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Abstract
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The mathematical framework which quantum field theory constitutes has been very successful 
in describing nature. As an extension of such a framework, the idea of supersymmetry was 
introduced. This greatly simplified the mathematical description of the theories, making them 
more tractable. Recently, the method of supersymmetric localisation, in which one can 
compute infinite dimensional integrals exactly, enabled computations of partition functions for 
different supersymmetric gauge theories in various dimensions. Such partition functions 
sometimes resulted in the form of matrix models or even q-deformed matrix models, where the 
latter are not very well-studied. Classical, or un-deformed, matrix models on the other hand 
are studied in much greater detail. One particular tool that is used in the study of classical 
matrix models is the Ward identities called Virasoro constraints. Motivated by firstly the 
desire to understand q-deformed matrix models better and secondly the gauge theory 
applications of the results, we studied the derivation of and solution to such q-deformed 
Virasoro constraints. We also explored the implications of partition functions taking the form 
of q-deformed matrix models in the case of three and four dimensional supersymmetric 
gauge theories. Furthermore, we studied various generalisations of the classical matrix 
model, such as having different limits of integration and different potentials, in order to 
see how the Virasoro constraints and its solution changed. Finally, we made a connection 
with the area of integrability and investigated how classical matrix model satisfying the 
Virasoro constraints could be related to certain tau-functions satisfying the Hirota equations.
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1. Introduction

Quantum field theory (QFT) has been a very successful mathematical
framework used in describing nature as it combines quantum mechanics
with special relativity. The most prominent example of a QFT is the
Standard Model which currently is the best description of the world
around us. The Standard Model is formulated via gauge theories in which
Lagrangians possess redundant degrees of freedom resulting in a so-called
gauge symmetry. Such gauge theories were later generalised in order
to include supersymmetry; a symmetry imposed between bosons and
fermions through the addition of super-partners to the Standard Model.
Supersymmetry was first introduced in the context of QFT’s in [1,2] to
correct for problems such as the hierarchy problem in the Standard Model.
This problem addressed the large discrepancy between the strength of
the weak and the gravitational interactions. However, supersymmetry
also has the benefit of making gauge theories more tractable and explicit
computations easier. In supersymmetric gauge theories one is typically
interested in computing observables of the theory, including partition
functions and expectation values of Wilson loops. In the last ten years,
the evaluation of partition functions in supersymmetric gauge theories has
seen a great advancement. This is due to the development of a method
called supersymmetric localisation, an area initiated by the work [3]. For a
review on the method and a collection of various results in the area we refer
to [4]. Sometimes such localisation computations of partition functions
results in expressions known as matrix models and it is such models which
will be of interest here. In order to motivate this interest, we can view our
endeavours in the light of what is called the BPS/conformal field theory
(CFT) correspondence [5–9]. In this correspondence, expectation values
of certain protected BPS observables in supersymmetric gauge theories
are shown to have an interpretation through correlation functions in two
dimensional CFT’s. In our case, the observables are typically partition
functions expressed as matrix models and on the CFT side we find that
we can generate the same type of object from a free field realisation of
the Virasoro algebra.

Matrix models first arose in the context of statistical distributions
[10–12] and later as examples of gauge and string theories which were
exactly solvable [13]. In certain cases, the matrix models could alternatively
be recast as eigenvalue models. The canonical example of a 1-matrix model
is the Hermitean 1-matrix model depending on an infinite set of variables
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called time variables. In [14,15] the Hermitean matrix model was shown
to satisfy a set of Ward identities known as the Virasoro constraints. The
name originates from the fact that the constraints are given in terms of
(a subset of) the generators of the Virasoro algebra. In this sense, the
Virasoro constraints provide a link between matrix models on the one hand
and CFT’s on the other hand. Conversely, one can also ask the question
that if a model satisfies the Virasoro constraints, what does the model look
like. This has been referred to as solving the Virasoro constraints. The
answer to this question is typically given in the form of either the compact
notation of the W -representation for the matrix model [16], or through
explicitly determining the correlators (i.e. the coefficients when expanding
the model in the time variables). In papers IV and V we explored such
solutions to the Virasoro constraints.

In parallel with the developments within classical matrix models, there
also existed the concept of q-deformations as a method of generalising
functions and operations by introducing a complex deformation parameter
q. One example where such deformations were investigated, was in the
correspondence between the Calogero-Sutherland model, whose excited
states are given using Jack polynomials, and CFT in the form of the
Virasoro algebra [17–20]. Since there existed a q-deformation of the
Jack polynomials given by the Macdonald polynomials [21], the authors
of [22] wanted to see if this correspondence could be q-deformed. They
then searched for and found, a q-deformation of the Virasoro algebra (as
reviewed in [23]). Later, it was observed that also the matrix models could
be q-deformed in [24]. Additionally, the q-deformed version of the Virasoro
constraints could be considered, for instance as given in [25, 26]. This
was the motivation for paper II. There we explored how the q-deformed
Virasoro constraints could be derived by the insertion of a specific operator
under the integral, mirroring the usual insertion of a derivative to obtain
Ward identities. This q-deformation has sometimes been referred to as a
trigonometric deformation.

Let us now come back to observables in gauge theories. As discussed
above, the programme of supersymmetric localisation resulted in partition
functions for some gauge theories taking the form of matrix models. There
are both classical and q-deformed examples of such matrix models arising
from localisation, but it is the q-deformed such examples that will be of
main interest here. We then introduce a dependence on the time variables
of the partition function, after which we refer to it as a generating function.
These q-deformed matrix models or generating functions then satisfy q-
Virasoro constraints. To be concrete, let us consider a supersymmetric
gauge theory on the squashed three-sphere S3

b whose generating function
is given in the form of a q-deformed matrix model. It can be observed on
geometric grounds that S3

b can be obtained from gluing together two copies
of D2 ×q S1 in a particular way. What is more remarkable is that the S3

b

8



partition function has been shown to respect such a decomposition into two
partition functions on D2 ×q S1, where the D2 ×q S1 partition functions
then has been referred to as half-index or 3d holomorphic blocks [27–29].
Inspired by this factorisation, the authors of [26] then investigated if this
also holds at the level of the S3

b q-Virasoro constraints and found an
affirmative answer. The generators of the q-Virasoro constraints for S3

b

was then given by two commuting copies of the q-Virasoro algebra, which
was given the name of the modular double. In paper III, we employed
this modular double construction in order to obtain results for N = 2
Yang-Mills Chern-Simons gauge theory on S3

b and in particular expectation
values of supersymmetric Wilson loops.

The q-deformation introduced above can also be taken a step further,
by introducing yet another deformation labelled by q′. This deformation
has been referred to as the elliptic deformation, where the elliptic Virasoro
algebra was introduced in [30]. As opposed to the q-deformed case de-
scribed above, in the elliptic case we instead have the generating functions
of gauge theories living in 4d. However, just as in the 3d case, it has been
found that 4d gauge theory observables allow for a factorisation [28,31–33].
In paper I we explored how the modular double construction carried
over to the elliptic case and also applied this construction to the study
of 4d supersymmetric gauge theories on compact manifolds of the form
M3 × S1. This was motivated by the existence of the elliptic deformation
of the Virasoro algebra together with this factorisation of 4d observables.
Finally, it is worth highlighting that the results of papers I, II, III and
IV might appear centred around and motivated by their applications in
gauge theories. However, the obtained results are also valid from a pure
matrix model perspective, as they can be viewed as part of the search for
a better understanding of the structure of matrix models. For instance,
the results can be used to understand connections to integrable models
and also provide applications within the area of special functions, such as
the integral representation of Macdonald polynomials [34].

Another area which deals with solvable systems is the area of integra-
bility, where with integrable system we in broad terms think of a system
where all dynamical characteristics can be determined exactly. There,
the object of interest is the τ -function which can be thought of as the
generating function for correlation functions in a theory with free particles.
One such example is when the particles are free fermions, where for a
review we refer to for instance [35,36]. Then, the τ -functions satisfy a set
of bilinear equations called the Hirota equations [37,38]. One particular
class of τ -functions are classical matrix models (with β = 1) see for exam-
ple [39,40], which therefore satisfy both Virasoro constraints and Hirota
equations. However, the relation between the two sets of conditions and
their corresponding solutions is not fully understood and the purpose of
paper V was to explore this.
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1.1 Outline of thesis
This thesis is divided into three parts. In the first part we review classical
matrix models, where the standard example of the Hermitean 1-matrix
model is introduced. We then explore the main tool accessible when
studying matrix models, namely the Virasoro constraints. We review the
derivation of these constraints together with recalling the details of the
Virasoro algebra satisfied by the generators of the constraints. We then
consider solutions of such matrix models, available to us via the Virasoro
constraints. One way to solve such matrix models is by determining the
correlators, or the coefficients when expanding the generating function in
time variables. However, the solution can also be given through a compact
form known as the W -representation. Finally, we close the first part of the
thesis by considering matrix models which have a non-trivial boundary as
discussed in paper V. In this case, the boundary generates contributions
to the Virasoro constraints, rendering them non-homogeneous.

In the second part of the thesis we explore quantum matrix models. We
begin with reviewing some concepts within q-calculus to then provide a
summary of q-functions which are used throughout the thesis. Within this
part, we investigate two deformations of the classical model. Firstly, the
q- (or sometimes q, t-) deformation which has also been referred to as the
trigonometric deformation. Here we start by giving the q-Virasoro algebra
together with the q-deformed matrix model. Using the findings of paper II,
we then solve the constraints which are now q-Virasoro constraints. As a
second, and yet further, deformation we introduce the q, t, q′-deformation
which has also been called the elliptic deformation. Similarly to before, we
then introduce the elliptic Virasoro algebra and the elliptic matrix model.

Finally, in the third and last part we investigate how the knowledge from
the classical and deformed matrix models can be applied to other areas.
In the case of the deformed models, the applications are different kinds
of supersymmetric gauge theories on various backgrounds. We therefore
begin the part with reviewing how to obtain observables in such theories
using the method of supersymmetric localisation, together with recalling
some results which this method has produced. For the q, t-deformed model
we find suitable applications in three dimensional supersymmetric gauge
theories and to be precise on the backgrounds D2 ×q S1 and S3

b , as found
in papers III and IV. On the other hand, for the q, t, q′-deformed models
we instead find an application in four dimensional theories on compact
backgrounds of the formM3 × S1, as explored in paper I. We then close
this part by considering an application of the classical matrix models.
More specifically, we explore the connection between classical Virasoro
constraints and a concept from integrability, namely Hirota equations as
investigated in paper V.
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Part I:
Classical matrix models
In this first part we introduce classical matrix models and the tools
available when studying them. For reviews on the subject we refer to
[35,41–43]. The reasons to why one considers matrix models are because
they are typically easy to study and can serve as a playground for more
elaborate theories. For instance, as we will see later, deformed versions
of these classical matrix models appear in the partition functions of
supersymmetric gauge theories. Consequently, understanding the classical
theories at a more fundamental level can therefore help us in understanding
such applications better. Matrix models early established their importance
when they appeared in string theory and the description of two dimensional
quantum gravity as the generating function for random triangulations
of surfaces. This was useful as such summations could then replace the
integral over all possible geometries when evaluating partition functions
[13,44–47]. (For a review see [48].) More recent applications of classical
matrix models include for instance topological strings and applications
within large N expansions as reviewed in [49].





2. Matrix models

Let us start the first chapter with exploring the world of matrix models.
To begin with, we consider the matrix models themselves, both formulated
using matrices and also using the eigenvalues of the matrices. We then
review some details about integer partitions and certain special polynomials
which satisfies some particularly nice properties related to formulas for
expectation values. Finally, we introduce the notion of correlators of the
matrix model.

2.1 Matrices and eigenvalues
The simplest example of a matrix model is the Hermitean 1-matrix model,
as reviewed for instance in [35],

Z(t) =
∫
N×N

[DM ] e−TrV (M)+
∑∞

s=1 tsTr(Ms) , (2.1)

where the complex function V (M) is called the potential of the ma-
trix model. Additionally, the model depends on an infinite set of pa-
rameters usually called time variables which we denote collectively by
t = {t1, t2, . . . }. The integration in (2.1) is over all N × N Hermitean
matrices M , such that M = M †, and the measure is [14]

[DM ] =
N∏
i=1

dMii

∏
1≤i<j≤N

d (ReMij) d (ImMij) . (2.2)

The measure [DM ] is special in the sense that it is invariant under the
adjoint action of the Lie group U(N), under which M → U †MU . This
enables us to diagonalise the matrix, provided that also the potential
V (M) is invariant. In what follows we will therefore assume such an
invariant potential. Consequently, one can rewrite the above using the
eigenvalues of the matrix M denoted by {λ1, . . . , λN}. More explicitly, a
Hermitean matrix M can be written as

M = U †DU (2.3)

for some unitary matrix U and its adjoint U †, and diagonal matrix D
consisting of the eigenvalues of M , so that

Tr(M s) = Tr(Ds) =
N∑
i=1

λsi . (2.4)
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Then, in order to determine the measure [DM ] in terms of the eigenvalues,
one can consider the square of the line element to find the Jacobian.
Following [41] we find

Tr
[
(dM)2

]
= Tr

[(
(dU †)DU + U †(dD)U + U †D(dU)

)2
]
. (2.5)

Expressing dU = i (dT )U for a Hermitean matrix T (such that unitarity
dUdU † = I is preserved), we find

Tr
[
(dM)2

]
= Tr

[(
U † (dD + i [D, dT ])U

)2
]

=

= Tr
[
(dD)2

]
+ Tr

[(
− ([D, dT ])2

)]
=

=
N∑
i=1

(dλi)2 +
N∑

i,j=1
(λi − λj)2 |dTij |2 .

(2.6)

Here, the second line follows from that D and dD commute and that the
trace is cyclic and the second term in the last line follows from

−Tr
[
([D, dT ])2

]
=

N∑
i,j=1

[D, dT ]ij [dT,D]ji =

=
N∑

i,j=1
(λi − λj) |dT |ij (λi − λj) |dT |ji

(2.7)

and that T is Hermitean. Thus, the determinant of the metric tensor
becomes

∏
1≤i6=j≤N (λi − λj)2 and the Jacobian is then the (square of the)

Vandermonde determinant ∆(λ), in other words

∆(λ)2 =
∏

1≤i<j≤N
(λi − λj)2 . (2.8)

Thus, the measure becomes

[DM ] =
N∏
i=1

dλi ∆(λ)2 . (2.9)

Finally, as earlier mentioned, we assume that the potential V (M) is
invariant under the adjoint action. Thus

Tr [V (M)] = Tr [V (D)] =
N∑
i=1

V (λi) , (2.10)

which is the case for instance for polynomial potentials as will be introduced
later. Using this, one can recast the Hermitean matrix model in (2.1) as

14



the eigenvalue matrix model

Z(t) =
∫
RN

N∏
i=1

dλi ∆(λ)2 e−
∑N

i=1 V (λi)+
∑∞

s=1 ts
∑N

i=1 λ
s
i , (2.11)

where all the N integrations are over the real line R.
The potential V (λ) introduced above is of the form

V (λ) =
p∑
k=1

ak
k
λk , (2.12)

where the parameters {ak} with ak ∈ C sometimes are referred to as
coupling constants. To clarify the dependence of the generating function on
the coupling constants, we use the notation Z(t; a) where a = {a1, . . . , ap}.
Instead of introducing a potential V (λ), an equivalent interpretation is to
view the potential as being generated by shifting the first p times as

ts 7→ ts − as/s, s = 1, . . . , p . (2.13)

One example of the above matrix model is the case p = 1, which is related
to the complex 1-matrix model as studied in [50,51] given by∫

N×N
[DM ] e−Tr[V (M,M†)]+

∑∞
s=1 tsTr[(MM†)s] , (2.14)

where the integral is now over the space of all complex N ×N matrices
M . We then make the change of variables Φ = MM † and assume that
the potential V has a single quadratic term. If we denote the eigenvalues
of M by θi and the eigenvalues of Φ by λi, then the potential will be
quadratic in θi but linear in λi = |θi|2. The integration over λi will then
be over the positive real line. Using this, one can write this model in its
most general form as

Z(t; a1) =
∫
RN>0

N∏
i=1

dλi ∆(λ)2
N∏
i=1

λνi e−a1
∑N

i=1 λi+
∑∞

s=1 ts
∑N

i=1 λ
s
i (2.15)

which is the Wishart-Laguerre eigenvalue model reviewed for instance
in [52]. Here, we have allowed for a term parametrised by ν where this
term at the level of matrices M corresponds to the determinant insertion(
det(MM †)

)ν . To have convergence of the integrals we require Re(ν) > −1.
This term can also be introduced via modifying the potential in (2.12) as

V (λ) = −δp,1ν ln(λ) +
p∑
k=1

ak
k
λk . (2.16)

Another well-known example of the matrix model given above with p = 2
is the Gaussian Hermitean matrix model, which is obtained by a potential
with coupling constants

ak = δk,2 (2.17)
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or alternatively the shift in times

t2 7→ t2 −
1
2 . (2.18)

In other words

Z(t; a1 = 0, a2 = 1) =
∫
RN

N∏
i=1

dλi ∆(λ)2e−
1
2

∑N

i=1 λ
2
i+
∑∞

s=1 ts
∑N

i=1 λ
s
i .

(2.19)
We will return to this example later in the context of theW -representations.

Finally, in order to generalise the above matrix model, one might intro-
duce what is called the β-deformation. This is a 1-parameter deformation
of the model in (2.11) in which the square of the Vandermonde instead
takes the form

∆(λ)2 =
∏

1≤i<j≤N
(λi − λj)2 β−deformation−−−−−−−−−→ ∆(λ)2β =

∏
1≤i<j≤N

(λi − λj)2β

(2.20)
for a deformation parameter β. For the model to be well-defined, one has
to take β ∈ Z>0. However, from the point of view of the constraints that
this model satisfies (to be discussed in Chapter 3) there are no restrictions
on β, and we therefore analytically continue β to the complex plane. The
β-deformed matrix model then becomes

Zβ(t; a) =
∫
RN

N∏
i=1

dλi ∆(λ)2βe−
∑N

i=1 V (λi)+
∑∞

s=1 ts
∑N

i=1 λ
s
i (2.21)

(where we use the restricted contours RN>0 in the case of p = 1 as discussed
above). From now on we assume this β-deformation so in what follows we
simply denote this matrix model by Z(t; a) to ease notation. It should
be noted here that the β-deformation is not on the same footing as the q-
deformations that will be introduced later, in particular the β-deformation
is considered a classical feature.

2.2 Partitions
To ease later discussions, we now introduce concepts related to integer
partitions. An integer partition γ is denoted by γ = {γ1, . . . , γk}, where
γ1 ≥ · · · ≥ γk > 0 are positive integers where each γi ∈ γ is called a
part of γ. For a given partition γ one can define the following properties.
Firstly, the degree (also called weight) of the partition γ, denoted by |γ|, is

|γ| =
∑
a∈γ

a . (2.22)
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Figure 2.1. The Young diagram corresponding to the partition γ = {6, 4, 2, 2, 1}.

