.

3.6.1 Heat Bath

The first MC algorithm we consider is a trivial (from a theoretical, but not
practical point of view) example of importance sampling (see sec. 3.5). The
probability of every new stage b is calculated from the probability

P(b) = 2¢ BB (3.31)
Z
just the same as we discussed in section 3.5. Physically generating that process
leads to the system’s thermodynamic equilibrium, and that is how the algorithm
got its name.

This described process is not Markovian in the sense that all the steps are
completely independent of each other (strictly speaking, it is an extreme case of
the Markovian process). This is the reason for the most significant advantage
of the Heat Bath algorithm: no problems with ergodicity. The disadvantage
is that you should know your potential’s full profile, i.e., E(x) for the whole
domain of x. For most real physical problems it is not the case, so this method
is not possible to use.

3.6.2 Metropolis

Another solution was introduced by Metropolis at e/. in 1953 [27] and got his
name. Metropolis algorithm is a basic MCMC algorithm. The idea is to prefer
the states with lower energy at every MC step. Thus, if a new state’s energy is
lower than the current state’s energy, the new state is accepted with probability
1. And if the energy of the new state is higher than that of the current state,
then the new state is accepted with the probability proportional to the energy
difference between the new state and the current one. If we denote the current
state as a and the new randomly generated state as b then

1, if E(b) < E(a)
F “Hb):{ e BEO-B@) = o SAE if B(b) > B(a) © )
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generate b on

random.
no yes
generate ¢ from uniform
distribution %(0,1).
no yes
&< e PAEY
reject b. accept b.

!

Figure 3.3. Acceptance-rejection algorithm.

From the algorithmic point of view, this leads to the famous acceptance-
rejection sampling which is shown in Figure 3.3.

N.B. 1 You could note that there is no normalization factor in the probability
of transition. It is the great advantage of the Markovian character of the pro-
cess. All we want from our probability is to be positive, not greater than one,
and to fulfill the detailed balance condition in Eq. (3.29). The probability we
are working with here is a transition probability P(a — b), because every new

state is generated from the previous one. So if we now express this probability
from Eq. (3.29)

P(b)P(b— a)

P(a—b) = Pla) ,

(3.33)

it is clear that normalization factors of the transition probabilities will be can-
celled out since they are the same.

We also do not need the normalization factor to keep the probability within
the range [0, 1]. This is fulfilled automatically because AF in the exponent in

31



Eq. (3.33) is always positive (when it is negative, you accept the configuration
with probability 1) as well as temperature in 3.

N.B. 2 At the first step of the algorithm in Figure 3.3 one should generate
b at random. There is no rule for what the distribution P(b) should be. In
general, you can use any distribution you like. But for practical reasons for
finding the minimum, the normal distribution is the most convenient, unless
you have some insight about your system, which can be useful here. For exam-
ple, a uniform distribution will converge too slow. Just imagine that you are
already close to the minimum, then if you generate a new b at random from a
uniform distribution, the acceptance rate (the ratio of accepted configurations
to all tries) will be very low, so the configuration will be almost never updated,
and hence approach the minimum very slowly. Some more complicated distri-
bution than a normal one can slow down the performance without giving any
gain.

N.B. 3 You might notice that the normalization for P(b) is also not needed
because it will be canceled out in Eq. (3.33), but this time you might want to
keep it to force P(b) falls in the range [0, 1].

N.B. 4 Another thing to pay extra attention to is that in the flowchart in
Figure 3.3 when the new state b is rejected, you do not go into the loop where
you generate new b and go through the whole algorithm again until b finally is
accepted. Rejection of b meant that the new state is your old state; in our case,
the new state is a. This is a reflection of the detailed balance condition. In this
case, rejection is the same thing as throwing the stone outside the game field
in our example from section 2.2.

N.B. 5 Metropolis algorithm is not really a random walk algorithm. It can
tunnel through the obstacles if the dispersion of P(b) is large enough to allow
the stone to appear from the other side of the barrier.

N.B. 6 Thus, MCMC does not describe the real dynamics of the system.
Real physical objects in classical physics cannot tunnel through potential walls
higher than their energies. The thermalization process in MCMC is not phys-
ical. The only thing we can rely on in this sense is the final stage — the system
in the thermal equilibrium state.

3.7 Simulated annealing

There exists a special technique for a more efficient search of the thermody-
namic minimum. The physical observations show that the slow cooling down
of the system brings it closer to the equilibrium state than instant cooling.
The idea to use this fact for optimization problems was proposed in the early
1980s [28]. The analyses show that the system will come to the minimum if
the temperature steps are small enough.

The ground state will be found with probability one only in a limit of infinite
time.
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With this, we conclude the dive into Monte Carlo theory and are ready to
move on. After presenting the necessary physical background in the next chap-
ter, we will see how powerful MC is. And at the same time, we will see how
dangerous MCMC can be.
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Part II:
Phase Diagram for Homopolymers






4. Theory

This thesis is dedicated to simulations of proteins. Let us start from approach-
ing the proteins with a polymer model and investigating its thermodynamic
properties. For this we will use everything we just learned about Monte Carlo
method in the previous chapter.

4.1 Geometry

The polymer chains we will consider is a freely joined model with rigid solid
links. For describing this kind of model one needs two parameters for each site
according to two degrees of freedom of each monomer. The most trivial way
is to use coordinates of the sites with constraints for the connections between
the vertices. This is not a convenient solution because it leaves us with three
parameters {X,y,z}, while we know that there should be only two independent
values. Traditionally for the description of polymer chains, one uses two Euler
angles. One is an angle between two adjacent links. The other fixes the rotation
degree of freedom left: the rotation in the plane perpendicular to the adjacent
link.
However, we will go another way.

4.1.1 Frenet frame

The Frenet formulas are used for describing the kinetics of a particle moving
along a smooth continuous trajectory in space [29]. In our case, we will use
the same formulation to describe multiple particles along a chain at a single
instance in time, rather than the position of one particle over time. However, we
will meet an issue: polymer chain is a discrete curve, but the Frenet description
is developed for the continuous case. This problem is solved in the paper by
Huet. al [30], and we will follow it to introduce a discrete version of the Frenet
formulas.

First of all, we will associate an orthonormal frame with every chain site
in the following way. Let r; be a radius vector of the ¢-th vertex of the chain.
Then the first vector of the frame for the i-th site is a regular tangent vector

t, = i1 — 1

= ) 4.1
Iriy1 — 1yl @
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The second vector is called the binormal vector

i1 Xt

b, =
! |t7;,1 Xti‘

4.2)
The third vector is defined as a vector product in a way that {t;, n;, b;} con-

structs a right-hand frame:
n;, = bi X t; (4.3)

and has the name normal vector.
We can introduce two angels like shown in Figure 4.1. The discrete bond
angle or curvature

Ki = Kit1,; = arccos (ti1-t;) (4.4)
and the discrete dihedral angle or torsion
Ti = Tit1; = sgn[(b;—1 x b;) - t;] x arccos (bj11 - b;). 4.5)

The bond angle « is the same as one of the Euler angles: the angle between
two adjacent links. The physical meaning of both angles is the following:
* curvature k shows how the chain deviates from being straight;
* torsion T shows how the chain deviates from being planar.

Figure 4.1. Two degrees of freedom for each link of the polymer chain: bond angle
and torsion angle 7.

If we know all the angles {k;, 7;} we can iteratively find all the frames
{t;,n;, b;} (except the first one, which can be chosen arbitrarily) through the
discrete Frenet equations [30]

n;y1 COSKCOST COSKSINT —Sink n;
by | = —sinT COS T 0 b; |, (4.6)
ti1 SinkCcosST SinksSinT  COSK "y t;
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and the polymer chain can be built from tangent vectors

k—1
ry = Z ‘rH—l — ri\ 'ti. (47)
=0

4.1.2 Gauge invariance
As one could note, there is no information about normal vectors n; and bi-
normal vectors b; goes in Eq. (4.7) which describes the geometry of a chain.
The only physical part is the tangent vectors t;. Two normal vectors can be
freely rotated in the plane perpendicular to the tangent vector. So the transfor-
mation
n, — —n;

{ b, — —b; ’ (48)

which corresponds to the rotation by 180° will keep the chain intact.
It can be shown [30] that this transformation

n, — —n; forallk >1
{ b, — —b;, forallk > 4.9)
will act on the angles in the following way:
{ K — —ky forallk > 1 ' (4.10)
Ty —> T, — T

Note that torsion should be changed only once at the ¢-th site while curvature
changes the sign of all the following sites.

Originally in the description with {r, 7} angles, all bond angles x are sup-
posed to be positive. However, the Frenet equation (4.6) does not forbid neg-
ative values for . Extension of x to the whole region [—, 7] will lead to
double-counting of every direction if 7 € [0, 27| It means that there exists Zs
symmetry between positive and negative values of x. The transformation in
Eq. (4.10) describes exactly that symmetry.

When we come to the description of the model’s Hamiltonian, this gauge
invariance will play a crucial role.

4.2 Physics

We will follow the description given in Grosberg’s book [31] and show how
one can get different thermodynamic phases in the model of the polymer chain
we presented with van der Waals forces.
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4.2.1 Ideal chain

The most straightforward physics of the freely jointed chain one can think
about is just a chain without any interactions. This model is almost the same as
the ideal gas model, except that there are fixed distances between neighboring
particles. That is why we shall call this case an ideal chain.

What is the ground state of the ideal chain? At first sight, one can think that
it is a straight line. Is it true?

To answer this and any other question about the chain’s physics, we need
to introduce a macroscopic parameter. All we know about the chain is only its
geometry, so it is reasonable to use some geometrical variable. The size of the
chain or how much space it needs can be associated with the radius of gyration

N
1
B~ | e e @i
i7j

where r; is a radius vector of the corresponding atom.

Another quantity for measuring the “size” of the chain can be the average
end-to-end distance. It must be the statistical mean because you can imagine,
for example, the chain banded into the circle. In this case, the end-to-end dis-
tance will be equal to zero while the chain occupies non-zero space. However,
statistically, this state is very unlikely.

In all situations we will consider in this thesis, the end-to-end distance would
give the same results as the radius of gyration [31]. However, the latter is more
stable in extreme cases since there is already an averaging along the chain
itself. Nevertheless, we will drop the index ¢ in this chapter to stress that it is
not essential how the size is calculated as far as it is a statistical mean.

Now we are ready to come back to the question about the ground state. The
situation when the chain is entirely straight provides the maximum possible
end-to-end distance. There is no other state which will give the same value
for it. In other words, the entropy of this state is minimal. But as we know
from thermodynamics, the entropy should tend to its maximum when in the
equilibrium state. So even if we do not know the ground state yet, with very
general ideas, we just proved that it is not the straight line.

The ideal polymer chain is a Markov chain. This notion we brought up in
section I. Indeed, the position of the next segment depends only on the position
of one previous link. Using the Central Limit Theorem, one can show that the
probability distribution for R, has the Gaussian shape when the number of
segment N > 1. And then one can find the expectation value for the radius
of gyration [31]

(R?) = NI?, forN > 1, (4.12)

where [ is the segments’ length. Eq. (4.12) thus describes the ground state of
the ideal chain. This state is called a Gaussian coil. The converse statement
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Figure 4.2. The profile of the van der Waals potential.

is also correct: if the system’s equilibrium state is a Gaussian coil, then the
system is an ideal polymer chain.

4.2.2 Real chain

The real polymer systems are more complicated than ideal chains. The main
difference is the presence of volume interactions between particles. It makes
the physics of the chains more interesting and complicated, giving rise to dif-
ferent phases.

The volume forces act as an attraction at large distances between atoms and
as repulsion at small ones and called the van der Waals forces. The van der
Waals potential is presented in Figure 4.2.

Although the physics is more complicated now, it can still qualitatively be
described by the radius of gyration or a similar size quantity R. Let us introduce
dimensionless swelling parameter

_ R
=%

o (4.13)
where R is the size of the Gaussian coil, and R is the size of a given chain.
This parameter specifies the role of volume interactions. If a > 1 the coil
is swollen compared to the Gaussian coil, and when o« < 1, the coil is com-
pressed.

We can expect, but cannot be sure yet, that there can be different phases of
the chain depending on the swelling parameter. When « is equal to 1, we come
to the trivial case of the ideal coil. The scaling law (i.e., the rule for how the
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size R changes depending on the number of links) is N''/2. If for other values
of « this law changes, it indicates another phase. In the next section, we will
try to find scaling laws for the extreme a.

4.3 Phase diagram

4.3.1 Virial expansion

An ideal coil is not a high-density system [31] which can be also seen from the
scaling law in Eq. (4.12) (comparing to the dense 3D sphere which scaling law
would be N/3). For that kind of systems, as we know from real gas theory,
one can use virial expansion for thermodynamic functions [32]. The idea is
to expand the function into a power series of the number of particles in a unit
volume n.

The interaction part of the free energy can be presented as

Fu(a) = NT(nB +n*C +...) , (4.14)

where T is temperature, N is the number of particles, n is the number of par-
ticles per volume and B, C' are the second and the third expansion coefficients
correspondingly (the first one has vanished).

The terms in the virial expansion have exact physical meanings. The one
which is proportional to B corresponds to a double collision of particles, i.e., a
collision of two particles. The term proportional to C'is a contribution of triple
collisions, i.e., a simultaneous collision of three particles and so on.

The form of interaction defines the coefficient of the expansion. For exam-
ple, the second virial coefficient has quite a simple form

B(T) = ;/000 <1 —exp {—U(TT)}) dr. (4.15)

It gives the main contribution to thermodynamic functions so let us look at it
a bit closer, trying to get some information about the physics of the system.

For the van der Waals potential the integral in Eq. (4.15) splits into two:
repulsion, where U(r) < 0 (r < a) and attraction with U(r) > 0 (r > a)
(see Figure 4.2). Strictly speaking, attraction and repulsion are defined not by
the sign of the potential itself but by the sign of the potential’s derivative. But
to make the derivation more readable, we will neglect the small part of the
negative potential where the derivative is still positive, which corresponds to
repulsion. Let us symbolically mark the positive part of the potential as U™
and the negative as U ~. Then the integral in Eq. (4.15) can be expressed

2B(T) :/Oa <1 - eXP{—WT(r)D dr® + /aoo <1 - exp{—UT(r)}> dr3.

(repulsion) (attraction)
(4.16)
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When the temperature is low, 1" — 0 then e with positive exponent tends to
—+00, while e with negative exponent tends to 0. This turns the attraction term
into —oo, but repulsion stays finite. Thus we can conclude that:
* For low temperatures attraction dominates over repulsion, and the second
virial coefficient B is negative.

For small but non-vanishing temperatures 0 < 7' < ¢, the attraction term
turns to zero. Since the repulsion energy tends to infinity at zero distance, it
will suppress any finite and non-zero temperature in the exponent. The integral
for the second virial coefficient then becomes

QB(T):/ ldr? +0=v , (4.17)
0

where v is called an excluded volume. Now we can say:
* For high temperatures repulsion dominates over attraction, and B is pos-
itive.
From the condition of continuous B, there is a finite and non-vanishing
temperature (which is called 8-point) where B turns into 0. The repulsion and
attraction are balanced.

4.3.2 Scaling laws

Following Flory [33] let us write the free energy of the chain as a function of
the swelling parameter

F(a) = Fideal (@) + Fint(@). (4.18)
chain
The two terms on the right hand side correspond to the free energy of the ideal
chain and the free energy of the interaction. Here we used the same trick as for
a real gas: decompose the thermodynamic potential into ideal and interactive
parts.
It can be shown [31] that the first term

1
Fideal (@) ~ T <a2 + a2> , (4.19)

chain

where a? dominates when o > 1 and o~ 2 dominates when o < 1.
The interacting part of the free energy Fin () as we discussed above will

be expanded into a power series for unit volume in Eq. (4.14). Unlike the

volume of a gas, the volume of a chain is not defined. But from very general

geometrical ideas we can say that it should be proportional to the cubic size of

the chain

N N

== 42
v = (4.20)

n
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Substituting this into the virial expansion we have in Eq. (4.14)

2 2 3
%]—",-m(a) - %NB+ (;) NC+.. = @g) RPB+ @Z) R3C+..
(4.21)
We should express R via the swelling parameter in Eq. (4.13). And then get
rid of Ry using the scaling law for the Gaussian coil in Eq. (4.12)

R = (aRy)® = N33 (4.22)
Then the expression for the full free energy becomes
1 o, 1 11 3 C 6
f}'(a) ~ (a + oﬁ) + <BN2 B + i . (4.23)

The equilibrium value of o can be found from the minimization of free energy
(where we drop all numerical coefficients)

Ym0 —an (BN51> + <C> a3 (4.24)

4.3.3 Three phases

Let us now define and discuss the properties of three distinct phases for the
polymer based on the swelling parameter a.

e Self avoiding random walk o« > 1
We can neglect the second term in Eq. (4.24) in both parts:

1

11\53

Then the scaling law becomes

11 1\* 1\5 s
R:ROOZNZNQNW (Bl?)) :<Bl3> N5,

from which we obtain the famous Flory formula

(425)

The coefficient B have to be positive since o > 0. As we know from the pre-
vious section, the repulsion dominates in case when B > 0, and this happens
at high temperatures, 7' > 0 (see sec. 4.3.1).

This is in line with general physical reasoning: at high temperature the par-
ticles have high kinetic energy and tend to collide chaotically with each other.
Then strong short-range repulsion plays a major role compared to long-range
weaker attraction, which has to compete with the particles’ kinetic energy.

