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Aiming to predict new materials for magnetic refrigeration from high-throughput calculations asks for an
accurate, transferable, and resource-wise balanced approach. Here, we analyze the influence of various
approximations on the calculation of key properties of magnetocaloric materials, while revisiting the
well-known FeRh system for benchmarking our approach. We focus on the entropy change and its
contributions from the electronic, lattice, and magnetic degrees of freedom. All approximations
considered are based on first-principles methods and have been tested, and compared for FeRh. In
particular, we find that in this context, the Debye approximation for the lattice entropy fails, due to the
presence of soft phonon modes in the AFM phase. This approximation is frequently used in the literature
as a simple alternative to full phonon calculations. Since soft modes are likely to occur also among
promising magnetocaloric materials where structural transformations are common, the use of the Debye
approximation should be discarded for these systems treatment. This leaves the calculations of the lattice
contribution the most demanding task from the computational point of view, while the remaining
contributions can be approximated using more efficient approaches. The entropy change AS shows a
peak around 370 K, for which the total entropy change is given by 24.8 JK~1kg~! (AS,, = 7.38,
ASjq = 7.05, ASmag = 10.36 JK~1kg~1) in good agreement with previous theoretical and experimental

findings.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The idea of replacing convectional room temperature cooling
devices by solid-state magnetic devices, which have the potential
for better energy efficiency without producing harmful greenhouse
gases, has promoted the interest in magnetocaloric materials. The
search for new materials with a more attractive performance/cost
ratio or tuning of known compounds is crucial in order to use such
devices in mass production and everyday applications [1-5].

First principles high-throughput calculations can be a powerful
approach to identify suitable candidates with desired properties by
screening a large body of data. To be able to do that, large databases
and screening parameters, which are carefully selected to achieve a
balance between the accuracy and the cost of the computation are
required [6,7].

The performance of materials used in a magnetocaloric cycle can
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be characterized by the refrigerant capacity, RC = AS;,AT,4;, Where
ASjs, is the isothermal entropy variation and AT, is the adiabatic
temperature change. None of these parameters can be easily esti-
mated from first principles electronic structure calculations,
instead, a more tailored approach is necessary to take into account
the finite temperature effects. Analogous to Ref. [8], we propose the
use of the entropy variation between the involved magnetic phases
(AS) as an approximation of AS;,. In this way, the transition itself
and the field contribution are not included on the description,
simplifying considerably the calculation. The magnetocaloric effect
is in general small unless it is operated at temperatures in the vi-
cinity of a phase transition, whereas it is strongly enhanced by the
entropy variation of a transition, which justifies our approach [2,9].

In a simplified model, entropy can be described by the sum of
three independent contributions: the electronic entropy, the
magnetic entropy and the lattice entropy: S = Sgje + Smag + Siq¢- This
is a simplification of the real processes, since most of the magne-
tocaloric materials show magnetostructural or magnetoelastic
transitions indicating strong coupling between lattice and mag-
netic degrees of freedom. A consequence of neglecting these
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coupling terms (or taking them as constants) is that, their contri-
bution are “double-counted” when summing the three contribu-
tions. However, as shown here, the simplified approach still
provides a reliable estimation for AS without overburdening the
calculations [1,10].

By using AS as a screening parameter, we are likely limiting our
search to materials with first order transitions, since they have
enhanced entropy variation [2,4,10]. These materials show better
magnetocaloric performance but can also be more challenging to
operate in practice, due to hysteresis losses. As pointed out in
Ref. [4], first order transitions have hysteresis that can reduce
drastically the performance in multi-cycle processes and thus make
the materials less attractive for real cooling devices applications.
However, even with the above-mentioned limitations in mind, AS is
a natural choice for screening potential magnetocaloric materials,
when attempting high-throughput approaches.

In order to be used in high-throughput calculations we need to
explore the degree of complexity needed to get reliable estimations
for the different contributions for AS. Therefore, FeRh, a well-
known magnetocaloric system, is used as a test case keeping in
mind that the approach should be as general as possible in order to
be transferable to other systems. Starting from simple models, the
different conventional approaches are compared relatively to their
performance and applicability for high-throughput calculations.
We would like to stress that the focus of our study is on the
methodology used for first-principles entropy estimations and not
on the test material, FeRh, itself that was chosen by thorough
studies available in the literature [8,11—22].

Over the years, the unusual metamagnetic first-order transition
of ordered FeRh alloys with CsCl structure has caught huge attention,
which is reflected, in a larger number of experimental and theoret-
ical studies [11—13,18,23—31]. An isostructural transition from a low-
temperature antiferromagnetic (AFM) phase to a high-temperature
ferromagnetic (FM) phase occurs near room temperature (around
340K), accompanied by a volume increase of about 1%. The transition
is also characterized by the considerable gain of the magnetic
moment of the Rh atoms (= 1 pp) from a nonmagnetic state in the
AFM phase (type G), which stabilizes the FM phase [13].

Early attempts to determine the origin of the transition e.g.
using the exchange-inversion model of Kittel [32,33] were incom-
patible with the large entropy variation observed in FeRh. Based on
the measured electronic contribution to the entropy variation Tu
et al. proposed that the transition might be driven by changes in the
electronic structure [23], however this explanation did not
compare to previous results for Ir doped FeRh [34]. Later, it was
proposed by Gruner et al. that the transition is driven by magnetic
fluctuations [13], and the same conclusion was obtained by Gu et al.
[18] and Staunton et al. [16] using different approaches.

Nowadays, there is a renewed interest in these compounds due
to their magneto- and barocaloric properties. Examples of such
studies are e.g. the performance of the magnetocaloric effect (MCE)
under cyclic conditions [29] and the variation of the magnetocaloric
response between FeRh based ternary compounds [35]. Very
recently, the existence of an orthorhombic low-temperature phase
of FeRh has been predicted from first-principles calculations
[12,14,36] as well as a martensitic transformation under strain
[14,15,37].

The existence of such broad knowledge and detailed informa-
tion in the literature together with the complex metamagnetic
behaviour that demands a careful treatment makes FeRh an ideal
test system for our purpose to identify a method that can be applied
in a high-throughput study for finding new magnetocaloric
materials.