Secondly, the length of the partition, l(γ), is given by

l(γ) =
∑
a∈γ

1 . (2.23)

Thirdly, one can define #γj as the number of parts j in the partition γ,

#γj =
∑
a∈γ

δa,j . (2.24)

Finally, |Aut(γ)| is the order of the automorphism group of the partition

|Aut(γ)| =
γ1∏
j=γk

(#γj)! , (2.25)

or alternatively
|Aut(γ)| =

∏
a∈γ

∂

∂ta

∏
b∈γ

tb . (2.26)

Integer partitions such as γ above, can also be described using Young
diagrams. These diagrams consist of left-aligned rows of boxes, where the
number of boxes on each row is non-increasing as you move down the rows.
The number of boxes on the i-th row, counting from the top of the diagram,
is equal to the part γi of the partition γ. Thus the number of rows of
boxes is equal to the length of the partition and the total number of boxes
in the Young diagram is the degree of the partition. For instance, the
partition γ = {6, 4, 2, 2, 1} corresponds to the Young diagram illustrated
in Figure 2.1. This partition has degree |γ| = 15 and length l(γ) = 5. The
automorphism group of γ is then equivalent to the group of permutations
of rows which has the same number of boxes, in other words |Aut(γ)| = 2.

2.3 Special polynomials
Let us now review some properties of the multivariate Schur polynomials
Schurγ(λk), where for details we refer to [21]. Schur polynomials can be
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defined as irreducible characters of U(N). For an irreducible representation
Rγ and partition γ, then for a given group element Φ the Schur polynomial
Schurγ(λk) satisfies

chRγ (Φ) = TrRγ (Φ) = Schurγ(λk = Tr(Φk)) . (2.27)

Consequently they form a basis for the space of all polynomial characters,
which in turn can be extended to all symmetric functions using that
characters are invariant under the Weyl group SN .

The Schur polynomials are indexed by an integer partition γ and are
symmetric functions of the set of variables λk = {λ1, . . . , λN}. They are
homogeneous in degree, where with degree we mean d =

∑N
k=1 µk for

a monomial λµ1
1 . . . λµNN . For a generic partition γ = {γ1, . . . , γN}, the

general expression for a Schur polynomial in terms of determinants is

Schurγ(λk) =
det

1≤i,j≤N
λ
N+γj−j
i

det
1≤i,j≤N

λN−ji

. (2.28)

An alternative way of expressing the Schur polynomials is through

Schurγ(λk) = mγ(λk) +
∑
µ<γ

Kγµmµ(λk) (2.29)

where Kγµ are the Kostka numbers which are non-negative integer coeffi-
cients and mµ(λk) are the monomial symmetric functions defined by

mµ(λk) =
∑
α

λα1
1 . . . λαNN , (2.30)

where the summation is over all distinct permutations α = {α1, . . . , αN}
of µ = {µ1, . . . , µN}. Furthermore, we can define an inner product

(f(λ) | g(λ)) = 1
(2πi)NN !

∮
|λ|=1

N∏
i=1

dλi
λi

∆(λ)∆(λ−1)f(λ)g(λ−1) , (2.31)

where we recall the Vandermonde determinant ∆(λ) in (2.8) and with
λ−1 we mean the inverse of each argument {λ−1

1 , . . . , λ−1
N }. Then, with

respect to this inner product the Schur polynomials are orthonormal, i.e.

(Schurγ(λk) | Schurρ(λk)) = δγ,ρ . (2.32)

Let us now introduce another set of variables {pk}, sometimes referred to
as power sum symmetric polynomials. These typically encode traces of
powers of N ×N matrices M according to

pk = Tr(Mk) , (2.33)
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or alternatively using the eigenvalues {λ1, . . . , λN} of the matrix M in
other words the first set of variables,

pk =
N∑
i=1

λki . (2.34)

Using these power sum variables, the Schur polynomials then satisfy what
is called the Cauchy identity [21],

exp
( ∞∑
k=1

tkpk
k

)
=
∑
γ

Schurγ (tk) Schurγ (pk) , (2.35)

where the summation on the right hand side is over all partitions γ.
The Cauchy identity takes a simpler form when one uses the plethystic
substitution tk = zk. In particular, the summation on the right hand
side then only contains symmetric partitions γ = {m}, in other words
partitions of length 1. Using the formula for symmetric Schur polynomials

Schur{m}(p1, . . . , pm) =
∑

{γ s.t. |γ|=m}

1
|Aut(γ)|

l(γ)∏
i=1

pi
i
, (2.36)

then Schur{m}(tk = zk) = zm and the Cauchy identity in (2.35) becomes

exp
( ∞∑
k=1

zkpk
k

)
=
∞∑
m=0

zmSchur{m}(p1, . . . , pm) . (2.37)

Similarly, one can find that for antisymmetric Schur polynomials,
Schur{1,...,1}(p1, . . . , pm), that the Cauchy identity takes the form

exp
(
−
∞∑
k=1

zkpk
k

)
=
∞∑
m=0

zm (−1)m Schur{1, . . . , 1}︸ ︷︷ ︸
m

(p1, . . . , pm) . (2.38)

To give an example, the Schur polynomials up to degree three are
Schur∅ (pk) = Schur{} (pk) = 1
Schur (pk) = Schur{1} (pk) = p1

Schur (pk) = Schur{2} (pk) = p2
1 + p2

2

Schur (pk) = Schur{1,1} (pk) = p2
1 − p2

2

Schur (pk) = Schur{3} (pk) = p3
1 + 3p1p2 + 2p3

6

Schur (pk) = Schur{2,1} (pk) = p3
1 − p3

3

Schur (pk) = Schur{1,1,1} (pk) = p3
1 − 3p1p2 + 2p3

6 . (2.39)

19



Another family of symmetric functions which we now review are the
Jack polynomials Jackγ(λk). The Jack polynomials are a 1-parameter
deformation of the Schur polynomials, since they in addition to depending
on the integer partition γ and the set of variables λk = {λ1, . . . , λN}, also
depend on a real positive parameter β. Let us introduce the inner product

(f(λ) | g(λ))β = 1
(2πi)NN !

∮
|λ|=1

N∏
i=1

dλi
λi

(
∆(λ)∆(λ−1)

)β
f(λ)g(λ−1) ,

(2.40)
which the Jack polynomials by definition are orthogonal to,

(Jackγ(λk) | Jackµ(λk))β = βl(γ)δγ,µ
∏
j≥1

j(#γj)(#γj)! , (2.41)

recalling definitions related to partitions in Section 2.2. Using the power
sum variables in (2.34), the first Jack polynomials are given by

Jack{}(pk) = 1
Jack{1}(pk) = p1

Jack{2}(pk) = βp2
1 + p2

1 + β

Jack{1,1}(pk) = p2
1 − p2

2

Jack{3}(pk) = β2p3
1 + 3βp1p2 + 2p3

(1 + β)(2 + β)

Jack{2,1}(pk) = βp3
1 + (1− β)p1p2 − p3

1 + 2β

Jack{1,1,1}(pk) = p3
1 − 3p1p2 + 2p3

6 . (2.42)

One can observe that in the limit β = 1, also called the Schur limit,

Jackγ(pk)|β=1 = Schurγ(pk) . (2.43)

Thus, the Jack polynomials can be considered the β-deformed version
of the Schur polynomials. We will discuss a further deformation of the
above symmetric polynomials in Chapter 5. In what follows we will
almost exclusively use the power sum variables for the Schur and Jack
polynomials.

2.4 Expectation values and correlators
Using the β-deformed eigenvalue matrix model defined in (2.21), one can
also define the expectation value or average. For an operator O(λ) we have

20



the average

〈O(λ)〉 =
∫
RN

N∏
i=1

dλiO(λ) ∆(λ)2βe−
∑N

i=1 V (λi) . (2.44)

Similarly, we can define a time-dependent average according to

〈O(λ)〉t =
∫
RN

N∏
i=1

dλiO(λ) ∆(λ)2βe−
∑N

i=1 V (λi)+
∑∞

s=1 ts
∑N

i=1 λ
s
i (2.45)

where we use the subscript t to highlight the dependence on the time
variables. The two averages are then related by

〈O(λ)〉t=0 = 〈O(λ)〉 . (2.46)

Thus we note that the matrix model is given by

Z(t; a) = 〈1〉t . (2.47)

Next, one can expand the matrix model in terms of the time variables as

Z(t; a) =
〈

exp
( ∞∑
s=1

tsTr (M s)
)〉

=

=
∞∑
k=0

1
k!

∞∑
s1=1
· · ·

∞∑
sk=1

〈
Tr (M s1) . . .Tr (M sk)

〉
ts1 . . . tsk =

=
∑
ρ

1
|Aut(ρ)|cρ(a)

∏
µ∈ρ

tµ ,

(2.48)

where the last summation is over all integer partitions ρ = {ρ1, . . . , ρn} and
where the order of the automorphism group is defined in (2.25). Equation
(2.48) then defines the correlators cρ(a) of the model in question, in other
words the expectation values of the multi-trace operators

cρ(a) = 〈Tr (Mρ1) . . .Tr (Mρn)〉 . (2.49)

Alternatively, the correlators can also be expressed as

cρ(a) =
[

∂ . . . ∂

∂tρ1 . . . ∂tρn
Z(t; a)

]∣∣∣∣∣
t=0

(2.50)

for a partition ρ = {ρ1, . . . , ρn}. Consequently one can view Z(t; a) as
the generating function for the correlators cρ(a), which is a name we
will employ frequently. We also note that the correlators depend on the
coupling constants a = {a1, . . . , ap} appearing in the potential and that
the empty correlator c∅(a) can be written as

c∅(a) = 〈1〉 . (2.51)
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This is by definition equal to the partition function Z(a) = Z(0; a) = c∅(a).
It should then be noted that if one can find all the correlators for a given
model, this information is enough to completely determine the model.

Returning to the averages, one particular average that can be computed
is that of the Schur polynomials in Section 2.3. Such averages reduce
to an unexpectedly simple form in the case of a potential of the form in
(2.16) where p = 2, a1 = 0 and where β = 1 [53]

〈Schurγ(pk)〉|p=2,a1=0,β=1 =

= 1
a
|γ|/2
2

Schurγ(pk = δk,2)
Schurγ(pk = δk,1)Schurγ(pk = N) c∅(a1 = 0, a2)|β=1 ,

(2.52)

which is valid for a generic partition γ. This is a phenomenon called
superintegrability, as first observed in [54, 55]. In paper IV we explored
this property further and found firstly in the case of a potential with p = 1
that for generic β the average of a Jack polynomial takes the simple form

〈Jackγ(pk)〉|p=1 =

= Jackγ(pk = β−1(ν + β(N − 1) + 1))
Jackγ(pk = β−1a1δk,1) Jackγ(pk = N) c∅(a1) .

(2.53)

Upon letting β = 1 one instead obtains the average of a Schur polynomial,

〈Schurγ(pk)〉|p=1,β=1 = Schurγ(pk = N + ν)
Schurγ(pk = a1δk,1) Schurγ(pk = N) c∅(a1)|β=1 .

(2.54)
One can also observe this superintegrability property in the case of p = 2,
where one finds for generic β

〈Jackγ(pk)〉|p=2 =

= Jackγ
(
pk = (−1)kβ−1(a1δk,1 + a2δk,2)

)
Jackγ(pk = β−1a2δk,1) Jackγ(pk = N) c∅(a1, a2) .

(2.55)

In the limit β = 1 we then have

〈Schurγ(pk)〉|p=2,β=1 =

= Schurγ
(
pk = (−1)k(a1δk,1 + a2δk,2)

)
Schurγ(pk = a2δk,1) Schurγ(pk = N) c∅(a1, a2)|β=1 ,

(2.56)

generalising the result of [53] (as given in (2.52)) for arbitrary a1.
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3. Virasoro constraints

We now move on to the main tool when studying matrix models which will
be employed to a large extent throughout, namely the Ward identities or
the Virasoro constraints. We investigate how these constraints are derived,
but more importantly how the constraints can be used to completely
determine the model in terms of the correlators. Sometimes we also find
an even more compact and neat way to express the solution, in which we
re-cast the matrix model using what has been called a W -representation.
Lastly, we consider an extension of the Virasoro constraints. We review
the analysis in paper V on how the solution to the Virasoro constraints
can be generalised to the case when the constraints receive boundary
contributions and are effectively rendered non-homogeneous.

3.1 Deriving the Virasoro constraints
Starting from the matrix model given in (2.1), it can be shown that this
model satisfies constraints known as the Virasoro constraints, as first
shown in [14, 15]. Following the derivation in [14] (also reviewed in [25])1,
we begin with rewriting the eigenvalue matrix model in (2.21) as

Z(t; a) =
∫
RN

N∏
i=1

dλi (−1)
N(N−1)

2
∏

1≤i6=j≤N
(λi − λj)β×

× e−
∑N

i=1 V (λi)+
∑∞

s=1 ts
∑N

i=1 λ
s
i .

(3.1)

Then, one can consider the saddle point equations for the model, where
for each i = 1, . . . , N we have

∞∑
s=1

stsλ
s−1
i + 2β

∑
1≤j≤N
j 6=i

1
λi − λj

− ∂

∂λi
V (λi) = 0 . (3.2)

This means that there is an invariance with respect to the shift

λi → λi + δλi = λi + εnλ
n+1
i , n ≥ −1 , (3.3)

1It should be noted that with respect to [25], we use ts,there = s! ts,here and we also
allow for a generic parameter β and a generic potential V (λ).
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under which the effective action of the eigenvalue model in (3.1) becomes

δ

 ∞∑
s=1

ts

N∑
i=1

λsi + β

2
∑

1≤i6=j≤N
ln(λi − λj)2 −

N∑
i=1

V (λi)

 =

= εn

 ∞∑
s=1

sts

N∑
i=1

λs+ni + β
∑

1≤i6=j≤N

λn+1
i − λn+1

j

λi − λj
−

N∑
i=1

λn+1
i

∂

∂λi
V (λi)

 =

=εn
N∑
i=1

λn+1
i

( ∞∑
s=1

stsλ
s−1
i + 2β

∑
1≤j≤N
j 6=i

1
λi − λj

− ∂

∂λi
V (λi)

)
= 0 , (3.4)

upon using the saddle point equations in (3.2) in the last step. This
implies that the shift in (3.3) is a symmetry of the matrix model, and this
symmetry can furthermore be rewritten as a constraint. Thus, applying
the shift in (3.3) to the model in (3.1) we find for n ≥ −1,

Z(t; a)→

→
∫
RN

[
N∏
i=1

(1 + (n+ 1)εnλni ) dλi
]

(−1)
N(N−1)

2
∏

1≤i6=j≤N
(λi − λj)β×

× e−
∑N

i=1 V (λi)+
∑∞

s=1 ts
∑N

i=1 λ
s
i ×

× exp
(
εn

N∑
i=1

λn+1
i

{ ∞∑
s=1

stsλ
s−1
i + 2β

∑
1≤j≤N
j 6=i

1
λi − λj

− ∂

∂λi
V (λi)

})
.

(3.5)

We then use the explicit form of the potential given in equation (2.16),
such that

∂

∂λi
V (λi) = −δp,1νλ

−1
i +

p∑
k=1

akλ
k−1
i . (3.6)

Next, one can use the time-dependent averages in (2.45) to extract the
variations which are linear in εn for n ≥ −1. Starting with the n = −1
constraint (where as we will comment on later this constraint is only valid
when p 6= 1 to avoid expectation values of negative powers of λi),〈 ∞∑

s=1
sts

N∑
i=1

λs−1
i −

p∑
k=1

ak

N∑
i=1

λk−1
i

〉
t

= 0 . (3.7)

Then the n = 0 constraint becomes〈
βN2 + (1− β)N +

∞∑
s=1

sts

N∑
i=1

λsi + δp,1νN −
p∑
k=1

ak

N∑
i=1

λki

〉
t

= 0 ,

(3.8)
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and for n ≥ 1 we have〈
(1− β)(n+ 1)

N∑
i=1

λni +
∞∑
s=1

sts

N∑
i=1

λs+ni + β
N∑

i,j=1

n∑
k=0

λki λ
n−k
j +

+ δp,1ν
N∑
i=1

λni −
p∑
k=1

ak

N∑
i=1

λn+k
i

〉
t

= 0 ,
(3.9)

thus recovering (2.24) of paper IV. One might then trade the expectation
value for a differential operator in the time variables according to

〈
N∑
i1=1
· · ·

N∑
ik=1

λs1
i1
. . . λskik

〉
t

= ∂

∂ts1

. . .
∂

∂tsk
Z(t; a) , (3.10)

where the powers {s1, . . . , sk} are non-negative integers and in case it is
zero we replace the corresponding derivative with multiplication by N .
Firstly, the n = −1 constraint in (3.7) can be written as the differential
equation(

Nt1 +
∞∑
s=2

sts
∂

∂ts−1
−

p∑
k=2

ak
∂

∂tk−1
− a1N

)
Z(t; a) = 0 . (3.11)

Secondly, the n = 0 constraint in (3.8) takes the form(
βN2 + (1− β)N +

∞∑
s=1

sts
∂

∂ts
+ δp,1νN −

p∑
k=1

ak
∂

∂tk

)
Z(t; a) = 0 ,

(3.12)
and thirdly the n ≥ 1 constraint in (3.9) becomes

(
(1− β)(n+ 1) ∂

∂tn
+
∞∑
s=1

sts
∂

∂ts+n
+ β

∑
`+m=n
`,m>0

∂2

∂t`∂tm
+

+ δp,1ν
∂

∂tn
−

p∑
k=1

ak
∂

∂tn+k

)
Z(t; a) = 0 .

(3.13)

The above can then collectively be written as the Virasoro constraints(
Ln + δp,1ν

(
∂

∂tn
+ δn,0N

)
−

p∑
k=1

ak
∂

∂tn+k
− a1Nδn,−1

)
Z(t; a) = 0 ,

(3.14)
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valid for n ≥ −1 where the differential operators Ln are given by

L−1 = Nt1 +
∞∑
s=2

sts
∂

∂ts−1

L0 = βN2 + (1− β)N +
∞∑
s=1

sts
∂

∂ts
(3.15)

Ln>0 = 2βN ∂

∂tn
+ β

∑
`+m=n
`,m>0

∂2

∂t`∂tm
+ (1− β)(n+ 1) ∂

∂tn
+
∞∑
s=1

sts
∂

∂ts+n
.

It can be noted that from the point of view of the constraints in (3.14) only,
i.e. disregarding the matrix model picture, N can be a generic complex
variable. One can then observe that the Virasoro constraints in (3.14)
posses a symmetry, as they are invariant under the simultaneous shifts√
β → − 1√

β
, N → −βN, ts → −

1
β
ts, ak → −

1
β
ak, ν → − 1

β
ν .

(3.16)
Upon including also generators Ln for n < −1 (whose explicit form can
be deduced from the free boson realisation to be introduced shortly), the
generators Ln for n ∈ Z together with a central charge c, generate the
Virasoro algebra

[Ln, Lm] = (n−m)Ln+m + c

12n(n2 − 1)δn+m,0 , [Ln, c] = 0 , (3.17)

for n,m ∈ Z. It can be shown that the central charge is given by

c = 1− 6Q2
β (3.18)

with
Qβ =

√
β − 1√

β
, (3.19)

where one can note that the central charge is invariant under
√
β →

−1/
√
β, consistent with the symmetry in (3.16) above.

Before moving on, let us remark here that starting from the matrix
model in (2.1), we have only included time variables {tk} for k > 0 in
order to be consistent with papers IV and V. However, in the literature
sometimes also the variable t0 is included. This appears through the
inclusion of a factor eNt0 in the β-deformed eigenvalue matrix model in
(2.21). Consequently, derivatives with respect to t0 can be traded for
multiplication by factors of N and vice versa. By considering the Virasoro
constraints written using derivatives of t0 instead of factors of N , the
most generic form of a generating function which satisfies the Virasoro
constraints is that constructed from some linear combination

Z(t; a) =
∑
N

Z(t; a) eNt0 (3.20)
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as each Z(t; a) depends on N . However, because the operator ∂
∂t0

com-
mutes with the Virasoro constraints (i.e. the combination of operators
appearing in the brackets in (3.14)), ∂

∂t0
and the Virasoro constraints can

be simultaneously diagonalised. Therefore we can consider a specific value
of N without loss of generality, which is what we will do. In the following
derivation using the free boson realisation, we will however include t0 to
be consistent with literature.