The name of this phase reflects the fact that the repulsion is a major force
here.
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e Random walk a =1
This case corresponds to the ideal chain, so we just repeat the equation for the

Gaussian coil
(4.26)

The ideal chain has no interactions at all, so integral in Eq. (4.15) vanishes. By
definition 7" = 6.

The name “random walk” means Brownian motion. In the real chain, the
interaction cannot just disappear. So random walk is not possible; particles
always feel each other. But from a macroscopic point of view, there is no dif-
ference between the situation with pure random walk and the state where all
the interactions are balanced because both give the same values of the thermo-
dynamic functions (R in our case). The word “phase” has meaning only in the
macroscopic sense, so there are no assumptions in calling the phase “random
walk”.

This is a good example of the difference between the microscopic and macro-
scopic picture. Two qualitatively different systems from the microscopic per-
spective are considered the same from the macroscopic perspective.

e Collapsed phase: o < 1
We can neglect the left part of Eq. (4.24)

C -3 1 1

So R can be expressed

1 B _% 1 B g
— ~INz [ =23 N o~ |—-Z=N) .
fi = fhoa ( c ) ( c )

And the scaling law has the form

(427)

The interesting point is that this scaling law is the same as it would be for a
dense three-dimensional sphere because its volume is proportional to 3.

The attraction should dominate over repulsion to keep the chain in this high-
density state. This domination leads to a negative B which means the chain is
in the region of low temperatures 1" < 6 (see sec. 4.3.1).

Another thing we want to highlight is the fact that the third virial coefficient
C does not vanish in this case. It makes sense if we remember the physical
meaning of it: collisions of three particles. Indeed, when a chain becomes
a high-density system with the domination of attraction, the triple collisions
become more likely.
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4.3.4 Cheat sheets

Here we summarize the main results in a compact way. In all three phases the

scaling law has the form

R~N" |

where the three phases only differ in their value of the exponent v.

e SARW

Self avoiding random walk (or coil swelling).

a>1

=

T>0 = B>0

3
V= -

5

The repulsion dominates over the attraction.

e RW
A random walk (or the Gaussian coil or an ideal coil or f-regime).
T'=60 = B=0
1
=1 = ==
o V=3
Repulsion balances attraction.
e Collapsed phase
(or globular phase).
'« = DB<O
1
<l = v==2
o V=g

Attraction dominates over repulsion.

4.4 Energy

(4.28)

(4.29)

(4.30)

(4.31)

We have already discussed the geometry of the polymer chains we will use
(see sec. 4.1). Now it is time to talk about the physical model. In the present
work, we are focused on the geometrical properties of polypeptide chains. We

want to be able to form secondary (a-helix) and tertiary structures.

The secondary structures are local and should be formed by short-range in-
teraction, while the overall tertiary structure should be the result of long-range
forces. So if we want to simulate both structures, we should combine both

these mechanisms in our energy function.
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4.4.1 Short range

As we said in section 4.2.2 the phase transitions of a polymer chain is defined
only by its geometry. And the geometry can be fully described by the curvature
and torsion angles (see sec. 4.1).

Using the Frenet equations for the geometry gave us a Zy symmetry (Eq. (4.10))
for k: positive and negative curvature angles should provide the same physical
state. This property is described with a double-well potential. For 7, it can be
just a single minimum potential.

The Hamiltonian we are using in paper [ and Il was considered in several
papers [34, 35, 36, 37]

N-1
H=— Z 2Kit1kit
i=1
. C (4.32)
Z {2@2 + q(k? —m*)? + §(dn? + 1)72 — a(bk? + 1)Ti} .
i=1

The second term in the last sum gives the desired double well profile.
The minimum of the Hamiltonian in Eq. (4.32) should be in alpha helix,
which geometry is described by the curvature and torsion angles [36] as

{ R=43 (4.33)

T=1

With this, we fix the coefficient m to be 1.5. The parameter g is set to 3.5 and
b will be considered as 0, so the term k27 vanishes. From the rest a, ¢, and d
parameters, not all are independent. Let us find the ground state for 7;

(")H_O:> afbri+1
87‘1'_ 7 dlii—Fl '

(4.34)

= —
C

So if we want the minimum to be given by the expressions in Eq. (4.33) (and
set b = 0) then

a 1 a T
i c (:i:dg—i-l) c 2" (4.35)

This gives us the relation for the parameters a, ¢ and d.

4.4.2 Long range

As we learned earlier, the long-range interaction (or volume forces) should
consist of two parts: attraction on long distances and repulsion on short dis-
tances. The phase diagram does not depend on the details of the interac-
tion [31], so we are entirely free to choose the concrete profile of the potential
U(r).
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Uy - -

Figure 4.3. The profile of the potential we use in our model (Eq. (4.38)).

The asymptotic behavior for the repulsion is
U(r — 0) = +o0. (4.36)

The simplest model of repulsion is hard core repulsion. In this description, the
particles cannot come closer to each other than some fixed value 7. It forms
an excluded volume v ~ 7r3 around each particle, which is impenetrable for
all other particles. The potential U(r) for this situation looks like an infinite
wall at » = rq; thus, all the states r < rq are forbidden.

For the attraction we need to have a small well with asymptomatic behavior

U(r — +00) — 0. (4.37)

We chose to use hyperbolic tangent so the full potential have the form

] Hox, 0<r<mr
ulr) = { Up(tanh(r —19) — 1), ro<r < +4oo ’ (4.38)

and is presented in Figure 4.3. The parameter o defines the range of the at-
traction and Uy the depth of the well.

In the next chapter we will simulate the model we just discussed using the
Monte Carlo method from Part I.
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5. Simulations

In this chapter we will summarize everything we learned about the polymers
and the Monte Carlo method from Part I of the thesis to find the phase diagram
for the polymer model we described in the previous chapter. The total Hamilto-
nian is a composition of the effective Hamiltonian considered in section 4.4.1
and the van der Waals forces from section 4.4.2

Hio = H + Vigw. (5.1

The work is presented in Paper I. Here we will discuss only the essential parts,
dropping out unnecessary details, which can be found in the original article.

The main goal is to investigate the phase diagram with respect to temper-
ature, short-range interaction H and long-range interaction V,4w. The most
interesting parameter in the Hamiltonian in Eq. (4.32) is the chirality a. The
van der Waals potential has only one energetic parameter Uy. So the phase
diagram we will get is R, = f(T,a,Up). Here R, is the radius of gyration
(see Eq. (4.11)); its exponent is an order parameter for the phase transition (see
sec. 4.3.2).

5.1 Repulsion only

We started by following the paper by Chernodub ez al. [36] and considered the
model with only Hamiltonian in Eq. (4.32) and hard core repulsion. Although
the authors used only Metropolis there, we will compare three different algo-
rithms to simulate the system based on Metropolis and Heat Bath (see sec. 3.6).

All the algorithms share the same following features. The angles x; and 7;
are generated independently to each other and to all other chain sites. Since
we will use MCMC! the order of updates should not influence the result. For
finding the equilibrium states, we use simulated annealing (see sec. 3.7). The
self-avoiding condition is taken into account as an additional condition for ev-
ery update: whenever any pair of sites come closer than one-link-length dis-
tance, the configuration is rejected. This is actually a conventional Metropolis
accept-reject algorithm for vanishing probability (see Eq. (3.32)), so the con-
dition of detailed balance is not violated.

We will try 3 different algorithm which only differ in how they find new
curvature and torsion angles:

"Heat bath is also MCMC in the sense that the next step does not depend on the history of steps
at all.
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1. conventional Metropolis to generate x and conventional Metropolis to
generating 7.
2. “Mixed” algorithm: Heat Bath for 7 updates and conventional Metropo-
lis for x updates.
3. Heat bath for generating 7 and Heat bath for generating .
Heat bath methods require us to generate random numbers according to the
given distribution defined in the Hamiltonian in Eq. (4.32). This question is
considered in the details in appendices A and B.

80 —&— Metropolis *
70 b| & Mixed, At =0.02 i
o Mixed, At =0.20
60 | e Mixed, At =0.50 ¢
Mixed, At =1.00 P
a 50 F| o Mixed, At =2.00 |
x g | Lome Heat Bath * 1
Apa¥avanipiia
30 ! e L L] '.. O'..' i
. %e%eee%eee ‘,.sg-uieu |
esegesesetice

-12 -10 8 6 4 -2 0 2 4
log;(T

Figure 5.1. Comparison between the three different algorithms.

The equilibrium distribution cannot depend on the method we use, this is an
essential property of MCMC and the only reason why we can assign a physi-
cal meaning to the answer. So as far as we do everything correctly, we should
have the same results. However, one can see that it is not the case in Figure 5.1
where results of different algorithms are presented. At is a dispersion of a pro-
posal distribution which one uses in Metropolis. In our case, it is a Gaussian
distribution. You should read the figure from the right to the left because we
use simulated annealing. We start from the high temperatures and then de-
crease the temperature in an adiabatic way, while all the other parameters of
the model are fixed. It means that every data point in the figure corresponds to
the equilibrium state at a certain temperature.

How should we understand this deviation of different MC methods?

This is exactly the problem, with ergodicity, which we talked about in sec-
tion 3.5.1 as the most dangerous misuse of MCMC algorithms. Metropolis
is stuck in local minima and cannot get out of them. Of course, the profiles
for the potentials in the Hamiltonian in Eq. (4.32) are simple: one peak for
torsion and two peaks for curvature. It seems there is no place to get stuck
there. However, the Hamiltonian in form presented in Eq. (4.32) does not take
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into account repulsion. The self-avoiding condition, which we have as an ex-
tra restriction, can drastically change the picture, creating a huge amount of
local minima. Heat bath is freed from ergodic problems because the new state
does not depend on the previous one. Although our Heat Bath is not a pure
Heat Bath, but Heat Bath + Metropolis, the ability to overcome trapping of
this algorithm is much higher.

Another thing that indicates that we meet the ergodic problem is that by
changing the dispersion of the distribution for the torsion angle A7 in Metropo-
lis, we change the result. Increasing the dispersion increases the probability to
tunnel through a broader potential barrier. Then the results start to converge
with Heat Bath results.

Finally, we should check the most crucial thing that will prove or disprove
our guess about what algorithm is correct: the observable dependence on the
number of MC updates. In the limit of infinite time, all algorithms will con-
verge to the same result as Markov chains theory predicts. In real simulations,
the time is finite, and the question is: is the thermalization length we used
enough for coming to the limit distribution in MCMC?
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Figure 5.2. Mixed algorithm. Figure 5.3. Metropolis algorithm.

The dependence of the radius of gyration on the number of MC steps (ther-
malization length) is presented in Figure 5.2 for the Mixed algorithm with large
dispersion and Figure 5.3 for Metropolis.

The first plot shows that the Mixed algorithm comes to saturation very fast.
All the configurations at the plateau are thermalized, i.e., the system is in the
equilibrium state. The Metropolis algorithm in the second figure shows the
opposite behavior: even for a sufficiently long time, the algorithm still does
not provide the equilibrium state.

Based on three facts we just discussed:

1. the Mixed algorithm with large dispersion thermalizes, while Metropolis

does not;

2. larger dispersion of the Mixed algorithm provides better convergence;

3. general knowledge about the principles of MC algorithms,
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we can conclude without any doubt: pure Metropolis gives non-physical re-
sults, and we should choose either the Mixed algorithm or Heat Bath algorithm.
In all further calculations, we will use the latter one.

5.1.1 The ground state

Look again at Figure 5.1. The “bad algorithms” at the low temperatures show
some compact state since the radius of gyrations becomes smaller than at the
beginning. This situation can be mistaken as a collapsed phase like in pa-
per [36] which we followed. Now we already know that it is an artifact of the
wrong usage of the MCMC algorithm, but there is even one more argument
for why it is not a collapsed phase.

As we discussed in the theory section 4.3.1 for the existence of the collapsed
phase, there should be domination of long-range attraction forces over the re-
pulsion. There was no long-range attraction in the model we considered, but
only repulsion, so no wonder that the “good” algorithms came to some not
compact conformation. Because from the physical point of view, we cannot
have a collapsed phase under such conditions.

Thus, we now have both physical and methodological proof that the col-
lapsed phase cannot be obtained as presented in papers [35, 36].

The reasonable question now: what is the ground state for the model we
have considered? The ground state there is an a-helix. One can see this by
plotting the structure at the low temperature, and getting the scaling law for
those states. The compactness index v = 1, which means that the structure
scales as a straight rod. For more details, one should read paper 1.

Interestingly, if there were only the Hamiltonian without any self-avoiding
condition, the ground state would be the same, just because our Hamiltonian
was constructed to generate a-helix in the minimum. It seems our excluded
volume condition did not have any effect there. This is not surprising if we
remember that the radius of the repulsion is equal to one link length and the
a-helix is defined as in Eq. (4.33). So the distance between 7 and ¢ + 2 vertices
is in y/2 times larger than the repulsion radius.

5.2 Phase diagram

Using the correct algorithm and full potential in Eq. (4.38) presented in Fig-
ure 4.3 we were able to obtain the final three dimensional phase diagram pre-
sented in Figure 5.4.

The three-dimensional diagram is not easy to read so we will consider the
most interesting cross-section: at fixed a 2, Figure 5.5.

*More cross-sections one can find in Paper 1.
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Figure 5.4. Full 3D phase diagram for the interaction described by Eq. (5.1).

log,U,

straight

rod

n-regime

Figure 5.5. Cross-section of the phase diagram presented in Figure 5.4 at a = 1074,

When the attraction potential is strong enough, we have precisely the picture
we expected (see sec. 4.3.2): self-avoiding random walk at high temperature,
collapsed phase at low temperature and the f-region in the between. When
the attraction is suppressed by the short-range forces (the Hamiltonian and the
repulsion), the ground state is a helix phase, as we know from the previous sec-
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tion. We called this situation the “straight rod” phase because it scales exactly
like a straight rod.

Two other regions in Figure 5.5 do not appear if exponent v from Eq. (4.28)
is taken as an order parameter of phase transition: they both scale as SARW
phase. But those phases are seen in the radius of gyration, so they have a
character of cross-overs. Pseudogap phase you can see as the step at log,, 7" ~
1in Figure 5.1. The n-regime is named as an analogy for the f-regime: a region
of coexistence of several phases. It seems like a split of the plane in Figure 5.4.
More information can be found in Paper 1.

5.3 Heteropolymer

The real structures do not exist in the pure coil state or the pure helical state.
They have different regions with different structures. We can do this with our
Hamiltonian if we set different parameters for different parts of our chain such
that for some parts the ground state is a straight rod, and for other parts it is
a collapsed phase. This type of chain, with different parameters for different
parts we will call heteropolymer. The resulting configuration of the simulation
of the heteropolymer is presented in Figure 5.6. After the thermalization, we
got an «a-helix for just a part of the chain, while the rest is a coil, exactly like
we assumed.

The natural question comes: in what phase the structure in Figure 5.6 is?
And here we face a new problem. We distinguish the different phases accord-
ing to their scaling laws. If we want to follow the same procedure as we did for
homopolymer, we have to make the same simulations for chains with various
lengths and then find the exponent » in Eq. (4.28) as a fitting parameter. This
procedure cannot be implemented to heteropolymers because we do not know
how we should vary the length in this case. Should we also change the length
of the a-helix, i.e., the part with special parameters of Hamiltonian?

Figure 5.6. Simulated heteropolymer.
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We will meet the same problem if we want to use the same definition of
phases for real protein structures. There is no way to vary the length of the
concrete polypeptide chain.

There is no answer to this question yet. But we will find the way in the next
part
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Part I11:
Implementation of Renormalization Group
Theory to Polymers






6. Theory

6.1 Introduction

In chapter 4, we found a scaling law for polymer chains
R~ NV | (6.1)

where R is the radius of gyration and NV is the number of sites of the chain.
Different values of the critical exponent v allowed us to define different phases
(see sec. 4.3.4). However, to use this method in practice, one should be able to
vary the given polymer’s length. This is possible to do only with homopolymer
chains. Because for heterogeneous systems, the procedure of varying N is not
defined. This is especially easy to see with real proteins. The number of sites,
i.e., the number of amino acids the chain consists of; is one of the given protein
characteristics. This number is fixed and cannot be different.

We have to find another way to distinguish phases having only one concrete
chain.

6.2 Simple scaling procedure

The task is: finding a scaling law that can be used to define the phase for a
given heteropolymer chain The natural idea which comes up is to rescale the
given chain. The simplest way to do this is to connect every second site, as
shown in Figure 6.1. The original chain is drawn with bold lines, while the
new chain is drawn with thinner lines. We can do the same procedure once
more for the new chain and get the chain shown as a dashed line in the same
Figure. We could have more iterations if our initial chain were longer.

This method was presented in the paper [38]. The authors suggest keeping
track of the flow of an average curvature « (called folding angle) over the chain
which they assume to converges to a fixed point k*

o = (cos ™) = (¢ - 47))

cosk* = lim (cos k™),
p—>00

(6.2)

where p is the number of iteration steps in the procedure described above and
t; and ;4 are tangent vectors of two adjacent links.

59



Figure 6.1. The simple scaling procedure. Bold line — Initial conformation. Thin line —
First iteration. Dashed line — Second iteration.

