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Abstract. We introduce a general scheme to consistently truncate equations of motion for Green’s functions.
Our scheme is guaranteed to generate physical Green’s functions with real excitation energies and positive
spectral weights. There are free parameters in our scheme akin to mean field parameters that may be
determined to get as good an approximation to the physics as possible. As a test case we apply our scheme
to a two-pole approximation for the 2D Hubbard model. At half-filling we find an insulating solution
with several interesting properties: it has low expectation value of the energy and it gives upper and
lower Hubbard bands with the full non-interacting bandwidth in the large U limit. Away from half-filling,
in particular in the intermediate interaction regime, our scheme allows for several different phases with
different number of Fermi surfaces and topologies.

1 Introduction

Green’s function methods are widely used to study
many-body systems and they represent a natural frame-
work that connects microscopical details of a theory
with its macroscopical properties [1].

The attempt to self-consistently determine these
quantities has a long history and it still remains one
of the central paradigms in the study of strongly corre-
lated systems. From the most recent DMFT [2], where
they are used to fix the mapping of a lattice model
onto an impurity one, to the older equation of motion
approach [3,4]. In the latter method, given an interact-
ing Hamiltonian, an extensively growing chain of cou-
pled equations are derived [5,6]. For few-body systems
it is possible to use various implementations of this
method to obtain the single particle Green’s function
exactly [7].

However, in order to study thermodynamical prop-
erties of an interacting system a truncation procedure
able to approximately decouple this extensively growing
system of coupled equations plays a crucial role. Early
attempts in the construction of truncation schemes
explored arbitrary truncation schemes and decoupling
schemes of Tyablikov-type [3,4]. Despite some success-
ful applications these decoupling schemes often led to
violation of the analytical structure of the Green’s func-
tions, predicting imaginary poles and negative spectral
weight for the single particle Green’s function. Despite
these difficulties Hubbard in his pioneering work [8],
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managed to find a useful decoupling for a two-pole
approximation for the Hubbard model. This decoupling
(Hubbard-I) is still often used in treating strongly cor-
relation in presence of local interactions, especially in
studies of quantum systems out of equilibrium [9], and
multi-orbital systems [10].

Almost a decade after these early works Roth devel-
oped a universal decoupling scheme able to enforce
correct analytical properties for approximated Green’s
functions [11]. This decoupling scheme is now called the
Roth procedure, and often relies on parameters that
can not be determined within the scheme itself, mak-
ing unavoidable ulterior approximations. For this rea-
son this method is often regarded as an uncontrolled
approximation, which severely limits its applicability.
The works of Mancini and Avella et al. [12] show that
the Roth procedure leads to violations of other physical
principles such as the Pauli principle and that it is pos-
sible to constrain some, if not all of the unknown decou-
pling parameters, by enforcing such physical require-
ments. Despite much progress in finding easy extend-
able decoupling schemes [13], the possibility to system-
atically check what are the approximations involved in
the decoupling still remains a neglected aspect.

In this paper we present a decoupling scheme based
on a partial orthogonalization of the operators involved,
where the relation between the true Green’s function
and the approximate one can readily be obtained. The
paper is organized as follows: in Sect. 2 we provide a
general discussion of the formalism, we clarify the role
of the Hermiticity of the E-matrix and we present our
decoupling scheme based on the partial orthogonaliza-
tion of the operators. In Sect. 3 we apply our scheme to
a two-pole approximation of the Hubbard model mak-
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ing evident the relationship between the approximate
and the true Green’s function. In Sect. 4 we analyze
the global sum rules that should be respected in the
two-pole approximation of the Hubbard model and we
present a variational scheme as a guiding principle for
the determination of the unknown orthogonalization
parameters. In Sect. 5 we provide numerical results at
half-filling and in Sect. 6 we give analytical formulas
that are useful to understand the Green’s function. In
Sects. 7 and 8 we discuss numerical results for hole dop-
ing in the strong- and intermediate-coupling regimes
respectively. Finally, in Sect. 9 we provide some conclu-
sions and an outlook.

2 A scheme for the truncation of the EoM

2.1 Formalism review

We will mainly use the notation of Tserkovnikov in the
following [5]. For completeness we briefly review what
we will need for this paper. Let us first assume we have
a set of fermionic operators {Âi}M

i=1 closed under the
commutation with the hamiltonian for some evolution
matrix K

[Âi,H] =
∑

j

KijÂj . (1)

Then the equation of motion (EOM) for the Green’s
function matrix gives

z〈〈Ai|A†
j〉〉z = 〈Ai|A†

j〉 +
∑

k

Kik〈〈Ak|A†
j〉〉z, (2)

here the normalization matrix N

Nij = 〈Ai|A†
j〉 = 〈{Âi, Â

†
j}〉. (3)

Consequently the Green’s function, viewed as a matrix
becomes

〈〈A|A†〉〉z =
1

z1 − K
N = N

1
z1 − K† , (4)

where the second form is obtained making use of the
fact that Ĥ is Hermitean. For these two forms to be
consistent we have the condition that

KN = NK†, (5)

which will be of crucial importance in the developments
below. Finally one may calculate averages of bilinear of
all of the operators involved using the formula

〈Â†
jÂi〉 =

1
2πi

∮
dzf(z)〈〈Ai|A†

j〉〉z, (6)

where the contour encircles the real axis.

2.2 A partial orthogonalization scheme for the
truncation of the EOM

As shown in the previous work this framework gives
exact results if the set of operator {Âi}M

i=1 are closed
under the commutation with the Hamiltonian [7]. In
an extend many-body system the number of operators
necessary to close the equation of motion exactly will
typically grow exponentially with the size of the system,
making a direct application of this scheme unfeasible.

