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A B S T R A C T   

In this work, we have employed the first-principles quantum physics method to investigate the light-metal based 
LiAl(NH2)4 and its modified compounds as conversion electrode materials for sodium-ion batteries on the basis of 
state-of-the-art Density Functional Theory. The pure LiAl(NH2)4 possesses an average voltage of 0.294 V (versus 
Na+/Na0) and a theoretical specific capacity of 1093.77 mA h g− 1 for sodium storage. Among the modified 
materials, the Li4AlB3(N4H8)4 has the most excellent electrochemical properties with a theoretical specific ca
pacity of 1249.57 mA h g− 1 and a low average voltage of 0.087 V (versus Na+/Na0) for potential anode ap
plications. The diffusion behavior of Na-ion is also improved in Li4AlB3(N4H8)4 whether at 300 K or at 400 K, 
which indicates the prospective rate capability. The diffusion coefficient of Na-ion is obviously increased to 
3.667 × 10− 9 m2 s− 1 (in modified material) from 1.500 × 10− 9 m2 s− 1 (in pristine material) at 400 K. The 
diffusion of Na-ion is calculated to be very fast in Li4AlB3(N4H8)4 with a kinetic barrier of 0.31 eV. This work will 
provide impetus to the quantum design and experimental development of complex hydride materials for metal- 
ion battery applications.   

Introduction 

Due to environmental pollution and the finite reserve of fossil fuels, 
the world’s demand for green and clean energy is becoming more and 
more urgent. With the rapid development of society, the clean electric 
energy accounts for an increasing proportion in human energy use. In 
the current era, the lithium battery is playing an important role in 
electricity storage. However, due to the uneven distribution and relative 
shortage of lithium resources, the large-scale industry urgently seeks for 
lower-cost and more abundant resources for energy storage [1–3]. The 
sodium element which is in the same main group with lithium owns 
some similar physicochemical properties [4]. Geological surveys show 
that the abundance of sodium (2.75%) is significantly higher than that of 
lithium (0.002%) in the Earth crust and the sodium is widely distributed 
and readily available in the world [5]. Therefore, sodium-ion batteries 
(SIBs) are usually regarded as one of the most outstanding candidates 
especially for large-scale industrial system applications [6,7]. While, 
since the sodium-ion has a larger radius than lithium, most of the elec
trode materials for lithium batteries are not suitable for sodium storage 

such as the commercial graphite anode materials [8,9]. Oumellal et al. 
propounded a new notion of using metal hydride as the negative elec
trode of battery, which provided great inspiration to get beyond the 
delamination/intercalation mechanism [10,11]. Their ability to un
dergo conversion reactions with lithium to function as capacitive anodes 
or to transport Li ions to perform as competent super-ionic conductors 
has been demonstrated [12–18]. While at present, the exploration of 
metal hydride materials’ utilization in sodium ion batteries (SIBs) is very 
scarce. Attentions have been paid to electrode materials with appro
priate redox potentials and high specific capacities with excellent elec
trochemical properties [19–21]. According to previous reports, metal 
hydrides showed the lowest polarization for conversion reaction mate
rials. Compared with sulfides, phosphides, oxides, nitrides, and fluo
rides, using metal hydrides as the negative electrode of sodium-ion 
battery will have far-reaching significance to the promotion of sodium- 
ion battery and utilization of clean energy [22,23]. In 2002, Chen et al. 
proposed that the MNH (metal nitrogen hydrides) could release and 
absorb hydrogen reversibly in large quantity, which aroused people’s 
attention to the research of metal nitrogen hydrides for hydrogen 
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storage materials [24]. In the application of thermal-chemical hydrogen 
storage, people pay more attention to whether the material has excellent 
reversible property of hydrogen absorption and release. While for the 
electrochemical energy storage applications, the physical understanding 
of electrode reaction is the key to utilizing metal hydrides [25–28]. 

One of the powerful tools to understand many properties of materials 
is first-principles calculations [29–31]. The first-principles method is 
also of significance in dissecting the electrochemical performance of 
electrode materials and designing high performance sodium-ion battery 
materials [32–34]. Theoretical screening of electrode materials can lay 
important foundation for the selection of promising material(s) for 
battery applications, avoid a large number of blind experiments and help 
the development of excellent electrode materials more efficiently 
[35–42]. In this work, our investigation aims at exploring the potential 
properties of LiAl(NH2)4 and its derivative materials for sodium-ion 
battery applications. The structural, electronic, electrochemical and 
diffusion-related kinetic properties are taken into consideration. We 
have chosen the two elements K (in the same main group as Li) and B (in 
the same main group as Al) for modifying the pristine compound. The 
different concentrations of B and K are also considered for modification 
to achieve better electrochemical properties and the diffusion kinetics of 
sodium-ions in these systems are also investigated. This quantum- 
mechanical study is proposed to help to understand the energy storage 
properties of the materials [43–45]. Furthermore, our findings have 
important implications for advancing the atomic-scale understanding of 
MNH (metal nitrogen hydrides) as potential conversion electrode ma
terials in sodium-ion batteries (SIBs) and make important contribution 
and guide to the experimental development of the related materials for 
energy storage. 