The discussion in the present work is divided in two parts. In the
first part, we discuss thoroughly the single entropy contribution in
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terms of electronic, lattice and magnetic components. This is done
for FeRh using different approximations, albeit without considering
thermal effects on the structure. In the second part, we include
volume expansion/contraction from thermal effects and compare
with the previous results, using the approximations we found to be
adequate to describe the system. From this we are able to conclude
which is the most viable approach to be applied in high-throughput
calculations.

2. Computational details

The structural properties as well as structure relaxations were
performed using the VASP (PAW) code [38—40] with PAW poten-
tials [41,42] while the PHONOPY [43] code was used to obtain the
vibrational density of states and the phonon spectra. Magnetic and
electronic properties needed for entropy calculations were derived
from a full-potential linear muffin-tin orbital method (FP-LMTO)
using the RSPt code [44], and respective temperature dependent
quantities such as the adiabatic magnon density of states or the
Curie temperature were computed using the UppASD code [45]. In
all the DFT calculations, the functional GGA-PBE [46] was used,
since it shows in general a good performance in transition metals
and compounds, which represents the substantial part of the future
database to screen.

Both FM and AFM phases were relaxed on cubic cells of 16 atoms
(8 f.u.) taking 4s, 4p, and 3d for Fe as well as 5s, 5p and 4d orbitals
for Rh as valence states. A kinetic energy cutoff of 500 eV, roughly 2
times bigger than the default value, was used. For sampling the
Brillouin zone we used a k-mesh 12 x 12 x 12 generated with the
Monkhorst-pack scheme in combination with a smearing of 0.05 eV
according to the Methfessel-Paxton scheme (2™ order). Tests with
the inclusion of the Fe 3p and Rh 4p semi-core states in the valence,
as well the usage of a higher cutoff energy (750 eV) revealed that
the calculations are converged with respect to these parameters.
The relaxed lattice parameters of 2.99 A (AFM) and 3.01 A (FM) are
in good agreement with previous calculations, e.g. 2.99 (3.01) A
[12],3.00 (3.01) A[8] for the AFM (FM) phase. They are also in good
agreement with experimental measurements, 3.00 A [47], and 2.98
(3.00) [48] for the AFM (FM) phase. For these volumes, the mag-
netic moments obtained from these calculations are mg, = 3.21 up
and mgy, = 1.05 pg in the FM phase, and mg, = 3.12 ug and mg, = 0.0
up in the AFM phase. These results are close to the experimentally
measured values of an alloy with 48% Rh in the FM phase, mg, = 3.2
ug and mgy, = 0.9 ug [49,50], as well as to the measurements for the
AFM phase of a stoichiometric compound, mg, = 3.3ug [50]. The
obtained results are also in close agreement with previous calcu-
lations: e.g. mg, = 3.18upg [12], 3.15up [11] and mg, = 1.06ug [12],
1.02up [11] for the FM phase and mg, = 3.12ug [12], 2.98ug [11] in
the AFM phase. At T = OK, the AFM phase is lower with 26.9 meV/
atom (VASP calculation') compared to the metastable FM phase.

The phonon calculations were performed within the harmonic
approximation employing the finite displacement method in a
similar setup as used on the structural relaxation. We used dis-
placements of 0.01 A for these calculations. A 2 x 2 x 2 supercell
from the relaxed structures with 128 atoms (64 f.u.) was employed.
For this supercell we used a coarser k-mesh 6x 6x 6. No
improvement was observed by increasing the cutoff energy to
750 eV and neither a significant change of the phonon spectrum
with the inclusion of 3p (Fe) and 4p (Rh) orbitals in convergence
tests performed for cells of 16 atoms. To make it easier to compare
results with previous calculations [8,12], we employed also a
similar setup, with a cutoff of 500 eV and the inclusion of the semi-

1 29.6 meV in the analogous RSPt calculation.
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core states in all phonon calculations.

For calculations performed with the RSPt code, we used fcc-like
structures of 4 atoms (2 f.u.), with the previously relaxed lattice
parameter on a 36 x 36 x 36 k-mesh with related integrated
quantities broadened by Fermi smearing of 1 mRy. The exchange
parameters J; were calculated using the Liechtenstein method
[51,52], implemented in the RSPt code, as described in Ref. [53]. The
Curie temperature (T¢) calculated via mean field theory according
to the obtained values of J;; for the FM phase is of 804 K, which is
comparable to the experimentally measured value of 675 K [33,47].
This agreement is good, given the fact that mean-field theory tends
to overestimate T¢ about ~20% (as discussed e.g. in Ref. [45]). For
analysis of the long range behaviour with distance, the exchange
parameters were calculated on a denser k-mesh of 64x 64x 64 to
assure convergence of the results.

3. Results

As initial approach, anharmonic effects raised by thermal
expansion were neglected and we consider only the DFT ground-
state volumes for both magnetic phases. We extend the use of
this terminology for elastic/structural properties for this approach
to distinguish clearly that the volumes were fixed. The assumption
of purely harmonic forces between atoms is insufficient to describe
the thermal expansion or contraction of a material, and it may be
important to consider anharmonic effects, for accurate calculations
of phase stability and entropy estimates. To compare improvements
obtained by this description, relatively to the previous “Harmonic”
approach, we used the quasiharmonic approximation (QHA) to
include the effects of thermal expansion on the entropy estimates
(see more details further) [54].

3.1. Electronic structure, and its contribution to the entropy

The density of states (DOS) of FeRh is shown in Fig. 1a, for the FM
and AFM configuration. Note that for the AFM configuration we
show the spin-polarized DOS of only one Fe atom.