To produce a truncation scheme capable of produc-
ing physical Green’s functions, it is important to notice
that in a Hermitean theory the average of the opera-
tors involved in the dynamics and their evolution are
not independent. In particular as noticed by Roth [11]
the matrix

Eij ≡ 〈{[Âi, Ĥ], Â†
j}〉 =

∑

k

KikNkj (7)

needs to be Hermitean. Here 〈. . . 〉 indicate some aver-
age over exact eigenstates of the theory Ĥ. K is the full
evolution matrix of the operators and N is the normal-
ization matrix introduced above. Using the fact that the
matrix N is Hermitean by construction (i.e., it holds for
averages in any state) this gives the same consistency
condition as Eq. (5) above. This condition together with
the fact that N has to be positive definite guarantees
that the Green’s function posseses real poles and posi-
tive spectral weight [11].

When the hierarchy of the evolution of an operator
Â1 is considered at most one new operator is generated
in each step, i.e.,

[
Â1, Ĥ

]
= K11Â1 + K12Â2, (8a)

[
Â2, Ĥ

]
= K21Â1 + K22Â2 + K23Â3, (8b)

etc. until the EOM closes and no new operators are gen-
erated. Note that Â2 is not unique since one can add a
part of Â1 to it, and similarly for the other higher Â’s.
In any event K is only non-zero on the first upper diag-
onal and below. Let us now truncate the EOM at the
q-th operator. A brute force truncation of the matrices
involved gives

Ktrunc =

⎛

⎜⎜⎝

K11 K12 0
K21 K22 0

...
. . .

...
Kq1 Kq2 . . . Kqq

⎞

⎟⎟⎠ , (9)

and the corresponding Ntrunc

Ntrunc =

⎛

⎜⎜⎝

N11 N12 N1q

N21 N22 N2q

...
. . .

...
Nq1 Nq2 . . . Nqq

⎞

⎟⎟⎠ . (10)
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Now we note that

Etrunc = KtruncNtrunc, (11)

differs from the corresponding sub-block of the full E
only in the last row, through the coupling of Kq,q+1

to the (q + 1)-th row of the full N matrix. Therefore
an arbitrary truncation of the equation of motion is
going to generate an evolution that in general does not
satisfy the condition in Eq. (5), leading to a potentially
unphysical approximation for the Green’s function.

In this paper we propose to restore the Hermiticity
of Etrunc adding to the first operator not considered
explicitly in the dynamics Âq+1 a linear combination of
the operators Â1, . . . , Âq

Â′
q+1 = Âq+1 −

q∑

l=1

λlÂl. (12)

Most of the λ parameters will be fixed by demanding
that

〈A′
q+1|A†

j〉 = 0 for j = 1, . . . , q − 1. (13)

This partial orthogonalization procedure ensures that
Etrunc is Hermitean, because it makes it identical to the
corresponding block of E except for the last element on
the diagonal Eqq which is not fixed by our procedure.
The Roth procedure corresponds to also orthogonaliz-
ing with respect to Â†

q. This gives q equations for q
unknowns, and therefore also fixes the value of Eqq,
whereas in our scheme we have q − 1 equations for q
unknowns, leaving Eqq arbitrary. We will use this addi-
tional freedom to make sure that our approximation
fulfills other physically relevant criteria such as Pauli
principle constraints or sum rules. In the next section
we are going to elucidate this procedure by applying it
to a two-pole approximation of the Hubbard model. In
particular it will be evident that the effect of this pro-
cedure is a non-unique modification of the last row of
Ktrunc. This arbitrariness can be exploited to enforce
global sum rules for the Green’s functions and open up
the possibility of using different criteria to fix the free
parameters λi not fixed by Eq. (13).

A last remark on this scheme is that despite the
freedom in the choice of the parameters λi one can
always write the residual Green’s functions not con-
sidered explicitly in the dynamics, making transparent
the approximation involved in this truncation of the
equation of motion.

3 Application to the Hubbard model in a
two-pole approximation

In this section we will apply our scheme to a two-pole
approximation to the Green’s function in the Hubbard

model. Let us consider the Hubbard hamiltonian

Ĥ =
∑

k

εk(c†
k↑ck↑ + c†

k↓ck↓) + U
∑

i

ni↑ni↓, (14)

We will denote the total number of sites with Ns, ckσ

indicates fermion operator with spin σ and niσ = c†
iσciσ.

Let us consider the first three operators that appear in
the equation of motion hierarchy

Â1k = ck↑,

Â2k = (c†
↓c↓c↑)k.

Â3k =
1√
Ns

∑

p

(
εp

[
(c†

↓c↓)k−pcp↑ − (c†
↓c↑)k−pcp↓

]

−ε−pc†
−p↓(c↓c↑)k−p

)
.

where we have introduced

(Ô1 . . . Ôn)k =
1√
Ns

∑

i

eik·xiÔ1xi
. . . Ônxi

. (15)

Let us first do a brute force truncation of the evolution
after two operators. The truncated evolution becomes

Ktrunc(k) =
(

εk U
0 U

)
, (16)

and the respective N matrix becomes

Ntrunc(k) = N =
(

1 n̄↓
n̄↓ n̄↓

)
, (17)

with n̄↓ = 〈ni↓〉 which is independent of the site index
i. In this case Etrunc = KtruncNtrunc is not Hermitean
(except in special cases such as U = 0, εk = 0 or n̄↓ = 0)
and this leads to an unphysical approximation for the
Green’s function for some range of the parameters.