Methods 

All the computational sections were carried out by Density 

Functional Theory (DFT) method as implemented in Vienna Ab initio 
Simulation Package [46–48]. The inner electrons were represented by 
projector augmented wave (PAW) pseudopotentials [49,50]. The ex
change correlation energy was treated by the Perdew-Burke-Ernzerhof 
(PBE) functional within the generalized gradient approximation (GGA) 
[51,52]. The crystal structures were optimized by the conjugate gradient 
algorithm. The Brillouin zone was sampled by 5 × 5 × 7 k-points using 
Monkhorst-Pack scheme in structural relaxations and the k-point of 1 ×
1 × 1 was employed in time-consuming ab initio molecular dynamics 
(AIMD) calculations. We adopted the plane wave basis set with an en
ergy cutoff of 520 eV. The force and energy convergence thresholds for 
structural optimizations were set to 0.02 eV/Å and 10− 4 eV, respec
tively. The calculation cell was enlarged to a supercell of 2 × 2 × 1 
during the computations of mean squared displacement and diffusion 
coefficient. The Bader charge analysis was used to unveil the charge 
transfer inside the electrode materials. 

During the investigations of Na-ion diffusion behavior in 
Li4Al4(N4H8)4 and Li4AlB3(N4H8)4, some images were constructed using 
the linear interpolation method in CI-NEB [53,54]. The transition state 
in minimum energy pathway (MEP) was computed to obtain the diffu
sion barrier. The optimization thresholds were 10− 4 eV and 0.05 eV/Å 
for electronic and ionic relaxation, respectively. The spin-polarized 
calculations were performed throughout the work. 

Results and discussion 

The low-temperature phase of LiAl(NH2)4 is illustrated in Fig. 1. The 
geometrically optimized lattice parameters of the structure are: a =
9.499 Å, b = 7.373 Å, c = 7.476 Å and α = γ = 90◦, β = 90.11◦ with a 
monoclinic structure (space group of P21/n). There are 4 Al atoms, 4 Li 
atoms, 16 N atoms and 32 H atoms (Li4Al4(N4H8)4) in each unit cell. The 
calculated lattice parameters are consistent with the results obtained in 
experiments or other related computational works [55–57]. In the 

Fig. 1. The complex structure of LiAl(NH2)4 (56 atoms each unit cell) after structural optimizations. The green, gold, blue, and pink balls represent Li, Al, N, and H 
atoms, respectively. The atomic sites are distinguished by Arabic numbers. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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structure, the 4 Al atoms are equivalent in site occupancy and 4 Li atoms 
as well. While, the 32 H atoms are classified into three different kinds of 
sites that are marked as H1, H2 and H3. Each unit cell has three different 
N sites that are designated as N1, N2 and N3 site respectively. The 
pristine Li4Al4(N4H8)4 lattice has an ordered structure to potentially 
accommodate sodium-ions and facilitate the sodium-ion’s diffusion 
through atomic gaps or interstitial spaces. 

It is important to analyze the electronic density of states when 
exploring the chemical bonding in materials. As shown in Fig. 2, the 
total and partial DOS of the pristine LiAl(NH2)4 solid are given. The total 
DOS of LiAl(NH2)4 consists of three parts: the part below − 2.417 eV 
corresponds to the lower energy region of valence band; the part from 
− 1.662 eV to 0 eV corresponds to the higher valence band; and the part 
above 3.302 eV corresponds to the conduction band. From the partial 
DOS, there emerges distinct energy overlapping regions of N1 p-states 
and H1 s-states. Analogical cases are applied to N2 p-states and H2 s- 
states as well as N3 p-states and H3 s-states. This sp hybridization be
tween N and H in valence band results in the strong bonding between N1 
and H1, N2 and H2, N3 and H3 respectively. The bonding electrons are 
mainly those whose energy is between − 1.662 eV and Fermi level. 

