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transformation is used. The utilisation of summation-by-parts finite difference operators, 
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simulations of Berry phases in deforming quantum billiards.
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1. Introduction

Particles localised in two-dimensional (2D) spatial domains surrounded by infinite potential walls is a much used model 
in the study of quantum chaos [1]. The energy levels of such model systems typically show a rich behaviour of avoided 
crossings and crossings occurring in domains that lack symmetry (‘diabolical points’) [2]. The corresponding wave functions 
show complex structures, such as ‘scars’ resembling classical periodic orbits [3] and non-trivial Berry phases when adiabat-
ically deforming the domain around a crossing point [4]. To study such systems there is a need for numerical methods that 
can efficiently solve the Schrödinger equation on time-dependent domains. Because the deformation of the domain and the 
wave function often exhibit different timescales these methods must be able to provide long time simulation without loss 
of accuracy. In this article, we derive a stable and accurate high-order summation-by-parts (SBP) finite difference scheme for 
the 2D Schrödinger equation on deforming domains that can be used to efficiently model this type of complex quantum 
systems.

Solutions of the Schrödinger equation are in general wave dominated; therefore numerical methods with low dispersion 
errors are needed for efficient numerical solutions. It is well known that higher-order finite difference methods are well 
suited for this type of problem. However, constructing stable boundary treatment for these methods is a non-trivial task, 
which has received considerable attention in the past, see e.g. [5–9].

A technique for constructing stable high-order finite difference methods for initial-boundary-value-problems is to 
combine discretisation with SBP finite difference operators with a weak method of imposing the boundary conditions, 
simultaneous-approximation-term (SAT). Details on the SBP-SAT technique are given in Section 3 and thorough reviews of 
the methodology can be found in [10,11]. The SBP-SAT technique has been extended to the time-dependent Schrödinger 
equation on fixed domains by Nissen et al. in [12,13], but so far the development of the SBP-SAT technique has been 
mainly focused on problems on fixed domains. How to extend the technique to deforming domains for first order hyper-
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Fig. 1. Coordinate transformation between the physical domain � and the computational domain �′ .

bolic systems by a time-dependent coordinate transformation is described in [14]. In this article we apply and extend these 
techniques for the 2D Schrödinger equation.

This article is organised as follows. In Sec. 2, the continuous problem is transformed by a time-dependent coordinate 
transformation. In Sec. 3, the SBP method is introduced and a spatial discretisation of the transformed equation is presented. 
Sec. 4 contains a convergence study on the numerical scheme and in Sec. 5 numerical simulations reproducing physical 
experiments of adiabatic evolution and associated Berry phases in quantum billiard are presented. Sec. 6 summarises and 
concludes the work.

2. Continuous analysis

We consider the Schrödinger equation for a single particle in two space dimensions. The infinite potential walls are 
described using Dirichlet boundary conditions. While we limit the analysis to 2D the methodology can be extended to higher 
dimensions in a straightforward manner. For a particle in a time-dependent domain �(t) with wave function û = û(t, x, y)

we have

ût = i�û − iV (x, y, t)û, t > t0, (x, y) ∈ �(t),
û = 0, t ≥ t0, (x, y) ∈ ∂�(t),
û = û0(x, y), t = t0, (x, y) ∈ �(t).

(1)

Here, ∂�(t) denotes the domain boundary and û0 the initial wave function of the particle.
To allow for discretisation using finite differences, we apply a time-dependent coordinate transformation to map the 

physical deforming domain �(t) to a static Cartesian domain �′ according to Fig. 1. From here on, the mapping is assumed 
to be one-to-one. Denote the mapping by

x = x(ξ,η, τ ), y = y(ξ,η, τ ), t = t(τ ),

ξ = ξ(x, y, t), η = η(x, y, t), τ = τ (t).
(2)

In the following, metrical properties that let us rewrite the Schrödinger equation (1) in terms of ξ , η and τ are presented. 
The coordinate transformation has the Jacobian determinant

J =
∣∣∣∣∣∣

xξ xη xτ

yξ yη yτ

0 0 1

∣∣∣∣∣∣ = xξ yη − xη yξ , (3)

where we have used that tξ = tη = 0 and tτ = 1. Since the transformation is one-to-one, the metric relations