The authors argue that when the limit in Eq. (6.2) exists and it is unique,

then the folding angle and the critical exponent v from the scaling law have
the following relation

And thus

60

cosk* A~ 221 1. (6.3)
021  v=1/3

cosk* =< 0 v=1/2. (6.4)
0.11 v=3/5

We can see three problems here:
1. Eq. (6.3) is not exact, hence the result in Eq. (6.4) is also not. But the

difference between values of v is pretty small, so we should be concerned
about whether the result is correct at all.

. It is not clear if the fixed point exists at all and what it could depend on.
. If it exists, it should appear at the number of iteration steps p equal to in-

finity. In this thesis we have already talked about infinity in simulations.
MCMC gives the correct answer only in infinite time. The simulating
annealing technique also requires infinite time. And we know that hav-
ing a tends-to-infinity condition was not a problem there. However, now
this condition is a big problem. For MCMC, we could approach the in-
finity with any accuracy. So if the infinity was not enough “infinite”, we
could always take more steps or smaller increments. Now the situation
is different because p is limited by the length of the chain NV

p <log, N. (6.5)

And even for the longest polypeptide chains in the Protein Data Bank [39],
p would be not greater than 10. More likely, it will never be a good ap-
proach to infinity.



6.3 Renormalization Groups

The idea to apply Renormalization Group Theory to polymer chains was pro-
posed by the French physicist Pierre-Gilles de Gennes' [40]. The concept
was adopted from Kadanoff block spin transformations for describing a mag-
net [41]. There, the author proposed recombining the lattice sites into blocks
and then treating the blocks as new sites. This should be done recursively, and
the corresponding relations written at each step yields the fixed point in the
rescaling procedure.

Figure 6.2. Renormalization group transformations following the Kadanoff block spin
transformation adapted for proteins.

The same idea can be used for polymers. Schematically the procedure of
rescaling is presented in Figure 6.2. Assume that each new block will consist
of three old ones. Then we will say that the scaling parameter s = 3. If
the original chain had NNV links, the new chain in the first step has Ny = N/s
links. In the next step No = Ni/s = N/s? and so on. Mathematically these
transformations form a renormalization group®. Any observable as a function
of iterative step A(p) form a renormalization group flow.

6.3.1 RG flow

When we derived the scaling law in the previous part and took into account vol-
ume interactions, we got that the main contribution to the microscopic structure
was given by the dimensionless term B/I®> = 3 (Eq. (4.24)), where B is the
second virial coefficient and [ is the link length.

"Nobel Prize in physics 1991: for discovering that methods developed for studying order phe-
nomena in simple systems can be generalized to more complex forms of matter, in particular to
liquid crystals and polymers.

“This is not a group in a strict mathematical sense.

61



Instead of the virial expansion, one can use a power series of 3 for the right
part of Eq. (4.24). As we mentioned before, B (and hence (3) corresponds
to double collisions and also to excluded volume in Eq. (4.17). So you can
think about the expansion in two ways: we expand the volume forces using
perturbation theory with excluded volume as a parameter, or that we express
all the collisions (like triple, quadruple, and so on) as double collisions.

We want to find the renormalization group flow for the parameter S, i.e., its
evolution during the rescaling transformations. Instead of using the number of
iteration steps p as an argument, we will use g — the number of initial monomers
lumped into a single monomer in the current step. For the first step of rescaling
procedure g1 = s, because it was how we defined the scaling parameter s. But
for the second step go = s2. For the third g3 = 5% and so on.

First, we need to find recursive relations for 5 using the perturbation theory
from the previous section. We will not present the derivation here because it
is quite lengthy, but it can be found in [31]. Second, we want to convert that
relation to differential equations.

o

0 B~ B

Figure 6.3. Phase portrait of the renormalization group equation.

The number of initial links contained in a new link in the (p + 1)-th step of
the scaling procedure is

Ip+1 = gp + Ag. (6.6)
And scaling parameter can be expressed as
A A
=929 _ 4,29 (6.7)
9 g
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Figure 6.4. The renormalization group flow.

The virial coefficient 5 now can be written as a function of g. So at the p-th
step, it is just 5, = (g). And at the (p + 1)-th

Bp+1 = Blg + Ag). (6.8)
If we make the assumption that s — 1 then
Agg <1l1=Ag<yg. (6.9)
And Eq. (6.8) can be expanded into Taylor series
Blg+Ag) = B(g) + ngg- (6.10)

This assumption yields a differential equation, which phase portrait is pre-
sented in Figure 6.3. There are two stationary points: the stable one g = S*
and unstable one at 5 = 0.

When 5 > 0, the polymer is in the SARW phase, and the flow goes to the
fixed point 5* which does not depend on Fy. If 5 < 0 then the chain in the
collapsed phase and 3(g) — —oo. The #-regime which corresponds to § = 0
gives zero value for 3(g) at any scale. Summarizing what we said we can draw
the plot of the renormalization group flow, Figure 6.4.

6.4 The observable

The dimensionless second virial coefficient 5 is not possible to calculate di-
rectly from the simulations. Thus we have to find some other observable which
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represent the RG flow as 5 and at the same time can be calculated just from
the geometry of the chain.

The first candidate is the folding angle in Eq. (6.2). The expression for this
observable in the first order of perturbation theory requires some calculations
which we have skipped here, but the answer would be

fa) ~ ]BVZ@ — i) (6.11)
1<)
As you can see it is a function of the parameter 3 which is a good point. How-
ever, the sum in Eq. (6.11) cannot be transferred safely to the integral because
fab 2~3/2dz diverges. This means that the folding angle is under a strong influ-
ence of the details of the potential and the perturbation theory we build cannot
be trusted.
Instead of the folding angle we can consider another observable

-y (ti-t;) (6.12)

2 et

The summation of cosines of angles between all possible couples of links. The
new observable in the first order of perturbation theory gives the following
expression

(V) ~ B> (G- (6.13)
1<J

This sum can be converted into an integral in the limit of large NV

N T
L a1)2 N>>1/ / 1 3/2
j—i = dx dy ~ N°/=, (6.14)
> (G—1) ; ; T

"E —
1<i<j<N—1 Yy

And for the expectation of the observable ~ then we get
(y) ~ BN3/2. (6.15)

Our new observable is proportional to 5. And it is exactly what we wanted
to get; now we can distinguish phases by a sign of RG flow according to the
diagram in Figure 6.4.

However, before we can use this result, we should define the rescaling pro-
cedure because the theoretical description we gave was very abstract and im-
possible to use in practice.

6.5 The rescaling procedure

In the simple rescaling procedure (see sec. 6.2), the scaling parameter s was
equal to 2: every new link contained two old ones. Now for RG theory, we
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need s to be close to 1. This means that it cannot be integer any longer. The
question of a non-integer scaling parameter is complicated and allows for more
than one solution. We propose the following 3.

Figure 6.5. The scaling procedure for scaling parameter s = 1 + 1/3.

Let us first consider s = 1 4 1/3, Figure 6.5. The first vector of the first
scaling step should be built as 1 full segment plus 1/3 of the next segment

1
t%::t1+-§tz (6.16)

The second link of a new chain consists of 2/3 of the second segment plus 2/3
of the third segment of old chain

2 2
@:§m+§@ (6.17)

The new third link takes the remaining part of the old second link and the full
fourth link

1
@:§@+u. (6.18)

The new fourth segment can be built in a similar way as the first one.

This method has a disadvantage: truncating the end. The more steps we
make, the more significant loss we have. And the proper RG flow will require
many repetitions. Another minor thing is the asymmetry of the procedure.
The left and the right ends of the chain are not treated equally, and there is no
physical reason for it. To prevent both issues, we will use the following trick.

The loss of the ends does not happen always. If the number of segments N /s
is an integer number, then the last site of the new chain matches the last site of
the old chain. For instance, if the chain has 4 links and the scaling parameter s
is chosen to be 4/3 then the next iterative chain will have 4/(4/3) = 3, as you
can see in Figure 6.5. So the new chain has one link less than the previous one
and has the same last site. The requirement we expressed is

Nez (6.19)
S

3The extensive description of the rescaling procedure one can find in Papers IT and III.
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Figure 6.6. The dependence of the optimal scaling parameter s°P* on the number of
iteration step for a chain with 300 links.

On the other hand, we want s to be very close to unity to get the picture of RG
flow (section 6.3.1).

The optimal scaling parameter for us is the smallest s, which does not lead
to the chain’s truncation. It can be defined as

Ny

opt — _ ~'P
TN, -1

s(p) (6.20)

where p is the iteration step. The scaling parameter now depends on the itera-
tion step but from the theoretical point of view it should be constant during the
whole procedure. However, if we take a chain of 300 vertices, which is quite
typical in the case of a protein backbone, we estimate that after ~ 200 iteration
steps, the optimal scaling parameter is changed by less than 0.7% as shown in
Figure 6.6.

In addition, this scaling procedure treats both ends of the chain in the same
way. It does not matter what end one starts the scaling procedure with; the
same renormalization group will be produced.

So hereafter, we always will use s°?* as our scaling parameter.
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7. Simulations

We will apply the RG ideas we expressed to the simulations from chapter 5 for
homopolymers, where we have well-defined phases to verify our new theory.
We are going to implement the procedure described in section 6.5 and calculate
the value in Eq. (6.12) at every rescaling step. Then we want to build an RG
flow of the observable and see whether we have the different phase behavior
that we saw in Figure 6.4.

7.1 The first result

Let us take the homopolymers from the previous part of the thesis and calculate
the RG flow for the rescaling procedure we just discussed to get the first results
which is presented in Figure 7.1.

2500 ‘
—e— SARW
BT el
i
000 -SSR E—
e

1500 (F

1000

New observable

500

_500 L L L L L
0 50 100 150 200 250 300

Scaling step

Figure 7.1. The first attempt to calculate the RG flow for three different phases of
homopolymers.

We can see a problem: the RW phase, which we expect to be 0 like in Fig-
ure 6.4 has a bizarre behavior. The collapsed phase is also not negative as we
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predicted. But, for the latter, we made much more assumptions during the the-
oretical derivation. However, the RW phase is an ideal case, and the theoretical
description there should be very accurate. For this study, we made a new RW
state simulation as a pure Markov chain, i.e., without any interactions. Thus,
we can be sure that if everything is correct, the RW phase should give a trivial
solution for RG flow.

The only thing that could lead to the wrong result is the scaling procedure
itself. Something like: during the RG transformation, we get some artificial
correlation. Apparently, this is what indeed happens.

Let me explain. If you look at the scaling procedure once more in Figure 6.5,
you can see that because the new link contains parts from several old links, we
get some extra dependencies. In the RW case, only adjacent links correlate
with each other. Let us consider Figure 6.5 together with corresponding equa-
tions (6.16-6.18). The link £, correlates with t5. The link £5 correlates with ¢3.
But ¢; and t3 are not dependent on each other. This is what the RW phase is.
After the first step of rescaling ¢1 and ¢} will not be independent any longer!
They both share the same old vector 5. Thus our RW state is not RW as soon
as we start the renormalization procedure. This correlation will spread along
the chain with increasing iteration steps number. But luckily, it is a local effect,
so it decays along the chain.

7.2 The corrected result

What can we do then? We know where this artificial correlation comes from.
What if we will exclude from the summation in Eq. (6.12) the terms that cor-
respond to close links. Instead of making a summation over ¢ < j we will do
itover: < j + k, where k is some fixed number

=D (t?'t]:)- (7.1)

i<j+k

This subtraction should not significantly influence the theoretical result be-
cause the number of terms is N2, and we will reduce only kN. Thus for large
N and small k the theory should still work, but we will reduce the artifacts we
got just from the scaling procedure.

In addition, k£ should not depend on the chain length. This parameter corre-
sponds to the propagation of the correlation along the chain with the number
of iterative steps of the rescaling procedure. So we can find it empirically once
and use it for all chain lengths.

The RG flow for the new observable with & = 10 is shown in Figure 7.2.
Finally, three different phases show three different behavior as we wanted.
However, instead of different fixed points at a large scale, we got convergence
to 0 for all three curves. Zero value corresponds to the RW state, i.e., a chain
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Figure 7.2. The calculation of the RG flow for three different phases of homopolymers.

without any interaction. So when rescaling the chain, where we select bigger
and bigger blocks, the information about volume forces vanishes, and the chain
behaves as an ideal one. It goes in line with the RG idea: to get rid of small
scale effects to see the large scale phenomena.

You may understand this easily if you think that the chain is reduced to just
two segments at the last step of the rescaling procedure. And two segments
should always show the RW behavior.

The fact that the all three phases converges to zero for large number of scal-
ing steps does, however, not signal a failure of our method. Rather, the problem
we have accounted is that for large scaling step number the scaling parameter
can no longer be considered constant, which is important, as pointed out in
section 6.5. When applying the procedure, we should therefore pay attention
to the behavior in the intermediate regime.

7.3 Scaling

For the new observable, we got the scaling law expressed by Eq. (6.15). This
result is not solid, we used a lot of assumptions for derivation, but it is inter-
esting to see how good it approaches the result of our simulations.

We fitted the results for homopolymer in the SARW phase with the function

(y(n)) = an® + cn (7.2)

69



1400 200

1200 0t
s o
3 p “;‘imuuummmum B 2 0!
z , i mu\” 4 ©
5 600 mHHH“\\H:H“HHH\\H 15 600 |
5 400 t N\ummﬂ” £ -

200 | -800

0r -1000 -
-200 : : : ' : -1200 : : : ' .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of monomers Number of monomers
ber of ber of
Figure 7.3. Fitting (Eq. 7.3). Figure 7.4. Fitting (Eq. 7.4).

via parameters a, b and ¢, where n is the number of chain monomers at the
certain rescaling step. In Figure 7.3 one can see the result of the fitting. The
parameters we found using least square approximation are:

a = 024 =£0.03
= 1.61 +£0.02 (7.3)
= —145 +0.12.

In Figure 7.3, the abscissa now shows the number of monomers which is in-
versely proportional to the iteration step since we use the optimal scaling pa-
rameter defined in Eq. (6.20). From both the figure and the value for b, we can
conclude that we are in good agreement with scaling law N'5 even though it
lies outside the one-sigma interval.

It can be easily shown that in the first order of the perturbation theory, the
scaling law for the collapsed phase appears to be the same. The result of fitting
the collapsed phase with the function in Eq. (7.2) is presented on Figure 7.4.
The parameters are

a = 622 +£205
b = 116 =+£0.03 (7.4)
c = —105 =£24.

However, in this case the deviation b from the desired 1.5 is much bigger. The
reason is that for the collapsed phase, the first order of perturbation theory is
a too rough approach. In section 4.3.2 we showed that triple collisions play
a more significant role in collapsed phase than in SARW, which is depicted
through the non-vanishing third virial coefficient C'. So the collapsed phase
requires the next term in the expansion in Eq. 6.15 to obtain .

Another interesting question is why our fitting works better for a smaller
number of links or at the end of the iteration procedure. The answer could
be the following. As we said above, all three phases converge toward the RW
one. So the closer we come to the end of the rescaling procedure, the closer we
come to the ideal chain behavior. And our theory was built as a perturbation
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theory in the vicinity of the RW state. That is why it works better at the ends
of the RG transformation procedure.

7.4 Multiple phases

At the introduction to the thesis, we talked about different structures of pro-
teins. These structures are different not because some of them are more “chem-
ical” and some are more “physical”. This is a very conditional division as con-
ditional the division between physics and chemistry itself. The real difference
is the scale where these structures are found. The primary structure is a se-
quence of amino acids that represents single vertices in our chain. This is the
scale of one chain site. The secondary structure is a conformation of several
amino acids, so several sites of our chain. For example, the one loop of a-helix
is constructed with four vertices. Tertiary structure is an overall geometrical
structure of the chain. So this happens on the scale of the chain size. And fi-
nally, the quaternary structure combines several polypeptide chains together;
the scale is larger than one chain size.

We can think about different phases as different scales. We can approach
this problem using the method we discussed but now varying parameter % in
the observable in Eq. (7.1). The discussion of this idea can be found in Paper I,
so we will not repeat it here but rather send the reader to the article.
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8. Smoothing algorithm

The idea of rescaling polymer chains led to the idea of smoothing polygonal
curves. And from smoothing curves, one can come to the idea of smoothing
scattered plots.

Here we will just leave the link to Paper 111, because it contains an exhaustive
description of the new smoothing algorithm, which is based on the RG theory
explained in this thesis.
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9. Experiment

In this chapter we will refer to the biggest international open access digital
data base Protein Data Bank or RSCB PDB [39] which stores the experimental
data for biological structures. The database grows daily and during its 50-year
history it has collected the information of over 171 000 entries (171 588 at the
moment when this text is written). The price of the database is estimated at $16
billion (USD) [42] counting all the expenses of all the contributors including
the work hours cost.

There are three main experimental techniques for resolving molecular struc-
tures: X-ray crystallography, NMR spectroscopy and electron microscopy. All
of them need some extra data to build a full atomic picture. Usually it is infor-
mation about the chemical structure of the molecule, since this is what scien-
tists have before they are interested in the molecular geometry.

9.1 X-ray crystallography

The idea of X-ray crystallography is based on the Bragg’s law of diffraction
discovered in 1913 [43]. In 1915 The Braggs, father and son, got a Nobel Prize
in Physics “for their services in the analysis of crystal structure by means of
X-rays”. They discovered that the elastic scattering of a beam of coherent and
monochromatic photons on a crystal lattice produce a characteristic diffrac-
tion picture which provides information about the distribution of electrons in
the sample. This information can be used to determine atoms positions in the
crystal.