Let us now apply our scheme to this particular prob-
lem, in this case we need to determine λ1k, λ2k such
that

〈A3k|c†
k〉 − λ1k〈A1k|c†

k〉 − λ2k〈A2k|c†
k〉 = 0. (18)

Evaluating the anticommutator averages we obtain

εkn̄↓ − λ1k − λ2kn̄↓ = 0. (19)

As already anticipated in Sec. 2, the values of λ1k and
λ2k are not uniquely determined by this procedure.
Without any loss of generality let us eliminate λ1k writ-
ing

λ1k = (εk − λ2k)n̄↓ (20)

Using this we can write

Â3k = Â′
3k + (εk − λ2k)n̄↓Â1k + λ2kÂ2k (21)
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where 〈A′
3k|c†

k〉 = 0.
At this point the equation of motion for the operator

Â1k can be rewritten as (B is here arbitrary)

z〈〈A1k|B†〉〉 = 〈A1k|B†〉
+εk〈〈A1k|B†〉〉 + U〈〈A2k|B†〉〉 (22)

and for Â2k

z〈〈A2k|B†〉〉 = 〈A2k|B†〉 + (εk − λ2k)n̄↓〈〈A1k|B†〉〉
+(U + λ2k)〈〈A2k|B†〉〉 + 〈〈A′

3k|B†〉〉
(23)

Consequently the new evolution given by the partial
orthogonalization procedure is

K(k) =
(

εk U
n̄↓(εk − λ2k) U + λ2k

)
. (24)

The physical condition in Eq. (5) is now satisfied for
this evolution for any choice of the model parameters
λ2k, n̄↓, U, εk. The approximate Green’s function for the
truncated theory becomes

G(z,k) =
1

z1 − K(k)
N. (25)

Assuming no spin symmetry breaking, the parame-
ter n̄↓ can be determined self-consistently, by applying
the fermionic characterization of the spectral theorem
stated in Eq. (6) to G11, obtaining:

〈c†
k↑ck↑〉 =

1
2πi

∮
dzf(z)G11(z,k), (26)

n̄↓ = n̄↑ =
1

Ns

∑

k

〈c+k↑ck↑〉. (27)

To see that we can always write the residual Green’s
function highlighting the approximation involved in the
truncation of the equation of motion let us analyze the
special case where λ2k = εk. The equation of motion of
the Green’s function with B† = c†

k becomes:

(z − εk)〈〈A1k|c†
k〉〉 = 1 + U〈〈A2k|c†

k〉〉, (28a)

(z − εk − U)〈〈A2k|c†
k〉〉 = n̄↓ + 〈〈A′

3k|c†
k〉〉. (28b)

Recalling that A1k = ck↑ we find that the conventional
fermion Green’s function may be written exactly as

〈〈ck↑|c†
k↑〉〉 =

1 − n̄↓
z − εk

+
n̄↓

z − εk − U

+
U〈〈A′

3k|c†
k↑〉〉

(z − εk − U)(z − εk)
. (29)

From this it is clear that truncating the equation
of motion implies that the term on the last line is
neglected, making the approximation evident. Moreover

we note that 〈〈A′
3k|c†

k↑〉〉 does not contain poles at εk
and εk + U (since double poles in the original Green’s
function are not allowed) and its total spectral weight
is vanishing (since 〈A′

3k|c†
k↑〉 = 0). We may also note

that excitations at εk and U + εk appears in the exact
thermal Green’s function (although their weight may
be exponentially small) since they are exact energy dif-
ferences between states with charge 1 and 0 and 2Ns−1
and 2Ns respectively.

4 The Global constraints on the two-pole
approximation of the Hubbard model

As noticed and stressed by Mancini and Avella [12] the
Roth procedure does not ensure that global sum rules
such as those related to the Pauli principle and Ward
identities are satisfied. In the context of a two-pole
approximation of the Hubbard model, these violations
can be related to global constraint between averages. In
particular the average double occupancy of the system
can be evaluated in two inequivalent ways

D =
1

Ns

∑

i

〈ni↓ni↑〉 =
1

Ns

∑

k

〈A†
1kA2k〉

=
1

Ns

∑

k

〈A†
2kA2k〉. (30)

At the operatorial level these two ways of writing the
averages are equal. Consequently when we evaluate
these averages using the spectral theorem and the effec-
tive evolution, we have to make sure that

Δ =
∑

k

1
2πi

∮
dz

[
G12(z,k) − G22(z,k)

]
f(z) = 0.

(31)

This constraint is very important, because it removes
a fundamental ambiguity related to the determination
of the energy in the Roth scheme. In particular we can
notice that in the previously studied solution, where we
used λ1k = 0 and λ2k = εk the constraint in Eq. (31)
is automatically satisfied, because the argument of the
integral is identically 0 for every k, making the solution
suitable for unambiguous physical interpretation. On a
physical level this choice of the parameters makes the
evolution diagonal in the two Hubbard operators which
are orthogonal by construction.

4.1 Variational determination of the
orthogonalization parameter

As previously stated the determination of the orthogo-
nalization parameters λ2k plays a crucial role. Different
values for this parameters gives different approxima-
tions to the true Green’s function, all of them are phys-
ical in the sense that the spectral weights are positive
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and the excitation energies real, which is a fundamental
requirement. On the other hand different values of this
parameter may correspond to quite different physics. In
some sense λ2k may be viewed as a kind of mean field
parameter, in the sense of variational mean field the-
ory [14]. Any choice for λ2k is allowed and gives physi-
cal results, but we want to determine the parameter to
approximate the physics in the “best” possible way. The
definition of “best” is however not unique, since approx-
imations do not get everything correctly. Depending on
what one choose to optimize different approximations
will result.