ξx = yη

J
, ξy = − xη

J
, ξt = xn yτ − xτ yn

J
,

ηx = − yξ

J
, ηy = xξ

J
, ηt = xτ yξ − xξ yτ

J
,

(4)

can be derived by the inverse function theorem. These relations allow us to rewrite the time derivative as

J
∂

∂t
= J

∂

∂τ
τt + J

∂

∂ξ
ξt + J

∂

∂η
ηt = J

∂

∂τ
+ γ1

∂

∂ξ
+ γ2

∂

∂η
. (5)

Here, γ1 = xη yτ − xτ yη and γ2 = xτ yξ − xξ yτ . As shown in [15] the Laplace operator on some function v in curvilinear 
coordinates is

�v = 1 [
(α1 vξ )ξ + (βvη)ξ + (βvξ )η + (α2 vη)η

]
, (6)
J

2



Y. Ljungberg Rydin, K. Mattsson, J. Werpers et al. Journal of Computational Physics 443 (2021) 110530
where

α1 = 1

J
(x2

η + y2
η) α2 = 1

J
(x2

ξ + y2
ξ ), β = − 1

J
(xηxξ + yη yξ ). (7)

Hence, the Schrödinger equation (1) for the wave function u = u(τ , ξ, η) = û(t(τ ), x(ξ, η, τ ), y(ξ, η, τ )) can be written in 
the new coordinates on the Cartesian static domain as

uτ + 1
J (γ1uξ + γ2uη) = i�u − iV (ξ,η, τ )u, τ > τ0, (ξ,η) ∈ �′,

u = 0, τ ≥ τ0, (ξ,η) ∈ ∂�′,
u = u0(ξ,η) τ = τ0, (ξ,η) ∈ �′.

(8)

By using the chain rule, the left-hand side can be rewritten as

uτ + 1

J
(γ1uξ + γ2uη) = uτ + 1

2 J

[
γ1uξ + (γ1u)ξ − γ1ξ u+

+γ2uη + (γ2u)η − γ2ηu
]
.

(9)

The relation Jτ + γ1ξ + γ2η = 0, which follows from the metric relations in Eq. (4), combined with Eq. (9) results in

uτ = −T (u) + i�u − iV (ξ,η, τ )u, (10)

where T (u) = 1
2 J

[
γ1uξ + (γ1u)ξ + γ2uη + (γ2u)η − Jτ u

]
. This is the form of the Schrödinger equation that is discretised in 

Sec. 3.
The Schrödinger equation is known to be wellposed and we could conclude this section here. However, the derivation 

of the continuous energy estimate is the template and guide for our proof of stability for the numerical scheme in Sec. 3. 
Therefore, we present it below.

Let (v, w)� = ∫
�

v∗w dxdy = ∫
�′ v∗ J w dξdη and (v, w)�′ = ∫

�′ v∗w dξdη be the inner products with the corresponding 
norms ‖v‖2

� = (v, v)� and ‖v‖2
�′ = (v, v)�′ . Here v∗ denotes the complex conjugate of v . A mathematical energy for the 

Schrödinger equation is the total probability of the wave function. For a wave function u the total probability is ‖u‖2
� = 1

and preservation is equivalent to d
dτ ‖u‖2

� = 0. To show this, expand the left hand side by the product rule,

d

dτ
‖u‖2

� = (uτ , u)� + (u, uτ )� + (u, Jτ u)�′

= 2 Re[(u, uτ )�] + (u, Jτ u)�′ .
(11)

Note that (uτ , u)� is the complex conjugate of (u, uτ )� , hence (uτ , u)� +(u, uτ )� = 2 Re[(u, uτ )�]. Taking the inner product 
of u and the Schrödinger equation (10) gives

(u, uτ )� = −(u,T (u))� − i(u,�u)�′ − i(u, V (ξ,η, τ )u)�′ (12)

which has the real part

Re[(u, uτ )�] = −Re[(u,T (u))�] + Im[(u,�u)�]. (13)

Using integration-by-parts it is straightforward to show that Re[(u, T (u))�] = 1
2 (u, Jτ u)�′ and Im[(u, �u)�] = 0. Hence, 

d
dτ ‖u‖2

� = 0.

3. Discretisation

In this section, we discretise the transformed Schrödinger equation (10). Before presenting the discretisation, the SBP 
finite difference operators and some necessary notation is introduced.