An alternative way to see that the eigenvalue matrix model in (2.21)
satisfies the Virasoro constraints, is by constructing the model using
the free boson realisation of the Virasoro algebra [23, 26]. To do so, we
introduce the free boson oscillator an with n ∈ Z\{0} and zero mode P
together with Q, which satisfy the Heisenberg algebra given by

[an, am] = 2nδn+m,0 , [P,Q] = 2 (3.21)

for n,m ∈ Z\{0}. We also have the Fock module Fα generated by

Fα =


l(γ)∏
k=1

a−γk |α〉

 , (3.22)

for any partition γ = {γ1, . . . , γl(γ)} of length l(γ). The state, or charged
vacuum, |α〉 is then characterised by

l(γ)∏
k=1

aγk |α〉 = 0 (3.23)

a condition which is called the highest weight condition, together with

|α〉 = e
α
2 Q|0〉 , P|α〉 = α|α〉 , (3.24)

for a given charge or momentum α ∈ C. Using the free boson oscillators,
a boson field φ(z) is then given by

φ(z) = Q + P ln(z)−
∑

k∈Z\{0}

ak
k
z−k (3.25)

such that
∂φ(z) = Pz−1 +

∑
k∈Z\{0}

akz−k−1 . (3.26)

Using this free boson, one might write the Virasoro current L(z) as

L(z) = 1
4 : ∂φ(z)∂φ(z) : +Qβ

1
2∂

2φ(z) (3.27)

with Qβ as given in (3.19). Here we introduced the normal ordering
prescription : : in which we move positive modes an>0 to the right of
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negative modes an<0 and P to the right of Q. Using the expansion of the
Virasoro current in terms of modes,

L(z) =
∑
n∈Z

Lnz
−n−2 (3.28)

one finds

Ln =1
4
∑
k 6=0,n

: an−kak : +1
2anP− 1

2Qβ(n+ 1)an , n 6= 0

L0 =1
2
∑
k>0

a−kak + P2

4 −
1
2PQβ .

(3.29)

The Virasoro current above is then realising the Virasoro algebra with the
central charge as given in (3.19) and |α〉 is the highest weight state of the
algebra with conformal weight h(α),

h(α) = 1
4
(
(α−Qβ)2 −Q2

β

)
. (3.30)

Using a differential representation of the Heisenberg oscillators given by2

a−n '
n√
β
tn , an ' 2

√
β
∂

∂tn
,

Q ' t0√
β
, P ' 2

√
βN , |α〉 = e

α
2 Q|0〉 ' et0

α
2 · 1 ,

(3.31)

with n > 0, one can recover the differential operators in (3.15) from the
ones in (3.29). Then, the problem of finding a matrix model which satisfies
the Virasoro constraints in (3.14) can be solved using the construction of
a screening current S(λ). This is defined by

[Ln, S(λ)] = d
dλO(λ) (3.32)

for some operator O(λ) whose explicit form will not be of importance. We
now use this screening current to construct the matrix model by means of

Z|α〉 =
∫ N∏

i=1
S(λi) dλi |α〉 . (3.33)

This satisfies the Virasoro constraints Ln>0Z|α〉 = 0 (excluding the poten-
tial) by construction, since

Ln>0Z|α〉 = [Ln>0,Z]|α〉 = [Ln>0,

∫ N∏
i=1

S(λi) dλi]|α〉 = 0 (3.34)

2With respect to [26] we use the normalisation of time variables
√
β ts,there = ts,here.

28



for an appropriately chosen contour and where we used the highest weight
condition Ln>0|α〉 = 0 on the charged vacuum (in other words (3.23)).
We then take as ansatz that the screening current is given by

S(λ) =: e
√
βφ(λ) := : e−

√
β
∑

n6=0
λ−n
n

an : e
√
βQλ
√
βP , (3.35)

using the boson field φ(z) in (3.25). As a side note, one can observe
that there is another screening current which also solves the Virasoro
constraints. It is the screening current obtained by performing the shift [23]√

β → − 1√
β

(3.36)

in (3.35). This screening current can be treated similarly and for concrete-
ness we consider (3.35) here. To then obtain the matrix model, we rewrite
the integrand of (3.33) as the normal ordered product

N∏
i=1

S(λi) = :
N∏
i=1

S(λi) : ∆(λ)2β , (3.37)

recalling the β-deformed Vandermonde determinant ∆(λ)2β in (2.20).
Thus, we finally obtain the matrix model

Z|α〉 =
∫ N∏

i=1
dλi ∆(λ)2βe

√
β
∑N

j=1

∑∞
n=1

λn
j
n

a−neN
√
βQ

N∏
k=1

λ

√
βP

k |α〉 (3.38)

which, using the time representation of the free bosons in (3.31) becomes

Z|α〉 ' et0(N+α
2 )
∫ N∏

i=1
dλi ∆(λ)2βe

∑N

j=1

√
βα ln(λj)+

∑∞
n=1 tn

∑N

j=1 λ
n
j ,

(3.39)
where we can note the appearance of the factor eNt0 mentioned earlier
together with the charged vacuum |α〉 ' et0 α2 . Upon disregarding these
prefactors and performing the shift of times in (2.13) to obtain the poten-
tial, one can recover the β-deformed eigenvalue matrix model in (2.21)
(when identifying

√
βα = ν).

3.2 Solving the Virasoro constraints
Let us now discuss how to solve the Virasoro constraints in (3.14). There
are two ways to solve them. Either we express the generating function
using its W -representation or we use the Virasoro constraints to derive
a recursion relation allowing us to evaluate the correlators of the model.
Let us now discuss the methods in more detail, starting with the former.
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3.2.1 W -representations
Instead of expressing the eigenvalue matrix model as an integral, one can
also derive something which is called the W -representation. Schematically,
in this representation the generating function is given in terms of the
exponent of a W -operator acting on a simple function,

Z(t; a) ∼ eW · (simple function) , (3.40)

where we will shortly exemplify what “simple” means together with giving
explicit expressions for the W -operators in question.

W -representation for the Gaussian potential
The W -representation of a matrix model can be illustrated in the case of
the Gaussian Hermitean matrix model in (2.19), as was first shown in [16].
For simplicity, in this subsection we use the notation

ZG(t) = Z(t; a1 = 0, a2 = 1) (3.41)

to denote the Gaussian Hermitean generating function. ZG(t) then satisfies
the Virasoro constraints in (3.14),

LnZG(t) = ∂

∂tn+2
ZG(t) , n ≥ −1 . (3.42)

Next, we shift n→ n− 2 and take a summation over
∑∞
n=1 ntn to find

∞∑
n=1

ntnLn−2ZG(t) =
∞∑
n=1

ntn
∂

∂tn
ZG(t) . (3.43)

We then identify the right hand side of (3.43) as the dilatation operator D

D =
∞∑
n=1

ntn
∂

∂tn
, (3.44)

and we define the left hand side to be the W -operator W−2,

W−2 =
∞∑
n=1

ntnLn−2 =

=β
∞∑

n,m=1
(n+m+ 2)tn+m+2

∂2

∂tn∂tm
+

+ (1− β)
∞∑
n=1

(n+ 1)(n+ 2)tn+2
∂

∂tn
+

+
∞∑

n,m=1
nmtntm

∂

∂tn+m−2
+ 2βN

∞∑
n=1

(n+ 2)tn+2
∂

∂tn
+

+ (βN2 + (1− β)N)2t2 + t21N ,

(3.45)
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such that (3.43) becomes

W−2ZG(t) = DZG(t) . (3.46)

To find the W -representation of the generating function, we note that

[D,W−2] = 2W−2 , (3.47)

together with the fact that D counts the degree in times i.e.

D
∏
µ∈ρ

tµ =
(∑
µ∈ρ

µ
)∏
µ∈ρ

tµ = |ρ|
∏
µ∈ρ

tµ (3.48)

for an integer partition ρ. In other words, the degree is deg(ts) = s and
deg(ta tb) = deg(ta) + deg(tb). Then, one can arrange the generating
function according to components of degree d in times

ZG(t) =
∞∑
d=0

Z
(d)
G (t) . (3.49)

We now recall the matrices M in the original matrix model (2.1) together
with the expansion of the generating function given in (2.48), such that

Z
(d)
G (t) =

∞∑
m=0

1
m!

∑
k1+···+km=d

〈Tr(Mk1) . . .Tr(Mkm)〉 tk1 . . . tkm . (3.50)

The generating function then respects the grading with respect to the
operator D, in the sense that

DZ
(d)
G (t) = dZ

(d)
G (t) . (3.51)

Then using the commutation relation in (3.47), one might deduce that

D
(
W−2Z

(d)
G (t)

)
= (d+ 2)

(
W−2Z

(d)
G (t)

)
W−2Z

(d)
G (t) = C(d)Z(d+2)

G (t)
(3.52)

for a coefficient C(d) depending on the degree d. Then (3.46) implies that

W−2ZG(t) =
∞∑
d=0

C(d)Z(d+2)
G (t) = DZG(t) =

∞∑
d=0

dZ
(d)
G (t) (3.53)

so that we must have C(d) = (d+ 2). Finally we find that the operator
W−2 respects the grading in the sense that

W−2Z
(d)
G (t) = (d+ 2)Z(d+2)

G (t) . (3.54)
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Thus each Z
(d)
G (t) is constructed by acting with W−2 on lower degrees.

Using this and the observation that odd degrees vanishes one finds

d = 0⇒ Z
(2)
G (t) = W−2

2 Z
(0)
G (t)

d = 2⇒ Z
(4)
G (t) = W−2

4 Z
(2)
G (t) = 1

2

(
W−2

2

)2
Z

(0)
G (t)

d = 4⇒ Z
(6)
G (t) = W−2

6 Z
(4)
G (t) = 1

6

(
W−2

2

)3
Z

(0)
G (t) ,

(3.55)

for some normalisation Z
(0)
G (t) that is to be determined. Thus we can

re-sum the degrees to find theW -representation of the generating function,

ZG(t) =Z(0)
G (t) + W−2

2 Z
(0)
G (t) + 1

2

(
W−2

2

)2
Z

(0)
G (t) + · · · =

= eW−2/2Z
(0)
G (t) .

(3.56)

We then make the observation that

Z
(0)
G (t) = ZG(t)|t=0 = c∅(a1 = 0, a2 = 1) . (3.57)

Summarising the above findings, the W -representation of the Gaussian
Hermitean matrix model is then

ZG(t) = eW−2/2c∅(a1 = 0, a2 = 1) (3.58)

with W−2 as given in (3.45). Let us now discuss other potentials.

Other choices of the potential V (λ)
The above construction can be generalised to other choices of the potential
V (λ) in (2.16) than the Gaussian one, as shown in paper IV. For instance,
in the case of p = 1 where V (λ) = −ν ln(λ) + a1λ, one can derive the W -
representation for the generating function using the Virasoro constraints
starting from n = 0. This is because the n = −1 constraint in (3.7) is not
valid for p = 1 since there are expectation values of negative powers of
{λi} appearing. Thus, we have the Virasoro constraints valid for n ≥ 0

a1
∂

∂tn+1
Z(t; a1) =

[
β
∑

a+b=n
a,b>0

∂2

∂ta∂tb
+ ((1− β)(n+ 1) + ν + 2βN) ∂

∂tn
+

+
∞∑
s=1

sts
∂

∂ts+n
+ δn,0N (ν + β(N − 1) + 1)

]
Z(t; a1) ,

(3.59)

which upon shifting n→ n− 1 and summing over
∑∞
n=1 ntn becomes

a1DZ(t; a1) = W−1Z(t; a1) . (3.60)
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The dilatation operator D is given in (3.44) and the W−1 operator is

W−1 =β
∞∑

n,m=1
(n+m+ 1)tn+m+1

∂2

∂tn∂tm
+

∞∑
n,m=1

nmtntm
∂

∂tn+m−1
+

+ t1N(ν + β(N − 1) + 1)+ (3.61)

+
∞∑
n=1

(ν + (1− β)(n+ 1) + 2βN) (n+ 1)tn+1
∂

∂tn
.

Finally, we use that
[D,W−1] = W−1 (3.62)

to obtain the W -representation for p = 1

Z(t; a1) =
∞∑
d=0

W d
−1

ad1d!
· c∅(a1) = exp

(
W−1

a1

)
· c∅(a1) . (3.63)

This generalises the results in [54,56], as the above allows for a determinant
insertion parametrised by ν.

Another example is when p = 2, where the potential is given by
V (λ) = a1λ+ a2

2 λ
2. The Gaussian potential (i.e. a1 = 0 and a2 = 1) as

mentioned above, was originally solved in [16] and the solution can be
generalised for arbitrary a2 to

Z(t; a1 = 0, a2) = exp
( 1

2a2
W−2

)
· c∅(a1 = 0, a2) . (3.64)

To then find the solution for arbitrary a1, we use the above together with

[L−1,W−2] = 0 , (3.65)

and the Virasoro constraint for n = −1 and a1 = 0

a2
∂

∂t1
Z(t; a1 = 0, a2) = L−1Z(t; a1 = 0, a2) . (3.66)

One might then write the W -representation for p = 2 as

Z(t; a1, a2) = exp
(
−a1

∂

∂t1

)
Z(t; a1 = 0, a2) =

= exp
(
−a1

a2
L−1

)
Z(t; a1 = 0, a2) =

= exp
( 1

2a2
W−2 −

a1

a2
L−1

)
· c∅(a1, a2) .

(3.67)

For p ≥ 3 we are not able to obtain the W -representation of the
generating function (see for instance [57–59]). This can be seen from
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noting that the Virasoro constraints in (3.14) can be re-summed to

ap

(
D −

p−2∑
k=1

ktk
∂

∂tk

)
Z(t; a) =

=

W−p −
p−1∑
k=1

ap−k

 ∞∑
n=p−1

ntn
∂

∂tn−k
+ δk,p−1(p− 1)tp−1N

Z(t; a)

(3.68)

with

W−p =(p− 1)t1tp−1N + (βN2 + (1− β)N)ptp+

+
∞∑
n=1

∞∑
m=p−1

nmtntm
∂

∂tn+m−p
+

+
∞∑
n=1

[2βN + (1− β)(n+ 1)] (n+ p)tn+p
∂

∂tn
+

+ β
∞∑
n=1

∞∑
m=1

(n+m+ p)tn+m+p
∂2

∂tn∂tm
.

(3.69)

We can now observe that the kernel of the operator D −
∑p−2
k=1 ktk

∂
∂tk

is
infinite dimensional. To be more precise, in the case of p = 3 for instance,
all the monomials t`1 for some positive integer power ` are annihilated by
D −

∑p−2
k=1 ktk

∂
∂tk

with the result that all correlators of the form c{1,...,1}
cannot be determined. Such correlators could then be considered as
additional initial data which would need to be provided in order to give a
complete solution of the model.

We would like to end this subsection with a final remark. As the name
suggests, the W -operators appearing in the W -representations above are
the generators of a W algebra. More specifically, they are the spin-3
generators of the W (3) algebra which is a generalisation of the Virasoro
algebra in (3.17) [16].

3.2.2 Determining correlators
Another way to solve the Virasoro constraints in (3.14), in addition to
deducing the W -representation, is by determining all the correlators cρ(a)
as defined in (2.48). These two methods are equivalent since knowing
all the correlators uniquely determines the generating function. Here,
we consider it enough to be able to determine any correlator in a finite
number of steps of a recursion, since any correlator can then in principle
be established with enough computing power.
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Let us give a few examples of correlators for the models discussed so
far, for a potential as in (2.16). For p = 1 one finds, as shown in paper IV,

c{1}(a1) = N(ν + β(N − 1) + 1)
a1

c∅(a1)

c{1,1}(a1) = N(ν + β(N − 1) + 1)(N(ν + β(N − 1) + 1) + 1)
a2

1
c∅(a1)

c{2}(a1) = N(ν + β(N − 1) + 1)(ν + 2β(N − 1) + 2)
a2

1
c∅(a1)

c{1,1,1}(a1) = N(ν + β(N − 1) + 1)(N(ν + β(N − 1) + 1) + 1)
a3

1
×

× (N(ν + β(N − 1) + 1) + 2)c∅(a1)

c{2,1}(a1) = N(ν + β(N − 1) + 1)(ν + 2β(N − 1) + 2)
a3

1
×

× (N(ν + β(N − 1) + 1) + 2)c∅(a1)

c{3}(a1) = N(ν + β(N − 1) + 1)
a3

1

(
ν2 + 5ν + 5βν(N − 1)+ (3.70)

+ β(N − 1)(β(5N − 6) + 11) + 6
)
c∅(a1) .

Here it can also be noted that all correlators in degree 2 and higher are
proportional to the correlator in degree 1, namely c{1}(a1). This is because
W−1 is of degree 1 in the time variables, such that all correlators are built
up starting from the single correlator of degree 1. As another example,
the first correlators for p = 2 are given by

c{1}(a1, a2) = −a1N

a2
c∅(a1, a2)

c{1,1}(a1, a2) = N
(
a2

1N + a2
)

a2
2

c∅(a1, a2)

c{2}(a1, a2) = N
(
a2(β(N − 1) + 1) + a2

1
)

a2
2

c∅(a1, a2)

c{1,1,1}(a1, a2) = −a1N
2 (a2

1N + 3a2
)

a3
2

c∅(a1, a2)

c{2,1}(a1, a2) = −a1N
(
a2
(
βN2 − βN +N + 2

)
+ a2

1N
)

a3
2

c∅(a1, a2)

c{3}(a1, a2) = −a1N
(
3a2(β(N − 1) + 1) + a2

1
)

a3
2

c∅(a1, a2) . (3.71)
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Then, in the case p = 3 we find the correlators

c{1}(a1, a2, a3) = − ∂

∂a1
c∅(a1, a2, a3)

c{1,1}(a1, a2, a3) =
(
− ∂

∂a1

)2
c∅(a1, a2, a3)

c{2}(a1, a2, a3) = −a1Nc∅(a1, a2, a3)

c{1,1,1}(a1, a2, a3) =
(
− ∂

∂a1

)3
c∅(a1, a2, a3)

c{2,1}(a1, a2, a3) = N

(
1 + a1

∂

∂a1

)
c∅(a1, a2, a3)

c{3}(a1, a2, a3) =
(

(β(N − 1)N +N) + a1
∂

∂a1

)
c∅(a1, a2, a3) , (3.72)

where it can be noted that we can only determine the correlators up to
a1-derivatives of the empty correlator. This corresponds to the additional
initial data required for models with p ≥ 3, as mentioned earlier.