It may be reasonable to demand that the solution
posses the full lattice symmetry (i.e., assuming unbro-
ken lattice symmetry). Then the evolution matrix K(k)
may be expanded in terms of proper basis functions
with full lattice symmetry. The simplest non-trivial pos-
sibility is to take the ansatz for λ2k to be

λ2k = a0 + a1εk, (32)

where a0 and a1 are some real k-independent constants.
This may be viewed as the first two terms in a locality
expansion. Let us also note that this is exactly the form
for λ2k that is obtained in the Roth procedure in the
two-pole approximation in the Hubbard model [15].

If we further assume unbroken spin symmetry the
average Free energy of the system (i.e. including the
chemical potential term in the energy) may be evalu-
ated using

〈F 〉 =
∑

k

(
2(εk − μ)〈A†

1kA1k〉 + U〈A†
2kA2k〉

)
. (33)

To fix the parameters a0 and a1 we propose a zero tem-
perature scheme based on minimizing the free energy.
In particular we are going to use

Δ(a0, a1) = 0, min
a0,a1

〈F 〉, (34)

to fix a0 and a1. This is a constrained minimization
problem and may be studied with standard methods in
several ways. We can for example first fix a1 and then
try to solve the equation Δ(a0, a1) = 0 for a0. This may
in general have more than one solution so it is crucial
in this scheme to always check the number of roots of
Δ(a0). In addition the parameter n̄↓ will be determined
self-consistently.

5 Numerical results for the half filled case

In this section we are going to report some numeri-
cal results for the half filled case for a square lattice
100 × 100 at T = 0. Throughout we will measure ener-
gies in units of t, which amounts to setting t = 1. Half
filling is obtained by taking μ = U/2. In Sect. 6 below
an analytical treatment of the half-filled case will be
presented as well.
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Fig. 2 Expectation value of the Free energy 〈F 〉(a1) for
U = 8, a0 = 0. The global minimum near a1 = −3 is clearly
visible

In particular we are going to report the results
obtained for two possible set of parameter a0, a1 which
satisfy the constraint Eq. (31): the a0 = 0, a1 = 1 case
and the a0, a1 obtained by the variational scheme pre-
sented in Sect. 4.1. From Eq. (31) it is possible to notice
that for for a0 = 0 we have Δ(0, a1) = 0 independently
on the value of a1 and this is the only possible root, as
can be seen in Fig. 1 (here we report Δ(a0) only for a
particular value of a1 but the situation is the same for
other values of a1).

To carry out the Free energy minimization carefully,
it is important to have a sketch of the Free energy
landscape as a function a1, since we will put a0 = 0.
A representative curve can be seen in Fig. 2, and we
notice that 〈F 〉(a1) posses a global minima for nega-
tive values of a1. In particular after carry out the con-
strained minimization numerically we found that the
minimum of the free energy is reached for a1 = −3,
a0 = 0, independently on the coupling strength U . At
this point we are going to compare the avarage energy
and double occupancy obtained for the two choices of
the decoupling parameter a1 = 1, a0 = 0 and a1 = −3,
a0 = 0 against the benchmark results gathered from
Le Blanc et al. [16], reported respectively in Tables 1
and 2. From Table 1 it is possible to notice both decou-
plings a1 = 1 and a1 = −3 predicts energies that may
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Table 1 Benchmark zero-temperature energies at half fill-
ing, T = 0, for a range of interaction strengths U from
Ref. [16] compared with ours. The benchmark results have
been rounded to approximately two decimals

U 2 4 6 8 12

Ref. [16] −1.17 −0.86 −0.66 −0.52 −0.37
2P_PO_-3 −1.2601 −1.0255 −0.8572 −0.7313 −0.55793
2P_PO_1 −1.1459 −0.7187 −0.3367 −0.0002 0.0000

Table 2 Benchmark zero-temperature double occupancy
at half filing, for a range of interaction strengths U . The
benchmark results have been rounded to approximately two
decimals

U 2 4 6 8 12

Ref. [16] 0.19 0.13 0.081 0.054 0.028
2P_PO_-3 0.1405 0.0980 0.0721 0.0548 0.03405
2P_PO_1 0.1540 0.0921 0.0422 2 × 10−5 0

be lower than the exact methods. Consequently this
scheme is not variational in the usual sense. This is
expected since we are approximating the Green’s func-
tion. In fact, despite that we know analytically the term
neglected in the Green’s function Eq. (29), the approx-
imate Green’s function properties are determined self-
consistently within the truncated theory which can be
different from the original one.

From Table 2 we can notice that in the case a1 = 1
the double occupancy drop to zero for U ≥ 8. In the
other case a1 = −3 double occupancy is predicted to
be of the order (t/U)2, which agree at least in order of
magnitude with the benchmark results.

It is important to highlight that despite the crude-
ness of the two-pole approximation, this scheme inde-
pendently on the value of parameter a1 is capable to
capture the effect of the correlation predicting a dou-
ble occupancy that is significantly reduced from the
mean field value n↑n↓ = 1/4. The two possible choice
of parameters a1 =, a0 = 0 and a1 = −3, a0 = 0
predict big differences at the level of predicted observ-
ables however. In particular for the case a0 = 0, a1 = 1
the truncated theory posses two energy bands shifted
rigidly by U (i.e., independently of the momentum), as
may be seen in Eq. (29) and in Fig. 3.