The figure shows the atom with more spin-down electrons
occupied, representing a Fe atom with a negative atomic moment.
The Fe atom with positive moment has exactly the same DOS,
although with opposite spin-projection to that shown in Fig. 1. In
agreement with previous findings in the literature, a strong hy-
bridization between iron and rhodium orbitals is observed [17]. In
particular, a strong hybridization between Fe t,; and Rh eg orbitals
near the Fermi energy (Er — E = 2 meV) occurs in the AFM phase,
where it also can be assumed some hybridization between Fe eg
and Rh tp, orbitals in the peak around Er — E = 2 meV, see Fig. 1a.
For the FM state the hybridization seems to weaken, and be
confined on the minority spin channel, mainly observed between
the orbitals of Fe and Rh near the Fermi energy. This observation
may emphasize the picture of quenched Rh magnetic moments due
to the competing influence of neighbouring iron atoms on the AFM
phase. The hybridization that is diminished between Fe—Rh on the
FM phase can be directly ascribed to the lifting of the anti-parallel
alignment of the surrounding iron atoms. On the other hand, it can
also be related to the increased volume, which can reduce orbital
superposition or a combination of both effects.

In the FM phase (Fig. 1b), it is possible to distinguish a significant
difference between t,, and eg orbitals of Fe at Fermi level which can
be an indication of different magnetic behaviour of these orbitals
similar as observed for bcc-Fe in Ref. [55]. There it was found that
te orbitals, with likewise bigger contribution for the electronic
density of states DOS(er), were related to the long-range Ruder-
man—Kittel-Kasuya—Yosida (RKKY) interactions while the e; were
associated with direct exchange with nearest neighbours. The
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Fig. 1. Electronic DOS for FeRh in the AFM (a) and FM (b) phase. The DOS is projected
onto Fe 3d states, with g and t,; symmetry, and Rh 4d states, with eg and t,; sym-
metry. The density of the minority states is displayed on the negative axis. For inter-
pretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.

similarities, observed in the projected Fe DOS, might hint for the
existence of some similarities between magnetic behaviour of Fe
atoms of both compounds.

The contribution of electronic excitations to the entropy is given
by the mixing entropy of occupied and unoccupied states:

Sele = — I<BJD(5)([1 —f(e, D]In(1 —f(e,T)) +f(e, )In(f (e, T)))
(1)

where D(e) is the density of states and
f =1[exp((e — w)/(kgT)) + 1] is the Fermi-Dirac distribution.
Furthermore, kg is the Boltzmann constant and p is the temperature
dependent chemical potential. For temperatures considerably
below the Fermi temperature, it is reasonable to approximate u
with the Fermi energy, Er. Then the electronic entropy can be
estimated from the Sommerfeld approximation [56].

772 2
Sele :?kBTD(SF) (2)

In Fig. 2, the results obtained from both models are compared,
showing a good agreement for temperatures till 300K. Outside this
range the results differ, resulting in a small deviation observed for
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Fig. 2. Electronic contribution to the entropy variation AS = Sgy; — Sapy according the
Sommerfeld approximation (black dotted line) and the mixing entropy in the har-
monic (blue solid line) and the quasi-harmonic (red dashed line) approaches. For
interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.

temperatures close to the transition temperature for the transition
from antiferromagnetism to ferromagnetism. The deviations arise
from the AFM phase and can be explained by the absence of peak
structures in DOS at the Fermi energy (Fig. 1) as the Sommerfeld
approximation assumes. Nevertheless, the deviation between the
discussed models for S, estimation, in the range of the transition,
is small being the obtained difference of 1.84 J K~! kg~! for AS,.
and 26 K for the transition temperature (discussed in further sec-
tions). Although there is not significant loss of accuracy estimating
Sele Using Eq. (2), using the definition of mixing entropy does not
imply extra computational effort. Thus to avoid eventual inaccur-
acies that may arise by using Sommerfeld approximation, we use
the definition in Eq. (1) as the standard method for calculating the
electronic entropy.

3.2. Magnetic contribution to the entropy

For materials with order-disorder magnetic transitions, the
maximum magnetic entropy variation between phases can be
roughly estimated from ASmge = Nkgln[25+1] (in a quantum
description) with N being the number of magnetic atoms [24]. This
comes about since very few microstates are available for highly
ordered states, and the entropy of this configuration can be
neglected in the limiting case T — 0. In contrast, for the disordered
configuration we have (25 + 1)V arrangements for the spins for T
— oo, Which results in the entropy change across the order-disorder
transition as described above.

According to the analysis above, it is expected that order-order
transitions at finite temperature have a considerably smaller en-
tropy change from the magnetic subsystem.

Based on this and the argument that considering the itinerant
nature of magnetism of FeRh, the magnetic contribution to AS is
already included in the electronic entropy computed from the DOS,
some reports argue that the magnetic contribution of the entropy
does not need to be considered separately [8]. To some extent, it is
possible that some magnetic contribution is captured by AS,,, since
some coupling between the degrees of freedom is expected.
However, taking into consideration the increase of the Rh magnetic
moment from 0 (AFM) to =1up (FM), it seems that the magnetic
entropy for this transition must be considered specifically. A good
reason for that are the new two-site interactions between Fe and Rh
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Fig. 3. Calculated exchange parameters (J;;) calculated for FeRh, decomposed according
the involved atoms type a), and crystal field symmetry b). In b) are only plotted the
exchange interactions between iron atoms along the <001> direction. For interpre-
tation of the references to color in this figure legend, the reader is referred to the Web
version of this article.

atoms of the ferromagnetic phase, described e.g. by the Heisenberg
Hamiltonian, which should be considered for a proper system
description (see Fig. 3a). Interestingly, Fig. 3a shows that the close
range of the Fe—Fe exchange is quite similar for the AFM and FM
configurations. The nearest neighbour interaction is anti-
ferromagnetic in both phases, although the strength is larger for
the AFM configuration. In addition, the general trend of the Fe—Fe
interaction is quite similar for both configurations. The interaction
that stabilizes the FM phase is hence not found in the Fe—Fe Hei-
senberg exchange. Instead, as Fig. 3a shows, the strong ferromag-
netic Fe—Rh interaction is what makes the FM configuration stable
at all. This represents an interesting boot-strapping effect, when the
FM configuration is what allows for a sizeable Rh moment, and the
sizeable Rh moment is what ensures a large Fe—Rh exchange
interaction that makes the FM (meta-)stable [13].