In 1958 Sir John Cowdery Kendrew published his famous paper in Nature
where he presented the first successful result of the implementation of Braggs’s
law to protein structure imaging [44]. In 1962 he shared the Nobel Prize in
Chemistry with Max Perutz, who was the PhD student of Bragg Junior “for
their studies of the structures of globular proteins” [45]. And from that time
until today X-ray crystallography remains to be the most popular method for
protein geometry recognition (80% of all PDB entries).

X-ray crystallography can provide high resolution all-atoms protein picture
together with the ligands and other molecules. However, it has a set of serious
flaws. The first and the most obvious is the need to crystallize the sample.
Proteins are the most interesting for us in their native state, i.e. like they are
presented in our body for example. But there and everywhere they exist in
liquid solvents, but never like solid crystals. So the structure we get from
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X-ray crystallography can be very different from the structure of our interest
without us even knowing about it.

The second problem of X-ray crystallography is that not all proteins can be
crystallized and not all parts of one protein can be crystallized equally well.
The former leads to the problem that some proteins cannot be investigated by
this method at all. And the latter leads to the problem of missing atoms: when
the most flexible parts of the protein cannot be localized with a given accuracy.

One more complexity of the method is the distinguishing between the crystal
symmetry and the structure symmetry.

The long time of preparing the big enough crystal for many proteins (1 - 12
month) can be also considered as a drawback of the method [46].

9.2 Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance or NMR was discovered in the middle of the pre-
vious century. In 1944 Isidor Rabi got a Nobel Prize in Physics “for his res-
onance method for recording the magnetic properties of atomic nuclei” [47].
And eight years later Felix Bloch and Edward Purcell shared the 1952 Nobel
Prize in Physics “for their development of new methods for nuclear magnetic
precision measurements and discoveries in connection therewith” [48]. The
scientists showed that if the sample has a nucleus with non-zero spin and is
placed in a magnetic field with a certain NMR frequency (radio waves) the
sample will produce the characteristic radiation spectrum. This spectrum not
only depend on the atom, but also on its surroundings.

NMR spectroscopy can give us the information about different atoms re-
straints in the protein: the limitations for atoms distances and angles. To get
the full molecule model one has to do computer simulations where the exper-
imental restraints for atoms’ distances and angles are taken into account. This
is an obvious drawback of the method.

Another disadvantage is that NMR spectroscopy can only work with small
molecules. The spectra for large proteins cannot be resolved due to overlap of
the peaks. This, however, can be improved with further development of the
technology.

NMR spectroscopy takes away the main disadvantage of X-ray crystallog-
raphy: the proteins now are examined in their native phase. It also opens the
door to study proteins dynamics.

9.3 Electron microscopy

This name can refer to different methods, we will talk about the most popular
for protein structure recognition — cryo-EM.
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The first electron microscope (EM) was built in 1932 by Ernst Ruska and
in 1986 the author was awarded with half a Nobel Prize in Physics “for his
fundamental work in electron optics, and for the design of the first electron
microscope” [49]. Unlike the optic microscope the electron one uses an elec-
tron beam instead of a light beam. Since the wavelengths of electrons in an
electric field can be much shorter than the wavelength of visible light, EM
gives much better resolution. EM allow us to “see” on the atomic level. But to
use EM to study protein structures one had also to solve the problem of sample
preparation. This breakthrough happened in 1984 and was published in Na-
ture [50]. The group of scientists found out that by vitrification (creating an
amorphous solid state) of samples one can fix the protein and at the same time
preserve its native structure. Jacques Dubochet, Joachim Frank and Richard
Henderson were awarded with the Nobel Prize in chemistry in 2017 “for devel-
oping cryo-electron microscopy for the high-resolution structure determination
of biomolecules in solution”.

Cryo-EM is a new fast growing field. According the PDB statistics the
number of entries discovered by EM grows exponentially every year. Cryo-
EM can provide the same resolution as X-ray crystallography but does not
change (significantly) the native protein structure.

9.4 Single Particle Imaging (SPI)

The technique we are going to talk about is a new approach to protein imaging.

As we already know, X-ray crystallography needs a crystal. This crystal
have to be big enough to produce the visible diffraction pattern. The bigger
crystal is the brighter the image. But the brighter diffraction image one can
also get by instead increasing the X-ray beam intensity. And then we come to
a question: can we generate an intense enough X-ray beam to obtain a visible
diffraction pattern from just one protein, not a protein crystal?

The positive answer came only 10 years ago together with a new era of
lasers: X-ray free electron lasers (XFEL) , like US LCLS [51] or European
XFEL [52]. The first free electron laser (FEL) was made in 1971 by John
Madey [53] by utilizing Hanz Motz’s undulator developed 20 years earlier [54].

An undulator is the device which force electrons to move in a sinusoidal
trajectory. On every turn of the sinusoid electrons radiate photons according
to the laws of classical electrodynamics. This radiation forms a beam of a FEL.
By modifying the speed of electrons one modify the photon frequency. And
to get the X-ray radiation the speed of electrons has to be close to the speed of
light. This explains why the way from the first FEL to XFEL took 40 years.

Apparently, XFEL can be utilized for molecular structure recognition. Sev-
eral scientific groups predicted the possibility of using this technology for Sin-
gle Particle Imaging (SPI) of biomolecules [55, 56] way before it became man-
ageable in practice. They showed that just one protein can produce a bright
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enough diffraction pattern which can be used for reproduction of its 3D model
(by collecting a lot of statistics).

But here a new problem appears: the intensity of the laser beam should be
so high that this will unavoidably lead to the sample explosion. What will we
get on the diffraction picture in this case?

Let us consider the easy analogy. You want to take a photo of a watermelon,
but every time you press the button on you camera it will explode (we assume
the speed of light is infinite here). Is it possible to make a watermelon photo in
this settings? It is clear that if you do a “normal” photo it will be blurred. This
happens because the watermelon explodes so fast compared to the time the di-
aphragm is open, that you collect several events on one photo and they overlap
each other. But if you could make the exposition time sufficiently small, then
you could record one time event at the beginning when the watermelon is still
untouched. This will give you a clear picture of the watermelon.

Coming back to laser and protein, we can say that the photo from the analogy
above is our diffraction picture, and the exposition time is... the length of the
laser pulse. Luckily, the modern XFELs work in a pulse regime to provide
high energies. So if the laser pulse is short compared to the time of protein
explosion we can get a clear diffraction picture from the original protein. This
conception got the name diffraction before destruction [57]. The very short
femtosecond pulse length of modern XFELs makes SPI a new potential tool
for protein structure recognition [58].

With sample destruction at every measurement comes an obvious need to
prepare many of them. This creates a new difficulty. The sample delivery for
SPI is done with aerosol spray: a droplet with a single molecule injected in
vacuum to be shot with the laser beam. The particle is orientated randomly
in this droplet. So to every new laser shot we deliver a new droplet with the
same protein but unknown orientation. This leads to increasing the number of
sampling and hence increasing the experiment cost. But it works!

The first proof of concept was done in 2011 [59]. The authors struggled
with a low hit rate (there were no synchronization between sample delivery
and laser pulses) but they managed to make a 2D image of a virus. The full
3D image of the same virus was done several years later by another scientific
group [60]. There are more successful examples with virus imaging [61, 62]
as well as with full cells and organelles [63, 64].

To improve SPI technology a smart way around the orientation problem was
proposed recently [65]: to use a strong electric field to orient the proteins and
reduce the number of degrees of freedom from three to just one. The actual
experiment is ongoing now under the MS-SPIDOC Horizon2020 project [66]
where soon we hope to have the first experimental results to see whether the
idea with orientation works or not.
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10. Theory

This chapter will tell about a more “natural” and straightforward way of simu-
lating molecules than Monte Carlo (MC) — classical molecular dynamics (MD).
As follows from the name, this method allows us to reproduce the system’s
dynamics, unlike MC (see part I), which only provides the equilibrium states.
Instead of playing a probability game as we did with MC, now we will honestly
solve a system of Newton’s equation of motion.

The first crucial work in this field was done in 1957 by Alder and Wain-
wright, who calculated a phase transition for a hard sphere system using MD [67].
The solution for this problem, however, already existed (with slightly differ-
ent results however). It was obtained by the MC method 3 years earlier by
one of the co-authors of Metropolis algorithm [68]. We see that even though
MD is conceptually easier than MC, it was implemented later. Soon we will
understand why.

10.1 The basic idea

Let us imagine that we have a system of IV particles of masses m;. If we know
the forces which acts on every particle F; then, given boundary conditions,
we can find the new state of the system at any time by solving a system of
Newton’s equations of motion

d2 r;

mi—y =Fi, i€{l,...N}. (10.1)

After the configuration of the system is changed the conservative forces has
to be recalculated, since they depend on the atomic positions

oV (ri,...,rn)

F, = —
i 8” )

ie{l,...N} , (10.2)

where V (r) is a potential interactions between atoms.

Repeating Eq. (10.1) and Eq. (10.2) for small enough time step At one can
numerically find the trajectory of the system, i.e. the position of all atoms as a
function of time r(t).
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10.2 Implementation: GROMACS

Now we will look close to MD’s concrete implementation on the example of
the most popular open-source software: GROMACS [21]. It utilizes many
ideas and algorithms designed by different scientific groups over decades of
scientific research. Combined with the newest ideas and best programming
practices makes GROMACS a universal tool for MD simulations of a different
kind.

In this section we will only touch on the basic mechanisms of the software.
For more information please go to GROMACS manual [69]. There the authors
describe all the concepts and tricks they implemented.

10.2.1 Force field

The set of forces in Eq. (10.2) are called the force field. It defines the concrete
view of the additive potential functions V' = )V, and the parameters’ value
in those equations for every type of atom.

The force field design is a complicated business done by different scientific
groups around the world. There exist many solutions, and they are constantly
improved. Force fields we have now are empirical. They are tuned to fit the
experimental data or more accurate quantum calculations. So different force
fields work better for different systems, depending on what fitting data was
used for their parameters. Also note, that even though the potentials used in
MD are classical, they carry the information about the quantum nature of atoms
because of the fitting process.

Here is the top 3 popular fields:

1. CHARMM (Chemistry at HARvard Macromolecular Mechanics) devel-
oped in 1983 by the world wide collaboration together with the Nobel
Laureate in Chemistry 2013 Martin Karplus at Harvard University [70].

2. OPLS (Optimized Potential for Liquid Simulations) developed in 1988
by William L. Jorgensen at Purdue University and later at Yale Univer-
sity [71]. And its most popular version OPLS-AA (All Atoms) designed
in 1996 [72].

3. AMBER (Assisted Model Building and Energy Refinement) developed
in 1995 at the University of California by Peter Kollman’s group [73].

The potential function of any force fields can be split into 2 terms:

1. Non-bonded: van der Waals forces and Coulomb (-like) interaction.

2. Bonded: covalent, angle and dihedral bonds.

In addition GROMACS allows to apply extra restraints for position, angle,
distance, dihedral or orientation.

Now we will look closer at the potential functions in the example of the
AMBER force field.
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Non-bonded interaction
This type of interactions are “physical” pair forces

V(ry,...oen) =Y Vijlrg) | (10.3)
1<j
dVij(rij) rij
> : 10.4
R(rig) ==Y ——-1 T (10.4)

where Vj;(r;;) is a potential of atom ¢ and atom j separated by r;;.
The first contribution is the Coulomb force to model electrostatics

Vo(rj) = ko™l (10.5)
2

where ¢; and ¢; the charges of the corresponding atoms, 7;; is the distance
between them and k¢ is a constant which depends on the unit system. In SI
k¢ can be expressed through the vacuum permittivity €y as ko = 1/4me.

The second part in non-bonded interactions is the van der Waals interaction
in the form of a Lennard-Jones potential

o\ P2 ”\©
VvdW(rij) = €45 ((ﬁ) -2 (ﬁ) ) y (10.6)
ij ij

where 77} ; 1s an equilibrium distance between ¢ and j atoms and ¢;; is the depth
of the potential well.

Non bonded interactions can be multiplied by some parameter f;; for better
fit to the results. For example, it allows to exclude interaction between the 3
neighbor atoms, to describe their behavior by only bonded interactions.

Bonded interaction
Bonded interactions are “chemical” interactions that can emerge between 2
atoms (covalent bond), 3 atoms (bond angle), or 4 atoms (dihedral angle or
torsion).

A covalent bond is modeled as a harmonic oscillator

Vilry) = k(L — 1;)* (10.7)

where k; is a coupling strength, /;; is a bond length between two atoms 7 and
jandl ; 1s an equilibrium distance between them.

The bond between 3 atoms are also represented as a harmonic potential for
the 6 angle between ij-bond and jk-bond

= Lij T
{szk = arccos ( -~ )

, (10.8)
Vo(0ijr) = ko(Bij. — 075,)°
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where ky is a strength constant for the triple interaction and ¢, ik is an equilib-
rium angle.

The final 4 body interaction is a rotation of 2 planes: the plane of the first
3 atoms and the last 3 atoms’ plane. The angle between 2 planes is denoted as
¢. The dihedral potential is periodic

Vi(bijit) = k(1 + cos(ng — ¢')) (10.9)

where k, is a interaction constant and ¢’ is an equilibrium angle.

10.2.2 Leap frog integrator

When the force field is set, one can find all the forces in the system (Eq. (10.2))
and numerically solve the equations of motion (10.1). The responsible algo-
rithm is called an infegrator. There are several algorithms in GROMACS for
doing this, but we will talk about one we used in our simulations: leap frog in-
tegrator. The integrator got its name because of the visualization: the velocity
and the coordinate are always defined with a half time grid shift drawing the
picture of frogs leaping over each other.

1 — _ 1 At
v(t + A1) = v(t — 5At) + m F(t) (10.10)
r(t + At) = r(t) + Atv(t + 5At)
The trajectory is solved up to the 3rd order
1
r(t + At) = 2r(t) — r(t — At) + %F(t)AtQ + O(Ath). (10.11)

The algorithm is time reversible, hence preserve the time symmetry of New-
ton’s equations.
The generic MD algorithm is presented in Figure 10.1.

10.2.3 Thermostat

When we simulate a real thermodynamic system, we often want to keep the
temperature fixed. It can be the NVT ensemble (fixed number of particles,
volume and temperature) or the NPT ensemble (fixed number of particles,
pressure, and temperature). GROMACS has more than one solution for keep-
ing the temperature constant. All have their pros and cons, so they should be
chosen based on the concrete problem. One of the simplest and most popular
solutions is the Berendsen thermostat [74].

The method’s idea is to couple the system to an external heat bath of a de-
sired temperature Tp. Then the temperature of the system can be corrected

dI'  Tp—T
dt T ’

(10.12)
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where T is some time constant. Depending on the concrete needs, these correc-
tions can be done more or less often. Practically it leads to scale the velocities
by some factor, which is calculated from the system properties.

Figure 10.1. The generic molecular dynamics algorithm. The picture is taken from
GROMACS user’s manual [69].
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11. Simulations: Unfolding pathways

Let us come back to the paper Marklund ef al. [65] which we have mentioned in
section 9.4 where we talked about the Single Particle Imaging (SPI) technique
for imaging proteins. In that paper, the authors proposed a solution for keeping
the sample orientation fixed. They showed that putting the protein in a strong
electric field (the order of 10* V/nm) could align the molecule and hence fix
2 out of 3 degrees of freedom. If one increases the field even more, they can
observe the protein’s unfolding as the paper shows. And this is the subject of
the study reported in Paper IV.

We were interested in learning how the unfolding process occurs. If the
unfolding undergoes the same pathway every time (or most of the time), it is
possible to make a video of this process! Indeed, the SPI technique requires
many samples of the same structure since every single observation ruins the
molecule (see sec. 9.4). If the unfolding happens in the same way, one can
prepare a lot of samples of every state of the unfolding. And then, by doing
imaging of every single step, one can make a video of the whole process.

11.1 Simulations

In our study, we use the protein ubiquitin (1UBQ [75]). This protein is very
well studied in various papers, and what is most important for us, there is a
study about mechanical [76] and thermal [77] pathways of the unfolding of
ubiquitin. This allows us to compare our result of unfolding in the electric
field with other unfolding methods.

Ubiquitin has 76 residues and 1280 atoms to simulate. We simulated it with
the MD method in a vacuum without temperature coupling. We used 4 differ-
ent electric fields, and for every field, we collected the statistics of 100 inde-
pendent simulations. The evolution of radius of gyration (Eq. (4.11)) during
50 ns of simulations is presented in Figure 11.1 together with one standard
deviation of average. The growing radius of gyration, as we remember from
section 4.3.2, tells us about swelling of the molecule or unfolding (since we
know it was folded before). Our lowest field (dark blue in the Figure 11.1 )
does not provide full thermalization on the simulations’ length, but even there,
we see the tendency. For the other 3 fields, 50 ns was enough for the radius of
gyration to come to a plateau. Thus we see that the general idea of unfolding
the protein with electric field works. What about the pathways of unfolding,
i.e., in what order does the different parts of the protein break apart?
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Figure 11.1. Dependence of the radius of gyration of ubiquitin on the time for different
values of applied electric fields.