With this choice of parameters the occupations of all
the k-points in the first Brillouin zone are half occu-
pied for U > 8t and for U < 8t we have a forma-
tion of fully occupied region around the Γ point sur-
rounded by a region of half occupied k-points, and an
empty region close to M point. The half-filled region in
between shrinks as the interaction strength is decreased
as can be seen in Fig. 4. We can also notice that in the
limit U → 0, we recover the diamond-shaped Fermi sur-
face for free fermions on the square lattice at half-filling.

To capture the metallic or insulting behavior of the
solution one should in principle evaluate the conductiv-
ity or the charge-charge correlation function, which is

Fig. 3 Band structures for different values of U and a1 = 1
at half-filling. The red line indicates the chemical potential

Fig. 4 Colormap of the average occupation in the first
Brillouin zone for different values of U and a1 = 1 at half-
filling

in principle unaccessible with the operators used here.
However we can have an indication on the metallic or
insulating behavior of the system by analyzing density
of states. Let us first consider the case a1 = 1. In this
case we can see in Fig. 5 that for U > 8t the density of
states posses an hard gap and there is a formation of
separated lower and upper Hubbard bands, which is a
signature of an insulating phase. For U < 8t the lower
and upper Hubbard bands overlap giving rise to a gap-
less density of state which is an indication of a metallic
phase. Consequently for the choice of parameter a1 = 1,
a0 = 0, we can notice that U = 8 represent a critical
value of the interaction above which the system is in
an insulating state and below which the system is in a
metallic state.

A radically different behavior is predicted by the
choice of parameters a1 = −3, a0 = 0. In this case
the system posseses two bands that repel with increas-
ing interaction strength and there is always a small
gap between the two bands for any non-vanishing value
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Fig. 5 DOS for different values of U and a1 = 1 at half-
filling. Energies on the x-axis are measured with respect to
the chemical potential

of U . The gap becomes very small for small interac-
tions as can be seen by looking at the case U = 0.1 in
Fig. 6. With the choice of these parameters the occupa-
tion in first Brillouin zone is characterized by the pres-
ence of an almost fully occupied region around the Γ
point which changes continuously to a low but non-zero
occupation at the corner of the first Brillouin zone (the
M point). As the interaction is decreased the almost
fully occupied region around the Γ becomes increas-
ingly occupied and the corner of the Brillouin zone get
increasingly depleted. From the figures it looks like a
Fermi surface is formed at a U = 0.1 along the high
symmetry vector MΓ as it is possible to notice in Fig. 7.
There is however a small gap that is not seen on this
scale, this becomes clear in the analytic treatment in
Sect. 6. In the limit of U → 0 also in this case we
recover the diamond-shaped Fermi surface for a free
electron gas on square lattice. As we did for the case
a1 = 1, a0 = 0 we can also study the density of state in
order to get an indication on the phase of the system.
In this case there is always a gap between the upper
and lower Hubbard band, but the gap is very small for
small U as can be seen in Fig. 8. However in order to
better characterize the possible phases of the system for
this choice of parameters it is going to be beneficial a
study of the 〈F 〉(U).

In fact, the solution with a1 = −3 always has a lower
expectation value of the Free energy than the solution
at a1 = 1. Moreover, since a1 = −3 is insulating, our
scheme indicates that the insulator is stable at half-
filling.

In principle the minimization of the free energy will
not guarantee to better capture the underlying physics
of the system since the free energy is not a variational
quantity in terms of the Green’s function. In order to
do that one needs to estimate the contribution of the
residual Green’s function, which can not be done in a
simple way within the theory in itself. We note that
the solution with a1 = −3 enhance more the insulat-

Fig. 6 Band structures for different values of U and a1 =
−3 at half-filling. The red line indicates the chemical poten-
tial

U = 12 U = 6

U = 0.1 U = 0.001
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Fig. 7 Colormap of the average occupation in the first
Brillouin zone for different values of U and a1 = −3 at
half-filling

ing character of the system and the one with a1 = 1
tends to account for the full bandwidth W of the free
dispersion. It is therefore reasonable to assume that the
solutions with a1 = −3 would better describe the sys-
tem when U � W , while a1 = 1 would better describe
the system state for U 	 W . This qualitative argu-
ment is also consistent with the results summarized in
Tables 1 and 2.

5.1 Relation to the two-pole approximation of
Avella and collaborators

We can relate our approach to that of Avella et al by
comparing the associated E-matrices [15]. The relation
between their parameters (Δ and p) and ours (a0 and
a1) are given by

− 2dtΔ = n̄↓(1 − n̄↓)a0, (35a)
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U = 0.001U = 0.1

U = 12 U = 6

Fig. 8 DOS for different values of U and a1 = −3 at half-
filing. Energies on the x-axis are measured with respect to
the chemical potential. There is always a tiny gap that is
not visible on this scale in the lower two panels

p = n̄↓(1 − n̄↓)a1 + n̄2
↓. (35b)

The issue of the determination of these parameters
is discussed at length in Ref. [15]. We note that
they choose to determine Δ self-consistently from the
Green’s function, and fix p so that Pauli principle is
satisfied. This is different from our procedure where a0

(and therefore Δ) is determined so that the Pauli prin-
ciple is satisfied, in the next step we fix a1 to minimize
expectation value of the Free energy. Comparing the
results we also have two classes of solutions, but the
parameters obtained are not identical.