To estimate the magnetic entropy variation we started by using
a simple approximation analogous to the one used in Ref. [57] for
LaFeq3_y Siy alloys. From the fundamental thermodynamic relation
dU = TdS — PdV one can, for isochoric processes, approximate the
entropy as AS = AU/T. Although crude, this approximation should
give an acceptable estimate for the entropy variation in first-order
transitions where the entropy varies discontinuously at the tran-
sition temperature. Using this and describing the magnetic energy
of the system by the classic Heisenberg Hamiltonian:
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H=3 iS5 ©

i<j

a good starting point for ASyee estimation can, in principle, be
obtained, since energy differences between different magnetic
configurations are available from Eq. (3). For FeRh this results in
ASmag = —26.78 JK—1kg~! (at T = 340 K), which has the wrong sign
from what is expected, a consequence of the use of a simplified
Heisenberg Hamiltonian, for which the FM phase is obtained as the
ground-state configuration. However, it was shown in
Refs. [13,25,58,59] that an extension of the Heisenberg exchange
model can be made, using e.g. higher-order interactions, to obtain a
proper magnetic description of the system with very satisfactory
results on Monte Carlo simulations. Here we took a different route
to avoid the use of a tailored model and evaluated the magnetic
entropy from spin-wave fluctuations, similar to the work in
Refs. [18]. This approach is possible since the AFM-FM transition
happens at considerable lower temperatures (=340 K) than the
Curie temperature of the FM phase and the spin fluctuations can
still be considered to be relatively small [12]. It is also necessary to
guarantee, in order to use this approach that Stoner excitations are
not dominating, as was shown in Refs. [17,18].

For this reason, we calculated the magnon density of states
(MDOS) from the adiabatic magnon spectrum. This calculation
relied on Heisenberg exchange parameters, Jj;, estimated from DFT
calculations. Due to the bosonic nature, the entropy of the magnons
is given by:

Smag = kg jg(E)[(1 +n(e, T))In(1+n(e, T)) —n(e, T)in(n(e, T))
0

x |de,
(4)

where g(e) is the MDOS and n = [exp(e/[kgT]) — 17! is the Bose-
Einstein distribution. For these calculations a perfectly aligned
configuration was assumed for the spin moments when calculating

the magnon dispersion (7 || 7). Analogous calculations per-
formed for a thermally relaxed (at 300K) magnetic configuration do
not deviate significantly from these results.

In contrast to the observation of the electronic entropy contri-
bution, a magnetic entropy maximum (10.92 JK-1kg~1) is obtained
at around 315 K, as it can be seen in Fig. 4. This peak is of major
importance since it hints to the existence of the phase transition. At
least, it shows that the magnetic entropy will favour the ferro-
magnetic phase. Also, the lack of similar peaked behaviour around
the transition temperature in the other entropy contributions (see
discussion of lattice contributions, below) suggests that the tran-
sition is triggered by the magnetic features of the system. Thus,
based on the applied magnetic model (spin-wave fluctuations) and
the obtained MDOS for the AFM phase, we suggest that at low
temperatures the Rh atoms are magnetically suppressed by the
anti-parallel alignment of the surrounding Fe atoms configuration.
This generates a vanishing local Weiss field on the Rh atom, that at
the transition temperature has its symmetry broken by the spin
fluctuations, which allow Rh to become magnetically polarized and
thus stabilizes the FM configuration. A similar picture of a transition
driven by small magnetic fluctuations, as the one described above,
is concluded in other works, both with similar methods [18] as well
as from different approaches [13,16,18,58].

It was already pointed out in the previous section, that iron
atoms in FeRh might possess some features that are similar to the
features they have in elemental form (bcc Fe). For instance, the
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Fig. 4. Comparison of the magnetic entropy variation between the FM and AFM phase,
AS = Sgy — Sapu, for the harmonic approximation (blue solid line) at fixed volume and
the quasi-harmonic approximation (red dashed line) with volume variation. For
interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.
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Fig. 5. Variation of the magnetic entropy peak parameters for the “Harmonic”
approach with the cutoff radii for included exchange interactions in the FM phase. At
the right axis, the estimated values for the magnetic entropy variation peak (red tri-
angles) are plotted, while the left axis denotes the temperature at which the entropy
variation peak occurs (blue circles). Results calculated for the FM (AFM) phase with a =
3.014A (a = 2.998A). For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.

existence of oscillating long-range interactions, must be taken into
consideration when calculating the MDOS and thermodynamic
properties from it. In Fig. 5, it is shown how the entropy peak varies
with the range of magnetic couplings J;; included in the calculation
of the MDOS?. ASmag and the peak temperature show a significant
dependence on the cutoff radius for the J;; such that a considerable
long range of interactions must be included to a fairly converged
estimation. This is a consequence of long-range magnetic in-
teractions of Jr._re, visible on Fig. 3b) that oscillate significantly till a
range of 10 primitive cells approximately. Based on these obser-
vations we included interactions up to 12 lattice parameters in our
calculations.

2 More details on the MDOS variation can be found on the Supplementary
materials.
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The fact that the sensitivity with respect to the range of the
interactions, is mainly due to interactions in the FM phase, reflect
that long-range oscillating interactions are stronger on this phase
(see Fig. 3b), and more significant on tp, orbitals, underpins the
similarity between bcc Fe and the FM phase of FeRh (see results for
bcc Fe in Ref. [55]), when it comes to understanding the Heisenberg
exchange. We point out that the sensitivity on the cutoff of the
Heisenberg interactions is important for many prospective mag-
netocaloric materials, since many of them are metallic and have Fe
as a key element, and the long-range magnetic interaction between
Fe atoms seems to be of particular importance.

Our results of the magnetic entropy change across the AFM - FM
transition are in agreement with previous calculations, see Table 1.
The quite large difference between our entropy calculation and the
results obtained by Gu et al., who used a similar computational
approach [18], are most likely caused by the shorter range of ex-
change interactions considered in their work. This might also partly
explain the small deviation between our results and the ones from
the models used in Refs. [13,58]. Relative to the transition tem-
perature, the higher result obtained by Staunton et al. stands out
from the remaining values [16]. Such deviation might be related
with the method itself - finite temperature spin density functional
theory is implemented in the disordered local moment approach -
which differs significantly from the other approaches. The calcu-
lations of Ref. [16] were done from an electronic structure theory
that allows a random distribution of spin-orientations, and there-
fore neglects short-range correlations. This approach is well
established and is argued [16] to describe better the electronic
structure at finite temperatures.