The computational domain �′ is discretised on the (Nξ + 1) × (Nη + 1) grid points

ξi j = i

Nξ

, ηi j = j

Nη
, i = 0,1, . . . , Nξ , j = 0,1, . . . , Nη. (14)

Any function a evaluated at a grid point is denoted aij and it is represented on the grid by the vector

ā = [a00,a01, . . . ,a0Nη ,a10, . . . ,aNξ Nη ]�. (15)

Further, ¯̄a denotes a diagonal matrix with the vector ā on the diagonal. The approximate solution to (10) is represented 
by the vector ū. As in the continuous case, we define two discrete inner products. For vectors v̄, w̄ ∈ C(Nξ +1)×(Nη+1) , let 
(v̄, w̄)�̄ = v̄∗H ¯̄J w̄ and (v̄, w̄)�̄′ = v̄∗H w̄ be discrete inner products with the corresponding norms ‖v̄‖2

�̄
= (v̄, ̄v)�̄ and 

‖v̄‖2
�̄′ = (v̄, ̄v)�̄′ . Here, v̄∗ denotes the conjugate transpose of v̄ . The matrix H is diagonal, positive definite, and related to 

the SBP operators. In the following analysis, the four domain boundaries are denoted W (west at ξ = 0), E (east at ξ = 1), 
S (south at η = 0), and N (north at η = 1).
3
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3.1. Summation-by-parts finite differences

The SBP-operators used in this paper are the narrow-stencil finite difference operators first introduced in [16]. These 
operators are high-order central finite difference operators constructed to mimic the continuous integration-by-parts property 
by the discrete SBP property. In the one-dimensional case, the first derivative in ξ is approximated by SBP-operators as

uξ = D1ū + T̄ , (16)

where T̄ is the truncation error. The second derivative with a variable coefficient b is approximated by

(buξ )ξ = D(b̄)
2 ū + T̄ . (17)

These operators satisfy the SBP properties for the first and second derivative, which means that

(ū, D1 v̄)�̄′
ξ
= u∗

Nξ
v Nξ − u∗

1 v1 − (D1ū, v̄)�̄′
ξ
, (18)

and

(ū, D(b̄)
2 v̄)�̄′

ξ
= u∗

Nξ
bNξ d�

Nξ
v̄ − u∗

1b1d�
1 v̄ − ū∗M(b̄) v̄. (19)

Here, the one-dimensional domain �′
ξ is the real line between ξ = 0 and ξ = 1. Further, d�

1 v̄ = vξ1 + T1 at ξ = 0 and 

d�
Nξ

v̄ = vξ Nξ + T Nξ at ξ = 1. M(b̄) is a positive semi-definite matrix.

Remark 1. The truncation error T̄ for a pth order operator is of order hp in the interior stencil and hp/2 at a few points near 
the boundary [16]. While the order is lower at the boundary, it is important to keep in mind that the boundary accuracy 
alone does not dictate the convergence rate when solving partial differential equations. The expected global convergence 
rate can actually be shown to be higher. In [17], it is shown that a point-wise stable approximation of an initial-boundary-
value-problem involving derivatives up to order q yields a convergence rate of order k = min(p, q + p/2). Hence the rate 
k = min(p, 2 + p/2) is expected when solving the Schrödinger equation. As an example, the 6th order SBP operators have 
p = 6, which gives the expected convergence rate k = 5.

The one-dimensional SBP operators are extended to two dimensions by the Kronecker tensor product denoted ⊗. For 
notational simplicity we assume Nξ = Nη = N in the following analysis. This simplification does not restrict the generality 
of the method. The spatial step is h = 1/N in both dimensions. Let Im denote the m × m unit matrix and let the vectors 
e1, e2, ..., em be the columns of Im and E(k) = ek ⊗ ek . Using this, we introduce the difference operators

D1ξ = D1 ⊗ IN , D1η = IN ⊗ D1,

D(b̄)
2ξ =

N∑
k=1

D(b̄(ξ,ηk))

2 ⊗ E(k), D(b̄)
2η =

N∑
k=1

E(k) ⊗ D(b̄(ξk,η))

2 ,

the matrices,

Mξ = M ⊗ IN , Mη = IN ⊗ M,

and a matrix defining a discrete inner product for the domain,

Hξη = H ⊗ H .