11.2 Pathways of unfolding

To answer this intriguing question, we have to look close at ubiquitin’s sec-
ondary structure. Ubiquitin has one a-helix and one (3-sheet formed by 5 (-
strands. Following the notation suggested by Irback et al. [77] we will label the
strands with Roman numerals as shown in Figure 11.2. The pair bonds between
the strands are named as B C D and E (A stands for a-helix). The pathway of
unfolding can be determined by the order of breaking BCDE couples.

To study the different pathways of the unfolding, we suggest an original
idea: to build a graph. Every coupling between 2 strands can be either broken
or not. This leads us to a binary description where 0 will denote not broken
bond, and 1 is a broken bond. The 4 bonds of interest give us a 4-bit number
and 2* = 16 different states. Then we can build a graph of states, as shown
in Figure 11.3, grouping the states with an equal number of broken bonds in
one row. The source of the process is always 0000 because we start with the
native conformation where, by definition, all the bonds are not broken. The
next row of the map has 1 broken bond, hence 4 different states. The next row
has 2 broken bonds: C = 6 states. The 4th row has 3 broken (or 1 unbroken
bond): 4 states again. Finally, fully unfolded configuration with all couplings
are broken.

The last thing we have to define before we can come to the results is how
we practically decide when a certain bond is broken or not. We will say that
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Figure 11.2. On the left: native conformation of ubiquitin with a schematic illustra-
tion of its secondary structure. On the right: the labeling of the (§-strands and the
connections between them.

the bond is broken if the distance between the center of masses of 2 5-strands
is larger than 0.7 nm. This number was found empirically to make the graphs
most pictorial. We can do this because we are interested in comparing different
pathways, i.e., want to find a relative measure, not the absolute. In addition, we
know that unfolding and breaking real chemical bonds happens with increasing
distance between parts of the protein.

11.2.1 The graphs of unfolding

In Figure 11.4 we show the result for £ = 11 V/nm. Let me explain it.

At every next moment of time, the 4-bit state can be the same or it can
change. If it did not change, then we increase the size of the corresponding
vertex on the graph. If the transition happens, we increase the thickness of the
line for the corresponding transition. The line is green if the transition happens
toward the bottom of the graph, i.e., some bond B, C, D, or E is broken. If
some of those bonds are restored again, the transition goes toward the top of
the graph. In this case, we add blue stripes for the corresponding transition
line. The thickness of blue stripes are also proportional to the frequency of the
“backward” transition.

In Figure 11.4, we present the results over all 100 simulations for all 50
ps. The time step of every simulation was 0.0005 ps. The state was writ-
ten to the file every 100th step. Hence it means that for every run, we have
50/0.0005/100 = 1000 transitions from time t to time t+dt. And over all 100
different simulations, we have 100 * 1000 = 10° transitions.
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Figure 11.3. The structure of the graph of states. Every vertex represents the state
with broken (1) or unbroken (0) bond between the corresponding 3-strands *BCDE of
ubiquitin as we label them in Figure 11.2.

The last thing to explain is the yellow vertices. We use them to denote that
the corresponding state was the final state for at least one simulation. Again,
the size of the point is proportional to the frequency of such cases or how
many simulations ended there and how long they existed in this final state.
The yellow dot can be smaller than the corresponding red dot or of the same
size (then you will see the vertex as pure yellow, without red border around).
The pure yellow vertex means that every time the simulations come to the
corresponding state they stay there forever. Remember also that the number of
transitions proportional to the area of the dot, not to the linear size (as for the
case with the lines on the graphs). This means that even a thin red border on a
big yellow dot can represent a fair amount of transitions.

Reading the first result

Now, let us show how we should read and understand the result in Figure 11.4.
All the runs start with the native conformation of ubiquitin at 0000 state. We
see that the initial state’s size is larger than 1 000 transitions but smaller than
10 000 transitions. This means that either all configurations spend some time
in 0000 before leaving the state or only one configuration stood there for a long
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Figure 11.4. The graph of unfolding for £ = 11 V/nm.

size = 10

time, or, what is more likely, something in the between. We also see that the
point is entirely red which tells us that independently of what scenario above
was realized, all the simulations left the initial state eventually. There were
2 channels for that: to 0100 (breaking of C bond first) and 1000 (breaking B
first). By the thickness of the lines, we see that the former path is much more
preferable. Since there is no dark blue color in these lines, we understand that
there were no backward transitions. Now we can conclude that almost all our
100 simulations undergo 0000 — 0100 as the first state transition.

The next transition happens quite fast after the first one, since the 0100 ver-
tex is small. Here we have 5 different paths. First of all, we see 2 different
transitions where 2 bonds were broken at the same time 0100 — 1110 (it did
not go through 1010 since this point is faint in the Figure, which means the
corresponding state was never visited) and 0100 — 1101. This happens be-
cause the field is very strong, and things can happen faster than we can resolve
with our time grid. Now we should talk in terms of probabilities. The second
step’s preferable transition is 0100 — 1100 since the corresponding line is the
thickest.

Following this path further we can see the leading channel in the graph:
0000 — 0100 — 1100 —1101 — 1111. And by decoding the bit system back
to the bonds between [-strands, we find the order of unfolding for the bonds:
CBED.
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Letus point out one more interesting observation you can get from the graph.
The most likely final state is 1111: all bonds are broken. But you can see an-
other state which is also a final state for some fraction of the simulations: 0111
where the B bond remains. The thickness of blue and green stripes on the
corresponding link says that the forward and backward transitions are equally
likely. But at the same time, 1111 is more likely than 0111. What does this
mean? It means that most of the transitions 0111 — 1111 happens after the
B bond was restored first! We can come to the same conclusion if we look at
the links that come to 0111 from the top of the graph. There are only 2 tran-
sitions there: from 0101 and 0110. But the thickness of those 2 links together
is smaller that 0111 — 1111 transition which can only be explained as we did
above. Why is it an interesting observation? It tells us something about the B
coupling. Even though the B bond is the second to break, it is the first to be
restored after the protein is fully unfolded.

More results

Figure 11.5. The graph of unfolding for £ = 5 V/nm.

Now let see what happens with E = 5 V/nm. The graph is presented in
Figure 11.5 and has the same scale as Figure 11.4. In this case, we can see
even more clearly the preferable unfolding pathway. It begins with breaking
the C bond as for E = 11 V/nm case, but then the tendency changes. Instead
of breaking the B bond as before, now the D bond breaks: 0100 — 0110. The
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next transition 0110 — 0111 — E breaks like for the previous case. And finally,
the D coupling is unfolded. The pathway now is CDEB (compare to CBED
for E =11 V/nm).

We see that for the strong and weak fields, the protein undergoes 2 different
pathways of unfolding. This phenomenon we will discuss in the next section.
But here, in the end, let us again look at the final states (yellow dots). We see
the same kind of oscillation between 1111 and 0111 like for E = 11 V/nm, but
this time the preferable final state is 0111, where the B bond is still there.

Discussion

I will present 2 more results for different electric field strengths we have. For
your convenience, | plot them together with 2 old results we just discuss to
have the field’s values in order: Figure 11.6- 11.9. The scale and the structure
of all graphs are the same.

Figure 11.6. E =3 V/nm.

Figure 11.8. E=7 V/nm. Figure 11.9. E=11 V/nm.
One can see that the graph for E = 7 V/nm if something between the E =
5 V/nmand E=11 V/nm cases. The leading channel still goes through 0100 —
0110 like for the weaker field, but the new pathway through 0100 — 1100
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opens up and becomes dominant for the strongest field. Hence there is a
smooth transition between the CDEB and CBED pathways.

The results for E = 3 V/nm shows that the structure is not unfolded com-
pletely. We have a lot of cases where none of the bonds were broken. This
goes in line with the results for the radius of gyration in Figure 11.1. Notice
that in the simulations where the unfolding began, the B bond was always pre-
served at the end.

So what is the summary of the study we just have discussed? The first
bond to break is C. If we look again at the ubiquitin structure in Figure 11.2
we can see that C connects the beginning and the end of the chain. Thus this
result should not surprise us. Other conclusions, however, are less trivial. The
hardest coupling to break is B. If the protein is fully unfolded, then B would
be the first to reconnect back. But if somehow you break the B bond before
D and E (in our case with a very strong electric field), then the protein should
undergo full unfolding before recreating it again.

Finally, we promised to compare our unfolding with the results for thermal
and mechanical ones done by Irback et al. [77]. It turned out that our weak
field E = 5 V/nm reproduces the thermal unfolding pathway: CDEB, while
our strong electric field E = 11 V/nm reproduces the mechanical one: CBED.
It makes perfect physical sense. The weak field behaves like “natural” unfold-
ing by the temperature. And the strong electric field is similar to a “violent”
mechanical unfolding.

11.3 Tertiary and secondary structures

The careful reader can ask a reasonable question: now we are talking about
folding and unfolding but earlier in the thesis, we talked about collapsed and
SARW phases. We always referred to the tertiary structure when we discussed
the phase, and now we look at the 5-sheet, which is a secondary structure. Is
there any connection? This is an excellent question! And luckily, we already
have developed the tool in Part III to answer it!

Let us start with plotting the RG observable VS scaling step in the same way
as we did it in chapter 7 for Figure 7.2. The result is presented in Figure 11.10.
Now we want to trace the evolution of the system with time, so having a 2D
plot for classifying the phase is not convenient any more. What we need is one
number instead.

From the discussion in Part 1l and Figure 7.2 we know that the critical thing
to distinguish the phases is the sign of the RG flow curves. So let calculate the
integral of the observable (or the area under the curve) in Figure 11.10 and
compare this number to 0. If the integral is positive, then we are in the SARW
phase, and a negative integral means the collapsed phase.

The dependence of the integral of the observable on time for different values
of the electric field is presented in Figure 11.11. Note that the time axis goes
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Figure 11.10. The RG observable from Eq. (6.12) for native ubiquitin conformation.

only up to 9 ps, not the full 50 ps as for Figure 11.1. What we immediately
see is the different behavior of the green curve E =11 V/nm. E=3, 5 and 7
V/nm follows the same pattern, but E = 11 V/nm does not fit it because it has
an initial hump. We also calculated electric field E =9 V/nm to see if there is
a smooth transition between those 2 different patterns. And it seems it is.

The result we got is fascinating! Two different pathways of unfolding which
we cannot distinguish with the radius of gyration (Figure 11.1) show different
behavior in our RG observable (Figure 11.11.)! To find 2 different unfold-
ing pathways, we had to know everything about the secondary structure of the
protein and implemented a special procedure for measuring the distances be-
tween the center of masses of single 5-strands. The RG observable does not
require more information than just atom positions. But it can “feel” secondary
structures without any information about them, as our result shows.

Time graphs

There is one more interesting thing we can investigate. How does the sec-
ondary structure look at the transition point when the integral of the observable
is equal to 0? At that point, there is a transition between the collapsed phase
and the SARW phase.

We again will use our graphs from the previous section but in a bit different
way. Before, we presented all the simulations at all time steps on the graph.
We can do a similar thing but for only one time step, see Figures 11.12, 11.13.
We took 100 simulations and analyzed the transitions for one fixed time step
t where the integral of the observable in Figure 11.11 equals 0. It is done in a
Markovian way: if the state at time ¢ — dt was different from the state at ¢, we
link the states with a line. The convention for the colors is the same. The green
line is the transition from the top of the graph toward the bottom, and the dark
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Figure 11.12. E=5 V/nm. Figure 11.13. E=11 V/nm.

blue line is vice versa. The size of the red points is proportional to the number
of simulations in the corresponding state. The “sum” of all point sizes always
corresponds to 100 simulations.

If we assume that the graphs represent the secondary structure and our RG
analysis corresponds to the tertiary structure, we can make a nice conclusion
from the results in Figures 11.12, 11.13. Both figures represent the time when
the tertiary structure is broken, and how “far” the flow went toward the bottom
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of the graph reflects how much the secondary structure is disturbed. Thus
we can say: in a weak electric field, the tertiary structure breaks faster than
the secondary structure. But in the strong electric field, the tertiary structure
breaks slower than the secondary one.

The conclusion we got shows that the RG method we developed in Part 111
can not only distinguish the phases but also distinguish the different pathways
of the unfolding process. This works for ubiquitin. Does it work for other
proteins? This is an interesting topic for further research.
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12. Simulations: Orientation in a
Time-Dependent Field

Let us look again at the already familiar paper of Marklund and others [65].
The authors consider a constant electric field in all their simulations. However,
any real experimental implementation will give a ramping up of the field: when
the field increases from O to a desired constant value. In this chapter, we will
discuss our study of the orientation of ubiquitin in such ramping up fields.

12.1 Simulations

Eo = 3.0 V/nm
Eo =2.5V/nm
Eo = 1.5 V/nm
Eo =1.0 V/nm

to=9ns

Eo = 0.5 V/nm
Eo =0.2 V/nm

to=0ns_ Eo = 0.1 V/nm
7 7
- 3 electric field + 10 nsin presense of
implementations. electric field.

Figure 12.1. The schematic picture of the simulations. We increased the electric field
from 0 to F in the ramping time to. We did 4*8 = 32 simulations for different param-
eters F and t( including 8 constant electric field (where ¢7=0).

The GROMACS software which we use allows to add an electric field to
the MD simulations in the form of a Gaussian envelop

(t — tg)?
202

E(t) = Epexp (— > cos(w(t —to)) (12.1)

where t is time. Then the needed electric fields (as schematically pictured in
Figure 12.1) can be compiled from two pieces

. w:7r/2to,(f:1/w, 0<t<ty
E®) { oc—oo,w=1/c to <t ' (12.2)
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Our aim is to test different final fields £y and ramping times t(, as shown
in Figure 12.1 to study the problem.

We will continue to work with ubiquitin in a vacuum because our target is
SPI experiments. The starting configuration corresponds to the perpendicular
orientation of the protein’s dipole moment to the electric field. The length of
all simulations is 10 ns. Every single run was repeated 10 times to collect the
statistics.

12.2 Results

Since we are interested in the protein orientation in an electric field, we need
some observable to measure the orientation. Let us introduce © the degree of
orientation as

© =1—cos(ZEd) , (12.3)

where ZEd is an angle between E — a vector of the applied electric field and
d — the dipole moment of ubiquitin.

We start our simulations at © = 1 and see if the observable vanishes as it
should be when the protein is fully aligned with the electric field.

0.351 ¥ to=0ns
0.301 ¥ th=2ns
c ¥ to=5ns
£0.25 to=9ns
s
C
20.20
o
S 0.15
(0]
g
£0.101 %
[a)
0.05{
x % .
0.001 x “ x
00 05 10 15 20 25 30
Eo (V/nm)

Figure 12.2. The degree of orientation © (Eq. (12.3)) as a function of the maximum
value of the electric field Fy and the ramping time ¢.

In Figure 12.2 we plot the orientation degree © after 10 ns of simulations
averaged over 10 independent runs versus the maximum value of the electric
field £y and as a function of the ramping time ¢y (including constant field
to = 0). Here we can see that all ramping times work almost the same. Only
when the final field Ej is very week smaller ¢y orients ubiquitin better. But
starting with Ey = 0.5 V/nm, the results seem not to depend on ¢y and all
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fields work quite well. Not an interesting result at all. But maybe we can
measure the time of orientation somehow and see something interesting there?

1.0 —— simulations
fit: f(t) = exp((-1.44 £ 0.01)t)
< 0.84
©
J5
$ 0.6
G
G
0 04
o
(o))
]
0.2
0.0< M‘—' « ey JrE
0 2 4 6 8 10
Time (ns)

Figure 12.3. The time evolution of degree of orientation averaged over 10 independent
runs for the parameters £y = 0.5 V/nm, ¢ty = 2 ns (black line). The red line is the
result of fitting it with the function f(t) = exp (—kt).

If we look at the evolution of © with time, we can see its exponential nature
as shown with the black line in Figure 12.3. This means that we can fit it by
the exponent f(¢) = exp (—kt), as shown with the red line. Using the fitting
parameters we can find the time 7 when the protein looses 90% of its initial
orientation, which means that it is 10% away from the desired orientation along
the field.

f(r)  exp(—kT) In 10
F0) 1 =01l=7= o (12.4)

Let us now plot time of orientation 7 for all Fy and ¢, Figure 12.4. There
should be no surprise: the “slower” fields (with larger ramping time) require
more time to orient the molecule in the field. But let us investigate the value
of the electric field at the time of orientation 7. The plot is presented in Fig-
ure 12.5. We can see that for all £y and the ramping times ¢, (except the trivial
case tg = () the orientation happens at the same value of the current electric
field £ =~ 0.5 V/nm. Apparently, the orientation time for the protein depends
only on the value of the electric field at the moment, but is independent of the
maximum value Ey and the ramping time t.

The last question we should answer before celebrating the good result is
the structure’s stability in our simulations. This time we only want to orient
ubiquitin but not unfold it. So we should check that the fields we use do not
change the original conformation significantly.

99



81 ¥ ty=0ns
y I to=2ns
¥ to=5ns
6 to =9 ns
m
%
£,
~
x
24 "
X x
X X x x *
0 X x X X X
05 10 15 20 25 30

Eo (V/nm)

Figure 12.4. The time of orientation 7 (Eq. (12.4)) as a function of the maximum value
of the electric field £y and the ramping time ;.

For investigating this we will calculate the Root Mean Square Deviation

N
1 )
RMSD = |+ ;Zl(ri — )2, (12.5)

where r; is a radius vector of i-th and r; is the radius vector of the same atom
but in the reference configuration. NN is the number of atoms. Unlike the radius
of gyration, RM SD is a relative measure: it shows the structure’s deviation
from the reference structure. In our case, we choose the reference structure to
be the untouched ubiquitin or ubiquitin at ¢ = 0.