3.3. Lattice contribution

The calculation of properties related to the crystal lattice can
become very demanding regarding computational resources. In
order to calculate such properties in an efficient way, it is impera-
tive to minimize the numeric effort by using expedient models,
without compromising significantly the accuracy. To verify which
approximation is appropriate to estimate the lattice entropy, we
compare the results of models of various accuracy and complexity.
As contribution for the lattice entropy, only the vibrational entropy
was considered.

3.3.1. Debye model

In the Debye model the phonon dispersion relation is treated as
linear, w = vs|k|, where vs is the speed of sound in the material.
Therefore, the vibrational density of states (VDOS) is given by:

~ 30?
- 2udn?

g(w) (5)

Table 1

Comparison of calculated/measured magnetic contributions for the entropy varia-
tion (ASmqg) and respective transition temperature (T ). For our results the tem-
perature for the entropy peak is used for comparison since it hints for the magnetic
transition.

This work References

(Tpeak) [18] [13] [58] [16]
ASiag 109 15.4 52 15%8.2)" 13¢
UK kg™]
Ter 316 353 268 300 495

[K]

@ Result obtained from specific heat analysis, at presented T.
b Result obtained by AE(T)/T at T = 350K.
¢ Result under a 2T magnetic field.
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Fig. 6. Relation between bulk modulus and shear modulus for different magnetic
materials with structural transitions. Values found in literature [61—65] for cubic
phases where compounds within a given crystal structure type have the same color.
Blue circles represent Heusler structures, red squares refer to the FeSi structure type
and the black triangle to the CusAu structure type. For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article.

up to the cutoff Debye’s frequency. The entropy then becomes
[54]:

T\?3 x3
Slat = kg —31n(1—exp(—®/T))+12(@) J qu]
0

where @ is the Debye temperature. An important consequence of
this model is that at a fixed temperature the variation of the Debye
temperatures between phases (A®) has opposite sign to the
respective variation of lattice entropy, A®/|A®| = — ASy;/|AS;4l,
this can be used to understand the nature of the lattice entropy, i.e.,
if it is collaborative (has same sign) or detrimental (opposite sign)
relative to all other entropy contributions. The Debye temperature

can be computed as © = x(6w2n)!/ 375 /kg with the atomic density n
and s being the average velocity of sound in the crystal. For
isotropic crystals, the later is approximated as the average value of
the shear and longitudinal sound velocity. It is generally expressed

in terms of the bulk modulus (B), the density (p), and a correction

v

parameter’ £, i.e., s = £/B/p.

The correction parameter ¢ depends on the elastic properties of
the system. However, in Ref. [60] it was proposed that for a given
class of materials ¢ might be universal and can be derived from
elastic constants. To verify if this approximation could be used in
calculations of magnetocaloric materials we extracted the shear
and bulk moduli, from data found in literature [61—65], for mag-
netic materials with structural transitions (expected to be present
in an important class of interesting candidate materials for
magneto caloric applications). Fig. 6 shows that any possible linear
trend as obtained in Refs. [60] is not reasonable if compounds with
different structure types are compared. This makes the approach of
Ref. [60] less appropriate for high-throughput calculations and
data-mining algorithms. For FeRh, in particular, this approach is
specially unappealing considering the only materials with similar
structure and properties are alloys very close to the stoichiometric

3 Necessary for expressing s in terms of isotropic elastic parameter B, which can
be obtained from a fitting of the equation of state.
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compound.

We conclude that however inconvenient it is, the elastic prop-
erties have to be calculated for each material that one includes in
any data set for high-throughput calculations, when searching for
new magnetocaloric materials. For FeRh this exercise leads to a very
interesting result when comparing the two magnetic phases (AFM
and FM). Since the two phases have the same crystal structure, one
might naively assume very similar elastic properties for both pha-
ses. However, this assumption leads to a lattice entropy contribu-
tion of 7.9 JK~1kg~1at 328 K, which deviates from a more accurate
calculation that takes into account the difference in elasticity of the
two systems (discussed more in detail below) that yield a value
of —30.1 JK~kg~'at the same temperature. This later approach gets
closer to the extracted from calorimetric measurements = — 33
JK-1kg=1 (328K) using the same model [66].

In order to describe accurately the difference in elasticity of the
two phases of FeRh, we evaluated the elastic constants using the
RSPt software, for both phases. We used the stress-energy response
as described in Ref. [67,68]. The values of C;; = 194.9 (257.1) Cy5 =
194.9 (165.2) and C44 = 135.3 (115.6) GPa were estimated for the
AFM (FM) phase, with qualitative agreement with previous calcu-
lations [15].

Comparing the Debye temperatures derived by using the same
Poisson ratio (v) for both phases and from the calculation with the
different ratios for the AFM and FM phase, demonstrates the
sensitivity of this model for lattice entropy to small deviations
(Av = 0.05) of the elastic properties. Taking into account the dif-
ferences in the elastic behaviour of the AFM and FM phase, the
change in the Debye temperature A® is in good agreement with the
experimental results, see Table 2.

3.3.2. The Debye-Griineisen model

Taking a more sophisticated approach to estimate the lattice
entropy, by use of full phonon calculations [8,12], leads different
values of AS;,;, compared to the findings from the Debye model.
This is discussed in detail in the following subsection. To investigate
whether a simplified approach can be improved, we first extended
the Debye model to the Debye-Griineisen model, where effects of
volume variation are taken into consideration for the lattice prop-
erties. The Griineisen parameter, needed for this model, is calcu-
lated from

Y= -g+5(1+B), 7)

where B’ is the volume derivative of the bulk modulus. The
parameter g is an additive factor, usually taken as g = 1 for low
temperatures and g = 2/3 for high temperatures [60,69]. Consid-
ering the volume expansion, V4 — Vg, an increase is obtained for
|A®| which implies an increase in the magnitude of the lattice

Table 2

Comparison of different treatments for Debye temperature estimation and respec-
tive difference between phases, A® = ®gy — Oapy, With experimental measure-
ments. For the case with equal elastic properties assumed for both phases, the
calculated Poisson ratio vgy = 0.32 of the FM phase was considered. For the
remaining cases the v,y = 0.36 was used.