In previous work two inequivalent solutions of the
two dimensional Hubbard model are found and they
are named COM1 and COM2 [12,15]. In the half filling
case all solutions within the two-pole approximation:
Hubbard I, Roth, COM1 and COM2 are characterized
by having Δ = 0 [12]. In our scheme this have a clear
interpretation, in fact Δ = 0 is the only value that
guarantees the Pauli principle constraint to be satisfied,
this can be seen both in the numerical study Sect. 5
and in the analytic study Sect. 6. At half filling the
solution a1 = 1, a0 = 0 resembles the COM1 in many
aspects despite that the parameters are different. Both
solutions predict a critical Uc, where the system goes
from an insulating state to a metallic one. Moreover, the
band structure in COM1 is almost rigidly shifted with
a separation proportional to U . On the other hand the
a1 = −3, a0 = 0 resembles the COM2 solution and they
are both characterized by the absence of a critical U ,
predicting an insulator for arbitrary small repulsion U .

6 Analytical results

Since the two-pole approximation involves 2 × 2 matri-
ces everything may be evaluated exactly. A straightfor-

ward calculation gives (dropping k indexes on εk and
λ2k and other parameters for brevity)

〈〈ck↑|c†
k↑〉〉 =

1

2

( 1 + δ1
z − E−

+
1 − δ1
z − E+

)
, (36a)

〈〈ηk↑|η†
k↑ − c†

k↑〉〉 = δ2
( 1

z − E−
− 1

z − E+

)
, (36b)

〈〈ηk↑|η†
k↑〉〉 =

n̄↓
2

( 1 + δ3
z − E−

+
1 − δ3
z − E+

)
, (36c)

where the poles are located at

E± =
U + ε + λ2 ± √

(U − ε + λ2)2 + 4n̄↓U(ε − λ2)
2

.

(37)

The other parameters that are related to the weight of
the poles are

δ1 =
U(1 − 2n̄↓) + λ2 − ε√

(U − ε + λ2)2 + 4n̄↓U(ε − λ2)
, (38a)

δ2 =
n̄↓(1 − n̄↓)(ε − λ2)√

(U − ε + λ2)2 + 4n̄↓U(ε − λ2)
, (38b)

δ3 = − U + (1 − 2n̄↓)(λ2 − ε)√
(U − ε + λ2)2 + 4n̄↓U(ε − λ2)

. (38c)

Using this we may calculate many quantities of interest,
such as the density of spin-up electrons

n̄↑ =
1

Ns

∑

k

(1 + δ1k
2

n−k +
1 − δ1k

2
n+k

)
, (39)

the Pauli principle constraint (Δ = 0)
∑

k

δ2k(n−k − n+k) = 0, (40)

and average double occupancy

D = n̄↓
1

Ns

∑

k

(1 + δ3k
2

n−k +
1 − δ3k

2
n+k

)
, (41)

as well as the average kinetic energy (of two spin
species)

〈Ĥ0〉 =
2

Ns

∑

k

εk

(1 + δ1k
2

n−k +
1 − δ1k

2
n+k

)
.

(42)

6.1 Simplifying assumptions – insulator

It is possible to find the solution with a1 = −3 obtained
in the numerical study above analytically. In this sub-
section we present this solution is some detail since
it provides an interesting zeroth order approximate
Green’s function at half-filling.
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Let us assume that U is sufficiently large and chem-
ical potential sufficiently small so that n−k = 1 and
n+k = 0 for all k. We must then have

1
Ns

∑

k

δ2k = 0. (43)

Then n̄↑ = n̄↓ = 1/2 solves Eq. (39). With this choice

δ2 =
1
4

ε − λ2√
U2 + (ε − λ2)2

, (44)

and therefore any λ2 = a1ε will satisfy the Pauli prin-
ciple constraint. The other parameters then become

δ1 =
(a1 − 1)ε√

U2 + (a1 − 1)2ε2
, (45a)

δ3 = − U√
U2 + (a1 − 1)2ε2

. (45b)

Using this me may write down expressions for average
double occupancy

D =
1
4

1
Ns

∑

k

(
1 − U√

U2 + (a1 − 1)2ε2k

)
, (46)

and average kinetic energy

〈Ĥ0〉 =
1

Ns

∑

k

(a1 − 1)ε2k√
U2 + (a1 − 1)2ε2k

. (47)

Minimizing 〈Ĥ0〉+UD we find a minimum at a1 = −3,
with the energy being

〈Ĥ0〉 + UD =
1
4

1
Ns

∑

k

(
U −

√
U2 + (4εk)2

)
. (48)

The gain in energy due to hopping is increased with
respect to more conventional approaches, such as anti-
ferromagnetic mean field. Let us also note that the band
structure for this solution is

E± =
U − 2εk ± √

U2 + (4εk)2

2
, (49)

in the large-U limit we therefore get

E± ≈ U
(1 ± 1

2

)
− εk, (50)

giving us two Hubbard bands with the full bare non-
interacting bandwidth. Note however that the sign of
the kinetic term is opposite to what if would be in the
non-interacting case. The solution a0 = 0, a1 = 1 in
the same region has D = 0 and 〈Ĥ0〉 = 0 so is always
higher in energy than a0 = 0, a1 = −3. This agrees with
our numerical findings.

Fig. 9 Free energy expectation value 〈F 〉 as a function of
a1 for different values of the chemical potential decreasing
from the top panel μ ∈ {6.0, 3.0, 1.8, 1.4, 1.2}, interaction
strength is U = 12

7 Hole doped case in the strong coupling
regime

In this section we are going to apply our scheme in
the hole doped case for an interaction strength larger
than the bandwidth namely U = 12. From the Free
energy plots in Fig. 9 it is clear that upon hole doping
(decreasing the chemical potential) the minima around
a1 = 1 is pushed down in energy with respect to the one
near a1 = −3, until it becomes the global one below a
critical value near μ = 1.4. From an analysis of the
DOS in Fig. 10, it is possible to notice that the solu-
tion around a1 = −3 is characterized by the presence
of an hard gap and the system is predicted to be insu-
lating up to μ = 1.4. On the other hand the solution
around a1 = 1 is characterized by a smaller gap and
when μ < 1.4, becomes the global minima of the Free
energy. The DOS found in Fig. 11 suggests the forma-
tion of a metallic phase and it is possible to notice a
spectral weight transfer from high energy states to the
low energy ones.