In Figure 12.6 we plot the dependence of RM SD(7) on Ey and 9. When
RMSD is smaller than 0.1, the configuration can be considered the same as
the reference. We see that almost everywhere (except the constant field for
high Ey), the configuration does not change significantly.

Our result is optimistic for experimentalists. It gives much freedom to the
producers of the orientation device. They should make an apparatus that can
provide the required value of the electric field (£ ~ 0.5 V/nm), but how fast
it will be reached does not matter. The second good result of the stability
of the structure we shall call orientation before destruction by analogy with
diffraction before destruction. The latter, as we discussed in Part IV, makes
SPI a possible alternative for protein imaging since the structural information
can be obtained before the high-intensity laser destroys the sample. Our result
shows that the protein’s orientation in the strong electric field can be done
before this strong field unfolds the sample, which is also necessary for being
used in an SPI pipeline.
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Figure 12.5. The electric field at the time of orientation E(7) as a function of the
maximum value of the electric field £y and the ramping time .
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Figure 12.6. RMSD (Eq. (12.5)) as a function of the maximum value of the electric
field Ey and the ramping time ;.
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13. NMR data converter for GROMACS

In Part IV we mentioned the NMR technique to obtain the experimental data
about protein geometry. NMR experimentalists have special databases and
file formats to upload their results. MD simulations can gain from using NMR
data. In Paper VI we present a Python package for converting NMR data to
GROMACS format [78] and suggest the values for such simulations’ parame-
ters.

This work is not as interesting from a physical point of view as the things
we discussed before. However, it contributes to the community as a new tool
for improving MD simulations.

All the details can be found in Paper VI, no need to repeat them here.
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Part VI:
Epilogue






14. What 1s next?

In the thesis, we have answered many questions about polymers and proteins
simulation, behavior, and properties. Nevertheless, as with any good research,
it opens up even more questions that wait for their answers. Let us state some
of them clearly.

In Part II and corresponding Paper I we improved the effective Hamilto-
nian for chiral polymer chains presented in papers [37, 35] to obtain the real
collapsed phase and several other remarkable phases and crossovers. The main
question for future investigation is to find a way to describe real proteins with
the model. Can we put in correspondence the data from PDB and 6 free param-
eters for each atom of our Hamiltonian? Then this description can be a new
tool to study protein folding.

Part III and Paper II suggested a novel way for phase definition for a single
polymer chain. The robust mathematical background, possible practical imple-
mentation, and clear usefulness of the method make it an interesting subject for
further study. However, the new field it opens is so big that one could make
another PhD thesis there. One can start with trying other scaling procedures
and compare them with the existent results. In the best case, the result should
be independent of the scaling procedure, but we do not know this unless we
try. The role of the truncating parameter k£ in Eq. (7.1) is slightly discussed
but not investigated enough. Can it indeed “probe” the polymer on different
scales?

Can we use our RG method for the classification of proteins like it is done in
Structural Classification of Proteins (SCOP) database or CATH Protein Struc-
ture Classification database, or Families of Structurally Similar Proteins (FSSP)
database? Will we get similar classifications to those databases or different?
Why?

We also used the RG method in part V for the unfolding of ubiquitin in a
strong electric field. What about other proteins? Will it work for them as well?
Can we find a universal way to define protein unfolding pathways with just the
notion about all atoms’ coordinates?

Paper I1II is also a first humble step in a statement of a new smoothing
algorithm. An extensive study is needed there. However, that topic lies in the
field of computer science rather than physics.

Papers IV and V applies molecular dynamics to simulate ubiquitin in a
strong electric field. We have studied the unfolding of the protein and the
orientation without significant structural damage. The next step there can be
to study the orientational stability after the field is turned off. Then the question
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of the electric field boundary conditions in time will be entirely closed. The
other obvious way to go is to try other structures and compare the results.

Finally, Paper VI is an example of improvement of the GROMACS frame-
work. The power of any open software is in the collaboration of many different
people around the world. Every even small improvement is an important step
in the GROMACS development and can help many researchers. The more
open and transparent GROMACS can be toward the potential collaborators,
the more efficient the scientific and academic community can be. And then all
together we can move toward a happy future.
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15. Summary

Proteins are often called “molecules of Life”. This type of biomolecules build
our tissues and define our health, mood and behavior. Half of the human body’s
dry mass is proteins, which is approximately 10% of the total mass. Almost all
the drugs we use target some protein. The proper functioning of any organism
depends on the proper functions of its proteins. And the proper functioning
of proteins depends not only on their chemical composition but also on their
three-dimensional shape. The process of creating this shape is called protein
folding. The same chemical structure allows several shapes. The correct one
is called native conformation, while the others are misfolded conformations.
In the best case, the latter works a bit worse than the protein in the native
conformation. In the worst case misfolded proteins become toxic and lead to
severe diseases like Alzheimer’s or cancer.

As we see, the protein study is vital for humanity. The better we understand
the corresponding processes the faster and cheaper we can make new effective
medicine when it is needed.

Any science can be divided into experimental and theoretical ones. [ am
working in the field of theoretical physics. The main instrument for my study
is computer simulations. And there are different ways to simulate proteins. We
started with the Monte Carlo method.

Monte Carlo is a statistical method which allows to find the ground state of
a system. By varying the parameters of the effective model used for the system
simulations, one can obtain its phase diagram. We did this for our homopoly-
mer model of proteins in Paper I and build a three-dimensional phase portrait
for it.

In the paper above, we used the classical definition of polymer phases,
which work only for homopolymers. The real proteins in any representation
are heteropolymers. In Paper II we developed a new method based on the
renormalization group (RG) theory to distinguish phases of heteropolymers.
This activity led to the quite interesting smoothing algorithm presented in Pa-
per IIL

In Papers L, IT and III, I used my own software, which I specially devel-
oped for this research. It unites several programs in different programming
languages and now is distributed openly under the Apache 2 license agree-
ment.

Another way for protein simulation is the Molecular Dynamics (MD) ap-
proach. This is a “fair” way to simulate the dynamics of proteins, taking into
account the real physics. We use one of the most popular software for MD —
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GROMACS. But before talking about the next paper we have to look at exper-
imental science.

We are interested in protein structure recognition. For most ( 80%) proteins
ever experimentally resolved, scientists used the method of X-ray crystallogra-
phy. The method’s idea is to crystallize the sample and then expose it to X-ray
radiation to get a diffraction pattern. Later, from this diffraction pattern, one
can recreate the 3D structure of the protein. The obvious problem of X-ray
crystallography with the application to proteins is the crystallization part. This
process unavoidably changes the original conformation of the molecule. So
the picture we get does not completely (or completely does not — we do not
know) corresponds to the protein of interest.

The new era of lasers allows to do X-ray sampling of just one protein, with
no need for crystallization. This conception got the name Single Particle Imag-
ing (SPI). It was predicted that the very intense X-ray laser beam (which is
needed for SPI) has to destroy the sample every time a new measurement is
done. Then one has to prepare many samples and set up the sample delivery
pipeline, for example, using an aerosol spray method. The downside of aerosol
spray is that the delivered particles are orientated arbitrarily. This makes the
experiment more complicated and expensive.

A smart way around the random particle orientation was suggested some
time ago. Most of the biomolecules have a non-zero dipole moment, and can
thus be orientated in an electric field. This orientation will fix 2 out of 3 de-
grees of freedom. If one increases the applied electric field, the protein starts
to unfold. The question is: does the unfolding happen the same way every
time? If it is so, then SPI can record the unfolding video for the first time in
history. We can prepare many samples of the same state of this process and
thus resolve one frame of unfolding. By repeating this procedure for every
unfolding frame, we can compile the movie of the phenomenon. This ques-
tion is the topic of Paper 1V, where we investigate different pathways of the
unfolding for the protein ubiquitin. For this purpose I suggest a special sort of
graph representation. In this thesis, I also connect the unfolding with the phase
definition (Paper I) using the RG method developed in Paper II.

In Paper V we investigate how a time-dependent electric field orients ubig-
uitin. Apparently, it becomes orientated when the electric field reaches a par-
ticular value, but how fast this value is reached is unimportant.

The last Paper VI is very technical. We developed a Python code to in-
tegrate the experimental data from the Nuclear Magnetic Resonance database
with GROMACS. We also suggested the optimal parameters for further MD
simulations. The code is also open source under the Apache 2 license agree-
ment.
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16. Sammanfattning pa svenska

Proteiner kallas ofta f6r “livets molekyler”. Denna sorts molekyler bygger upp
var viavnad och avgor var hilsa, humor och beteende. Hélften av ménniskans
torra massa dr proteiner, vilket &r ungefar 10% av var totala massa. Néstan
alla ldkemedel riktar in sig pd ndgot protein och organismer dr beroende av
att deras proteiner fungerar som de ska for att sjdlva fungera. Att proteinerna
fungerar som de ska beror inte bara pa deras kemiska uppséttning utan ocksa pa
deras tre-dimensionella form. Den process genom vilken denna form skapas
kallas for proteinveckning. Samma kemiska struktur tillater flera olika former
och den rétta formen kallas for dess naturliga tillstdnd, medan Gvriga tillstand
ar felveckade. I bista fall fungerar de senare lite simre 4n det naturliga till-
stdndet. I vérsta fall 4r felveckade proteiner giftiga och kan leda till allvarliga
sjukdomar sdsom Alzheimers och cancer.

Som vi ser dr studier av proteiner livsviktiga for médnskligheten. Ju béttre
vi forstar proteiners natur, desto snabbare och billigare kan vi utveckla nya
effektiva mediciner da de behovs.

Varje vetenskap kan delas in i experimentell och teoretisk vetenskap. Jag
jobbar inom teoretisk fysik. Det framsta verktyget for mina studier &r dator-
simuleringar och proteiner kan simuleras pé olika sétt. Vi borjar med Monte
Carlo.

Monte Carlo &r en statistisk metod som gor det mojligt att hitta ett sys-
tems grundtillstand. Genom att variera parametrarna i den effektiva modellen
som anvinds for att simulera systemet sa kan ett fasdiagram hittas. Vi gjorde
detta for homopolymermodellen for proteiner i Paper I och skapade ett tre-
dimensionellt fasdiagram.

I artikeln ovan anvinde vi den klassiska definitionen av polymerfaser, vilket
endast fungerar for homopolymerer. Verkliga proteiner dr heteropolymerer. I
Paper II utvecklade vi en ny metod som baseras pa renormeringsgruppsteori
for att sdrskilja olika faser for heteropolymerer. Denna forskning ledde ocksa
till den intressanta utjamningsalgoritmen som presenteras i Paper I11.

I Paper I, II och III anvinde jag min egenutvecklade mjukvara som var
specifikt utvecklad for denna forskning. Den sammanlénkar flera program i
flera olika programmeringssprak och finns nu fritt tillgéinglig online under en
Apache 2 licens.

Ett annat sétt att simulera proteiner pa dr med hjélp av molekyldardynamik
(MD). Detta &r ett “rattvisande” sitt att simulera proteindynamik som reflek-
terar den verkliga fysikaliska utvecklingsprocessen. Vi anvinder en av de mest
populdra mjukvarorna for MD — GROMACS. Men innan vi gar in pa de fol-
jande artiklarna beh6ver vi ndmna den experimentella vetenskapen.
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Vi ér intresserade av att kénna igen proteinstrukturer. For de flesta (80%)
proteiner dir strukturen bestdmts experimentellt s& har forskare anvént ront-
genkristallografi. Metoden bygger pa att provet kristalliseras och sedan utsétts
for rontgenstralning for att skapa ett diffraktionsmonster. Fran detta diffrak-
tionsmonster kan sedan proteinets 3D-struktur aterskapas. Det uppenbara prob-
lemet med rontgenkristallografi ar kristalliseringen. Denna process leder ofran-
komligen till en fordndring av molekylens struktur. Sa den bild vi fér 4r inte
helt (eller helt enkelt inte alls — detta vet vi inte) samma som den proteinstruktur
som Vi dr intresserade utav.

Den nya lasereran tillater rontgenbestralning av enskilda proteiner utan krav
pa kristallisering. Denna idé har fatt bendmningen enpartikelsavbildning, eller
single particle imaging (SPI) pa engelska. Det har forutspatts att valdigt stark
rontgenstralning forstor provet varje gdng en mitning utfors. Darfor maste
manga prov forberedas for att sétta upp en provleverans-pipeline. For att as-
tadkomma detta dr det mojligt att anvianda en aerosolmetod. Nackdelen med
denna metod 4r att de levererade partiklarna kan vara orienterade i godtycklig
riktning, vilket gor experimentet mer komplicerat och dyrt.

Ett smart sitt att kringgad problemet med godtycklig orientering foreslogs
for ett tag sedan. De flesta biomolekyler har ett nollskilt dipolmoment och kan
darfor orienteras i ett elektriskt filt. Denna orientering fixerar tva av tre fri-
hetsgrader. Hojs det elektriska filtet ytterligare borjar proteinet att vecka ut
sig. Fragan dr om denna utveckning sker pd samma sitt varje gdng. Skulle
det vara sé, da skulle SPI for forsta gdngen nagonsin kunna spela in utveck-
ningsprocessen pa film. Vi kan férbereda manga prov i samma tillstdnd av
denna process och pa sa vis framkalla en bild av ett enskilt steg i denna pro-
cess. Genom att upprepa denna procedur for varje steg sa kan vi skapa en
film av detta fenomen. Denna fraga studeras i Paper 1V, dér vi undersoker de
olika sitt som proteinet ubiqiuitin veckar ut sig pa. For detta andamal f6reslar
jag en speciel slags grafrepresentation. I denna avhandling kopplar jag ocksa
samman utveckningen med fasdefinitionen i Paper I med hjilp av RG meto-
den som utvecklats i Paper II.

I Paper V undersoker vi hur ett tidsberoende elektriskt félt orienterar ubiq-
uitin. Tydligen orienteras det nér det elektriska féltet nar en viss styrka men
hur fort detta véirde uppnas &r mindre viktigt.

Den sista artikeln Paper VI &r mera teknisk. Vi utvecklade en Python-kod
for att integrera experimentella data frain NMR-databasen (kdrnmagnetisk res-
onans) i GROMACS. Vi foreslog ocksé de optimala parametrarna for MD-
simuleringar. Koden &r ocksa open source under en Apache 2 licens.
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17. Kparkoe coziep:kaHre Ha PYCCKOM SI3BIKE

Benku Hepeako Ha3BIBAIOT MOJIEKyIaMU )KU3HU. OHU (POPMHUPYIOT HAIIIN TKAHH
U OIpPENENSIOT Halle 310pOBbe, HACTpOEHHUE U noBeAeHue. lomoBuHa cyxoi
MAacchl Tela Yel0BeKa COCTABIIIOT MPOTEHHBI, 4T0 prdmu3utensHo 10% ot
o0meii maccel. [louTu Bee nexapcTBa, KOTOPBIE MBI HCIIONB3yeM, HalleJIeHbI Ha
KaKOI-TO KOHKPETHBIH Oentok. [IpaBuibHast pabota 100010 )KHBOTO OpraHn3Ma
3aBHCHUT OT MPAaBHILHON paboTHI ero OenkoB. B cBoro ouepesp, mpaBUIbHAS
paboTa OeNTKOB 3aBHCHUT HE TOJIBKO OT MX XUMHUYECKOH CTPYKTYPHI, HO M OT UX
TpexMepHoit popmel. [Iporecc hopMupoBaHms 3TOH caMoit hOpMBI Ha3bIBACT-
csl cBepThIBaHMeM OenkoB. OTHA 1 Ta Ke XUMHYECKasi CTPYKTypa MOXKET MPH-
BOIIUTH K pa3HbIM opmam. [IpaBunbHas cBepTka Oesika Ha3bIBaeTCsl HATUBHOM
cTpykTypoit. OcTaibHbIe KOHPOPMAITIH SBJISIOTCS HETIPaBUIHLHBIMA. B ryd-
ImeM ciiydae OHH paboTaloT HEMHOTO XyXKe, YeM HaTHUBHas CTPYKTypa, a B
XyJIIeM — CTaHOBSITCS TOKCHYHBIMHU ¥ BBI3BIBAIOT Psi/I CEPHE3HBIX 0OJIE3HEH,
B TOM YHCIIEe 00JIe3Hb AJBIITeMepa U pak.

Kak BuanO, ucciaenoBanne OEKOB OYEHb BaXKHO JJIS YesloBeuecTBa. Uem
JTydIIe MbI TOHAMAEM TIPOIIECChI, C HUMU CBSI3aHHBIC, TEM OBICTPEE U ICTIIEBIIC
MBI CMOKEM TPOU3BOIUTH HOBBIE HEOOXOTUMBIE JICKAPCTBA.

N3ydenne Bcex €CTECTBEHHBIX HAYK MOXKHO Pa3AeIuTh Ha IKCTICPUMEHTAITh-
HOe U Teopetuueckoe. S paboraro B chepe MoCiIeIHEro, U MOM IIaBHBINA HWH-
CTPYMEHT B 3TOM — KOMITBIOTEpHBIC CUMYJSIUU. CyIIeCTBYeT HECKOIBKO
MTOJIXOIOB U1l CUMYIISILIMH O€JIKOB, HO TaBaiiTe HauHeM ¢ MeToaa MounTe-Kapio.