[K] Opmm Oy A0
Var = VEM 412 401 -1
VA % VEM 362 401 39
Expt [66]. 340 393 53
Thermal effects ¢ 352 417 65

@ High temperature correction considered, g = 2/3, very similar result is obtained
if the low temperature correction is taken. The volume of the FM (AFM) phase was
considered as altered volume for the AFM (FM) phase.
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Fig. 7. Calculated phonon dispersion (projected on the simple cubic lattice, left) and
respective density of states (VDOS, right) for the AFM (dashed red line) and FM (solid
blue line) phases. For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.

entropy variation comparatively to the previous estimate, and does
not lead to theoretical values closer to the observed data.

The Debye model is known to be accurate in the limits T < ®
and T >> ®% Outside this temperature interval it is less reliable. It is
for such temperatures that the magnetic transition for FeRh hap-
pens, which partly explains the difference obtained for S;;; using
full phonon calculations. As the discussion in the next section
shows, the existence of soft vibration modes has a major role in
explaining these contradictory results between the simple Debye
model and the results from full phonon calculations.

3.3.3. Entropy from full phonon calculations

The presence of soft phonon modes, reaching imaginary fre-
quency, leads to a structural transition, which leads to enhance-
ment of ASy,. Even if these soft phonon modes do not reach
imaginary frequency (indicating structural instability) they may
provide a hint for possible transition. It is reasonable to expect that
a fair amount of magnetocaloric candidates will show this behav-
iour. Soft modes of the acoustic branch can give raise to energy peak
structures in the vibrational density of states at low energies that
are not captured by the Debye model and lead to inaccuracies even
at low temperatures. Since the Debye model fails to describe the
thermodynamic properties of such materials, full phonon calcula-
tions must at least be tried in order to compare with more
approximate methods, and to assess if more efficient avenues exist
for the calculation of the lattice entropy.

The calculated phonon dispersion, displayed in Fig. 7, shows that
for most of the reciprocal space, the acoustic modes of FeRh behave
quite similarly in both the FM and AFM phase. However, the AFM
phase has conspicuous soft modes that even become imaginary as
in previous calculations [8,12], which also showed imaginary fre-
quencies around the M point. Such behaviour points to a dynamical
instability [8,12].

This result was thoroughly discussed for FeRh in Ref. [12] and a
competing low temperature monoclinic structure was proposed.
Nevertheless, near the experimental transition temperature be-
tween the AFM and FM phase, the structure is known to be cubic,

4 If anharmonic effects are relatively small and the equipartion of energy is a
good approximation. The high temperature limit of Debye model predicts the
specific heat consistently with the empirical Dulong-Petit rule [54].
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Fig. 8. Comparison of the lattice entropy variation between FM and AFM phases using
different approaches: Debye model (black dotted line), harmonic phonon calculations
(blue solid line) and quasi-harmonic approximation (red dashed line). For details of
calculations, see text. For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.

possibly caused by an entropy driven stabilization of the cubic
phase, e.g. as discussed in Ref. [70]. Since the part of reciprocal
space that contains imaginary frequencies is very small, as
observed by their minor contributions to the VDOS in Fig. 7, its
influence on thermodynamic properties is expected to be negligible
[12]. We therefore neglected this contribution, to the estimation of
thermal properties to avoid numerical complications.

The entropy variation derived from the VDOS (using the same
expression as Eq. (4) but with g(e) as the VDOS) is shown in Fig. 8. It
has the same sign and order of magnitude as the electronic
contribution. To be precise the difference in calculated lattice en-
tropy is 7.05 ] K1 kg~ ! at T = 373 K.°

Comparing the estimates in Fig. 8 it is interesting to note that
the trends for ASpqz between Debye model and the full-phonon
calculations start to differ around 40 K, when the result for the
later approach displays a small entropy peak. Tracing this to Fig. 7
we can relate it to the flattening of the phonon spectra around
0.8 THz for the AFM phase, which explains the small entropy peak
obtained for the full-phonons approach as the excitation of the soft
phonon branches [12]. The indicated observation also underlines
the role of the presence of the soft mode to the failure of the Debye
model application in this material.

The difference between entropy results for phonon calculations
and for Debye model in this material is as remarkable as surprising,
especially when considering that it is an isostructural transition we
consider. A priori there are no indications pointing to the need of a
more complex approach, and it is clear from the calculations dis-
cussed here for the lattice entropy, that the applicability of any
simplified method, such as the Debye model, should be carefully
verified for lattice contributions of the entropy variation. This
shortcoming of simplified models, should be taken into consider-
ation when estimating entropy variations of any material.

3.4. Total entropy variation
The sum of all hitherto discussed contributions to the entropy,
defines the total entropy variation between FM and AFM phases,

according to our model. In Fig. 9 (solid line) it is clear that the total
entropy difference between the FM and AFM phase has a

> Temperature for which the entropy peak happens to be in.ASmqg
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Fig. 9. Variation of the total entropy change between FM and AFM configuration, ac-
cording to the harmonic treatment (without thermal expansion, blue solid line) and
the quasi-harmonic approximation (red dashed line). For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the Web version of this
article.

pronounced temperature dependence. In addition, the figure
shows a major, broader peak around ~ 370 K with maximum en-
tropy difference, ASmax, of 24.8 J K~ kg™,

In Table 3 we list all calculated contributions to the entropy
change between the FM and AF phase, at T = 350K. It may be seen
from the table that all contributions are collaborative and compa-
rable in magnitude [12].

In the taken approach, both the type of phase transition and
stoichiometry of the compound are described without the exis-
tence of losses, associated to the transition (e.g. coexistence of
phases) and without defects of the material, and with this in mind,
it is not unexpected that theory overestimates somewhat the en-
tropy contributions and therefore, in this case, the total entropy
change. Besides, it is important to note that experimentally is very
difficult to achieve the equiatomic concentration and very close
alloys are measured instead, for which the entropy variation varies
slightly [35]. Nevertheless, the comparison between the here
calculated value of AS and experimental results is quite satisfactory
[26,29,34,48,66,71—73] being of the same sign and order of
magnitude. Thus, if one has the ambition to make theoretical
screening approaches in combination with first principles high-
throughput calculations, the level of approximation employed
here seems to be the simplest way that is capable of a fairly accurate
prediction while maintaining computational efficiency.