3.2.3 Determining normalisations
In order to determine the normalisations or initial data – in other words
the empty correlators c∅(a) – one can use the correlators given above
together with an additional constraint which the model in (2.21) satisfies,(

∂

∂tk
+ k

∂

∂ak

)
Z(t; a) = 0 , k = 1, . . . , p , (3.73)

as discussed in paper V. This constraint follows from the particular form
of the potential in (2.16), since

∂

∂tk
Z(t; a) =

〈
N∑
i=1

λki

〉
t

= −k ∂

∂ak
Z(t; a) . (3.74)

We begin with the providing the example of p = 1, where we recall from
(3.70) the correlator c{1}(a1),

c{1}(a1) = N(ν + β(N − 1) + 1)
a1

c∅(a1) . (3.75)

The additional constraint (3.73) then results in the condition

∂

∂t1
Z(t; a1) = − ∂

∂a1
Z(t; a1) , (3.76)

which can be translated to an infinite number of relations between corre-
lators and their a1-derivatives. However, due to the recursive solution to
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the Virasoro constraints we only need the first such relation, obtained by[
∂

∂t1
Z(t; a1)

]∣∣∣∣
t=0

=
[
− ∂

∂a1
Z(t; a1)

]∣∣∣∣
t=0

. (3.77)

Recalling the expression for correlators in terms of derivatives in times
acting on the generating function in (2.50), the above constraint becomes

c{1}(a1) = − ∂

∂a1
c∅(a1) . (3.78)

Equating the expression for c{1}(a1) in (3.75) with the one above, we get

− ∂

∂a1
c∅(a1) = N(ν + β(N − 1) + 1)

a1
c∅(a1) (3.79)

which can then be viewed as a differential equation for the empty correlator
c∅(a1). This has a solution

c∅(a1) = kN,β,ν1 a
−N(ν+β(N−1)+1)
1 (3.80)

for some integration constant kN,β,ν1 depending on N , β and ν but inde-
pendent of a1.

Another example is p = 2, in which case the empty correlator is c∅(a1, a2)
and we require two equations to determine it. Using the same logic as
above where we equate the expression for the correlator from Virasoro
constraints with that obtained from the additional constraint in (3.73),
we then find one equation for c{1}(a1, a2) and one equation for c{2}(a1, a2).
Starting with the former, we have

− ∂

∂a1
c∅(a1, a2) = −a1N

a2
c∅(a1, a2) , (3.81)

and for the latter we get the equation

− 2 ∂

∂a2
c∅(a1, a2) = N(a2(β(N − 1) + 1) + a2

1)
a2

2
c∅(a1, a2) . (3.82)

We therefore find the solution

c∅(a1, a2) = kN,β2 a
− 1

2N(β(N−1)+1)
2 exp

(
Na2

1
2a2

)
(3.83)

up to an integration constant kN,β2 depending on N and β but independent
of a1 and a2.

The last example we consider is that of p = 3, in other words we
wish to determine the empty correlator c∅(a1, a2, a3). Similarly to the
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previous examples, we therefore want to use the conditions on the correla-
tors c{1}(a1, a2, a3), c{2}(a1, a2, a3) and c{3}(a1, a2, a3) to determine this.
However, as can be seen in (3.72) the Virasoro constraints imply

c{1}(a1, a2, a3) = − ∂

∂a1
c∅(a1, a2, a3), (3.84)

which is equivalent to the condition from the additional constraint in
(3.73). It turns out that c{1}(a1, a2, a3) is in fact part of the initial data, in
addition to the empty correlator c∅(a1, a2, a3). Thus we can only use the
equations for c{2}(a1, a2, a3) and c{3}(a1, a2, a3) and we therefore cannot
uniquely determine the empty correlator c∅(a1, a2, a3). Then, starting
with the constraint from considering c{2}(a1, a2, a3) we find the condition

− 2 ∂

∂a2
c∅(a1, a2, a3) =

(
−a1N

a3
+ a2

a3

∂

∂a1

)
c∅(a1, a2, a3) , (3.85)

with solution

c∅(a1, a2, a3) = exp
(
Na1a2

2a3
− Na3

2
12a2

3

)
h

(
a3,

a2
2

2 − 2a1a3

)
(3.86)

for an undetermined function h
(
a3,

a2
2

2 − 2a1a3
)
. Upon considering

c{3}(a1, a2, a3) we instead have

−3 ∂

∂a3
c∅(a1, a2, a3) =

=
(

(1− β(N − 1))N
a3

− a2
2
a2

3

∂

∂a1
+ a1a2N

a2
3

+ a1

a3

∂

∂a1

)
c∅(a1, a2, a3) .

(3.87)

We then insert the solution in (3.86) into the condition above, and upon
defining the auxiliary variable y = a2

2
2 − 2a1a3 we find the following

condition on h (a3, y),

−(1−β(N−1))Nh (a3, y)−4y ∂
∂y
h (a3, y)−3a3

∂

∂a3
h (a3, y) = 0 . (3.88)

This can be solved to find

h (a3, y) = a
− 1

3 (1−β(N−1))N
3 g

(
a
−4/3
3 y

)
(3.89)

for some function g
(
a
−4/3
3 y

)
. The p = 3 solution is then

c∅(a1, a2, a3) = exp
(
Na1a2

2a3
− Na3

2
12a2

3

)
a
− 1

3 (1−β(N−1))N
3 g

(
a2

2 − 4a1a3

2a4/3
3

)
,

(3.90)
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where it can be remarked that this is just a solution to the Virasoro
constraints in (3.14) without imposing it is of matrix model form. The
undetermined function g is therefore a consequence of the fact that we
only had two non-trivial conditions to impose on c∅(a1, a2, a3).

In order to specify the p = 3 solution further, we can impose that the
solution is of matrix integral form. If we for concreteness consider the
case of N = 1, one constraint this matrix model assumption results in is
that taking the trace and taking powers of matrices commutes, which at
the level of the power sum variables in (2.33) implies

ps = ps1 . (3.91)
Thus correlators of the same size must be equal when N = 1, i.e.

∂

∂tk
Z(t; a1, a2, a3)|N=1 =

(
∂

∂t1

)k
Z(t; a1, a2, a3)|N=1 , (3.92)

and the additional constraint in (3.73) takes the form(
∂

∂tk
−
(
− ∂

∂a1

)k)
Z(t; a1, a2, a3)|N=1 = 0 , k = 1, 2, 3 . (3.93)

Then the constraint for c{2}(a1, a2, a3) in (3.85) becomes(
− ∂

∂a1

)2
c∅(a1, a2, a3)|N=1 =

(
−a1

a3
+ a2

a3

∂

∂a1

)
c∅(a1, a2, a3)|N=1 ,

(3.94)
which results in the differential equation

zg(z)− 8g′′(z) = 0 , z = a
−4/3
3 y = a2

2 − 4a1a3

2a4/3
3

(3.95)

on the function g(z) introduced in (3.89). Up to a rescaling of z this is
the Airy equation and we therefore find

g(z)|N=1 = kAAi(z/2) + kBBi(z/2) , (3.96)
for integration constants kA, kB and Airy functions Ai(z), Bi(z) given by

Ai(z) = 1
2πi

∫ ∞e
πi
3

∞e−
πi
3

e
t3
3 −tz dt

Bi(z) = 1
2π

∫ ∞e−
πi
3

−∞
e
t3
3 −tz dt + 1

2π

∫ ∞e
πi
3

−∞
e
t3
3 −tz dt .

(3.97)

Thus the solution for p = 3 and N = 1 is given by

c∅(a1, a2, a3)|N=1 = exp
(
a1a2

2a3
− a3

2
12a2

3

)
a
−1/3
3

[
kAAi(z/2) + kBBi(z/2)

]
.

(3.98)
We will return to the above observations in Chapter 11.
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3.3 The non-homogeneous Virasoro constraints
As a final topic in this chapter on Virasoro constraints, we wish to generalise
the Virasoro constraints in (3.14). In particular, we allow for the matrix
model to have non-trivial boundaries, generating boundary contributions
to the Virasoro constraints. Consequently we can therefore view the
Virasoro constraints as now being non-homogeneous. However, as shown
in paper V, such constraints can sometimes be solved and we will now
review their derivation and solution.

3.3.1 Deriving the non-homogeneous Virasoro constraints
The above derivation of the Virasoro constraints and their solutions can
be generalised to include models with boundaries i.e.

Z(t; a) =
∫

[a,b]N

N∏
i=1

dλi
∏

1≤i<j≤N
(λi − λj)2βe−

∑N

i=1 V (λi)+
∑∞

s=1 ts
∑N

i=1 λ
s
i

(3.99)
where the boundary contributions arise from the generic limits of integra-
tion a and b as shown in paper V. We can view [a, b] as a finite interval
on the real line and thus [a, b]N can be thought of as a hypercube inside
RN . Although the generating function does depend on the integration
domain parametrised by a and b, we do not write out this dependence
for ease of notation. For concreteness, we consider the particular case of
a potential with p = 2, a1 = 0 and a2 = 1, in other words a Gaussian
potential VG(λ) = λ2

2 . Other potentials can be analysed similarly. In this
subsection we therefore drop the dependence of the partition function
on the coupling constants and simply denote it by ZG(t). The Virasoro
constraints in (3.14) are then modified according to

(
∂

∂tn+2
− Ln

)
ZG(t) = Bn(t), n ≥ −1 , (3.100)

where the boundary contributions are collected in the term Bn(t). To
elaborate more on the boundary contribution Bn(t), this is obtained
by evaluating the integrand at the boundaries for one direction λk with
k = 1, . . . , N at the time, while the integrals over the other N−1 directions
remain. The boundary contribution can therefore be associated to a matrix
model living on the (N − 1)-dimensional faces of the N -dimensional
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hypercube. Explicitly, we get

Bn(t) =−
[

N∑
k=1

λn+1
k exp

(
−VG(λk) +

∞∑
s=1

tsλ
s
k

)
×

×
∫

[a,b]N−1

N−1∏
i=1
i6=k

dλi
∏

1≤i≤N
i6=k

(λi − λk)2β ∏
1≤i<j≤N
i,j 6=k

(λi − λj)2β×

× exp
(
−

N∑
i=1
i6=k

VG(λi) +
∞∑
s=1

ts

N∑
i=1
i6=k

λsi

)]∣∣∣∣∣∣∣∣
λk=b

λk=a

,

(3.101)
using the notation

f(z)|z=b
z=a = f(b)− f(a) . (3.102)

Since all the N directions are equivalent, we can simply call the evaluated
variable for λk = z and we get N equal contributions to Bn(t). Thus,

Bn(t) = −N
〈
N−1∏
i=1

(λi − z)2β
〉N−1

t

zn+1 exp
(
−VG(z) +

∞∑
s=1

tsz
s

)∣∣∣∣∣∣
z=b

z=a

,

(3.103)
where we introduced the notation〈

N∏
i=1

(λi − z)2β
〉N
t

=
∫

[a,b]N

N∏
i=1

dλi
N∏
i=1

(λi − z)2β ∏
1≤i<j≤N

(λi − λj)2β×

× exp
(
−

N∑
i=1

VG(λi) +
∞∑
s=1

ts

N∑
i=1

λsi

)
(3.104)

to stress the dependence on the rank N .

3.3.2 Solving the non-homogeneous Virasoro constraints
Let us now solve the non-homogeneous Virasoro constraints in (3.100).
Following the procedure outlined in Section 3.2.1, we re-sum the constraints
with weight (n+ 2)tn+2 from n = −1 to n =∞ to find

DZG(t) = W−2ZG(t) +B(t) (3.105)
where D and W−2 are given in (3.44) and (3.45) respectively, and B(t) is
the re-summed contribution from the boundary,

B(t) =
∞∑

n=−1
(n+ 2)tn+2Bn(t) . (3.106)
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Then, the recursive solution is given by

Z
(d)
G (t) = 1

d

(
W−2Z

(d−2)
G (t) +B(d)(t)

)
(3.107)

for a degree d with respect to the dilatation operator D. Upon assuming

B(t) =
∞∑
d=1

B(d)(t) , [D,B(d)(t)] = dB(d)(t) (3.108)

with B(0) = 0, we find

ZG(t) = exp(W−2/2)c∅(a1 = 0, a2 = 1) +
∞∑
s=0

∞∑
d=1

W s
−2B

(d)(t)
2sd

(
d
2 + 1

)
s

. (3.109)

In the above we can observe that the non-homogeneous solution factorises
into a homogeneous contribution and the contribution from the boundary
given by B(t). Here, (x)n is the Pochhammer symbol defined by

(x)n = Γ(x+ n)
Γ(x) (3.110)

using the Gamma function Γ(x),

Γ(x) =
∫ ∞

0
tx−1e−tdt (3.111)

for Re(x) > 0. Similarly to the homogeneous Virasoro constraints, one
can use the expression for the generating function in (3.109) in order to
determine the correlators for the model. Summarising the results of paper
V, we find for N = 1 the correlators

cN=1
∅ = ZG(0)|N=1

cN=1
{1} = e−

a2
2 − e−

b2
2

cN=1
{2} = ZG(0)|N=1 + ae−

a2
2 − be−

b2
2

cN=1
{3} = (a2 + 2)e−

a2
2 − (b2 + 2)e−

b2
2

cN=1
{4} = 3 ZG(0)|N=1 + a(a2 + 3)e−

a2
2 − b(b2 + 3)e−

b2
2

cN=1
{5} = (a4 + 4a2 + 8)e−

a2
2 − (b4 + 4b2 + 8)e−

b2
2 , (3.112)

upon letting cN=1
λ = cN=1

λ (a1 = 0, a2 = 1). We remark that for N = 1 the
correlators only depend on the size and not the shape of the partition.
Upon explicitly evaluating the empty correlator

ZG(0)|N=1 =
∫ b

a
e−λ2/2dλ =

√
π

2

(
erf
(

b√
2

)
− erf

(
a√
2

))
, (3.113)
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where the error function erf(z) is defined by the series

erf(z) = 2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n+ 1) , (3.114)

we can obtain a closed formula for the N = 1 correlators given by

cN=1
ρ = F|ρ| . (3.115)

Here we introduced the auxiliary function Fs,

Fs =(1 + (−1)s)
2 (s− 1)!! ZG(0)|N=1 +

+
( b s−1

2 c∑
k=0

(s− 1)!!
(s− 1− 2k)!!a

s−1−2k
)

e−
a2
2 +

−
( b s−1

2 c∑
k=0

(s− 1)!!
(s− 1− 2k)!!b

s−1−2k
)

e−
b2
2 .

(3.116)

For N = 2, we use the form of the boundary contribution in (3.103) to
observe that we require integer β in order to have expectation values
of polynomials which can be evaluated combinatorially. As the simplest
example, we consider β = 1 using which we find the boundary contribution

B(d)(t) =2
d−2∑
n=−1

(n+ 2)tn+2
∑
λ,ρ

|λ|+|ρ|=d−(n+2)

1
|Aut(λ)|

1
|Aut(ρ)|

∏
`∈λ

t`
∏
r∈ρ

tr×

×
[(
F2+|λ| − 2aF1+|λ| + a2F|λ|

)
an+1+|ρ|e−

a2
2 +

−
(
F2+|λ| − 2bF1+|λ| + b2F|λ|

)
bn+1+|ρ|e−

b2
2

]
(3.117)

such that the correlators take the form

cN=2
∅ = ZG(0)|N=2

cN=2
{1} =2e−

a2
2 (F0a

2 − 2F1a + F2)− 2e−
b2
2 (F0b

2 − 2F1b + F2)

cN=2
{1,1} =2

(
ZG(0)|N=2 +

+ ae−
a2
2 (F0a

2 − 2F1a + F2)− be−
b2
2 (F0b

2 − 2F1b + F2)+

+ e−
a2
2 (F1a

2 − 2F2a + F3)− e−
b2
2 (F1b

2 − 2F2b + F3)
)

cN=2
{2} =4 ZG(0)|N=2 + 2ae−

a2
2 (F0a

2 − 2F1a + F2)+

− 2be−
b2
2 (F0b

2 − 2F1b + F2) . (3.118)
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As a final comment on the solution to the non-homogeneous Virasoro
constraints, we consider the example of a boundary where a → 0 and
b→∞, i.e. the orthant [0,∞)N . As before, we restrict to the Gaussian
potential VG(λ) = λ2

2 . In this case the boundary term in (3.103) simplifies
to

Bn(t) = N

〈
N−1∏
i=1

λ2β
i

〉N−1

t

δn,−1 , (3.119)

as there is only a contribution from the boundary at zero. Therefore only
the n = −1 constraint in (3.100) is non-homogeneous,(

∂

∂t1
− L−1

)
ZG(t) = B−1(t) , (3.120)

while the Virasoro constraints for n > −1 are given by the homogeneous
Virasoro constraints for a Gaussian potential in (3.14). In the case of rank
N = 1, we then employ (3.109) to find that the correlators are given by

cN=1
ρ = 2

|ρ|−1
2 Γ

( |ρ|+ 1
2

)
(3.121)

for a partition ρ and with the Γ-function in (3.111). Then in the case of
N = 2 we instead get for the first few correlators

cN=2
∅ = ZG(0)|N=2

cN=2
{1} = 2β+ 1

2 Γ
(
β + 1

2

)
cN=2
{1,1} = 2

(
2βΓ(β + 1) + ZG(0)|N=2

)
cN=2
{2} = 2(β + 1) ZG(0)|N=2

cN=2
{1,1,1} = 2β+ 1

2 (2β + 5)Γ
(
β + 1

2

)
cN=2
{2,1} =

2β+ 5
2 Γ
(
β + 5

2
)

2β + 1

cN=2
{3} = 2β+ 3

2 (β + 1)Γ
(
β + 1

2

)
. (3.122)
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Part II:
Quantum matrix models
Let us now consider quantum, or q-deformed, versions of the classical
matrix model introduced earlier. The motivation for introducing this de-
formation at the level of the Virasoro algebra was to explore the correspon-
dence between the Calogero-Sutherland model – a many body quantum
mechanical system – and CFT [22]. This was because excited states of
the Calogero-Sutherland model are given in terms of Jack polynomials,
who have a known q-deformation given by Macdonald polynomials [21].
The question was then if the Virasoro algebra on the CFT side could also
be q-deformed, where the answer was found to be affirmative [22]. At
the level of matrix models on the other hand, q-deformed matrix models
first appeared in [24], where they were used in trying to extend the AGT
correspondence between 4d N = 2 theories and 2d CFT’s into a 5d setting.
More recently, quantum matrix models have appeared in the results of
localisation computations in which supersymmetric gauge theory observ-
ables are computed exactly. (See for instance [4] and references therein for
examples of such results.) With this localisation application in mind, we
now wish to explore how the matrix model and the Virasoro constraints
introduced in the first part, generalises under a q-deformation.





4. Introduction to q-calculus

In this chapter we introduce the basics of q-calculus as given in [60].
Firstly, we have the q-shift operator M̂q, which shifts the argument of a
function F (x) according to

M̂qF (x) = F (qx) . (4.1)
The q-shift operator can also be generalised to act on functions with
multiple variables, M̂q,i. This acts as

M̂q,iF (x1, . . . , xm) = F (x1, . . . , qxi, . . . , xm) , (4.2)
where the q-shift is on the i-th variable. Next, the q-differential is

dqF (x) =F (qx)− F (x) = (M̂q − 1)F (x) (4.3)

so that in particular dqx = (q − 1)x. Generalising the q-differential
similarly to the q-shift operator, we define dq,i as

dq,iF (x) =F (x1, . . . , qxi, . . . , xm)− F (x1, . . . , xm) =
=(M̂q,i − 1)F (x1, . . . , xm) .