In view of the strategy that modification is a valid approach to 
improving the electrochemical properties of materials, we have used 
different concentrations of B or K elements (as mentioned in the intro
duction) to modify the pristine material in this study. Their designation 
can be expressed as Li4Al3B(N4H8)4, Li4Al2B2(N4H8)4, Li4AlB3(N4H8)4, 
Li3KAl4(N4H8)4, Li2K2Al4(N4H8)4, and LiK3Al4(N4H8)4 respectively. We 
have substituted Al atoms or Li atoms in the 56-atom unit cell by B atoms 
or K atoms, which correspond to the modifying concentration of 1.79 at. 
%, 3.57 at.% and 5.36 at.%. In order to find the most reasonable 
modified structure, we have completely relaxed the crystal structures 
and determined the most stable site by referring to the value of forma
tion energy after geometry optimizations. The formation energy can be 
calculated as follows: 

Ef = ET(M)+ μh − − μm − ET(P) (1)  

where ET(M) and ET(P) represent the total energy of the modified and 
pristine structure respectively, μh and μm mean the atomic potential of 
the host and modifying atoms [58]. When one B or K atom substitutes a 
single Al or Li atom at the concentration of 1.79 at.%, the calculated 

Fig. 2. The electronic band structure, the total and partial density of states (DOS) for pristine LiAl(NH2)4. The s and p states are represented by red and blue colors 
respectively. The Fermi energy level is set at zero. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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formation energies are given in Table 1. It is clear that when the B 
element is utilized, the formation energy is lower when occupying the Al 
position. This indicates that the Al site is more thermodynamically 
favorable for the modification by the B atom. The formation energy is 
lower when the K atom occupies the Li atom instead of the Al site. We 
can conclude that the Li site is more thermodynamically favorable for 
the modification by K. 

The charging and discharging conversion reactions of various LiAl 
(NH2)4 derivative electrode materials are then investigated, described 
by the following half-cell reactions versus Na+/Na◦in (2)–(8). The vol
ume changes of various systems before and after conversion reactions 
are illustrated in Fig. 3(a). Most of the modifications increase the volume 
change. While, compared with the pristine system, the band gaps of all 
the modified systems are decreased in Fig. 3(b). The average voltage 
(versus Na+/Na◦) of various derivative materials for sodium-storage 
electrodes is obtained by the formula (9) [59] where ΔG is the Gibbs 
free energy variation of the reactions from (2)–(8) respectively and F is 
the Faraday constant. All the average voltage values versus Na+/Na0 are 
below 0.6 V, i.e. 0.294 V for Li4Al4(N4H8)4, 0.225 V for Li4Al3B(N4H8)4, 

0.156 V for Li4Al2B2(N4H8)4, 0.087 V for Li4AlB3(N4H8)4, 0.299 V for 
Li3KAl4(N4H8)4, 0.578 V for Li2K2Al4(N4H8)4 and 0.335 V for 
LiK3Al4(N4H8)4 respectively as described in Fig. 3(c). In addition, the 
theoretical specific capacities of various electrode materials can be 
calculated according to the formula (10), in which M stands for the 
molar mass of the anode material and n means the quantity of electrons 
involved in the electrode reactions. Li4AlB3(N4H8)4 has the highest 
specific capacity and the lowest average voltage as shown in Fig. 3(d). 

Li4Al4(N4H8)4 + 16Na+ + 16e− = 8NaH+ 4AlN+ 4LiNH2 + 8NaNH2 (2)   

Li4Al3B(N4H8)4+16Na++16e− =8NaH+3AlN+BN+4LiNH2+8NaNH2

(3)   

Li4Al2B2(N4H8)4+16Na++16e− =8NaH+2AlN+2BN+4LiNH2+8NaNH2

(4)   

Li4AlB3(N4H8)4+16Na++16e− =8NaH+AlN+3BN+4LiNH2+8NaNH2

(5)   

Li3KAl4(N4H8)4+16Na++16e− =8NaH+4AlN+3LiNH2+KNH2+8NaNH2

(6) 

Table 1 
The calculated formation energies (eV/f.u.) for B- or K-modified LiAl(NH2)4.  