Further, we construct matrices that select the boundary elements

eW = IN ⊗ e1, eE = IN ⊗ eN , eS = e1 ⊗ IN , eN = eN ⊗ IN ,

and d1 and dN are extended as

dW = IN ⊗ d1, dE = IN ⊗ dN , dS = d1 ⊗ IN , dN = dN ⊗ IN .

For any grid function v̄ , let

v̄(W) = e� v̄, v̄(E) = e� v̄, v̄(S) = e� v̄, v̄(N ) = e� v̄.
W E S N

4
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3.2. Spatial discretisation

Discretising the transformed Schrödinger equation (10) in space with the above operators and SAT gives

ūτ = −DT ū + iD�ū − i ¯̄V ū + S AT� + S ATT , (20)

where

DT = ¯̄J−1( ¯̄γ1 D1ξ + D1ξ
¯̄γ1 + ¯̄γ2 D1η + D1η

¯̄γ2 − ¯̄Jτ )/2, (21)

is the discretisation of T and

D� = ¯̄J−1(D(ᾱ1)
2ξ + D1ξ

¯̄βD1η + D1η
¯̄βD1ξ + D(ᾱ2)

2η ), (22)

the discrete Laplace operator.
For a stable scheme, that preserves the discrete probability ‖ū‖�̄ the SAT-terms are chosen as:

2S ATT = ¯̄J−1 H−1
ξη eW H ¯̄γ1e�

W ū − ¯̄J−1 H−1
ξη eE H ¯̄γ1e�

E ū

+ ¯̄J−1 H−1
ξη eS H ¯̄γ2e�

S ū − ¯̄J−1 H−1
ξη eN H ¯̄γ2e�

N ū
(23)

and

S AT� = ¯̄J−1 H−1
ξη (dW ¯̄α1 + D�

1ηeW
¯̄β)He�

W eū

− ¯̄J−1 H−1
ξη (dE ¯̄α1 + D�

1ηeE
¯̄β)He�

eaū

+ ¯̄J−1 H−1
ξη (dS ¯̄α2 + D�

1ξ eS
¯̄β)He�

S ū

− ¯̄J−1 H−1
ξη (dN ¯̄α2 + D�

1ξ eN
¯̄β)He�

N ū.

(24)

Theorem 1. The semi-discrete problem (20) is time-stable if the SAT-terms are chosen as (23) and (24).

Proof. If we show that the scheme preserves the discrete probability density the scheme is time-stable. As in the continuous 
case the probability density is preserved if d

dτ ‖ū‖2
�̄

= 0. Multiplying (20) from the left by ūH ¯̄J gives

d

dτ
‖ū‖2

�̄
= −2 Re[(ū, DT ū + S ATT )�̄] + 2 Im[(ū, D�ū + S AT�)�̄] + (ū, ¯̄Jτ ū)�̄′ . (25)

We start by treating first term of the left hand side of (25), related to DT : As in the continuous case, the aim is to show 
that this term cancels (ū, ¯̄Jτ ū)�̄′ . By the SBP property, in (18), which is the discrete equivalent of the integration-by-parts
property that was applied in the continuous analysis, we get

(ū, ¯̄γ1 D1ξ ū)�̄′ = −(D1ξ
¯̄γ1ū, ū)�̄′ + BTξ , (26)

and

(ū, ¯̄γ2 D1ηū)�̄′ = −(D1η
¯̄γ2ū, ū)�̄′ + BTη. (27)

Here, the boundary terms are

BTξ = ū∗
(E)H ¯̄γ1ū(E) − ū∗

(W)Hη
¯̄γ1ū(W),

BTη = ū∗
(N )H ¯̄γ2ū(N ) − ū∗

(S)Hξ
¯̄γ2ū(S).

(28)

Since (ū, ¯̄γ1 Dξ ū)�̄′ = (Dξ
¯̄γ1ū, ̄u)∗̄

�′ , the first parenthesis in (25) can be written as

Re[(ū, DT ū + S ATT )�̄] = Re[(ū, S ATT )�̄ + 1

2
BTξ + 1

2
BTη] − 1

2
(ū, ¯̄Jτ ū)�̄′ . (29)

Inserting the S ATτ defined in (23) yields

2 Re[(ū, DT ū + S ATT )�̄] = −(ū, ¯̄Jτ ū)�̄′ . (30)

Substituting into (25) yields

d ‖ū‖2¯ = 2 Im[(ū, D�ū + S AT�)�̄]. (31)

dτ �

5
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We continue by treating the remaining term of (31), related to D�: This term should equal zero, just as the correspond-
ing term in the continuous analysis. From the SBP relation in (19) we get