(4.4)

Using the q-differential, the q-derivative Dq is then

DqF (x) = dqF (x)
dqx

= F (qx)− F (x)
(q − 1)x = 1

(q − 1)x(M̂q − 1)F (x) (4.5)

valid for |q| < 1. In order to recover the standard derivative, the limit to
take is q → 1 upon which DqF (x) → d

dxF (x). One can also define the
q-number generalising a positive integer n through

[n]q = qn − 1
q − 1 , (4.6)

which is a q-analogue in the sense that [n]q → n as q → 1. Thus, the
q-derivative as given in (4.5) of xn is

Dqx
n = (qx)n − xn

(q − 1)x = [n]q xn−1 . (4.7)

Again, in the limit q → 1 we recover the standard result d
dxx

n = nxn−1. To
end this chapter, we would also like to mention the concept of a q-constant.
This is a function which is invariant under q-shifts M̂q defined in (4.1), i.e.
for a function g(x),

M̂q g(x) = g(qx) = g(x) . (4.8)
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5. Special q-functions

As an extension of the previous chapter, we now introduce various q-
functions that are used in the coming chapters when discussing quantum
generating functions. To begin with, the multiple q-Pochhammer symbol
(z; q1, . . . , qN )∞ is given by

(z; q1, . . . , qN )∞ = exp
(
−
∞∑
n=1

zn

n
∏N
k=1(1− qnk )

)
=

=
∞∏

n1,...,nN=0
(1− zqn1

1 . . . qnNN ) ,
(5.1)

where z ∈ C and |qk| < 1. In the case of a single argument, one can define
the function in the region |q| > 1 by means of

(z; q)∞ = (q−1z; q−1)−1
∞ . (5.2)

The next function we wish to consider is the theta function Θ(z; q),

Θ(z; q) = (z; q)∞ (qz−1; q)∞ . (5.3)

Denoting ω = {ω1, ω2} ∈ C2 and ω = ω1+ω2 with Re(ω1) > 0, Re(ω2) > 0
and X ∈ C, the theta function satisfies the modular property

Θ
(
e

2πi
ω1
X ; e2πi ω

ω1

)
Θ
(
e

2πi
ω2
X ; e2πi ω

ω2

)
= e−iπB22(X|ω) (5.4)

where B22(X|ω) is the quadratic Bernoulli polynomial given by

B22(X|ω) = 1
ω1ω2

((
X − ω

2

)2
− ω2

1 + ω2
2

12

)
. (5.5)

Then, the elliptic Gamma function Γ(z; p, q) [61], is defined as

Γ(z; p, q) = (pqz−1; p, q)∞
(z; p, q)∞

= exp

∑
k 6=0

zk

k(1− pk)(1− qk)

 (5.6)

using the q-Pochhammer symbol in (5.1). Letting now ω = {ω1, ω2, ω3},
the elliptic Gamma function satisfies the modular properties

e−
iπ
3 B33(X|ω) =Γ(e

2πi
ω1
X ; e2πiω2

ω1 , e2πiω3
ω1 )Γ(e

2πi
ω2
X ; e2πiω1

ω2 , e2πiω3
ω2 )×

× Γ(e
2πi
ω3
X ; e2πiω1

ω3 , e2πiω2
ω3 ) ,

(5.7)
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using this time the cubic Bernoulli polynomial B33(X|ω)

B33(X|ω) = 1
ω1ω2ω3

(
X − ω

2 −
ω3

2

)
×

×
((

X − ω

2

)2
− ω3

(
X − ω

2

)
− ω2

1 + ω2
2

4

)
,

(5.8)

where ω = ω1 + ω2 as before.
Next, the double sine function S2 (X|ω) is defined by [62,63],

S2 (X|ω) =
∞∏

n1,n2=0

n1ω1 + n2ω2 +X

n1ω1 + n2ω2 + ω −X
. (5.9)

This infinite product is ζ-regularised meaning that we define the double
sine through the combination of elliptic Gamma functions

S2 (X|ω) = Γ (X;ω1, ω2)−1 Γ (ω −X;ω1, ω2) , (5.10)

where the elliptic Gamma is given by

Γ (X;ω1, ω2) = exp
(
∂

∂s
ζ2(s,X|ω)

∣∣∣∣
s=0

)
(5.11)

with the double ζ-function being

ζ2(s,X|ω) =
∞∑

n1,n2=0

1
(n1ω1 + n2ω2 +X)s . (5.12)

The double sine function also satisfies an inversion property given by

S2 (X|ω)S2 (ω −X|ω) = 1 , (5.13)

which can be seen from the definition in (5.9). Then, imposing that the
parameters satisfies Im(ω2

ω1
) 6= 0, the double sine function factorises into

q-Pochhammer symbols according to

S2(X|ω) = e
iπ
2 B22(X|ω)

(
e

2πi
ω1
X ; e2πi ω

ω1

)
∞

(
e

2πi
ω2
X ; e2πi ω

ω2

)
∞

, (5.14)

with the quadratic Bernoulli polynomial defined in (5.5). Another remark
about the double sine function, is regarding a comparison with the notation
used here and the literature, for instance [64]. One finds that

S2 (ω/2− iX|ω) = sb (X) (5.15)

with ω1 = ω−1
2 = b and ω = Q.

Finally, we have the Macdonald polynomials Macdonaldγ (λk) which are
a 1- and 2-parameter deformation of the Jack and Schur polynomials in
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Section 2.3 respectively [21]. They are uniquely defined by two conditions.
Firstly, they are of the form

Macdonaldγ (λk) =
∑
µ≤γ

uγµmµ(λk) (5.16)

where uγµ are rational functions of the deformation parameters q and t
with uγγ = 1 and mµ(λk) are the monomial symmetric functions in (2.30).
Secondly, they are orthogonal with respect to the inner product

(f(λ) | g(λ))q,t = 1
(2πi)NN !

∮
|λ|=1

N∏
i=1

dλi
λi

∆q,t(λ)f(λ)g(λ−1) , (5.17)

where the measure ∆q,t(λ) is the q-deformed Vandermonde determinant
to be defined in (6.16). Thus,

(Macdonaldγ (λk) |Macdonaldµ (λk))q,t = 0 , if γ 6= µ . (5.18)

Using instead the power sum variables in (2.34), the first Macdonald
polynomials are explicitly given by

Macdonald{}(pk) = 1
Macdonald{1}(pk) = p1

Macdonald{2}(pk) = p2
1(q + 1)(t− 1) + p2(q − 1)(t+ 1)

2(qt− 1)

Macdonald{1,1}(pk) = p2
1 − p2

2
Macdonald{3}(pk) = 1

6(qt− 1)(q2t− 1)
[
3p2p1(q3 − 1)(t2 − 1)+

+ p3
1(q3 + 2q2 + 2q + 1)(t− 1)2+

+ 2p3(q − 1)2(q + 1)(t2 + t+ 1)
]

Macdonald{2,1}(pk) = 1
6(qt2 − 1)

[
− 2p3(q − 1)(t2 + t+ 1)+

+ p3
1(t− 1)(2qt+ q + t+ 2) + 3p2p1(t+ 1)(q − t)

]
Macdonald{1,1,1}(pk) = p3

1 − 3p1p2 + 2p3

6 . (5.19)

We can then take the limit t = q of the Macdonald polynomials to obtain
the Schur polynomials,1

Macdonaldγ(pk)|t=q = Schurγ(pk) . (5.20)

1It should be noted that t = q is enough to recover Schur from Macdonald polynomials,
but at the level of operators and other functions we also need to take q → 1.
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Additionally we can take the semi-classical limit where we let t = qβ with
q → 1, to obtain the Jack polynomials

Macdonaldγ(pk)|t=qβ , q→1 = Jackγ(pk) . (5.21)

In other words, the Macdonald polynomials are the q, t-deformed version of
the Schur polynomials and the q-deformed version of the Jack polynomials.
The relations between the special polynomials are illustrated in Figure
5.1.

Macdonald polynomial
Macdonaldγ(pk)

Jack polynomial
Jackγ(pk)

Schur polynomial
Schurγ(pk)

t = q
(q → 1) q, t-deformation

q-deformationSemi-classical limit
t = qβ, q → 1

β-deformationSchur limit
β → 1

Figure 5.1. Illustration of relations between Schur, Jack and Macdonald poly-
nomials.
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6. The q, t-deformation

One particular example of a quantum model is the q, t-deformation, where
the deformed algebra was discovered in [22] whereas the deformed matrix
model was introduced in [24]. Here, the deformation is parametrised by
the variables q and t, or sometimes q and β, and is consequently a 2-
parameter deformation of the un-deformed classical case. This deformation
is sometimes referred to as a trigonometric deformation, which is a name
we will at times employ. We begin with exploring the q-analogue of the
Virasoro algebra, together with the q-deformed matrix model and its
corresponding q-Virasoro constraints. Similarly to the classical case, we
then review how to solve the q-Virasoro constraints. Finally, we summarise
how to recover Virasoro from q-Virasoro.

6.1 The q-Virasoro algebra
Let us now explore the q-analogue of both the generating function and
also the Virasoro constraints that the generating function satisfies. The
q-deformed version of the Virasoro algebra is given by the q-Virasoro
algebra first introduced in [22]. Before we explore the constraints that the
q-deformed generating functions satisfy, we first review the construction of
the q-Virasoro algebra which will be crucial in defining the constraints. The
generators of the q-Virasoro algebra, Tn, satisfy the associative algebra [22]

[Tn, Tm] =−
∞∑
l=1

fl(Tn−lTm+l − Tm−lTn+l)+

− (1− q)(1− t−1)
(1− p) (pn − p−n)δn+m,0 .

(6.1)

The parameters here are p, q, t ∈ C with p = qt−1. It should be noted that
the deformation parameter t is not to be confused with the time variables
{ts}. Then, the coefficients of the structure function f(z) =

∑∞
l=0 flz

l are
given by the series expansion of

f(z) = exp
( ∞∑
n=1

(1− qn)(1− t−n)
n(1 + pn) zn

)
. (6.2)

Collecting the generators into the stress tensor current T (z),

T (z) =
∑
n∈Z

Tnz
−n , (6.3)
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one can also cast the commutation relation in (6.1) as

f

(
w

z

)
T (z)T (w)− f

(
z

w

)
T (w)T (z) =

= −(1− q)(1− t−1)
(1− p)

(
δ

(
p
w

z

)
− δ

(
p−1w

z

))
.

(6.4)

Here δ(z) is the multiplicative δ-function

δ(z) =
∑
n∈Z

zn , (6.5)

which acts as δ(z)φ(z) = δ(z)φ(1) for a Laurent series φ(z).
In order to give explicit expressions for the generators of the q-Virasoro

algebra, one first needs to introduce the free boson oscillators an general-
ising the classical oscillators in (3.21),1

[an, am] = 1
n

(q
n
2 − q−

n
2 )(t

n
2 − t−

n
2 )(p

n
2 + p−

n
2 )δn+m,0 , n,m ∈ Z\{0} ,

[P,Q] = 2 . (6.6)

The stress tensor current T (z) then takes form

T (z) =
∑
σ=±1

Λσ(z) =
∑
σ=±1

: eσ
∑

n6=0
z−n

(1+p−σn) an : qσ
√
β

2 Pp
σ
2 . (6.7)

Thus the explicit expressions for the generators become2

Tn≥0 =
∑
σ=±1

qσ
√
β

2 Pp
σ
2
∑
m≥0

Schur{m}
(
pk = A

(σ)
−k

)
Schur{n+m}

(
pk = A

(σ)
k

)
Tn<0 =

∑
σ=±1

qσ
√
β

2 Pp
σ
2
∑
m≥0

Schur{m−n}
(
pk = A

(σ)
−k

)
Schur{m}

(
pk = A

(σ)
k

)
(6.8)

where
A(σ)
n = σ

an|n|
(1 + p−σn) (6.9)

and Schur{n}(pk) is the Schur polynomial in symmetric representation {n},
as given in (2.36). Similarly to the classical case, we also use a differential
representation of the free boson algebra in terms of the time variables

1We will here use the same notation for the free boson oscillators as in the classical
case, but we hope it will be clear from the context which ones we are referring to.
2Here it should be noted that p is a complex deformation parameter which should not
be confused with the argument of the symmetric polynomials typically denoted by pk.

53



{tk}, given by

a−n ' (q
n
2 − q−

n
2 )tn , an '

1
n

(t
n
2 − t−

n
2 )(p

n
2 + p−

n
2 ) ∂

∂tn
, n ∈ Z>0

Q '
√
βt0 , P ' 2 1√

β

∂

∂t0
, |α〉 = e

α
2 Q|0〉 ' e

√
βt0

α
2 · 1 . (6.10)

This again generalises the representation in the classical case in (3.31).
Finally, we note that the q-Virasoro algebra is invariant under

√
β → − 1√

β
, q → t−1 , (6.11)

similar to the classical symmetry observed in (3.16).

6.2 The q-deformed matrix model
Mirroring the classical case, we now wish to construct a generating function
which satisfies a q-deformed version of the Virasoro constraints in (3.14)
following [26]. To do so, we use the screening current S(x),

S(x) =: e−
∑

n6=0
x−n

(qn/2−q−n/2)
an : e

√
βQx
√
βP , (6.12)

which is defined by the property that

[Tn, S(x)] = DqOn(x) = On(qx)− On(x)
(q − 1)x (6.13)

for some operator On(x), recalling the q-derivative Dq defined in (4.5).
Just as in the classical case in (3.36), there is another screening current
which can be used. This is the one obtained by performing the shifts
in (6.11) [26]. Again, this screening current can be treated similarly
and we here consider the current in (6.12). Next, we follow the classical
construction in (3.33) and employ this screening current to build up the
generating function (where the x−1

i in the measure is for consistency with
paper II)

Z|α〉 =
∮ N∏

i=1

dxi
2πixi

S(xi)|α〉 . (6.14)

In order to obtain the generating function, we rewrite the integrand as

N∏
i=1

S(xi) = :
N∏
i=1

S(xi) : ∆q,t(x)cβ(x; q)
N∏
j=1

x
β(N−1)
j . (6.15)
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Here we defined the q-deformed Vandermonde determinant ∆q,t(x),

∆q,t(x) =
∏

1≤k 6=j≤N

(xkx−1
j ; q)∞

(txkx−1
j ; q)∞

, (6.16)

together with the function cβ(x; q) ,

cβ(x; q) =
∏

1≤k<j≤N

(
xkx

−1
j

)β Θ(txkx−1
j ; q)

Θ(xkx−1
j ; q)

. (6.17)

Then, with the choice of the differential representation of the free boson
algebra in (6.10), we find that the generating function Z(t) ' Z|α〉 is3

Z(t) = e
t0

(
N+ α

2
√
β

) ∮ N∏
i=1

dxi
2πixi

∆q,t(x)cβ(x; q)× (6.18)

× e
∑N

k=1

√
β
(
α+
√
βN−Qβ

)
ln(xk)+

∑∞
s=1 ts

∑N

j=1 x
s
j .

In what follows we refer to such q-deformed matrix model as the quantum
matrix model. Z(t) then satisfies the q-Virasoro constraints

TnZ(t) = 0 , n > 0 , (6.19)

for generators Tn of the q-Virasoro algebra in (6.1), which follows from

TnZ|α〉 = [Tn,Z]|α〉 = [Tn,
∮ N∏

i=1

dxi
2πixi

S(xi)]|α〉 = 0 , (6.20)

for a suitable contour. Alternatively, using the stress tensor current T (z)
in (6.7), the Virasoro constraints can also be written as

T (z)Z(t) = P (z) , (6.21)

where P (z) is a function which is holomorphic as z → 0. Furthermore, the
charged vacuum |α〉 is an eigenstate of the generator T0 as shown in [22],

T0|α〉 = λα|α〉 (6.22)

with eigenvalue λα for momentum α given by

λα = p
1
2 q

√
βα

2 + p−
1
2 q−

√
βα

2 . (6.23)

The generating function is an eigenstate of T0 with the same eigenvalue,

T0Z(t) = λαZ(t) . (6.24)
3Here we also use the same symbol for the generating function as in the classical case,
i.e. Z, although it should be clear from the context which one we are referring to.
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Additionally, in paper II we find that for the particular momentum α = 0,

T−1Z(t) = 0 . (6.25)

Similarly to the classical case we can then introduce the time dependent
expectation value

〈O(x)〉t =
∮ N∏

i=1

dxi
2πixi

O(x)
N∏
i=1

S(xi) , (6.26)

for an operator O(x), again using the subscript t to stress the dependence
on the time variables. Furthermore we can expand the generating function
in the time variables to find the correlators cλ,

Z(t) =
∑
λ

1
|Aut(λ)|cλ

∏
µ∈λ

tµ , (6.27)

where the summation is over all integer partitions λ.

6.3 Deriving the q-Virasoro constraints
We now wish to solve the q-Virasoro constraints in (6.19), where with
solve we again mean to determine a model in terms of its correlators. The
alternative of solving the model in terms of its W -operator representation
has not yet been very tractable in the q-deformed case, although attempts
at partial such solutions have been made in for instance [65].

One way to derive the constraints is via insertion of an operator under
the integral as investigated in papers II, III and IV. We will now review
the derivation in the case of the q-deformed matrix model from paper II.
The generating function under consideration is then

Z(t) =
∮
C1

· · ·
∮
CN

N∏
i=1

dxi
xi

F (x) , (6.28)

for contours {C1, . . . , CN} which will be specified later. The integrand
F (x), where x is the integration variables x = {x1, . . . , xN}, is

F (x) =
∏

1≤k 6=l≤N

(xk/xl; q)∞
(txk/xl; q)∞

e
∑∞

s=1 ts
∑N

i=1 x
s
i

N∏
i=1

cq(xi) . (6.29)

Here we recognise the q-deformed Vandermonde determinant ∆q,t(x) in
(6.16) together with the usual exponent with the time variables. (x; q)∞
is the q-Pochhammer symbol in (5.1) and cq(x) is of the form

cq(x) = x
√
β(α+
√
βN−Qβ)λq(x)

Nf∏
k=1

(qxmk; q)∞
(xmk; q)∞

, (6.30)
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for a q-constant λq(x), with the property in (4.8). At this stage we can
think of Nf as an additional parameter on which the generating function
depends, but we will later see its gauge theory interpretation in Chapter
9 (which is also the motivation for the form of cq(x)). The parameters
t, q, β ∈ C are related via t = qβ, and Qβ is defined in (3.19). Here we
interpret the parameter α similar to the momentum of a vacuum state as
introduced earlier. We will later discuss the restrictions on cq(x).

Let us now consider the insertion of a particular q-operator under the
integral in the generating function in (6.28) with the goal of obtaining the
q-Virasoro constraints. To define this operator, we recall the definition of
the q-differential dq,i in (4.4) but with an argument q−1, i.e.

dq−1,i = M̂q−1,i − 1 (6.31)

using the q-shift M̂q,i in (4.2). The operator we then wish to insert under
the integral is given by

N∑
i=1

dq−1,i

[∑
n∈Z

(zxi)nGi(x) . . .
]
, (6.32)

with . . . denoting the integrand and where

Gi(x) =
N∏
j=1
j 6=i

xj − txi
xj − xi

. (6.33)

In other words, we are considering the constraints encoded in the equation∮
C1

· · ·
∮
CN

N∏
j=1

dxj
xj

N∑
i=1

dq−1,i

[∑
n∈Z

(zxi)nGi(x)F (x)
]

= 0 , (6.34)

with F (x) as given in (6.29). It should be noted that the variable z
appearing in the insertion in (6.32) is a formal variable in the sense that
we will use its expansion to obtain one constraint for each power zm (and
later we will restrict to m ≥ −1).