Site Element 

B K 

Al site − 2.740  9.142 
Li site − 1.003  1.930  

Fig. 3. Comparison of sodium-storage properties of Li4Al4(N4H8)4 and its derivative materials: (a) volume change; (b) band gap; (c) average voltage versus Na+/Na0; 
(d) electrochemical specific capacity for sodium-storage. A: Li4Al4(N4H8)4, B: Li4Al3B(N4H8)4, C: Li4Al2B2(N4H8)4, D: Li4AlB3(N4H8)4, E: Li3KAl4(N4H8)4, F: 
Li2K2Al4(N4H8)4, G: LiK3Al4(N4H8)4. 
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Li2K2Al4(N4H8)4 + 16Na+ + 16e− = 8NaH+ 4AlN+ 2LiNH2

+ 2KNH2 + 8NaNH2
(7)   

LiK3Al4(N4H8)4+16Na++16e− =8NaH+4AlN+LiNH2+3KNH2+8NaNH2

(8)  

V ≈ − ΔG/F (9)  

the specific capacity = F⋅n/3600M (10) 

To further analyze the electronic structures of Li4Al4(N4H8)4 and 
Li4AlB3(N4H8)4, the partial electronic density of states of the two ma
terials are described in Fig. 4. As shown in Fig. 4(a), the p-state of Al and 
the p-state of N have overlapping in the vicinity of Fermi level. And in 
Fig. 4(c), the p-state of B and the p-state of N have overlapping around 
the Fermi level, indicating that B and N are chemically bonded. The 
electron localization functions of two materials are described in Fig. 4(b) 
and (d), respectively. The ELF value between Al and N atoms is close to 
1, indicating that there is a distinct covalent bond between Al and N 
atoms. The ELF value between B and N atoms is also close to 1 in 
Li4AlB3(N4H8)4. The charge between B-N bonds is more dense than that 
between Al-N bonds and the local bond length decreases to dB-N = 1.572 
Å from the pristine dAl-N = 1.874 Å. In terms of their atomic structures, 
both B atoms and Al atoms have four coordination numbers and each 
atom forms a tetrahedral structure with four surrounding NH2

− groups. 
The geometrically optimized lattice parameters of Li4AlB3(N4H8)4 are: a 
= 9.250 Å, b = 7.297 Å, c = 7.288 Å and α = 90◦, β = 91.90◦, γ = 89.33◦

with a triclinic structure (space group of P1). 
The diffusion behavior of sodium ions in the electrode material is 

crucial for the kinetic performance during charging and discharging, 
thus it is indispensable to investigate the diffusion property of sodium- 
ions in electrode materials. Firstly, we considered a sodium ion in 
various sites of Li4Al4(N4H8)4 lattice as well as Li4AlB3(N4H8)4 and 
further calculated the thermodynamically most stable site to accom
modate the sodium ion. The calculated results are given in Tables 2 and 
3. The results suggest that the Na-ion tends to move to the Al-site in 
Li4Al4(N4H8)4 lattice. While the Li-site is the most appropriate site to 

Fig. 4. The calculated partial density of states and electron localization function for Li4Al4(N4H8)4 and Li4AlB3(N4H8)4. (a) The partial DOS of the Al atom and N 
atom of Li4Al4(N4H8)4; (b) the ELF of Li4Al4(N4H8)4; (c) the partial DOS of the B atom and N atom of Li4AlB3(N4H8)4; (d) the ELF of Li4AlB3(N4H8)4. Al is shown in 
yellow sphere, N is in light blue and B is in orange. The Fermi level is set at zero. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Table 2 
Comparison of energy, unit-cell volume and charge state of Na when one Na-ion 
migrates to different sites of Li4Al4(N4H8)4.  

The migration sites Energy (eV) Volume (Å3) Charge state (e− ) 

Li site − 295.314  579.170 +0.801 
Al site − 295.338  592.494 +0.799 
Interstitial site − 295.247  599.794 +0.792  

Table 3 
Comparison of energy, unit-cell volume and charge state of Na when one Na-ion 
migrates to different sites of Li4AlB3(N4H8)4.  

The migration sites Energy (eV) Volume (Å3) Charge state (e− ) 

Li site − 302.691  561.122 +0.788 
Al site − 302.650  554.581 +0.783 
Interstitial site − 302.604  554.971 +0.797  
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which the Na-ion tends to move in Li4AlB3(N4H8)4. With respect to the 
charge circumstance inside the materials, the Bader charge analysis has 
been done to unveil the charge states of each atom in two materials (the 
full information can be found in Supplementary materials). Na has the 
charge state of +0.799 e− when it migrates to the Al site in 
Li4Al4(N4H8)4 and has the charge state of +0.788 e− when it migrates to 
the Li site of Li4AlB3(N4H8)4.Table 4. 

After determining the most stable initial site(s), the ab initio molec
ular dynamics (AIMD) calculations have been conducted to analyze the 
diffusion coefficient of the Na-ion in Li4Al4(N4H8)4 as well as 
Li4AlB3(N4H8)4. The mean squared displacement (MSD) both at 300 K 
(room temperature) and at 400 K is calculated as described in Fig. 5. It is 
found that the Na-ion in the Li4AlB3(N4H8)4 electrode diffuses faster 
than in Li4Al4(N4H8)4 whether at 300 K or at 400 K. 