Experimentally it is not straight forward (or accurate [8]) to
disentangle the entropy contributions. In Table 3 the entropy con-
tributions of the present calculations are listed, together with the
ones extracted from calorimetric measurements of Ref. [66]. Cooke
et al. [66] extracted the lattice entropy by naively fitting the low-
temperature data to the Debye model. This approach fails for
FeRh, as discussed above, and consequently, the estimated huge
magnetic entropy contribution, calculated from Smqg = Stor — Sele —
Siat» 1S DOt seen as a realistic contribution. Both the extracted AS,;;
and ASpqg are unusually high in magnitude, compared to the usual
total entropy values [4]. These values are also unexpectedly high,
given the isostructural nature of the volume expansion and the
order-order nature of the magnetic transition. Taking into account
these considerations, it is more plausible that the high magnetic
entropy variation listed as an experimental values in Table 3, is
really due a collaborative sum of all entropy contributions [10].

To associate with certain the peak entropy of Fig. 9 to the AFM
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Table 3
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Comparison of estimated entropy contributions at T= 350 K for the harmonic and quasi-harmonic approaches with previous calculations in literature and experimental
measurements. It is also indicated for the “Harmonic” (QHA) approach, estimated values at the temperature for which the entropy variation has a peak - T = 373 (316) K.

UK~ kg1 Debye model Harmonic QHA Other Calc. Expt. ¢
T = 350K T = 373K T = 350K T = 316K

ASele - 7.05 7.38 7.16 6.60 11.7°,11.9¢ 8+1

ASjqr -38.3 6.94 7.05 8.45 9.01 -33+9

ASiag - 10.70 10.36 7.93 8.81 14.5 (15.4)° 43 +9

AS — 24.69 24.78 23.53 24.42 = 26.3 17 +3

2 From Ref. [66] at T = 328 K.
b From Ref. [12]. Value estimated in a QHA calculation.
¢ From Ref. [8].

4 From Ref. [18]. In parentheses value at estimated transition temperature, T = 371 K.

— FM phase transition, we compared the free energies of both
phases. However, we did not obtain an intersection of the free
energies, at least not in the considered range of temperatures
(0—500K). This is in agreement with results of Ref. [12], but in
disagreement with the data of Ref. [18]. Theoretically, our results
imply that no phase transition can be associated to the discussed
entropy peak, making it as pertinent and interesting as the minor
entropy dip around 40K. To our knowledge, the latter does not
indicate any known transition and most likely reflects the soft
phonons of the AFM phase. A comparison between our results and
calculations in Ref. [8,12] as well as [18] reveal that the later
reference achieves a significantly smaller energy difference be-
tween FM and AFM states, around 2.80 meV/atom in comparison to
our value; 27 meV/atom. This energy is 35.4 meV/atom in Ref. [12]
and 29.1 meV/atom in Ref. [8] for similar calculations. When
compared to experiments, the value of Ref. [18] is clearly closer to
experimental estimates, which lie around 2.7 meV/atom [26,66].
This improvement of the energy difference estimation between
magnetic phases seems to be due to the unique exchange and
correlation functional used in Ref. [18]. The authors of this work
employed the Langreth-Mehl-Hu functional [74,75], which appears
to have as a feature the reduction of energy between phases [76],
and suppression of the magnetic moment [77]. Although this
functional provides reasonable results for FeRh, it is a less tested
functional for general investigations that involve a large group of
compounds. In absence of a firm test, this functional is difficult to
apply in a predictive study. Another possibility for the too large
energy difference between the AFM and FM phase could be due to
dynamical correlations of the electronic structure.

If the estimated AEy from DFT is used to estimate the entropy
variation as AS = AU/T (as attempted for ASyqg) we obtain a value
of 87.99 JK~1kg~1. This strong disagreement with experimental
measurements also underlines that AE; is not properly estimated
by DFT.

An important point from this discussion is the difficulty to
predict with certainty the temperature for the AFM — FM phase
transition. Instead of comparing the free energies of the phases, it is
of interest to take a simpler approach and consider the transition to
be caused by thermal energy from T = AEq/kg. Using this approach,
an estimate of 346 K was obtained in Ref. [8] and 350 K in Refs. [58].
Although this value is within the experimental value, applying the
same approach using data from the total energy calculations pre-
sented here, or from other calculations [11—13], reveals that this
simplified method is very sensitive to the details of the calculations,
meaning that its use introduces a non-negligible degree of uncer-
tainty while not describing necessarily the physical picture.

3.5. Quasiharmonic approximation

To account for anharmonic interactions we use the QHA, which

minimizes at each temperature the volume-dependent Gibbs free
energy:

G(V.T) = min[F(V,T) + PV]. (8)

In our approach we consider magnetic, electronic and lattice
contributions to the free energy F(T, V) = Eo(V)+ Fngg(V, T)+
Fige(V, T) + Fee(V, T). Contributions to the lattice and magnetic
energy were obtained at constant volume via a calculation of the
respective density of states (g(e)pmgq/iqr) and Bose-Einstein distri-
bution function (n(e, T)):

Fmag/lat = J € g(f)mag/latn(gv T)de — Tsmag/lat- (9)

Note that we added the entropy contribution also to this term.
These contributions were evaluated, following the same procedure
as before, for a series of volumes, and then fitted by cubic splines.
For each phase, 9 volumes were considered, including the relaxed
volume, ranging the lattice parameter between 2.98 A(3.00 A) and
3.00 A(3.03 A) for the AFM (FM) phase. F,;(V,T) was calculated
similarly, using instead the Fermi-Dirac distribution function,
which includes the temperature dependence of the energy.
F..(V,0) was used as reference level for the electronic free energy
since the DFT ground state energies are already included in Eg(V).
The later energies were fitted by the Murnaghan equation of state
[78] for the internal energy.