MonTte-Kapo 310 craTuCTUUECKU METO/I, KOTOPbIN MO3BOJISIET JJOBOJIBHO
OBICTPO (B CPaBHEHUHU ¢ METOJIOM MOJICKYJISIPHOM JMHAMUKHU, KOTOPBIH MbI 00-
CyINM Jajiee) HAaTH OCHOBHOE COCTOSIHHE CHCTEMBI. Bapbupys mapaMeTpsl
3¢ (eKTUBHON MOJIEIIH, KOTOPO OMTUCHIBACTCSI JIAHHAS CUCTEMa, MOYXKHO HAHUTH
ee (a3oByrO TUarpammy.

B crarbe [ Mbl cienanu 3To 15 Haleid MoIesId OTHOPOJHOM LEIH U IOy Y-
JIU ee TpeXMepHbIY (a30BbIil mopTpeT. B 3T0ii cTaThe MBI HCIIOIL30BAIIN KJIAC-
cudeckoe omnpezeneHre (a3 monuMepa, KoTopoe padoTaeT TOJIbKO B CIydae
oJHOpoaHOM enu. Ho peanbHbie OEIKU B JTFOOOM MPEICTABICHUU SBISFOTCS
HeojHopoaHbiMU. B crarbke 1l MBI pa3paboTanu HOBBIM cIOCO0 OmpeIeIcHHs
(ha3 HEOJHOPOMHBIX IIeTIe, UCTIONB3Ys uieto pernopmrpyt (PT). Dra padora
MpuBeia K JOBOJIHHO MHTEPECHOMY aJTOPUTMY CINIAKUBAHUS, OTUCAHHOMY B
crarse I1I.

B crarpsax I, 11 u 111 st ucrions3oBana cBoe COOCTBEHHOE IPOTpaMMHOE 00ec-
MeYCHHE, CTICLIUAIbHO HAUCAHHOE 1)1 3TUX 1eneid. OHO COCTOUT U3 HECKOJIb-
KHUX OTACJIbHBIX IPOrpaMM, HAlIMCAHHBIX Ha Pa3HBIX sI3bIKaX IPOrpaMMHUpPOBa-
HUS1, ¥ HAXOAHUTCS B OTKPBITOM JIOCTYTIE 110 JTUTleH3un Apache 2.
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Jpyro#i crocod CUMYISIUN OCIKOB — METOJ] MOJCKYJISIPHON JUHAMUKH
(MI). Ml — 3TO «4ecCTHBIH» CrOCO0 CHMYJSIMH, TaK KaKk OH OCHOBaH Ha
Hacrosiiell ¢usuke mpouecca. s Takol paboThI MBI UCTIONB3YEM OJHMH M3
cambix nomynsipasiil M/l nakeroB — GROMACS. Ho nepen Tem, kak HauaTb
paccMarpuBarh CIIEAYIONIUE CTaThH, AaBaiiTe 00paTuMcs K SKCIICPUMEHTY.

Hac untepecyer pacrno3HaBaHHe CTPYKTYPBI OCIIKOB, T.€. UX (JOPMBIL.

Hus 6onbmacTBa ( 80%) OnmKOB, KOraa-mu00 UCCIIE0BaHHBIX IKCIEPH-
MEHTaJIbHO, YYEHBIE HCIIOJIb30BAIM METO/I PEHTIT€HOBCKON KpHCTasiorpaduu.
Wnes 3akirogaeTcst B TOM, YTOOBI KPUCTAIIM30BaHHBIH 00pa3el] 00 1y4YnTh PeHT-
TEHOM JUIS TOJIyYeHHs] AU(PPAKIUOHHON KapTUHBI. OTa KapTHHA HYXHA IS
BOCCO3/IaHHsI TPEXMEPHOH CTPYKTYphl Ocnka. OueBHaHas mpobiemMa 3Toro
MeTo[a — IIPY KPUCTAJUIN3ALMHY IEPBOHAYAIbHAS CTPYKTypa NPOTEHMHA HEU3-
0exHO MeHsieTcs. Tak YTO KapTHMHKA, KOTOPYIO MbI IIOJIy4aeM B UTOTE, He
COBCEM (MJIM COBCEM HE — MBI HE 3Ha€M) COOTBETCTBYET HCKOMOMY OEJIKY.

HoBas 3pa na3epoB gaeT BO3MOXKHOCTb PEHTTEHOBCKOTO aHAJIM3a JJIs1 OHOTO
poTerHa 0e3 HeoOXOAMMOCTH KPUCTAIIM3ALUH. DTOT METO. [IOJTy4II Ha3Ba-
Hre ogHowactnyHas pentrenorpadus (OP) (Single Particle Imaging). bruio
IIPEACKA3aHO, YTO JIa3ePHbI JIyd, KOTOPBII B 3TOM CIIy4yae 10JKeH ObITh OUEHb
HMHTEHCUBHBIM, HEM30€KHO NIPUBOAUT K Pa3pyIICHUIO 00pa3lia B KaXI0M HO-
BOM M3MEPEHHUM. DTO 3HAUUT, YTO ISl KAKIOI0 HKCIIEPUMEHTa HEOOXOIUMO
MTOJTOTOBUTH MHOYKECTBO 00pa3IOB M HAJAJAWTH UX TIOCTABKY K JIydy Jiazepa.
Hanpumep, mi1st 3TOro MOXKHO HCTIONB30BaTh TEXHUKY a’spocmpes. OjHaxo,
Yy TaKoro METOZa €CTh HeIOCTaTOK — HCCIeAyeMasi YacTUIa PAacIiooKeHa B
MIPOCTPAHCTBE CIYYaHBIM 00pa30M, YTO YCIOXKHSAET HKCIIEPUMEHT U JeJaeT
ero 0ojee JOPOTHM.

CoBceM HeaBHO OBIT MPEJIOKEH CIIOCO0 peIeHus MPOOJIEMBI CITydaifHON
OpHUEHTALINH.

BonpmmHcTBO OMOIOrHUeCKUX MOJIEKY/ IMEIOT HEHYJIEBOM TUIONbHBIN MO-
MEHT. DTO MO3BOJIIET OPUEHTUPOBATh MOJIEKYJIBI B AIIEKTPHUUECKOM I10JIE, CO-
Kparas 4ucio cTerneHeil cBoOobl CHCTEMBI C Tpex /10 ogHoW. Ecnmu HauaTh
YBEJINYMBATH IEKTPUUYECKOE T0JIe, TO OEJI0K HaYHEeT pa3BopaduBarscs. 1 Bo3-
HUKaeT BOIPOC: OIUH M TOT ke OeJIOK pa3BOpadMBaETCsl BCErAa OIMHAKOBO
i no-paznomy? Ecnn omuHakoBO, TO MBI CMOIIIH OBl 3alicaTh BUIEO pas-
BOpaurBaHUs Oelka BIiepBble B UCTOPHH. [IpUroTOBHB MHOTO 00pa3OB OJHOI
U TOH e CTaJuy pa3BOpaYMBaHMsI, Mbl MOTIIM Obl ucmions3oBaTh OP amst Boc-
CO3JIaHus TpeXMepHOH Mozenu Oenka. [1oBTOpsist TOT mponece Jist KakJ0ro
MOMEHTa BPEMEHH pa3BOPAaYMBaHMS, MbI MOTYYHIH OBl 3alHICh BCETO STOTO
SIBIEHUS. DTOT BONPOC — TeMa UccliefioBaHus cTaTbu [V, Tie Mbl nzyyaem
pasHble MyTU pa3BopaynBaHus Oenka 0OMKyTHHA. IS 3TOTO s Mpezsiararo
HCIIOJIb30BaTh METO/ rPpadoB.

B nanHO# nuccepranuu sl HOKa3bIBAIO CBSA3b Pa3BOPAYMBaHUs IOOMKYTHHA
(crates V) ¢ onpenenenuem a3 (crarbs [), mons3ysck mertogom PI, pazpabo-
TaHHBIM B cTatbe I1.
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B crarse V MBI H3ydaeM, Kak MEPEMEHHOE IEKTPUUYECKOE M0JI€ OPUEHTH-
pyer mpotenH OUMKYTHH. OKa3bIBaeTCs, MOJHAs OPUCHTALMS MPOUCXOIMT,
KOTJIa SJICKTPUYECKOE ITOJIE IOCTUTAET OTIPEICIICHHOTO 3HAYSHHS, & KaK OBICTPO
3TO MPOUCXOIUT — HEBAXKHO.

[Mocnenusist cratba VI B Gonblield Mepe TeXHHUUECKast — MBI pazpadoTanu
koJ Ha [IuToHe /U1 MHTErpalnu HKCIIEPUMEHTAIBHBIX JaHHBIX, TOJYyYEHHBIX
METOJIOM SIIEPHOTO MarHUTHOro pe3oHanca, ¢ maketom GROMACS. Takxe
MBI [IPEUI0KHUIN ONTHMAJIbHBIE TapaMeTpsl A1 AanpHemux M /I cumynannii.
OTOT KOA TOXKE HAXOAMUTCS B OTKPBITOM JOCTYyIE oA jauueHsuei Apache 2.

113



Acknowledgements

First of all, I would like to express my deepest appreciation to the people who
made this journey possible. Thanks to professor Antti Niemi who invited me
to this magic world of proteins and to my new home — Sweden. Your excellent
physical intuition and broad knowledge let to my most exciting projects. [ am
deeply indebted to my main supervisor Johan Nilsson who gave me the most
valuable things: money and freedom. You allowed me to find my way, and
I am very grateful for that. Special thanks to Maksim Ulybyshev, the great
physicist and the great person. Your contribution cannot be overstated.

My success would not have been possible without the support and nurtur-
ing of my new second supervisor Carl Caleman, who gave me a chance and
invited me to his wonderful scientific group. Our work together was not long
but very productive. I would like to extend my sincere thanks to my collab-
orators Erik Marklund, professor David van der Spoel and Emiliano De
Santis. It was my pleasure to work with you. Thanks should also go to the
whole international MS SPIDOC group, an inspiring collaboration of bright
and purposeful people.

Many thanks to professor Jonas Fransson, whose doors were always open
for me. It was helpful to talk to you.

I must also thank Swedish National Infrastructure for Computing and
especially Uppmax for all the core hours they provided. Besides, their support
team is amiable and was always ready to help.

Thanks to the whole Materials Theory division, it was five happy years
together. I also had the great pleasure of working with people from Molecular
and Condensed Matter Physics division and from BMC.

Most of my sweet memories are connected to a little red villa, which became
my second home for this time. This house no longer belongs to the Univer-
sity, but is still in our hearts. 1 am very grateful to all the villa’s inhabitants!
We had so much fun together. Exploring the attic and finding hundreds of
fly wings, our BBQ outside altogether, music evenings, walks in the forest,
watching the World Cup in the meeting room, eating Surstroming, and many
more. And special thanks for our exciting lunches. Thanks to Henning — I
learned economics and became an investor only because you were so engaging
to discuss this. Thanks to Dushko, who knows a lot of exciting stuff and is not
scared to think big. We had several great ideas about future projects, like the
anti-matter factory with magnetic field stabilization or the factory for cleaning
the air from CO2 and compressing the side product to diamonds. The world
is just not ready for our progressive ideas yet! Thanks to Juan David, who

114



is always ready to help. I am glad we found a way to be friends. Thanks to
Francesco, who brought a piece of sunny Italy to the villa. The guitar music
you played in our office was fantastic. Special thanks to room 120: Johann
and Tomas. The knowledge that you are my officemates helped me come to the
office even when things went not well. With Tomas, I could discuss whatever,
while Johann reminded us that not all our ideas are socially appropriate. I very
much appreciate Annica, Lucia, Mahdi, Ola, Fariborz, Manuel, Mahroo,
Andreas, Yaroslav Oscar, Anders, Attila, Erik, Jorge, Paramita — you
made the villa so bright and diverse.

Many thanks to Charlotta and Katharina. You supported me in a tough
period in my life. I would like to extend my sincere thanks to Nina and Olga.
My lovely Russian friends who I was destined to meet only in Sweden.

I was raised and educated in Moscow and want to send my sincere grati-
tude to the people there. Thanks to my master supervisor Oleg Pavlovsky,
you were the first who showed me what it means to be a scientist. Thanks
to professor Konstantin Sveshnikov who was always kind to me despite my
not perfect grades. Thanks to the Faculty of Physics at Lomonosov Moscow
State University and all my teachers, they are still preparing world-class spe-
cialists. I would like to acknowledge my fellow students. You made the years
at the university in Moscow much better. Especially, I would like to mention
Sasha Kazantsev. You helped me to understand everything I had not got in
the lectures.

Thanks to my High School 1173 and especially Anselma Nikolaevna Du-
binina, who is unfortunately not with us anymore. My path as a physicist
started there with one phone call from her when she invited me to the school.
Anselma Nikolaevna gathered the most talented and inspiring teachers in physics
and mathematics to educate children and prepare them for the best Moscow
universities. This great woman changed the lives of hundreds of people allow-
ing a better future for them. Your contribution cannot be overstated. Thanks
should also go to my classmates. I am glad that with many of you, we are still
in contact. Special thanks to Alina Petrushina. Your unparalleled support
with learning physics and mathematics led me to where I am now.

I would also like to extend my gratitude to Marita and Thomas Bjornssons
for their warm hospitality (and for their elder son). Most of this thesis was
written in their wonderful house. It is always a holiday for me to visit you and
the whole Bjornssons family.

Thanks to my dear Kristofer. You made me a better programmer, a better
artist, a better physicist, and a better person. I am happy to move forward
together toward our bright future. You are my best team member, and I love
you.

And finally, thanks to my family, for those who have gone and for those
who have arrived. I am deeply indebted to my mother, Olga Sinelnikova, and
my late father, Boris Sinelnikov, for everything I have achieved. You are my
permanent and unwavering support; I love you. Special thanks to my brother

115



Ilya. You are cool; I am very proud of you. Thank you Luba, little Sasha,
and little Sonya. I am glad our family grows.

I am happy and proud to know all the people above and to have them as a
part of my life.

116



References

[1] World Health Organisation, “Archived: Who timeline - covid-19.”
https://www.who.int/news/item/
27-04-2020-who-timeline---covid-19, 2020.

[2] E. Callaway, H. Ledford, G. Viglione, T. Watson, and A. Witze, “COVID and
2020: An extraordinary year for science,” Nature, vol. 588, no. 7839,
pp- 550-552, 2020.

[3] C. B. Anfinsen, “Principles that govern the folding of protein chains,” Science,
vol. 181, no. 4096, pp. 223-230, 1973.

[4] L. Pauling, R. B. Corey, and H. R. Branson, “The structure of proteins: two
hydrogen-bonded helical configurations of the polypeptide chain,” Proceedings
of the National Academy of Sciences, vol. 37, no. 4, pp. 205211, 1951.

[5] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, “The shape
and structure of proteins,” in Molecular Biology of the Cell. 4th edition, Garland
Science, 2002.

[6] C. Hyeon and D. Thirumalai, “Capturing the essence of folding and functions of
biomolecules using coarse-grained models,” Nature Communications, vol. 2,
no. 1, pp. 1-11, 2011.

[7] D.J. Selkoe, “Folding proteins in fatal ways,” Nature, vol. 426, no. 6968,

p- 900, 2003.

[8] L. M. Luheshi, D. C. Crowther, and C. M. Dobson, “Protein misfolding and
disease: from the test tube to the organism,” Current Opinion in Chemical
Biology, vol. 12, no. 1, pp. 25-31, 2008.

[9] P.J. Thomas, B.-H. Qu, and P. L. Pedersen, “Defective protein folding as a basis
of human disease,” Trends in Biochemical Sciences, vol. 20, no. 11,
pp- 456-459, 1995.

[10] C. M. Dobson, “The structural basis of protein folding and its links with human
disease,” Philosophical Transactions of the Royal Society of London. Series B:
Biological Sciences, vol. 356, no. 1406, pp. 133-145, 2001.

[11] L. C. Walker and H. LeVine, “The cerebral proteopathies,” Molecular
Neurobiology, vol. 21, no. 1-2, pp. 83-95, 2000.

[12] A. Mukherjee and C. Soto, “Prion-like protein aggregates and type 2 diabetes,”
Cold Spring Harbor perspectives in medicine, vol. 7, no. 5, p. a024315, 2017.

[13] H. Ecroyd and J. A. Carver, “Crystallin proteins and amyloid fibrils,” Cellular
and Molecular Life Sciences, vol. 66, no. 1, p. 62, 2009.

[14] A. N. Bullock and A. R. Fersht, “Rescuing the function of mutant p53,” Nature
Reviews Cancer, vol. 1, no. 1, pp. 68-76, 2001.

[15] J. C. Price, S. Guan, A. Burlingame, S. B. Prusiner, and S. Ghaemmaghami,
“Analysis of proteome dynamics in the mouse brain,” Proceedings of the
National Academy of Sciences, vol. 107, no. 32, pp. 14508-14513, 2010.

117



[16] B. H. Toyama and M. W. Hetzer, “Protein homeostasis: live long, won’t
prosper,” Nature Reviews Molecular Cell Biology, vol. 14, no. 1, pp. 55-61,
2013.

[17] A. Sinelnikova, “Polymer chain Monte Carlo.”
https://github.com/Anny-Moon/PCMC, 2017.

[18] A. Sinelnikova, “Polymer chain analyzer.”
https://github.com/Anny-Moon/PCA, 2017.