To further specify the contours {Ci} and the functions cq(x) appearing in
the generating function in (6.28), they are chosen such that the constraints
in (6.34) are satisfied. Said differently, the integral is required to be
invariant when acting with the q-shift operator M̂q−1,i on the integrand.
Rewriting (6.34) this implies that we impose

(LHS) =
∮
C1

· · ·
∮
CN

N∏
j=1

dxj
xj

N∑
i=1

∑
n∈Z

(zxi)n Gi(x)F (x) != (6.35)

!=
∮
C1

· · ·
∮
CN

N∏
j=1

dxj
xj

N∑
i=1

M̂q−1,i

[∑
n∈Z

(zxi)n Gi(x)F (x)
]

= (RHS) ,
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where we have introduced the notation (LHS) and (RHS) to denote the
left and right hand side of the above equation respectively to ease the
following discussion. Now, the (RHS) can be written as∮

C1

· · ·
∮
CN

N∏
j=1

dxj
xj

N∑
i=1

M̂q−1,i

[∑
n∈Z

(zxi)n Gi(x)F (x)
]

=

=
N∑
i=1

∮
C1

· · ·
∮
CN

N∏
j=1

dxj
xj

∑
n∈Z

(zxiq−1)nGi(xiq−1)F (xiq−1) =

=
N∑
i=1

∮
C1

· · ·
∮
Ciq−1

· · ·
∮
CN

N∏
j=1

dxj
xj

∑
n∈Z

(zxi)n Gi(x)F (x) , (6.36)

using the shorthand notations Gi(xiq−1) = Gi(x1, . . . , xiq
−1, . . . , xN ) and

F (xiq−1) = F (x1, . . . , xiq
−1, . . . , xN ) where only the i-th argument is

shifted. Thus, to have the equality in (6.35) we find that the contours
{Ci} and functions cq(x) must be invariant under the shift of contours

Ciq
−1 → Ci , i = 1, . . . , N . (6.37)

This means that there cannot be any singularities in the region between the
two contours Ciq−1 and Ci so that the shift can be performed without any
new contributions to the contour integral. Let us now examine this. In the
case of the insertion in (6.32), we treat z as a formal expansion variable,
thus ignoring the singularity at xi = 1/z. Then, the other singularities at
xi = xj of Gi(x) are cancelled by the zeros of F (x) in (6.29). Similarly,
the singularities of F (x) at xi = txj are cancelled by the zeros of Gi(x).
Thus, we are left with the requirement that the function cq(x) cannot
have any singularities in the region between the two contours. Assuming
|q| < 1, the contours can be schematically illustrated as in Figure 6.1.

To continue the discussion on the derivation of the q-Virasoro constraints
from imposing (6.35), we employ the identity

N∑
i=1

∑
n∈Z

(zxi)n Gi(x) = 1
1− t

N∏
i=1

(1− tz−1x−1
i )

(1− z−1x−1
i )
− tN

1− t

N∏
i=1

1− t−1zxi
1− zxi

,

(6.38)
in order to rewrite the (LHS) in (6.35) as

(LHS) =
〈

1
1− t

N∏
i=1

(1− tz−1x−1
i )

(1− z−1x−1
i )
− tN

1− t

N∏
i=1

1− t−1zxi
1− zxi

〉
t

=

= 1
1− t

〈
exp

( ∞∑
s=1

z−s
(1− ts)

s

N∑
i=1

x−si

)〉
t

+

− tN

1− t exp
( ∞∑
s=1

zs
(1− t−s)

s

∂

∂ts

)
Z(t) ,

(6.39)
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Ciq
−1

Ci

Figure 6.1. Illustration of change of integration contours from Ciq
−1 to Ci.

recalling the time-dependent average in (6.26). In the last term we used
the coupling of the times to the integration variables in (6.29), to rewrite

〈
N∑
i=1

xsi

〉
t

= ∂

∂ts
Z(t) . (6.40)

We also note that the first term involves an expectation value of a negative
power of xi, which we cannot rewrite as a differential operator on the
generating function Z(t). Therefore, we require this term to be cancelled
by a term originating from the (RHS).

Moving on to the (RHS) of (6.35), we begin with evaluating the action
of the q-shift operator M̂q−1,i on the integrand,

M̂q−1,i

[∑
n∈Z

(zxi)n Gi(x)F (x)
]
. (6.41)

We now consider the three factors separately. Firstly,

M̂q−1,i

∑
n∈Z

(zxi)n =
∑
n∈Z

(zxiq−1)n (6.42)

and secondly

M̂q−1,iGi(x) = M̂q−1,i

N∏
j=1
j 6=i

xj − txi
xj − xi

=
N∏
j=1
j 6=i

xj − txiq−1

xj − xiq−1 . (6.43)
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Thirdly, the q-shifted integrand F (x) becomes

M̂q−1,iF (x) =M̂q−1,i

 ∏
1≤k 6=l≤N

(xk/xl; q)∞
(txk/xl; q)∞

e
∑∞

s=1 ts
∑N

i=1 x
s
i

N∏
i=1

cq(xi)

 =

=
N∏
l=1
l 6=i

(1− xiq−1/xl)
(1− txiq−1/xl)

N∏
k=1
k 6=i

(1− txk/xi)
(1− xk/xi)

×

× e
∑∞

s=1 tsx
s
i (q−s−1) cq

(
xiq
−1)

cq(xi)
F (x) , (6.44)

using the explicit form of the q-Pochhammer given in (5.1). Overall, we
then find that the q-shift in (6.41) becomes

M̂q−1,i

[∑
n∈Z

(zxi)n Gi(x)F (x)
]

=

=
∑
n∈Z

(zxiq−1)n
N∏
j=1
j 6=i

xj − txiq−1

xj − xiq−1

N∏
l=1
l 6=i

(1− xiq−1/xl)
(1− txiq−1/xl)

×

×
N∏
k=1
k 6=i

(1− txk/xi)
(1− xk/xi)

e
∑∞

s=1 tsx
s
i (q−s−1) cq

(
xiq
−1)

cq(xi)
F (x) =

=
∑
n∈Z

(zxiq−1)n
N∏
k=1
k 6=i

(1− txk/xi)
(1− xk/xi)

e
∑∞

s=1 tsx
s
i (q−s−1) cq

(
xiq
−1)

cq(xi)
F (x)

(6.45)

noting in the last line the cancellation between the q-shifted Gi(x) and
the first factor of F (x) in accordance with the discussion about the shift
in contour after equation (6.37). Thus, the (RHS) takes the form

(RHS) =
∮
C1

· · ·
∮
CN

N∏
j=1

dxj
xj

N∑
i=1

M̂q−1,i

[∑
n∈Z

(zxi)nGi(x)F (x)
]

=

=
〈

N∑
i=1

∑
n∈Z

(zxiq−1)n
N∏
k=1
k 6=i

(1− txk/xi)
(1− xk/xi)

e
∑∞

s=1 tsx
s
i (q−s−1) cq

(
xiq
−1)

cq(xi)

〉
t

.

(6.46)
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The next step is to rewrite the expression inside the average above as a
summation over residues using the relation

N∑
i=1

M̂q−1,i

[∑
n∈Z

(zxi)n Gi(x)F (x)
]

=

= F (x)
t− 1

N∑
i=1

Resw=x−1
i

dw
w

[∑
n∈Z

(
z

qw

)n] N∏
k=1

(1− txkw)
(1− xkw) ×

× e
∑∞

s=1 tsw
−s(q−s−1) cq(w−1q−1)

cq(w−1) , (6.47)

for the auxiliary complex variable w = x−1
i . Using the above, one can

re-express the (RHS) in (6.46) as

(RHS) = 1
t− 1

〈
N∑
i=1

1
2πi

∮
w=x−1

i

dw
w

[∑
n∈Z

(
z

qw

)n] N∏
k=1

(1− txkw)
(1− xkw) ×

× e
∑∞

s=1 tsw
−s(q−s−1) cq(w−1q−1)

cq(w−1)

〉
t

. (6.48)

The aim is to be able to write the (RHS) as differential operators acting
on the generating function as desired for the final constraint. To do so,
we want to change the order of integration between the integration over
the eigenvalues xi, encoded in the expectation value, and the contour
integrals in w. However, this cannot immediately be done as the contours
explicitly depend on the eigenvalues as we are integrating around the N
points w = x−1

i with i = 1, . . . , N . It can be noted that the integrand
also have singularities at w = 0 and w = ∞. Using this together with
that w is a point on Riemann sphere such that the sum over residues
is vanishing, we can move the integration contour away from the points
w = x−1

i to instead encircle w = 0 and w = ∞ where the contours are
now in the opposite orientation thus contributing with the opposite sign.
This is illustrated in Figures 6.2 and 6.3.

. . .

w

0 x−1
1 x−1

2 x−1
N

∞

Figure 6.2. Schematic illustration of integration contours in the w plane before
the change of contours.
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. . .

w

0 x−1
1 x−1

2 x−1
N

∞

Figure 6.3. Schematic illustration of integration contours in the w plane after
the change of contours.

Using this change of contours, we can rewrite (6.48) as

(RHS) = − 1
t− 1

1
2πi

∮
w={0,∞}

dw
w

[∑
n∈Z

(
z

qw

)n]
×

× e
∑∞

s=1 tsw
−s(q−s−1) cq(w−1q−1)

cq(w−1)

〈
N∏
k=1

(1− txkw)
(1− xkw)

〉
t︸ ︷︷ ︸

F(w)

,
(6.49)

bringing the expectation value inside the w integral and introducing the
notation F(w) with the corresponding power series expansion

F(w) =
∑
m∈Z
Fmwm . (6.50)

Let us now consider the two contributions w = {0,∞} one at a time.
Starting with the residue at w =∞, we find the contribution

− 1
t− 1

1
2πi

∮
w=∞

dw
w

[∑
n∈Z

(
z

qw

)n]
F(w) = 1

t− 1F
(
z

q

)
, (6.51)

which can be seen from making the change of variables w = 1/α with
dw = − 1

α2 dα and integrating around α = 0. Next, we use the fact that
we are in a neighbourhood of w =∞ such that we can rewrite

N∏
k=1

1− txkw
1− xkw

= tN exp
( ∞∑
s=1

w−s
(1− t−s)

s

N∑
i=1

x−si

)
, (6.52)

to recast the w =∞ contribution as

1
t− 1F

(
z

q

)
= tN

t− 1 exp
( ∞∑
k=1

tkz
−k(1− qk)

)
cq(z−1)
cq(z−1q)×

×
〈

exp
( ∞∑
s=1

z−sqs
(1− t−s)

s

N∑
i=1

x−si

)〉
t

.

(6.53)
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Then, the contribution from w = 0 is

− 1
t− 1

1
2πi

∮
w=0

dw
w

[∑
n∈Z

(
z

qw

)n]
F(w) = − 1

t− 1F
(
z

q

)
. (6.54)

This time we are in the region near w = 0 and instead have that
N∏
k=1

1− txkw
1− xkw

= exp
( ∞∑
s=1

ws
(1− ts)

s

N∑
i=1

xsi

)
. (6.55)

The contribution from w = 0 then becomes

− 1
t− 1F

(
z

q

)
=− 1

t− 1
cq(z−1)
cq(z−1q) exp

( ∞∑
k=1

(
1− qk

)
zk

tk

)
×

× exp
( ∞∑
s=1

zs
(1− ts)
sqs

∂

∂ts

)
Z(t) .

(6.56)

Using this result for w = 0 together with that for w = ∞ we find that
(RHS) in (6.49) becomes

(RHS) = tN

t− 1 exp
( ∞∑
k=1

tkz
−k(1− qk)

)
cq(z−1)
cq(z−1q)×

×
〈

exp
( ∞∑
s=1

z−sqs
(1− t−s)

s

N∑
i=1

x−si

)〉
t

+ (6.57)

− 1
t− 1

cq(z−1)
cq(z−1q) exp

( ∞∑
k=1

(
1− qk

)
zk

tk

)
exp

( ∞∑
s=1

zs
(1− ts)
sqs

∂

∂ts

)
Z(t) .

Upon equating the results of the (LHS) in (6.39) and the (RHS) in (6.57)
above, we finally obtain the q-Virasoro constraints

tN exp
( ∞∑
s=1

zs
(1− t−s)

s

∂

∂ts

)
Z(t)+

+ cq(z−1)
cq(z−1q) exp

( ∞∑
k=1

(
1− qk

)
zk

tk

)
exp

( ∞∑
s=1

zs
(1− ts)
sqs

∂

∂ts

)
Z(t) =

=
〈

exp
( ∞∑
s=1

z−s
(1− ts)

s

N∑
i=1

x−si

)〉
t

+

+ tN
cq(z−1)
cq(z−1q) exp

( ∞∑
k=1

(1− qk)
zk

tk

)〈
exp

( ∞∑
s=1

qs
(1− t−s)
szs

N∑
i=1

x−si

)〉
t

(6.58)

with cq(x) as in (6.30). As explained around (6.34), it is the expansion in
z which then provides each q-Virasoro constraint separately. Comparing
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to [22] together with using the generator current in (6.3), we can make the
above statement more precise. The above constraints should be interpreted
as q-Virasoro constraints in the sense that it corresponds to

ψ(1/z)T (1/z)Z(t) = P (1/z) (6.59)

with P (1/z) containing (an infinite number of) terms with zero or negative
powers in z and where

ψ(1/z) = p−
1
2 exp

( ∞∑
k=1

(1− qk)tk
(1 + pk)zk

)
. (6.60)

In particular we are interested in the constraints zm with m ≥ −1. How-
ever, at the order m = −1 there is a contribution to the constraints of the
form

(1− t)
z

(1− q−
√
βα)

〈
N∑
i=1

1
xi

〉
t

, (6.61)

using the explicit form of cq(x) in (6.30). As this cannot be written as a
differential operator in the times acting on the generating function, we
require it to vanish. Therefore we need to choose the momentum α = 0
which we restrict to from now on. We then specialise to the case of what
is known as the q, t-Gaussian model as discussed in [53], where the model
was expressed via its Macdonald averages. This corresponds to selecting
the parameter Nf = 2 with parameters mk having values m1 = q(1− q) 1

2

and m2 = −q(1− q) 1
2 . The name q, t-Gaussian comes from the fact that

the q-Pochhammer symbols in cq(x) in (6.30) in this case becomes
Nf=2∏
k=1

(qxmk; q)∞
(xmk; q)∞

= 1
(−xq(1− q) 1

2 ; q)∞
1

(xq(1− q) 1
2 ; q)∞

=
q→1

e−
x2
2 .

(6.62)
In the last step we took the semi-classical limit q → 1, such that the
q-Pochhammer symbols can be viewed as the simplest q-deformation of
the standard Gaussian exponent. With this choice of parameters mk, the
function cq(x) in (6.30) takes the form (upon choosing α = 0)

cq,G(x) =x
√
β(
√
βN−Qβ)(x2q2(1− q); q2)∞(1− q)×

×
{
− (q; q)2

∞
Θ(qλ; q)

[
fλ(x(1− q)

1
2 ; q)− fλ(−x(1− q)

1
2 ; q)

]}
,

(6.63)

where Θ(x; q) is the theta function in (5.3) and fλ(x; q) is given by the
q-constant (with the property in (4.8)) for a parameter λ,

fλ(x; q) = xλ
Θ(qλx; q)
Θ(x; q) . (6.64)
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Using this example of the q, t-Gaussian model, we consider the con-
straints in (6.58). For the purposes of q-Virasoro constraints we are only
interested in constraints zm for m ≥ −1. We therefore expand the ex-
pectation values of the exponents containing negative powers of xi, and
collect any contributions to zm for m ≤ −2 (which we are not interested
in) into the expression remainder. Recalling the choice α = 0, we obtain

tN exp
( ∞∑
s=1

zs
(1− t−s)

s

∂

∂ts

)
Z(t)+

+ t1−Nq−1
(
1− z−2q2(1− q)

)
exp

( ∞∑
k=1

(
1− qk

)
zk

tk

)
×

× exp
( ∞∑
s=1

zs
(1− ts)
sqs

∂

∂ts

)
Z(t) =

= (1 + q−1t)Z(t) + t(q−1 − 1)t1
z

Z(t)− remainder .

(6.65)

Even though usual integrals are used above, Jackson q-integrals could
be used instead. As the insertion of a q-differential under a q-integral
is also vanishing, the above derivation should in principle hold for such
q-integrals although the details remain to be verified.

6.4 Solving the q-Virasoro constraints
Let us now continue by solving the constraints in (6.65) specialised to the
case of the q, t-Gaussian model. As discussed around (6.34), the purpose
of the parameter z is to serve as an expansion parameter using which we
obtain a separate constraint for each power zm for m ≥ −1. With this
goal in mind, we start from (6.65) to rewrite this as

tN exp
(
−
∞∑
k=1

z−k(1− qk)tk
)

exp
( ∞∑
s=1

zs
(1− t−s)

s

∂

∂ts

)
Z(t)+

+ t1−Nq−1
(
1− z−2q2(1− q)

)
exp

( ∞∑
s=1

zs
(1− ts)
sqs

∂

∂ts

)
Z(t) =

=(1 + q−1t) exp
(
−
∞∑
k=1

z−k(1− qk)tk
)
Z(t)+

+ t(q−1 − 1)t1
z

exp
(
−
∞∑
k=1

z−k(1− qk)tk
)
Z(t)− remainder .

(6.66)
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We then replace the exponents with symmetric Schur polynomials
Schur{m}(pk) using the Cauchy identity in (2.37), such that

tN
∞∑
`=0

z−`Schur{`}(ps = −s (1− qs) ts)×

×
∞∑
n=0

znSchur{n}
(
ps =

(
1− t−s

) ∂

∂ts

)
Z(t)+

+ t1−Nq−1
(
1− z−2q2(1− q)

) ∞∑
`=0

z`Schur{`}
(
ps = 1− ts

qs
∂

∂ts

)
Z(t) =

= (1 + q−1t)
∞∑
`=0

z−`Schur{`}(ps = −s (1− qs) ts)Z(t)+

+ t(q−1 − 1)t1
z

∞∑
`=0

z−`Schur{`}(ps = −s (1− qs) ts)Z(t)− remainder .

(6.67)

Next, we replace the generating function with its expansion

Z(t) =
∞∑
d=0

Z(d)(t) , (6.68)

where Z(d)(t) is the component of Z(t) of degree d with respect to the
dilatation operator D in (3.44). We now wish to extract the coefficient
of zm for m ≥ −1 in (6.67) and when doing so, considering an overall
degree d in times {tk}. We also need to note that a symmetric Schur
polynomial of the form Schur{m}(ps ∝ ts) has degree m in times, whereas
Schur{m}(ps ∝ ∂/∂ts) has degree −m. Thus by considering the first line
of (6.67) we require by matching powers of z that −` + n = m and by
selecting the degree d in {tk} we have that ` − n = d. For the last two
lines of (6.67), the first term contributes to zm with m = −1, 0 and the
second only contributes to m = −1. This is because only zm for m ≥ −1
are relevant for the q-Virasoro constraints in (6.19). We then obtain

tN
d∑
`=0

Schur{`} (ps = −s(1− qs)ts)×

× Schur{`+m}
(
ps = (1− t−s) ∂

∂ts

)
Z(d+m)(t)+

+ t1−Nq−1Schur{m}
(
ps = 1− ts

qs
∂

∂ts

)
Z(d+m)(t)+

− (1− q)qt1−NSchur{m+2}

(
ps = 1− ts

qs
∂

∂ts

)
Z(d+m+2)(t) =

= δm,0(1 + q−1t)Z(d)(t)− δm,−1(1− q)t1Z(d−1)(t) .