(ū, D(ᾱ1)
2ξ ū)�̄′ = ū∗M(ᾱ1)

ξ ū + BT2ξ (32)

and

(ū, D(ᾱ2)
2η ū)�̄′ = ū∗M(ᾱ2)

η ū + BT2η. (33)

Since Mξ and Mη are positive semi definite Im[ū∗M(ᾱ1)
ξ ū] = 0 and Im[ū∗M(ᾱ2)

η ū] = 0. Hence the contribution from these 
second derivative terms to the discrete probability density is reduced to the boundary terms

BT2ξ = ū∗
(E)Hη

¯̄α1d�
E ū − ū∗

(W)Hη
¯̄α1d�

W ū,

BT2η = ū∗
(N )Hξ

¯̄α2d�
N ū − ū∗

(S)Hξ
¯̄α2d�

S ū.
(34)

The SBP property of D1 defined in (18) allows us to rewrite the mix derivative terms as

(ū, Dξ
¯̄βDηū)�̄′ = −(Dξ ū, ¯̄βDηū)�̄′ + BTξη, (35)

and

(ū, Dη
¯̄βDξ ū)�̄′ = −( ¯̄βDηū, Dξ ū)�̄′ + BTηξ . (36)

Since (Dξ ū, ¯̄βDη ū)�̄′ = ( ¯̄βDη ū, Dξ ū)∗̄
�′ , the contribution to the discrete probability density from these mix derivative terms 

is the boundary terms

BTξη = ū∗
(E)Hη

¯̄βe�
E Dηū − ū∗

(W)Hη
¯̄βe�

W Dηū

BTηξ = ū∗
(N )Hξ

¯̄βe�
N Dξ ū − ū∗

(S)Hξ
¯̄βe�

S Dξ ū.
(37)

Adding (32), (33), (35), (36) and the S AT� defined in (24) yields

Im[(ū, D�ū + S AT�)�̄] = 0. (38)

Equation (31) now reduces to

d

dτ
‖ū‖2

�̄
= 0. (39)

Therefore the probability density is preserved and the scheme is time-stable. �
3.3. Time integration

It is well known that the time-scale of solutions to the Schrödinger equation is shorter than the length scale. Hence, 
small time steps are required for accurate solutions. For explicit schemes, the Courant–Friedrichs–Lewy (CFL) condition gives 
the requirement that the time step has to be proportional to h2. One important application of our scheme is to simulate 
adiabatically deforming systems. In such systems, the frequency of the wave function is on a much shorter time-scale than 
the domain deformation. This type of systems requires long simulations, but the time step has to be adjusted to resolve the 
short time-scale of the wave function. Therefore, the choice of time integrator is crucial for efficient simulations of this type 
of problem.

The set-up with a time-dependent coordinate transformation gives a system of equations seen as a Schrödinger equation 
with a time-dependent Hamiltonian. For this problem type, the Magnus-Lanczos time integration scheme has shown to be 
competitive choice [18]. For the Magnus-Lanczos integrator the problem must be written on the form v̄t = A(t)v̄ where A
is a skew symmetric matrix. The scheme derived in this work can be rewritten as a skew symmetric system by performing 
the change of variables ū = H1/2

ξη
¯̄J−1/2q̄. If we denote the action of the scheme in (20) by D(t), i.e.

ūt = D(t)ū, (40)

and apply the change of variables, we get

q̄t = D̃(t)q̄, (41)

where D̃ = H1/2 ¯̄J−1/2(D + ¯̄Jτ /2) ¯̄J−1/2 H−1/2. This D̃ can be shown to be skew-symmetric by the same arguments used in 
the stability proof.
6
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Fig. 2. Real part of the analytical solution at the initial and final time of the convergence test.

In this work, the fourth order Magnus-Lanczos integrator presented in [19] is used. A drawback with the Magnus-
Lanczos scheme is that it does not allow for a forcing term to be added to the system. In convergence test, presented in 
the following section, a forcing function is added at the boundary in order for the scheme to fulfil an analytical solution. 
In this case the Magnus-Lanczos scheme can not be used. Instead, the standard fourth order Runge-Kutta scheme is used 
with a step proportional to h2. This is by no means an optimal time integrator but since long simulations are not required 
for the convergence test it is possible to use the fourth order Runge-Kutta scheme in this case. In practical applications, 
this constraint is not a limitation since we expect infinite potential walls which is equivalent to a homogeneous Dirichlet 
boundary condition at all boundaries.