The quantitative diffusion coefficients of Na-ion in both 
Li4Al4(N4H8)4 and Li4AlB3(N4H8)4 at 300 K and 400 K were further 
calculated through the Einstein equation: 

Diffusion coefficient D = MSD/6N⋅t (11)  

where N means the number of ions in the calculation model. The 
diffusion coefficient value of Na-ion in Li4AlB3(N4H8)4 electrode is 
obviously increased to 3.250 × 10− 9 m2 s− 1. The results indicate that the 
modification with B element is very beneficial to the diffusion and 
migration of Na-ion, thereby greatly improving the electrochemical 
performance of pristine hydride for SIBs. 

The diffusion route and energy barriers of Na-ion in Li4Al4(N4H8)4 

and Li4AlB3(N4H8)4 have also been explored as shown in Figs. 6 and 7. 
We explored the diffusion of Na-ion from the middle of two Al atoms to 
the middle of two Li atoms in Li4Al4(N4H8)4 and from the middle of two 
B atoms to the middle of two Li atoms in Li4AlB3(N4H8)4. When the Na- 
ion diffuses in Li4Al4(N4H8)4, the energy barrier is calculated to be 0.45 
eV. Interestingly, the Na-ion only needs to surmount a small energy 
barrier of 0.31 eV in Li4AlB3(N4H8)4, suggesting that the Na-ion is 
extremely easy to diffuse in Li4AlB3(N4H8)4. In addition, compared with 
Li4Al4(N4H8)4, the energy of the final state in the whole diffusion process 
is lower than that of the initial state in Li4AlB3(N4H8)4, indicating that 
the diffusion process tends to more stable. These results suggest that the 
doping by B element will be highly beneficial to increase the potential 

Table 4 
The diffusion coefficient of Na-ion in Li4Al4(N4H8)4 and Li4AlB3(N4H8)4 at 300 K 
and 400 K.  

Li4Al4(N4H8)4 at 
300 K 

Li4Al4(N4H8)4 at 
400 K 

Li4AlB3(N4H8)4 at 
300 K 

Li4AlB3(N4H8)4 at 
400 K 

9.167 × 10− 10 

m2 s− 1 
1.500 × 10− 9 m2 

s− 1 
3.250 × 10− 9 m2 

s− 1 
3.667 × 10− 9 m2 

s− 1  

Fig. 5. The calculated mean squared displacement of Na-ion in Li4Al4(N4H8)4 and Li4AlB3(N4H8)4 through ab initio molecular dynamics (AIMD) technique at 300 K 
and 400 K. 

Fig. 6. Diffusion diagram of Na-ion (in purple color) in Li4Al4(N4H8)4. TS refers 
to the transition state. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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discharging/charging rates of the pristine electrode material. 

Summary and outlook 

In conclusion, the atomic and electronic structures as well as the 
electrochemical properties of light-metal based LiAl(NH2)4 and its 
modified compounds as conversion electrode materials for sodium-ion 
batteries have been detailedly investigated through DFT calculations. 
It is found that this material system (especially the derivative 
Li4AlB3(N4H8)4 compound) has proper potential for conversion-type 
electrode applications for sodium storage, which possesses a theoret
ical specific capacity of 1249.57 mAh g− 1 and a low average voltage of 
0.087 V. The diffusion of Na-ion can be evidently enhanced in 
Li4AlB3(N4H8)4 compared with the pristine Li4Al4(N4H8)4 whether at 
300 K (9.167 × 10− 10 m2 s− 1 to 3.250 × 10− 9 m2 s− 1) or at 400 K (1.500 
× 10− 9 m2 s− 1 to 3.667 × 10− 9 m2 s− 1), which implies the potential rate 
capability of electrode materials at room temperature as well as high 
temperature when Li4Al4(N4H8)4 is modified by the boron element. 
Besides, the diffusion coefficients of Na-ion in Li4Al4(N4H8)4 and 
Li4AlB3(N4H8)4 have also been unveiled through ab initio molecular 
dynamics (AIMD). The lower kinetic barrier of 0.31 eV in 
Li4AlB3(N4H8)4 is very favorable for the migration of Na-ion. This 
quantum-mechanical based theoretical research will provide important 
clues for the new application of light-metal hydrides as conversion 
electrode materials in Na-ion batteries. 
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