(6.69)
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We then rewrite the symmetric Schur polynomials using (2.36),

tN
d∑
`=0

∏
{γ s.t. |γ|=`}

1
|Aut(γ)|

l(γ)∏
i=1

−i(1− qi)ti
i

×

×
∏

{γ s.t. |γ|=`+m}

1
|Aut(γ)|

l(γ)∏
i=1

(1− t−i) ∂
∂ti

i
Z(d+m)(t)+

+ t1−Nq−1 ∏
{γ s.t. |γ|=m}

1
|Aut(γ)|

l(γ)∏
i=1

1−ti
qi

∂
∂ti

i
Z(d+m)(t)+

− (1− q)qt1−N
∏

{γ s.t. |γ|=m+2}

1
|Aut(γ)|

l(γ)∏
i=1

1−ti
qi

∂
∂ti

i
Z(d+m+2)(t) =

=δm,0(1 + q−1t)Z(d)(t)− δm,−1(1− q)t1Z(d−1)(t) . (6.70)

Finally, we wish to rewrite the above into a recursion for the correlator
cλ for a partition λ = {λ1, . . . , λ•−1, λ•}, with λ• being the last part of
the partition λ. We then recall the expansion of the generating function
in (6.27), together with that correlators can be obtained by acting with
derivatives in times, as given in (2.50) for the classical case. Upon identi-
fying m+ 2 = λ• and d+ λ• = |λ| so that the term on the fourth line in
(6.70) contains the desired correlator cλ1...λ•−1λ• , we act with the operator[

∂ . . . ∂

∂tλ1 . . . tλ•−1

(. . . )
]∣∣∣∣∣
t=0

(6.71)

with (. . . ) denoting each term in (6.70). Upon rearranging we then get
the final recursion relation

(1− q)qt1−N (1− tλ•)
qλ•λ•

cλ1...λ• =

= −(1− q)qt1−N
∑
|γ|=λ•
l(γ)≥2

1
|Aut(γ)|

(∏
a∈γ

(1− ta)
qaa

)
cλ1...λ•−1γ1...γ•+

+ q−1t1−N
∑

|γ|=λ•−2

1
|Aut(γ)|

(∏
a∈γ

(1− ta)
qaa

)
cλ1...λ•−1γ1...γ•+

+ tN
∑

ν⊆λ\λ•

(∏
a∈ν

(−1)(1− qa)
)
×

×
∑

|γ|=|ν|+λ•−2

1
|Aut(γ)|

(∏
a∈γ

(1− t−a)
a

)
cλ\{λ•,ν}γ1...γ•+

− δλ•,2(1 + q−1t)cλ1...λ•−1 + δλ•,1(1− q)((#λ1)− 1)cλ1...λ•−2 ,

(6.72)
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recalling the notation #λj given in (2.24). Also, λ \ λ• is used to denote
a partition λ without part λ• and λ \ {λ•, ν} is used to denote a partition
λ where λ• and all parts of the partition ν are removed. It can be noted
that the above is indeed a recursion for cλ since all the terms on the right
hand side except the first have a sum of indices |λ| − 2. The first term on
the right hand side instead has a sum of indices |λ|, but a minimal index
γ• < λ•. Upon applying the initial condition c{1} = 0 we obtain for the
first correlators,

c{1,1} = tN
(
1− tN

)
t(1− t) c∅ (6.73)

and

c{2} =
(
1− tN

) (
2t− tN − qtN + tN+1 − qtN+1)
t(1− q)(1− t2) c∅ . (6.74)

6.5 Recovering Virasoro from q-Virasoro
As a sanity check, we can also verify that the Virasoro algebra, the Virasoro
constraints and also the classical matrix model can be obtained from their
corresponding q-analogues. To see this, we return to the semi-classical
limit introduced in the context of the Macdonald polynomials in (5.21),
in which we let t = qβ with q → 1. More specifically, we introduce a
parameter ~, such that

q = e~ , ~→ 0 . (6.75)

Starting with the free boson algebra in (6.6), the semi-classical limit is

[an, am] = 1
n

(q
n
2 − q−

n
2 )(t

n
2 − t−

n
2 )(p

n
2 + p−

n
2 )δn+m,0

→ 2βn~2δn+m,0 +O(~3) ,
(6.76)

so that the classical free boson algebra in (3.21) is recovered at the second
order of the ~-expansion (up to a factor of β). Taking this limit in (6.10)
we instead obtain for the free boson oscillators

a−n '(q
n
2 − q−

n
2 )tn → n~tn +O(~3)

an '
1
n

(t
n
2 − t−

n
2 )(p

n
2 + p−

n
2 ) ∂

∂tn
→ 2β~ ∂

∂tn
+O(~3) ,

(6.77)

as expected. At the level of the q-Virasoro constraints, one can find that
the q-Virasoro generators has the expansion [25]

Tn = 2δn,0 + ~2β
(
Ln +

Q2
β

4 δn,0
)

+O(~4) , (6.78)
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where we recover the Virasoro generators Ln at second order in the ~
expansion and with Qβ given in (3.19).

Let us now turn to the q-deformed matrix model in (6.18) and more
specifically the resulting functions due to normal ordering in (6.15). Start-
ing with the q-deformed Vandermonde determinant in (6.16), we find

∆q,t(x) =
∏

1≤k 6=j≤N

(xkx−1
j ; q)∞

(txkx−1
j ; q)∞

→
∏

1≤k 6=j≤N

(
1− xkx−1

j

)β
, (6.79)

using the definition of the q-Pochhammer in (5.1). Next, we consider the
other function appearing in the integrand, cβ(x; q), which becomes

cβ(x; q) =
∏

1≤k<j≤N

(
xkx

−1
j

)β Θ(txkx−1
j ; q)

Θ(xkx−1
j ; q)

→
∏

1≤k<j≤N

(
xkx

−1
j

)β (
1− xkx−1

j

)−β (
1− xjx−1

k

)β
,

(6.80)

using the definition of the Θ-function in (5.3). Thus, the combination in
(6.15) then becomes,

∆q,t(x)cβ(x; q)
N∏
j=1

x
β(N−1)
j →

∏
1≤k<j≤N

(xk − xj)2β (6.81)

since we can rewrite
∏N
j=1 x

β(N−1)
j =

∏
1≤k<j≤N x

β
j x

β
k . We thus recover

the classical β-deformed Vandermonde determinant in (2.20).
Let us also observe the semi-classical limit at the level of the insertion

which generates the q-Virasoro constraints in (6.32). There we find that
the function Gi(x) in (6.33) becomes 1 while the q-differential (together
with the factor of 1

xi
from the measure) becomes

lim
q→1

dq−1,i

xi(q−1 − 1) = ∂

∂xi
. (6.82)

In other words we recover the usual derivative, which can also be seen as
the motivation for the form of the insertion.
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7. The q, t, q′-deformation

We now take the deformation a step further, by introducing another
deformation labelled by the parameter q′. We will in other words study the
q, t, q′-deformation of the algebra and the matrix model construction, which
therefore is a 3-parameter deformation of the un-deformed classical case.
Similarly to the q, t-deformation being referred to as the trigonometric
deformation, we will sometimes refer to the q, t, q′-deformation as the
elliptic deformation.

7.1 The elliptic Virasoro algebra
Let us begin with discussing the deformation of the Virasoro algebra.
The elliptic generalisation of the Virasoro algebra, also called the Wq,t;q′

algebra, was first given in [30]. This algebra is generated by operators Tn
satisfying the associative algebra which can by given in terms of stress
tensor currents T (z) =

∑
n∈Z Tnz

−n as1

f

(
w

z

)
T (z)T (w)− T (w)T (z)f

(
z

w

)
=

= −Θ(q; q′)Θ(t−1; q′)
(q′; q′)2

∞Θ(p; q′)

(
δ

(
p
w

z

)
− δ

(
p−1w

z

))
.

(7.1)

In addition to the previously introduced parameters q, t, p = qt−1 ∈ C, we
have q′ ∈ C parametrising the elliptic deformation. The q-Pochhammer
symbol (z; q)∞ is given in (5.1), the theta function Θ(z; q) is defined in
(5.3) and we recall the multiplicative delta function δ(x) given in (6.5).
The structure function f(x) =

∑
n∈Z fnx

n is defined via the expansion of

f(x) = Γ(x; p2, q′)Γ(p2q−1x; p2, q′)Γ(pqx; p2, q′)
Γ(p2x; p2, q′)Γ(pq−1x; p2, q′)Γ(qx; p2, q′) (7.2)

where the elliptic Gamma function is defined in (5.6) in the region
|p2|, |q| < 1. Alternatively, one can express the commutation relation
using the generators Tn as∑
`∈Z

f` (Tn−`Tm+` − Tm−`Tn+`) = −Θ(q; q′)Θ(t−1; q′)
(q′; q′)2

∞Θ(p; q′)
(
pn − p−n

)
δn+m,0 .

(7.3)
1We hope that although the trigonometric and elliptic generators are both represented
by Tn, it will be clear from the context which one we have in mind.
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This construction was later generalised for arbitrary quiver diagrams
in [66]. To see this, we now briefly introduce the notion of quivers. A
quiver, typically denoted by Γ, consists of a set of nodes Γ0 and arrows Γ1.
For instance, a quiver with two nodes a, b ∈ Γ0 and two arrows e, f ∈ Γ1
is illustrated in Figure 7.1. Then, one can associate a deformed Cartan

a b

e

f

Figure 7.1. Illustration of a quiver Γ given by two nodes a, b ∈ Γ0 and two
arrows e : a→ b, f : b→ a ∈ Γ1.

matrix Cab ∈ |Γ0| × |Γ0| to the quiver Γ. This matrix is given by

Cab = (1 + p−1)δa,b −
∑
e:b→a

µ−1
e − p−1 ∑

e:a→b
µe . (7.4)

We here introduce the parameter µe ∈ C which will be interpreted as
masses for the bifundamental fields in the gauge theory picture [67], as
shown in Chapter 10. We would now like to give a free boson realisation
of the above algebra. For each node in the quiver Γ we introduce the free
boson oscillators {s(±)

a,n } which satisfy the Heisenberg algebra[
s(±)
a,n , s

(±)
b,m

]
= ∓ 1− t∓n

n(1− q∓n)(1− q′±n)C
[±n]
ab δn+m,0 , n,m ∈ Z\{0}

(7.5)
for a, b ∈ Γ0 and

[sa,0, s̃b,0] = βC
[0]
ab . (7.6)

Here we use the notation [n], which means that we replace each parameter
with its n-th power. In particular,

C
[n]
ab = (1 + p−n)δa,b −

∑
e:b→a

µ−ne − p−n
∑
e:a→b

µne . (7.7)

Generalising the generators in the commutation relation (7.3) for a generic
quiver, the elliptic Wq,t;q′(Γ) algebra is then generated by {T an , a ∈ Γ0, n ∈
Z}. We then wish to give the generator T an in terms of free boson oscillators.
In order do so, we consider the stress tensor current given by

T a(w) =
∑
n∈Z

T anw
−n (7.8)
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which can be expressed via the auxiliary operator Ya(w)

Ya(w) = : e
∑

n6=0

(
y(+)
a,nw

−n+y(−)
a,nw

n
)

: tya,0−ρ̃a , ρ̃a =
∑
b∈Γ0

(
C−1

)[0]

ab
. (7.9)

Here the free boson oscillators {y(±)
a,n } satisfy[

y(±)
a,n , s

(±)
b,m

]
= ∓ 1− t∓n

n(1− q′±n)δn+m,0δa,b , [ya,0, s̃b,0] = [sa,0, ỹb,0] = δa,b ,

(7.10)
where

y(±)
a,n =(1− q∓n)

(
C−1

)[±n]

ab
s(±)
b,n , ya,0 = β−1

(
C−1

)[0]

ab
sb,0 ,

s̃a,0 = ỹb,0βC
[0]
ba .

(7.11)

In order to give the stress tensor current T a(w) in terms of the operator
Ya(w), we need to specify the quiver. As outlined in [66], the simplest
example is the quiver given by the single node, i.e. Γ0 = {a} and Γ1 = ∅.
We therefore drop the label of the node and simply use T (w) and Y(w).
In this particular case, the stress tensor current is

T (w) = Y(w) + Y(p−1w)−1 . (7.12)

As a final remark, we introduce the time representation of the free boson
algebra,

s(±)
a,−n ' ∓

ta±n
n(1− q′±n) , s(±)

a,n '
1− t∓n
1− q∓nC

[±n]
ab

∂

∂tb±n
, n > 0

ỹa,0 ' ta0 , sa,0 '
∂

∂ta0
, |0〉 ' 1 ,

(7.13)

which we will make use of shortly.

7.2 The elliptically deformed matrix model
Similarly to the Virasoro and q-Virasoro cases described earlier, we then
construct the screening current. Here it takes the form

Sa(w) = : e
∑

n6=0

(
s(+)
a,nw

−n+s(−)
a,nw

n
)

: wsa,0es̃a,0 , (7.14)

and it is defined by the property[
T an , Sb(w)

]
= δa,bDqOb

n(w) = δa,b

(
Ob
n(qw)− Ob

n(w)
)

(q − 1)w (7.15)
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for a, b ∈ Γ0, using the q-derivative in (4.5) for some operators Ob
n(w). For

an explicit example of such an operator Ob
n(w) see [66].

Next, we wish to explore the matrix model which can be constructed
in the elliptic case. Similarly to the classical and trigonometric cases, we
build up the generating function using the screening current in (7.14)

Z|α〉 =
∮ |Γ0|∏

a=1

Na∏
j=1

dwa,j
2πiwa,j

Sa(wa,j)|α〉 , (7.16)

where we used the Fock module Fα with vacuum |α〉 which satisfies

s(±)
a,n |α〉 = 0 , n > 0 , |α〉 = e

∑|Γ0|
a=1 αaỹ0,a |0〉 , sa,0|α〉 = αa|α〉 . (7.17)

Upon normal ordering of two screening currents one finds

Sa(wa,j)Sb(wb,k) = : Sa(wa,j)Sb(wb,k) : ∆(a)
node

(
wa,k
wa,j

)δa,b
∆(a)

self

(
wa,k
wa,j

)δa,b
×

×∆(ab)
off

(
wb,k
wa,j

)1−δa,b

w
−βC[0]

ba

b,k , (7.18)

where we introduced the three functions

∆(a)
node(w) = Γ(tw; q, q′)Γ(tw−1; q, q′)

Γ(w; q, q′)Γ(w−1; q, q′)
Θ(tw−1; q)
Θ(w−1; q) , (7.19)

∆(a)
self(w) =

∏
e:a→a

Γ(µew; q, q′)Γ(µew−1; q, q′)
Γ(tµew; q, q′)Γ(tµew−1; q, q′)

Θ(µew−1; q)
Θ(tµew−1; q) (7.20)

and finally

∆(ab)
off (w) =

∏
e:a→b

Γ(µew; q, q′)
Γ(tµew; q, q′)

∏
e:b→a

Γ(qt−1µ−1
e w; q, q′)

Γ(qµ−1
e w; q, q′) . (7.21)

We can recast the above functions using instead

∆(a)
E (wa)=

∏
1≤j 6=k≤Na

Γ(twa,k/wa,j ; q, q′)
Γ(wa,k/wa,j ; q, q′)

(7.22)

and
∆(a)

loop(wa)=
∏
e:a→a

∏
1≤j 6=k≤Na

Γ(µewa,k/wa,j ; q, q′)
Γ(tµewa,k/wa,j ; q, q′)

, (7.23)

together with the two q-constants (recalling their definition in (4.8))

c
(a)
β (wa, µ; q)=

∏
1≤j<k≤Na

(
wa,j
wa,k

)β Θ(tµwa,j/wa,k; q)
Θ(µwa,j/wa,k; q)

(7.24)
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and

C
(a)
β (wa; q)=

c
(a)
β (wa, 1; q)∏

e:a→a c
(a)
β (wa, µe; q)

. (7.25)

Using these functions and q-constants, the state Z|α〉 in (7.16) becomes

Z|α〉 =
∮ |Γ0|∏

a=1

Na∏
j=1

dwa,j
2πiwa,j

∆q,t,q′(w)×

×
|Γ0|∏
a=1

Na∏
j=1

w
−β((Na−1)C

[0]
aa
2 +
∑|Γ0|

a>b,b=1 C
[0]
ab
Nb)

a,j :
|Γ0|∏
a=1

Na∏
j=1

Sa(wa,j) : |α〉 ,

(7.26)

where ∆q,t,q′(w) is the elliptic Vandermonde determinant given by

∆q,t,q′(w) =
|Γ0|∏
a=1

C
(a)
β (wa; q)∆(a)

E (wa)∆(a)
loop(wa)

|Γ0|∏
a<b,b=1

Na,Nb∏
j,k=1

∆(ab)
off

(
wb,k
wa,j

)
.

(7.27)
Using the time representation of the free boson algebra in (7.13), we obtain
the generating function for the q, t, q′-model

Z|α〉 ' Z({ta0, ta}) =eN0({ta0})
∮ |Γ0|∏

a=1

Na∏
j=1

dwa,j
2πiwa,j

∆q,t,q′(w)×

× exp


|Γ0|∑
a=1

Na∑
j=1

(
V (a)(wa,j)−

∑
n>0

tanw
n
a,j

n(1− q′n)

) .

(7.28)

Here we have interpreted the state

|Γ0|∏
a=1

Na∏
j=1

w
−β((Na−1)C

[0]
aa
2 +
∑|Γ0|

a>b,b=1 C
[0]
ab
Nb)

a,j |α〉 (7.29)

as the potential

V (a)(w) =

αa + β

|Γ0|∑
b=1

C
[0]
abNb − (Na − 1)C

[0]
aa

2 −
|Γ0|∑

a>b,b=1
C

[0]
abNb

 lnw .

(7.30)
We also have the overall normalisation factor

N0({ta0}) =
|Γ0|∑
a=1

ta0

(
αa + β

|Γ0|∑
b=1

C
[0]
abNb

)
. (7.31)
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To close this discussion on the elliptically deformed matrix model, we
consider the Ward identities for the q, t, q′-deformed matrix model in
(7.28). To do so, we again specialise to the case of the quiver A1, or a
single node, where |Γ0| = 1 and we can drop the dependence on the node.
The set of constraints the model has to satisfy is then encoded in

T (p1/2z)Z(t) =

= eN0(t0)
∮ N∏

j=1

dwj
2πiwj

∆q,t,q′(w)
( ∑
σ=±

eYσ(z|t0,t)
N∏
j=1

fσ(wj/z)
)
×

× e
∑N

j=1 V (wj)−
∑N

j=1

∑
n>0

tnw
n
j

n(1−q′n) ,

(7.32)

similar to the q-Virasoro constraints in equation (6.21). T (p1/2z) is then
the elliptic Virasoro current in terms of the Y operators in (7.9)

T (p1/2z) = Y(p1/2z) + Y(p−1/2z)−1 , (7.33)
Yσ(z|t0, t) is the contribution from the non-positive modes of Y(pσ/2z)σ
for σ = ± and fσ(wj/z) is

fσ(wj/z) = Θ(p−σ/2wj/z; q′)σ
Θ(t−1p−σ/2wj/z; q′)σ . (7.34)

7.3 Recovering q-Virasoro from elliptic Virasoro
In order to see the q-Virasoro construction arising from the Wq,t;q′ one,
the limit to take is q′ → 0 and restricting to an A1 quiver. In this limit,
the deformed Cartan matrix in (7.4) takes the form

Cab → (1 + p−1)δa,b . (7.35)

The free boson commutation relations restricted to {s(+)
a,n } becomes[

s(+)
a,n , s

(+)
b,m

]
→ −(tn2 − t−n2 )(pn2 + p−

n
2 )

n(q n2 − q−n2 )
δn+m,0δa,b (7.36)

which recovers (6.6) as we can find by comparing screening currents that
s(+)
a,n → −an(q n2 − q−n2 )−1. Next, the time representation becomes

s(+)
a,−n → −

tan
n
, s(+)

a,n →
(tn2 − t−n2 )(pn2 + p−

n
2 )

(q n2 − q−n2 )
∂

∂tbn
δa,b , (7.37)

which recovers (6.10) upon noting that the time variables in the quantum
case are equal to the elliptic time variables up to a factor 1/n. Then, to
see the limit at the level of the algebra in (7.1) we find

Θ(q; q′)Θ(t−1; q′)
(q′; q′)2

∞Θ(p; q′) → (1− q)(1− t−1)
(1− p) (7.38)
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and
f(x)→ e

∑
n>0

(1−qn)(1−t−n)
n(1+pn) xn (7.39)

using (5.1), (5.3) and (5.6), so that one recovers the q-Virasoro current
in (6.4) with the structure function f(x) in (6.2). Finally, the elliptically
deformed Vandermonde determinant in (7.27) becomes as desired

∆q,t,q′(w)→ ∆q,t(w)cβ(w; q) , (7.40)

with ∆q,t(w) as in (6.16) and cβ(w; q) as in (6.17).
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Part III:
Applications
It should be noted that our results – and particularly those of papers II,
IV and V – can be viewed as interesting findings solely within the area
of matrix models. However, the results can also be viewed in a different
light. The purpose of this part is therefore to explore applications of
the classical and quantum algebras and matrix models introduced earlier.
We begin with introducing the necessary background required for the
first two applications we have in mind. In particular, we review how
to obtain gauge theory observables on curved spaces while preserving
some supersymmetry through applying the method of supersymmetric
localisation. We then move on to discuss physical examples where we
can make use of the deformed algebras and matrix models. As a final
application, we introduce the concept of τ -functions in order to investigate
the connection between Virasoro constraints and Hirota equations.