Another interesting feature of Fig. 9 for μ ≤ 1.4
is that the Free energy as a function of a1 features
a discontinuous behavior at some values in the range
a1 ∈ [−5,−4]. In this case the lower band get attracted
to the upper one, pushing it above the chemical poten-
tial for certain momenta. This results in the formation
of unoccupied k-points in the first Brillouin and two
Fermi surfaces that may be seen in Fig. 12. This may
be viewed as a Lifshitz transition [17,18]. This solution
is however not energetically favorable, and is not likely
stabilized without additional interactions.

8 Hole doped case in the intermediate
coupling regime

In this section we are going to apply our scheme to
the hole doped case for an interaction comparable to
the bandwidth, namely U = 4. The Free energy plots
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Fig. 10 DOS (top left), colormap of the average occupa-
tion in the first Brillouin zone (top right), average occupa-
tions along high symmetry lines (bottom left), and band
structure (bottom right), for U = 12, μ = 1.4 and a1 = −3
and 〈n↓〉 = 0.5. The red line indicates the chemical potential

Fig. 11 DOS (top left), colormap of the average occupa-
tion in the first Brillouin zone (top right), average occupa-
tions along high symmetry lines (bottom left), and band
structure (bottom right), for U = 12, μ = 1.4 and a1 = 1.1
and 〈n↓〉 = 0.42. The red line indicates the chemical poten-
tial

in Fig. 13 indicate that the situation is more involved
in this case compared to the one obtained in the strong
coupling limit of Sect. 7. There appears three local min-
ima: one in the region a1 ∈ [−4,−3], one in the region
a1 ∈ [0, 1], and one in the region a1 ∈ [3, 4]. In our dis-
cussion below we will call these minima m1, m2, and
m3. For μ > 0.3 m1 is the global minimum. Upon hole
doping we can see that the local minimum m3 is pushed
down in energy and the minimum m2 gets formed. For
μ < 0.3 the minimum in m3 becomes the global one
until for μ < −0.3 the minimum in m2 becomes the
global minimum.

Fig. 12 Colormap of the occupation in the first Brillouin
zone for U = 12 and μ = 1.2, for a1 = −4.1 (top left) and
a1 = −3.9 (top right). Zoom in of band structure for the
corresponding two cases (lower two panels) making the Lif-
shitz transition apparent. The red line indicates the chemi-
cal potential

Fig. 13 Expectation value of the Free energy 〈F 〉 as a
function of a1 for different values of chemical potential from
the top panel μ ∈ {2.0, 0.7, 0.3, 0.0, −0.4}, U = 4

The character of the solution m1 may elucidated from
Fig. 14. It is characterized by an insulating gap and pre-
dicts the system to be half filled for μ ∈ [0.3, 2]. This
solution is also characterized by the absence of a Fermi
surface, and should be viewed as being in the same
phase as the corresponding half-filled solution studied
above with a1 = −3, and also the corresponding strong
coupling solution.

The solution m3 may be characterized by studying
Fig. 15, it is gapless which suggests a metallic state.
There is moreover two sharp Fermi surfaces with dis-
continuities in the occupation numbers and a partially
depleted “ring” around the Γ -point is formed. The for-
mation of an additional Fermi surface can be under-
stood by looking at the band structure plot in Fig. 15.
The upper Hubbard band crosses the chemical potential
between the Γ and X points and this gives a discontinu-
ity in the occupation. There is also a strong wave vector
dependence on the relative spectral weight of the two
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Fig. 14 Characterization of solution m1. DOS (top left),
colormap of the average occupation in the first Brillouin
zone (top right), average occupations along high symmetry
lines (bottom left), and band structure (bottom right), for
U = 4, μ = 0.3 and a1 = −3.0 and 〈n↓〉 = 0.50. The red
line indicates the chemical potential

Fig. 15 Characterization of solution m3. DOS (top left),
colormap of the average occupation in the first Brillouin
zone (top right), average occupations along high symmetry
lines (bottom left), and band structure (bottom right), for
U = 4, μ = 0.0 and a1 = 3.5 and 〈n↓〉 = 0.30. The red line
indicates the chemical potential

bands which accounts for the continuous dependence of
the occupation in the intermediate region where one of
the bands is occupied.

The solution m2 is also characterized by the absence
of a gap as can be seen in Fig. 16. There is one sharp
Fermi surface and consequently, in contrast to the solu-
tion m3, there is no formation of a depleted ring around
the Γ -point.

As in the strong coupling case above there exists dis-
continuities in some curves in Fig. 13. In particular
for μ = 0.3 there is a discontinuity in 〈F 〉(a1) around
a1 = 1.8 that is barely visible in the figure. The ori-
gin of this is a Lifshitz type transition where the Fermi

Fig. 16 Characterization of solution m2. DOS (top left),
colormap of the average occupation in the first Brillouin
zone (top right), average occupations along high symmetry
lines (bottom left), and band structure (bottom right), for
U = 4, μ = −0.4 and a1 = 0.6 and 〈n↓〉 = 0.30. The red
line indicates the chemical potential

Fig. 17 Colormap of the occupation in the first Brillouin
zone for U = 4 and μ = 0.3, for a1 = 1.7 (top left) and
a1 = 1.9 (top right). Zoom in of band structure for the cor-
responding two cases (lower two panels) making the topo-
logical transition in the shape of the Fermi surface apparent.
The red line indicates the chemical potential

surface change topology passing from a connected to a
non-connected one as can be seen in Fig. 17. The dis-
continuity near a1 ≈ −3.2 at μ = 0.3 is of the same
type as the considered above, see Fig. 12.