[19] A. Sinelnikova, “Plotter for PCA.”
https://github.com/Anny-Moon/PlotterPyPCA, 2018.

[20] A. Sinelnikova, “pdb2xyz.”
https://github.com/Anny-Moon/pdb2xyz, 2017.

[21] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4:
algorithms for highly efficient, load-balanced, and scalable molecular
simulation,” Journal of Chemical Theory and Computation, vol. 4, no. 3,
pp- 435447, 2008.

[22] N. Metropolis and S. Ulam, “The Monte Carlo method,” Journal of the
American Statistical Association, vol. 44, no. 247, pp. 335-341, 1949.

[23] S. M. Ulam, Adventures of a Mathematician. Univ of California Press, 1991.

[24] W. Krauth, Statistical mechanics. algorithms and computations, vol. 13. OUP
Oxford, 2006.

[25] E. Schuster, “Buffon’s needle experiment,” The American Mathematical
Monthly, vol. 81, no. 1, pp. 26-29, 1974.

[26] B. Gnedenko and A. Kolmogorov, Limit distributions for sums of independent
random variables. Cambridge, Massachusetts: Addison-Wesley, 1954.

[27] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
“Equation of state calculations by fast computing machines,” The Journal of
Chemical Physics, vol. 21, no. 6, pp. 1087-1092, 1953.

[28] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

[29] W. Kiihnel, Differential Geometry: Curves-Surfaces-Manifolds, vol. 16.
American Mathematical Soc., 2006.

[30] S. Hu, M. Lundgren, and A. J. Niemi, “Discrete Frenet frame, inflection point
solitons, and curve visualization with applications to folded proteins,” Physical
Review E, vol. 83, no. 6, p. 061908, 2011.

[31] A. Y. Grosberg and A. R. Khokhlov, Statistical Physics of Macromoleculas.
American Institute of Physics, 1994.

[32] H. K. Onnes, “Expression of the equation of state of gases and liquids by means
of series.,” in Through Measurement to Knowledge, pp. 146—163, Springer,
1991.

[33] P. J. Flory, Principles of polymer chemistry. Cornell University Press, 1953.

[34] A. J. Niemi, “Phases of bosonic strings and two dimensional gauge theories,”
Physical Review D, vol. 67, no. 10, p. 106004, 2003.

[35] U. H. Danielsson, M. Lundgren, and A. J. Niemi, “Gauge field theory of
chirally folded homopolymers with applications to folded proteins,” Physical
Review E, vol. 82, no. 2, p. 021910, 2010.

[36] M. Chernodub, S. Hu, and A. J. Niemi, “Topological solitons and folded
proteins,” Physical Review E, vol. 82, no. 1, p. 011916, 2010.

118



[37] M. Chernodub, M. Lundgren, and A. J. Niemi, “Elastic energy and phase
structure in a continuous spin Ising chain with applications to chiral
homopolymers,” Physical Review E, vol. 83, no. 1, p. 011126, 2011.

[38] A. Krokhotin, S. Nicolis, and A. J. Niemi, “Long range correlations and folding
angle with applications to a-helical proteins,” The Journal of Chemical Physics,
vol. 140, no. 9, p. 03B605 1, 2014.

[39] “Research collaboratory for structural bioinformatics protein data bank (RSCB
PDB).” https://www.rcsb.org.

[40] P.-G. De Gennes and P.-G. Gennes, Scaling concepts in polymer physics.
Cornell university press, 1979.

[41] L. P. Kadanoff, “Scaling laws for ising models near T,” Physics Physique
Fizika, vol. 2, no. 6, p. 263, 1966.

[42] K. P. Sullivan, P. Brennan-Tonetta, and L. J. Marxen, Economic Impacts of the
Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data
Bank, 2017.

[43] W. H. Bragg and W. L. Bragg, “The reflection of x-rays by crystals,”
Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, vol. 88, no. 605, pp. 428438, 1913.

[44] J. C. Kendrew, G. Bodo, H. M. Dintzis, R. Parrish, H. Wyckoff, and D. C.
Phillips, “A three-dimensional model of the myoglobin molecule obtained by
x-ray analysis,” Nature, vol. 181, no. 4610, pp. 662—666, 1958.

[45] A. Klug, “From macromolecules to biological assemblies (Nobel Lecture),”
Angewandte Chemie International Edition in English, vol. 22, no. §,
pp- 565-582, 1983.

[46] J. Drenth, Principles of protein X-ray crystallography. Springer Science &
Business Media, 2007.

[47] 1. 1. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, “A new method of
measuring nuclear magnetic moment,” Physical Review, vol. 53, no. 4, p. 318,
1938.

[48] F. Bloch and E. M. Purcell, “The Nobel Prize in physics 1952, Nature,
vol. 170, pp. 911-912, 1952.

[49] E. Ruska, “The development of the electron microscope and of electron
microscopy (Nobel Lecture),” Angewandte Chemie International Edition in
English, vol. 26, no. 7, pp. 595-605, 1987.

[50] M. Adrian, J. Dubochet, J. Lepault, and A. W. McDowall, “Cryo-electron
microscopy of viruses,” Nature, vol. 308, no. 5954, pp. 32-36, 1984.

[51] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann,
P. Bucksbaum, R. Coffee, F.-J. Decker, ef al., “First lasing and operation of an
angstrom-wavelength free-electron laser,” Nature Photonics, vol. 4, no. 9,

p. 641, 2010.

[52] E. A. Schneidmiller and M. V. Yurkov, “Photon beam properties at the European
XFEL (December 2010 revision),” tech. rep., Deutsches
Elektronen-Synchrotron (DESY), 2011.

[53] D. A. Deacon, L. Elias, J. M. Madey, G. Ramian, H. Schwettman, and T. L.
Smith, “First operation of a free-electron laser,” Physical Review Letters,
vol. 38, no. 16, p. 892, 1977.

[54] H. Motz, “Applications of the radiation from fast electron beams,” Journal of

119



Applied Physics, vol. 22, no. 5, pp. 527-535, 1951.

[55] M. J. Bogan, W. H. Benner, S. Boutet, U. Rohner, M. Frank, A. Barty, M. M.
Seibert, F. Maia, S. Marchesini, S. Bajt, et al., “Single particle X-ray diffractive
imaging,” Nano Letters, vol. 8, no. 1, pp. 310-316, 2008.

[56] R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “Potential for
biomolecular imaging with femtosecond X-ray pulses,” Nature, vol. 406,
no. 6797, pp. 752-757, 2000.

[57] H. N. Chapman, C. Caleman, and N. Timneanu, “Diffraction before
destruction,” Philosophical Transactions of the Royal Society B: Biological
Sciences, vol. 369, no. 1647, p. 20130313, 2014.

[58] J. Bielecki, F. R. Maia, and A. P. Mancuso, “Perspectives on single particle
imaging with X-rays at the advent of high repetition rate X-ray free electron
laser sources,” Structural Dynamics, vol. 7, no. 4, p. 040901, 2020.

[59] M. M. Seibert, T. Ekeberg, F. R. Maia, M. Svenda, J. Andreasson, O. Jonsson,
D. Odi¢, B. Iwan, A. Rocker, D. Westphal, ef al., “Single mimivirus particles
intercepted and imaged with an X-ray laser,” Nature, vol. 470, no. 7332,
pp.- 78-81, 2011.

[60] T. Ekeberg, M. Svenda, C. Abergel, F. R. Maia, V. Seltzer, J.-M. Claverie,

M. Hantke, O. Jonsson, C. Nettelblad, G. van der Schot, ef al.,
“Three-dimensional reconstruction of the giant mimivirus particle with an X-ray
free-electron laser,” Physical Review Letters, vol. 114, no. 9, p. 098102, 2015.

[61] A. Munke, J. Andreasson, A. Aquila, S. Awel, K. Ayyer, A. Barty, R. J. Bean,
P. Berntsen, J. Bielecki, S. Boutet, e al., “Coherent diffraction of single Rice
Dwarf virus particles using hard X-rays at the Linac Coherent Light Source,”
Scientific Data, vol. 3, no. 1, pp. 1-12, 2016.

[62] H. K. N. Reddy, C. H. Yoon, A. Aquila, S. Awel, K. Ayyer, A. Barty,

P. Berntsen, J. Bielecki, S. Bobkov, M. Bucher, ef al., “Coherent soft X-ray
diffraction imaging of coliphage PR772 at the Linac Coherent Light Source,”
Scientific Data, vol. 4, p. 170079, 2017.

[63] G. van der Schot, M. Svenda, F. R. Maia, M. Hantke, D. P. DePonte, M. M.
Seibert, A. Aquila, J. Schulz, R. Kirian, M. Liang, ef al., “Imaging single cells
in a beam of live cyanobacteria with an X-ray laser,” Nature Communications,
vol. 6, no. 1, pp. 1-9, 2015.

[64] M. F. Hantke, D. Hasse, F. R. Maia, T. Ekeberg, K. John, M. Svenda, N. D. Loh,
A. V. Martin, N. Timneanu, D. S. Larsson, et al., “High-throughput imaging of
heterogeneous cell organelles with an X-ray laser,” Nature Photonics, vol. 8,
no. 12, pp. 943-949, 2014.

[65] E. G. Marklund, T. Ekeberg, M. Moog, J. L. P. Benesch, and C. Caleman,
“Controlling protein orientation in vacuum using electric fields,” The Journal of
Physical Chemistry Letters, vol. 8, pp. 4540-4544,2017.

[66] “MS-SPIDOC Horizon2020.” www.ms-spidoc.eu.

[67] B.J. Alder and T. E. Wainwright, “Phase transition for a hard sphere system,”
The Journal of Chemical Physics, vol. 27, no. 5, pp. 1208-1209, 1957.

[68] M. N. Rosenbluth and A. W. Rosenbluth, “Further results on Monte Carlo
equations of state,” The Journal of Chemical Physics, vol. 22, no. 5,
pp- 881-884, 1954.

[69] E. Lindahl, M. Abraham, B. Hess, and D. van der Spoel, “GROMACS 2020.3

120



manual,” July 2020.

[70] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. A. Swaminathan,
and M. Karplus, “CHARMM: a program for macromolecular energy,
minimization, and dynamics calculations,” Journal of Computational
Chemistry, vol. 4, no. 2, pp. 187-217, 1983.

[71] W. L. Jorgensen and J. Tirado-Rives, “The OPLS [optimized potentials for
liquid simulations] potential functions for proteins, energy minimizations for
crystals of cyclic peptides and crambin,” Journal of the American Chemical
Society, vol. 110, no. 6, pp. 1657-1666, 1988.

[72] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, “Development and testing
of the OPLS all-atom force field on conformational energetics and properties of
organic liquids,” Journal of the American Chemical Society, vol. 118, no. 45,
pp- 11225-11236, 1996.

[73] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson,
D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A second
generation force field for the simulation of proteins, nucleic acids, and organic
molecules,” Journal of the American Chemical Society, vol. 117, no. 19,
pp- 5179-5197, 1995.

[74] H. J. Berendsen, J. v. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak,
“Molecular dynamics with coupling to an external bath,” The Journal of
Chemical Physics, vol. 81, no. 8, pp. 3684-3690, 1984.

[75] S. Vijay-Kumar, C. E. Bugg, and W. J. Cook, “Structure of ubiquitin refined at
1.8 A resolution,” Journal of Molecular Biology, vol. 194, no. 3, pp. 531-544,
1987.

[76] A. Irbidck, S. Mitternacht, and S. Mohanty, “Dissecting the mechanical
unfolding of ubiquitin,” Proceedings of the National Academy of Sciences,
vol. 102, no. 38, pp. 13427-13432, 2005.

[77] A. Irbdck and S. Mitternacht, “Thermal versus mechanical unfolding of
ubiquitin,” PROTEINS: Structure, Function, and Bioinformatics, vol. 65, no. 3,
pp- 759-766, 2006.

[78] A. Sinelnikova, S. Patel, and D. van der Spoel, “Read NMR data files for
proteins and generate GROMACS input files.”

[79] G. E. P. Box and M. E. Muller, “A note on the generation of random normal
deviates,” Annals of Mathematical Statistics, vol. 29, pp. 610—611, 1958.

[80] G. Casella, C. P. Robert, M. T. Wells, ef al., “Generalized accept-reject sampling
schemes,” in 4 festschrift for herman rubin, pp. 342347, Institute of
Mathematical Statistics, 2004.

121



Index molecular dynamics, 12

Native conformation, 12
normal vector, 38

orientation before destruction, 100

partition function, 26

Primary structure, 12
probability density function, 22
protein folding, 12

f-point, 43
acceptance-rejection sampling, 31

binormal vector, 38

bond angle, 38 Quaternary structure, 12

Central Limit Theorem, 25 radius of gyration, 40

coarse-graining methods, 12 rapdom walk, 19
conformations. 12 rejection sampling, 118
curvature, 38 renormalization group, 61

renormalization group flow, 61

detailed balance condition, 29 Root Mean Square Deviation, 100
diffraction before destruction, 78, 100 .
dihedral angle, 38 scaling parameter, 61
direct sampling, 19 Secogdary structure, 12
discrete Frenet equations, 38 swelling parameter, 41
ergodic problem, 28 tangent vector, 37
excluded volume, 43, 48 Tertiary structure, 12
the expectation value, 22
Flory formula, 44 the standard deviation of the mean, 25
force field, 82 torsion, 38
Gaussian coil, 40 undulator, 77
hard core repulsion, 48 van der Waals forces, 41
heteropolymer, 54 virial expansion, 42

ideal chain, 40
importance sampling, 26
integrator, 84

Law of Large Numbers, 23
leap frog integrator, 84

Markov chain, 20

Markov Chain Monte Carlo (MCMC),
20

misfolding, 12

122



Appendix A.
Generation of 7

The torsion angles are distributed normally as one can see from the Hamilto-
nian in Eq. (4.32):

= a(br; + 1)
~cldr; + 1)’

) T (17.1)
0f = —— .
c(dr; +1)

The algorithm for generating random numbers according a normal distribu-
tion \V'(u, o) was proposed in the original paper [79] by Box and Muller and
is named after the authors. Here it is:

1. Generate independently &; and & according to the uniform distribution

U(0,1);
2. Define
Z1 = Rcos O = \/—21In¢; cos (2m&a),
(17.2)
Zy = Rsin® = y/—21In¢&; sin (27&2).
3. Finally
7= Z10% + ,
e H (17.3)
= 220'2 + u.

Then (Z, 2;) is a pair of independent random variables from the desired dis-
tribution.
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Appendix B.
Generation of s

The generation of « is a more complicated question than generation of 7. We
have a double well potential for the curvature angles in the Hamiltonian in
Eq. (4.32), which means that «; should be generated according corresponding
double-peak distribution (we drop the index ¢ from « to increase readability):

P(k) ~ el (®) = = AR HBR4+Cr (17.4)
where

A=q>0

B = abr; 4+ 2qm?* — Sdr? — 2 . (17.5)

C =2(Kit1 — Ki—1)

The algorithm we will use to sample according to a random distribution is
called rejection sampling [80].

VUV
Figure 17.1. The asymptotic behavior of the function f(x).

Assuming we want to generate * € (x1,x2) from the distribution P(z).
The algorithm is as follows.
1. Generate independently = and £ according to the uniform distribution
U,1);
2.
if &< ﬂ = accept z,
max P(x) (17.6)

(w1,22)

otherwise = reject x.
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In fact, it is the same idea as the accept-reject algorithm in Metropolis (see
sec. 3.6.2).

Let us investigate the asymptotic behavior of the exponential function f (k).
Since the parameter A is always positive we can find

{ f(t+o0) = —oc0 (17.7)

f(=00) = —o0

The function is continuous so the number of roots has to be even. Hence there
can be only 2 or 4 roots which corresponds to 2 or 1 maxima like one can see
in Figure 17.1. It is a good point, otherwise one of the extremum would be
minimum and we cannot associate the function with a probability.

Figure 17.2. Roots of the function f(x). M is a global maximum and A is an offset
variable.

The first step is to find the maximum

{ f'(k) = —4AK? + 2Bk +C =0

f(—o0) = —124k2 + 2B <o Jmx = (178)

Then we should manually set an offset A to limit the integral (see Fig-
ure 17.2):
|f(k) — M| < A. (17.9)

Thus we will get 2 or 4 roots.

e If 2 roots, 1 maximum
This case is presented in Figure 17.3 in the left plot. The probability in this
case:

P(k) = %eﬂc(”), k € (K1, K2)
K (17.10)
N = / oI (%),
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Figure 17.3. On the left: the case of one maximum, two roots. On the right: the case
of two maxima, four roots.

And maximum of the distribution is

— = 1
M = P(Kmax) = NeM. (17.11)

And now we can use reject sampling: generate £; and &> from the uniform
distribution ¢ (0, 1) and set

r =K1+ & (k2 — K1), (17.12)
and accept it only
P
if &< ]\(,Z[:f) = accept z. (17.13)

e If 4 roots, 2 maxima
The probability to be in one interval or in the other one is proportional to the
areas how it is shown in Figure 17.3 at the right

Nl = f:z ef(“) P]. — NL
1 N T S P4 P—1. (1714
{ Ny = [ el Py = g 1+ P (17.14)

Here we generate £ from the uniform distribution 2/(0, 1) and pick the first
interval (K1, ko) if € < P; or pick the second interval (k3, k4) otherwise.

Since we got only one interval we can follow the instructions in the previous
case.
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