4. Convergence study

For the Schrödinger equation on a moving quadrangular domain with homogeneous Dirichlet boundary conditions, no 
analytic solution to verify the convergence is known to the authors. Therefore, a manufactured solution is employed to 
verify the convergence properties of the scheme. The plane wave

ûref (t, x, y) = ei(10πx−(10π)2t) + ei(10π y−(10π)2t)

is chosen as the solution, which is the analytical solution to

ût = i�û, (x, y) ∈ �(t), t > 0,

û = ûref (t, x, y), (x, y) ∈ ∂�(t), t ≥ 0,

û = ûref (0, x, y), (x, y) ∈ �(t), t = 0.

(42)

The quadrangular domain deformation is prescribed by moving the coordinates of the corners along the following paths:

Lower left corner: x = 10t, y = −10t.

Lower right corner: x = 1 − 10t, y = 0.

Upper right corner: x = cos(20t), y = 1 + sin(20t).

Upper left corner: x = −10t, y = 1 − 10t.

(43)

The test is run until t = 10−2 which corresponds to π/2 periods of the plane wave. The standard 4th order Runge-Kutta as 
time integration scheme is used. The initial condition uref (0, x, y) and the analytical solution at the end time is shown in 
Fig. 2. The time step is chosen as 0.2h2. The convergence rate k is calculated as

k = log

(
eN2

eN1

)/
log

[(
N2 − 1

N1 − 1

)1/2
]

, (44)

where eN is the l2-error of the solution on a grid with N points in each spatial direction. The convergence rate and l2 errors 
are shown in Table 1. The computed convergence rates agree with the theoretical result (k = 2 for 2nd order k = 4 for 4th 
order and k = 5 for 6th order, see Remark 1).
7
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Table 1
l2 errors and convergence rates for the convergence test.

2nd order 4th order 6th order

N log10(e) k log10(e) k log10(e) k

25 0.23 - -0.34 - -0.41 -
51 -0.38 1.91 -1.49 3.63 -1.98 5.22
101 -0.98 1.98 -2.77 4.26 -3.75 5.87
201 -1.58 2.00 -4.00 4.07 -5.43 5.60
401 -2.18 2.00 -5.21 4.00 -6.97 5.12

Fig. 3. Adiabatic evolution of eigenstate 18-20 when the upper right corner is encircling the diabolical point, Tend = 100.

5. Application

In this section, we apply our numerical method, which is designed for the problem of a quadrangular 2D domain, to the 
situation of one adiabatically moving corner. The eigenfunctions of the quadrangular domain have been studied by means 
of microwave cavity analogue experiments in [20–22]. By taking snapshots of the standing wave pattern for a sequence of 
boundary shapes, these experiments examined the behaviour of the Berry phase [4] in the vicinity of degeneracies of the 
normal modes. This phase shift corresponds to a sign change when taking certain normal modes around a diabolical point. 
The sign change was confirmed by assigning a sign locally to the wave and following this sign pattern in a continuous 
manner around the path in parameter space.

As a test of our method, we demonstrate how these Berry phases can be obtained in a fully quantum-mechanical setting 
by solving the time-dependent Schrödinger equation in this system.

The experiment of [20] considered the triply degenerate 18th - 20th normal modes of a rectangular quantum billiard 
with the side length ratio 1 to 

√
3. To reproduce the results of [20] in the quantum-mechanical setting, we construct a 

computational domain with the lower left corner at x = 0, y = 0, the lower right corner at x = √
3, y = 0 and the upper left 

corner at x = 0, y = 1. A diabolical point is formed for the upper right corner at x = √
3, y = 1, for which the 18th - 20th 

energy eigenstates corresponding to the quantum numbers (nx, ny) = (2, 4), (7, 1), (5, 3) are degenerated. For a quantum 
billiard of this box configuration the energy is Enx,ny ∝ n2

x
3 + n2

y . Hence, it is easy to determine that the energy of the 18th -
20th state is equal to 13 × E g , E g = E1,1 being the ground state energy of this configuration. The diabolical point is encircled 
by displacing the upper right corner and moving it along the elliptical path