9 Conclusions and outlook

In the context of the Green’s function equation of
motion method, we disclose the dependency between
the algebra of the operators and their evolution, stress-
ing that the Hermiticity of the E-matrix is a funda-
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mental relation that all physical theories must satisfy.
We also realized that for an arbitrary truncation the
Hermiticity of the E-matrix is generally violated which
leads to unphysical approximation for the Green’s func-
tion.

To overcome this type of problem a novel truncation
scheme for the equations of motion based on a par-
tial orthogonalization was developed, in the context of
the hierarchy of the operators. The main outcome of
this procedure is an approximation for the fermionic
Green’s function, which can in principle be extended to
an arbitrary number of poles. The extension to more
poles is possible, but technically cumbersome: not all
the variables in the theory would be determined by
constraints leading to an increasingly complicated min-
imization problem. On the other hand it might be nec-
essary to include additional operators to capture some
coherent excitations that are missed if these operators
are not explicitly considered. From a physical point of
view, another important way to extend the theory is to
include the effects of the neglected operators in some
way, for example through the Mori–Zwanzig method
[19,20] or the irreducible self-energy method [5]. It is
known that this type of extension generates more accu-
rate spectral functions, for example giving life-times
to quasiparticles and dressing fermionic quasiparticles
with bosons, such as plasmons. Work along these lines
is in progress [21].

We applied this truncation scheme to a two-pole
approximation for the Hubbard model showing that the
Hubbard-I and Mancini results can be obtained as a
particular choices of a much wider range of decoupling
possibilities. We introduced a variational procedure to
determine the partial orthogonalization parameter(s).
By employing it we analyzed a set of possible solu-
tions for the two-pole approximation for the Hubbard
model and we show that independently of the choice
of the orthogonalization parameter both the atomic
limit and the non-interacting limit are obtained as spe-
cial cases for the half-filled case. Furthermore the solu-
tions obtained, suggests the presence of a Mott metal-
insulator transition both in the large coupling limit and
in the intermediate one. In the latter case we also find
the presence of three competing solutions: one with an
insulating character and two with metallic ones, char-
acterized by different occupations in the first Brillouin
zone and different number of Fermi surfaces. We want
to stress that the variational procedure proposed to fix
the parameters in this paper is not the only option avail-
able and in principle whatever decoupling parameters
which satisfy the algebra constraint should be consid-
ered valid. Despite that, this method allows a transpar-
ent way to determine the part of the Green’s function
that is neglected from the original theory and constrain
its total spectral weight. This enables further refine-
ments of the approximate Green’s function, where the
effect of the neglected part can be incorporated in the
theory using an adequate form of the self-energy.

In the end it is important to recall that this scheme
can be applied both in the study of fermionic and
bosonic systems. Various application of this novel

decoupling scheme also in case of broken symmetries
are planned for future works.

Author contributions

FC performed all numerical studies and conceived the
idea together with JN. Both authors analyzed the
results and wrote the manuscript.

Funding Open access funding provided by Uppsala Uni-
versity. Funding from the Knut and Alice Wallenberg Foun-
dation and the Swedish research council Vetenskapsr̊adet is
gratefully acknowledged.

Data Availability Statement This manuscript has no
associated data or the data will not be deposited. [Authors’
comment: The data that support the founding of this study
are available from the authors, upon reasonable request.]

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-
cle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. P.C. Martin, J. Schwinger, Phys. Rev. 115, 1342 (1959)
2. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996)
3. N.B. Tyablikov, S. V., Dokl. Akad. Nauk USSR 126, 53

(1959)
4. S.V. Tyablikov, in Methods in the quantum theory of

magnetism (Springer, US, 1967), pp. 252–262
5. Y.A. Tserkovnikov, Theor. Math. Phys. 49, 993 (1981)
6. D.N. Zubarev, Soviet Physics Uspekhi 3, 320 (1960)
7. F. Catalano, J. Nilsson, arXiv:1807.07717 (2018)
8. J. Hubbard, Proc. R. Soc. Lond. A Math. Phys. Eng.

Sci. 276, 238 (1963)
9. J. Fransson, J. Phys. Chem. Lett 10, 50 (2019)

10. I.L.M. Locht, Y.O. Kvashnin, D.C.M. Rodrigues, M.
Pereiro, A. Bergman, L. Bergqvist, A.I. Lichtenstein,
M.I. Katsnelson, A. Delin, A.B. Klautau et al., Phys.
Rev. B 94, 085137 (2016)

11. L.M. Roth, Phys. Rev. Lett. 20, 1431 (1968)
12. F. Mancini, A. Avella, Adv. Phys. 53, 537 (2004)
13. P. Fan, K. Yang, K.H. Ma, N.H. Tong, Phys. Rev. B 97,

165140 (2018)
14. P.M. Chaikin, T.C. Lubensky, Principles of condensed

matter physics (Cambridge, 2000)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1807.07717


Eur. Phys. J. B (2021) 94 :30 Page 13 of 13 30

15. A. Avella, F. Mancini, D. Villani, L. Siurakshina, V.Y.
Yushankhai, Int. J. Mod. Phys. B 12, 81 (1998)

16. P.F. LeBlanc, A.E. Antipov, F. Becca, I.W. Bulik,
G.K.L. Chan, C.M. Chung, Y. Deng, M. Ferrero, T.M.
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