The linear thermal expansion (LTE) obtained from the QHA is
shown in Fig. 10. It may be noticed that there is decent agreement
with experimental measurements [47] and theory. Similar to the
experimental data, there is in our calculations a jump in the LTE at
the magnetic phase transition.

We found that contrary to the electronic and lattice contribu-
tions, the magnetic contribution to the free energy opposes the
volume expansion. Nevertheless, the lattice is the dominant
contribution in the considered temperature range and dictates the
thermal expansion, and the observed behaviour arises dominantly
from the vibrational properties.

The LTE coefficient ¢, can be estimated from a linear fit (Al/l =
aT) in the same temperature range as for the experimental data.
From the theory, we obtain a slope of the Al/I curve that for both
the FM and AFM phase is similar to the experimental data. The main
difference between theory and experiment is the size of the volume
expansion at the magnetic phase transition that is smaller in theory
compared to the experimental values [47]. This disagreement is not
surprising given the simplicity of the model used and how similar
are the values between the magnetic phases.

The volume and temperature dependent free energies of the
AFM and FM phases allow for the most accurate estimate of the
phase stability and entropy, among the calculations presented in
the paper. We compare the QHA and Harmonic results in Table 3,
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Fig. 10. Variation of the linear thermal expansion with temperature for AFM phase
(blue line) and FM phase (orange line) obtained within the quasi-harmonic approxi-
mation along with experimental measurements (purple circles) [47]. Ty and Ty
indicate respectively the estimated and the measured transition temperature. For
interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.

together with previously reported data. It may be seen that the total
entropy change of the AFM — FM phase transition is almost
insensitive to the level of approximation, while for the individual
contributions there is a more significant difference between the
QHA and Harmonic approximations.

We find that there is compensation of ASj;; and ASpgg, which
vary similarly but in opposite direction, as can be seen by
comparing the entropy contributions on Table 3. This is caused by
variation of ij| parameters with volume, which decreases for
bigger volumes. As reported also in Ref. [19], we also observe that
couplings between iron moments are significantly more sensitive
to this variation than couplings between iron and rhodium mag-
netic moments (data not shown).

The predicted volume variation in the AFM is responsible for the
loss of the monotonous behaviour of AS, in the transition range.
Since the linear thermal expansion behaves as experimentally
measured, and the entropy peak reassembles more the disconti-
nuity expected for first order transitions, we consider that there is a
qualitative improvement of the physical description. Besides
becoming sharper, the broader entropy peak shifts from 373K to
316K when using the QHA, as seen in Fig. 9.

Our results are close to previous, similar first-principles calcu-
lations, combining the QHA results of Ref. [12] (or the ones from
Ref. [8]) for AS,j, + ASj, with the results of Ref. [18]. Although there
is a small deviation, it is accurate enough to be used in high-
throughput calculations, keeping in mind that a more accurate
result would need a more tailored and computationally expensive
method. Also, we treated entropy contributions as independent,
which is a simplification of the problem.

4. Conclusions

The aim of this paper is to derive a reliable approach based on
first principles calculations to determine the entropy change in
materials with first order phase transition that can be used in high
throughput studies. Thus we have to balance between computa-
tional effort and accuracy and a detailed study, concerning esti-
mates for electronic, lattice and magnetic entropy contributions
according to different models, was performed using the well-
known MCE system FeRh as test material. Based on the assump-
tion that we can treat the entropy as a sum of three independent
parts, i.e. handle the electronic, lattice, and magnetic contributions
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to the entropy separately, we tested different approximations for
each entropy contribution. It turned out that the entropy, or the
entropy change, in our test case, FeRh, is very sensitive to approx-
imations made, e.g., even small alterations on elastic properties
between the two magnetic phases need to be taken into account for
a reliable estimation of the entropy. This means that the Debye
model is not adequate and it should not be considered for the high-
throughput applications. Although the simplicity of the Debye
model is appealing in terms of computational efficiency, it fails to
estimate the vibrational entropy in the presence of soft phonon
modes. We believe that this sensitivity regarding the vibrational
properties is not exclusive to FeRh. Rather, we expect that many of
the magnetocaloric candidates will show similar behaviour, which
means that accurate phonon calculations are necessary for a reli-
able description of the entropy.

From the results of the magnetic properties, we conclude that it
is necessary to consider an appropriate cutoff for the exchange
interactions when using a spin-wave description due to the pos-
sibility of long-range interactions, which can have a considerable
influence. However, this aspect should be less relevant in case of
order-disorder magnetic transitions where spin-flip like excitations
are dominant and the Heisenberg model can be used in combina-
tion with Monte Carlo simulations to estimate the magnetic
entropy.

We observe an entropy peak around the expected transition
temperature raised solely from the magnetic contribution, which
allows us to support the picture of a magnetism driven transition as
discussed in previous works using different approaches
[13,16,18,58].

Although a AS peak is regularly observed in phase transitions, it
is necessary to compare the free energies of the phases to associate
a AS peak to a phase transition. For FeRh, it was not possible to
establish this association due to the overestimation of the energy
difference between magnetic phases by traditional DFT. Such dif-
ficulty raised our awareness of this limitation in our first-principles
approach. Nevertheless, beyond DFT methods offer tools for cir-
cumventing this problem, and can be used to improve AE; esti-
mation to verify the transition occurrence, if needed.

Adopting the QHA approach allows for a more complete
description of the systems and a qualitative improvement of the
entropy variation is obtained, by the sharpening of the AS peak as
expected for a first-order transition. Despite this, no quantitative
improvement of the entropy variation is obtained that justifies the
significant increase of computational effort required for this
treatment.

Therefore, it can be stated that the “Harmonic” approach bal-
ances in a very satisfactory way the accuracy and the computational
effort. The obtained results AS,, =7.38 JK~ kg1, AS,, =7.05
JK=1kg~1, and ASmqg = 10.36 JK~ kg1 are in good agreement with
previous calculations and the total entropy variation AS = 24.78
JK-1kg=1 is close to the experimental range. This establishes the
cornerstones for a reliable entropy estimation at high-throughput
scale computations, while allowing for reasonable computational
effort that allows to avoid possible pitfalls of the calculations.
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