(xθ , yθ ) = (
√

3,1) + a(cos c, sin c) cos θ + b(− sin c, cos c) sin θ (45)

with parameter 0 ≤ θ ≤ 2π , and constants a = 0.1023, b = 0.02313, and c = 0.4739.
In order to capture the adiabatic behaviour the time-scale of the deformation has to be slow enough for the system 

approximately to remain in the eigenstate. Fig. 3 displays a simulation where the upper right corner has moved with 
constant speed along the ellipse in Eq. (45) for eigenstates 18-20. The simulation is run until Tend = 100. The velocity of the 
upper right corner is chosen such that the corner returns to its initial position at Tend . This figure displays snapshots of the 
probability density |u(x, y, t)|2 when the upper right corner of the quantum billiard is at the positions shown in Fig. 4 along 
the elliptical path. It can be observed that the standing wave solution is modified as the corner moves along the ellipse, but 
approximately returns to the original state as the corner approaches its original position. For state 18 and 20 the solution 
has been subjected to a geometric phase shift of π . To visualise the phase shift, Fig. 5 shows the simulation in Fig. 3 but 
with the anti-nodes of the probability density coloured alternating in red and yellow. The colouring is following the changes 
of the state continuously as the upper right corner moves along the elliptic curve. A swap of the colours between position 
1 and 10 indicates a Berry phase shift of π . Both this result and the intermediate states agree well with the results in 
[20].

To implement adiabatic evolution of the confined quantum particle, the boundary has to move slowly in comparison 
with the frequency of the wave function. Since two different time scales are present in this kind of evolution, efficient and 
accurate numerical methods are required. Thus, the method needs to be applicable for a wide range of time-scales, including 
adiabatic as well as non-adiabatic changes of the domain.
8
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Fig. 4. Path of upper right corner. Note that the points 1 and 10 coincide.

Fig. 5. Adiabatic evolution, coloured in order to detect geometric phase shift.

Fig. 6. Non-adiabatic evolution of eigenstate 18 - 20 when the upper right corner is encircling the diabolical point. Tend = 10.

Fig. 7. Time evolution in the sudden approximation regime of eigenstate 18 - 20 when the upper right corner is encircling the diabolical point. Tend = 0.1.

We demonstrate in Figs. 6 and 7 that our method is qualitatively able to capture the dynamics at shorter, non-adiabatic 
time-scales. These simulations have the same set-up as the adiabatic one in Fig. 3 apart from that the corner moves with 
different velocities along the elliptical curve. In Fig. 6 the velocity is 10 times the velocity of the adiabatic simulation and in 
Fig. 7 the speed is 1000 times the speed in the adiabatic case. In the two cases, where the system is subjected to more rapid 
deformations than in the adiabatic simulation, mixing of the eigenstates occurs, which causes different physical effects. In 
particular, Fig. 7 shows that the wave pattern is almost unaffected under a rapid change. According to the sudden approx-
imation (see e.g. [23]), being applicable to rapidly changing Hamiltonians, one expects that the time evolution operator is 
9
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close to the identity, which means that the probability density is expected to remain unchanged during the deformation. 
This indeed is consistent with our simulation.

The numerical experiments are run with 6th order SBP operators with Nξ = Nη = 60. The fourth order Magnus-Lancsoz 
time integrator is used with the time step 0.1h. For the Laczos iterations the error tolerance is set to 10−10 . In all cases, 
the numerical experiments are initiated with the upper right corner in point 1 at Fig. 4 with the corresponding eigenstate 
of this quantum billiard as initial condition.

6. Conclusions

In this paper, a provably stable high-order finite difference method for the time-dependent 2D Schrödinger equation 
on deforming domains has been derived by using the SBP-SAT framework. The domain deformation is treated by a time-
dependent coordinate transformation that introduces a time-dependent variable coefficient and an additional term to the 
Schrödinger equation. The convergence properties of the scheme are verified by numerical experiment for 2nd, 4th and 6th 
order SBP operators. Further, a numerical experiment of a deforming quadrangular domain at different time-scales has been 
presented, which in the adiabatic limit demonstrates the existence of a non-trivial Berry phase. In the future, we aim to 
extend the discretisation to include external magnetic fields, as well as to the non-linear Gross-Pitavieski equation.
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