8. Exact results in supersymmetric gauge
theories

In this chapter we review the relevant background needed for the applica-
tions of the quantum algebras and matrix models. To be more specific,
the applications we consider are firstly a three dimensional N = 2 gauge
theory on D2 ×q S1 and S3

b and secondly a four dimensional N = 1 gauge
theory on compact spacesM3 × S1. To motivate why these applications
are worthwhile, one can take a wider perspective in which they can be
considered part of a programme called the BPS/CFT correspondence [5–9].
In this programme, exact results for expectation values of certain protected
BPS observables are expressed via two dimensional CFT’s. There are
several applications of this, for instance chiral algebras and superconformal
field theories [68, 69], the gauge/Bethe correspondence [70–72] and the
AGT correspondence [73, 74]. In the AGT correspondence, 4d N = 2
partition functions computed via localisation [3, 75] are identified with
2d CFT correlators. In paper I, we investigated possible extensions of
this AGT correspondence in the form of elliptic deformations, in the
particular case of compact surfaces M3 × S1. In paper III and IV we
instead focused on applications of the BPS/CFT correspondence in the
case of 3d supersymmetric gauge theories and more specifically on the
evaluation of expectation values of Wilson loops.

In order to study supersymmetric gauge theories on compact spaces, one
needs to have a consistent formalism in which such theories can be placed
on our backgrounds of interest. This has been explored in [76–82]. In
the 3d case it was observed that N = 2 theories are supported on several
backgrounds with two supercharges of opposite R-charge being preserved.
However, in the 4d case we can have N = 1 if we again wish to preserve
at least two supercharges of opposite R-charge and the backgrounds are
restricted to being T 2 fibrations over a Riemann surface.

Let us now review the method of supersymmetric localisation which can
be used as a tool in evaluating gauge theory observables and in particular
partition functions. We will then end the chapter with collecting various
results which will be useful in the discussions in later chapters.

8.1 Supersymmetric localisation
We now review the method of supersymmetric localisation. Loosely speak-
ing, the essence of the method is to reduce the domain of integration and
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consequently enable the exact evaluation of infinite dimensional integrals,
typically in terms of finite dimensional ones. Since about ten years ago,
there has been a plethora of results using localisation in dimensions rang-
ing from 2 to 7 and for a review on the subject we refer to [83]. Upon
applying the localisation method, the resulting models are often given
in the form of classical or quantum matrix models. This enables us to
use the matrix model tools outlined in earlier parts and in particular the
property that matrix models satisfy Virasoro or q-Virasoro constraints.
Then, by clever use of these constraints we are in some cases able to solve
the gauge theories in terms of determining its generating function. We
now briefly review the derivation of the localisation formula following [83].

The key relation in the localisation procedure is the Berline-Vergne-
Atiyah-Bott formula [84,85] given by∫

M
α =

∑
i

(2π)nα0(xi)√
det (∂µV ν(xi))

, (8.1)

for a compact manifoldM of complex dimension n with a U(1) action
described by a vector field V (x) and en equivariantly closed form α
satisfying (d + ιV )α = 0. Here it is assumed that the fixed points {xi} of
the U(1) action are isolated and α0 is the zero-component of the form α.
We now wish to briefly recall how this formula arises.

For an odd tangent bundle ΠTM with coordinates xµ onM and Grass-
mann coordinates ψµ on the fiber, the functions F (x, ψ) are differential
forms and the vector field of the U(1) action is V µ(x)∂µ. We define the
transformations

δxµ = ψµ , δψµ =V µ(x) (8.2)

corresponding to (d + ιV )α = 0. We then want to compute the integral

Z(0) =
∫

ΠTM
α(x, ψ)dnx dnψ (8.3)

where α(x, ψ) can be thought of as the supersymmetric observable which
is equivariantly closed, i.e. δα(x, ψ) = 0. The trick is now to deform
this integral to include a dependence on a parameter t ∈ R, hence the
suggestive notation Z(0), such that

Z(t) =
∫

ΠTM
α(x, ψ)e−tδW (x,ψ)dnx dnψ . (8.4)

Here we also introduced a functionW (x, ψ) which we require to be δ-exact
so δ2W (x, ψ) = 0. Using this, we can consider

d
dtZ(t) = −

∫
ΠTM

[δW (x, ψ)]α(x, ψ)e−tδW (x,ψ)dnx dnψ . (8.5)
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Upon integrating by parts

d
dtZ(t) =− [W (x, ψ)α(x, ψ)e−tδW (x,ψ)]

∣∣∣
∂M

+

+
∫

ΠTM
W (x, ψ)[δα(x, ψ)]e−tδW (x,ψ)dnx dnψ = 0 ,

(8.6)

where we used the Stokes theorem i.e.
∫
∂Ω w =

∫
Ω dw on the first term and

the fact that δα(x, ψ) = 0 on the second term. Thus, Z(t) is independent
of the parameter t. This means that the original integral Z(0) can be
computed at any value of t. For instance, we could let t→∞ to find

Z(0) = Z(t) = lim
t→∞

Z(t) = lim
t→∞

∫
ΠTM

α(x, ψ)e−tδW (x,ψ)dnx dnψ , (8.7)

and then use saddle-point methods in order to evaluate Z(0). In order
to recover the formula in equation (8.1), we need to make the choice
W (x, ψ) = V µ(x)gµνψν with the metric gµν being U(1) invariant. This
implies that the exponent in (8.4) is given by

δW (x, ψ) = δ(V µ(x)gµνψν) = V µ(x)gµνV ν(x) + ∂ρ(V µ(x)gµν)ψρψν ,
(8.8)

recalling the transformations in (8.2). Therefore, at t → ∞ the critical
points xi of the U(1) action dominates, in other words where V (xi) = 0.
Let us now consider one such isolated point xi and we assume for simplicity
that xi = 0. We can then introduce rescaled coordinates x̃ and ψ̃ given by

x̃ =
√
tx ψ̃ =

√
tψ

dx̃ =
√
tdx dψ̃ = dψ√

t
. (8.9)

Using these new coordinates the integral in (8.7) becomes

Z(0) = lim
t→∞

∫
ΠTM

α

(
x̃√
t
,
ψ̃√
t

)
e
−tδW

(
x̃√
t
, ψ̃√
t

)
dnx̃ dnψ̃ . (8.10)

As the next step, we expand tδW
(
x̃√
t
, ψ̃√

t

)
in the t→∞ limit,

t δW

(
x̃√
t
,
ψ̃√
t

)
=

= [∂µV σ(0)] gσρ [∂νV ρ(0)] x̃µx̃ν + [∂µV ρ(0)gρν ] ψ̃µψ̃ν +O
( 1√

t

)
=

= Hµν x̃
µx̃ν + Sµνψ̃

µψ̃ν +O
( 1√

t

)
. (8.11)
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Here it can be noted that terms proportional to t and t1/2 vanish due to
V (xi = 0) = 0. We also introduced a constant symmetric matrix Hµν

and constant antisymmetric matrix Sµν , as their explicit forms will not
be important, and we used the expansion of V µ(x) around x = 0,

V µ(x) ' V µ(0) + ∂νV
µ(0)xν + . . . . (8.12)

We then recall the transformations in (8.2), which in the limit t → ∞
takes the form

δx̃µ = ψ̃µ

δψ̃µ =
√
tV µ(x) ' ∂νV

µ(0)x̃ν .
(8.13)

Using these transformations and keeping only terms surviving the t→∞
limit in (8.11), the condition δ2W (x, ψ) = 0 implies that

tδ2W

(
x̃√
t
,
ψ̃√
t

)
= 2

(
Hµν − Sµσ∂νV σ(0)

)
ψ̃µx̃ν = 0 , (8.14)

using that Hµν and Sµν are constant symmetric and antisymmetric matri-
ces respectively. In other words we require the two matrices to satisfy

Hµν = Sµσ∂νV
σ(0) . (8.15)

The integral in (8.10) can then be evaluated to

Z(0) =α(0, 0)
∫

ΠTM
e−Hµν x̃µx̃νdnx̃

∫
ΠTM

e−Sµν ψ̃µψ̃νdnψ̃ =

=α(0, 0)(2π)nPf(S)√
det(H)

,
(8.16)

recalling that xµ, x̃µ are even coordinates and ψµ, ψ̃µ are odd. We also
used that forms higher than the zero-form will have additional factors of
1/
√
t and so will not contribute as t→∞. Here det(M) is the determinant

and Pf(M) is the Pfaffian of a matrix M. Using that the two are related
by Pf(M) =

√
det(M) provided that M is anti-symmetric together with

the relation between S and H in (8.15), we find

Z(0) = (2π)nα(0, 0)√
det(∂µV ν(0))

. (8.17)

Generalising this result to the case of multiple isolated critical points at
generic positions {xi} we obtain

Z(0) =
∑
i

(2π)nα0(xi)√
det(∂µV ν(xi))

, (8.18)
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thus recovering (8.1).
So far, it is not obvious to see how the localisation formula in (8.1)

applies to supersymmetric gauge theories. In order to make this connection
clearer, one needs to make some adjustments in the above reasoning.
To begin with, in the gauge theory setting the objects of interest are
observables of the theory. It could be for instance partition functions
or correlation functions of gauge invariant operators which are δ-closed
or also referred to as protected operators. Let us for clarity consider
partition functions. Expressing a generic partition function through its
path integral, it can be given as

Z(0) =
∫
DΦ e−S[Φ] , (8.19)

for an action S [Φ] where Φ encode all the fields. Here it should be noted
that the first difference to (8.1) is that we have an infinite dimensional
integral as we are integrating over all possible field configurations. Sec-
ondly, the transformations in (8.2) will be given by the supersymmetry
transformations of the theory in consideration. In (8.19) we introduced
the notation Z(0) such that we, similarly to before, can introduce a
deformation parametrised by t as

Z(t) =
∫
DΦ e−S[Φ]−tδV , (8.20)

for some deformation V again being δ-exact, δ2V = 0. By the same
reasoning as before, Z(t) is independent of t and we are free to evaluate
(8.19) at t→∞. Another difference to before, is that we choose that

V =
∑
Ψ

(δΨ)†Ψ (8.21)

summing over fermionic fields Ψ. As the bosonic contribution to the
deformation of the action (δV )bos given by

(δV )bos =
∑
Ψ
|δΨ|2 (8.22)

is positive semi-definite, the integral is dominated by the region where
(δV )bos = 0, i.e. where δΨ = 0. Similarly to what was done around (8.12),
we rescale and then expand the fields Φ around the fixed points, such that

Φ ' Φ0 + 1√
t
Φ′ + . . . . (8.23)

We then find that in the limit t→∞ the partition function becomes

Z(0) =
∫
DΦ0 e−S[Φ0] sdet(δ2) . (8.24)
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Here we introduced the superdeterminant sdet which is taken over the
appropriate space of fields. This generalises the usual determinant where
now bosonic fields appear in the denominator and fermionic fields in
the numerator. In other words this generalises the combination of the
pfaffian and the (square root of the) determinant in (8.16). Thus the
contributions to the partition function is the classical contribution given by
the exponent and the 1-loop contribution given by the superdeterminant,
which are names we will refer to later. However, evaluation of the 1-loop
contribution is typically not straightforward and methods to evaluate the
superdeterminant include determining the spectrum of the fluctuations
under δ2 and also making use of so-called index theorems.

The localisation construction in the case of evaluating the path inte-
gral in the infinite dimensional setting was first done in [86], in which
supersymmetric quantum mechanics was considered. More recently, the
above described localisation procedure was applied in a supersymmetric
gauge theory set-up in the pioneering work [3]. There it was used in
order to exactly evaluate partition functions and expectation values of
Wilson loops on S4 for an N = 2 gauge theory where 8 supercharges were
preserved. The transformations similar to (8.2), then originated from the
supersymmetry and BRST transformations. The final result was finite
dimensional integrals given by specific matrix models.

Following the work in [3], the applications of the supersymmetric locali-
sation method has been extended to include various other supersymmetric
theories, dimensions and backgrounds. We now review a few results which
are crucial in the search for applications of our deformed matrix models.

8.2 Summary of localisation results
Let us now summarise the relevant localisation results which we will
employ in the applications which follow later in this part. We consider
three particular cases. Firstly, we consider three dimensional N = 2 gauge
theories on D2 ×q S1 and secondly on S3

b . The third case is the four
dimensional N = 1 gauge theories, where we focus on S3 × S1.

8.2.1 D2 ×q S1

Let us start with the 3d N = 2 gauge theory on D2 ×q S1. The gauge
theory we consider is a Yang-Mills Chern-Simons (YM-CS) theory with a
single unitary gauge group U(N). The geometry is a D2 fibration over
S1. The parameter q appears as the rotation of the D2 fiber when going
around the base. In addition to the N = 2 vector multiplet, we allow for
an adjoint chiral multiplet of mass t together with Nf fundamental anti-
chiral multiplets of respective masses {uk} with k = 1, . . . , Nf . Besides,
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we introduce a Fayet-Illiopoulos (FI) contribution parametrised by κ1 ∈ C.
To then determine the D2 ×q S1 partition function, one needs to establish
the 1-loop contributions for each of these multiplets. This was done
in [27, 87] where the latter reference used the method of localisation. The
results are summarised in Table 8.1.

Multiplet 1-loop contribution
Vector

∏
α∈∆(wα; q)∞

Chiral in irrep R (Neumann)
∏
ρ∈R(wρm; q)−1

∞

Chiral in irrep R (Dirichlet)
∏
ρ∈R(qw−1

ρ m−1; q)∞
Table 8.1. 1-loop determinants of vector and chiral multiplets.

Starting with the vector multiplet, the contribution is
∏
α∈∆(wα; q)∞

with α ∈ ∆ being a root of the gauge Lie algebra excluding the zero root.
Next, a chiral multiplet contributes with

∏
ρ∈R(wρm; q)−1

∞ for Neumann
boundary conditions and

∏
ρ∈R(qw−1

ρ m−1; q)∞ for Dirichlet boundary
conditions. Here ρ is a weight of the irreducible representation R, whereas
m is a global U(1) fugacity. Then, upon collecting the above contributions
[27, 87] showed that the partition function for the above gauge theory on
D2 ×q S1 with U(N) gauge group is

Z
Nf
D2×qS1 =

∮
C

N∏
i=1

dλi
λi
Zcl
D2×qS1(λ)Z1−loop

D2×qS1(λ) . (8.25)

Here we introduced the background D2×qS1 and the number of fundamen-
tal anti-chiral fields Nf as labels on the partition function for clarity. The
contour C is defined as N copies of the unit circle. The two contributions
to the integrand Zcl

D2×qS1(λ) and Z1−loop
D2×qS1(λ) are then the classical and

the 1-loop contributions respectively, given by

Zcl
D2×qS1(λ) =

N∏
i=1

λκ1
i , (8.26)

Z1−loop
D2×qS1(λ) =

∏
1≤k 6=l≤N

(λk/λl; q)∞
(tλk/λl; q)∞

N∏
j=1

Nf∏
k=1

(qλjuk; q)∞ . (8.27)

The 1-loop determinants can be found from Table 8.1, as we have vector,
adjoint chiral and fundamental anti-chiral multiplets contributing.

Let us close the discussion of partition functions on D2 ×q S1 by the
following remark. This partition function has sometimes been referred to
as the half-index [88] or the 3d holomorphic block [27], expressed as

B3d
γ =

∮
γ

N∏
i=1

dwiΥ3d(w) , (8.28)
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for a 3d integrand Υ3d(w), a building block which we will return to shortly.

8.2.2 S3
b

We now move on to consider 3d N = 2 theories on the squashed three
sphere S3

b . The 3d geometry is given by

ω1|z1|2 + ω2|z2|2 = 1 , (8.29)

with z1, z2 ∈ C and where ω1, ω2 ∈ R are the squashing parameters.
The squashing is often encoded in the real parameter b, where b2 =
ω2/ω1 [64,89–91]. Although it may seem natural to have real squashing
parameters from a geometrical point of view, the derivations which follow
does allow for arbitrary complex values for the parameters ω1, ω2. Thus
we take ω1, ω2 ∈ C.

Regarding the gauge theory picture, we consider – similarly to the
D2 ×q S1 case – a single unitary gauge group U(N) and an N = 2 vector
multiplet, an adjoint chiral multiplet of mass Ma and Nf fundamental
anti-chiral multiplets of masses {mk} with k = 1, . . . , Nf . We again allow
for a non-trivial FI parameter κ1 and this time also a CS term with
parameter κ2, as will be elaborated on in Section 9.2.

Then, in order to establish the 1-loop contributions of these gauge and
matter multiplets, one can use supersymmetric localisation to determine
the contributions as given in Table 8.2 (using the results of Paper III)
[90, 92]. In particular, it can be noted that the contributions are given in
terms of double sine functions, defined in (5.9).

Multiplet 1-loop contribution
Vector

∏
α∈∆ S2 (α(X)|ω)

Chiral in irrep R
∏
w∈R S2 (w(X) +MR|ω)−1

Anti-chiral in irrep R̄
∏
w∈R S2 (−w(X) +MR̄|ω)−1

Table 8.2. The 1-loop determinants of vector, chiral and anti-chiral multiplets.

In Table 8.2, w(X) ∈ R is the weight of the representation R whereas
α(X) ∈ ∆ are the roots of the algebra, excluding the zero root. MR and
MR̄ are the masses of the chiral and anti-chiral fields respectively. Here
we introduced the integration variables appearing in the partition function
X = {X1, . . . , XN}, which take values in the Cartan of the gauge group.

We now specialise to the case of a U(N) gauge group. In this case the
roots are differences of fundamental weights wi enabling us to write

αij(X) = wi(X)− wj(X) = Xi −Xj , (8.30)
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for imaginary numbers Xi. As mentioned above, we consider a YM-CS
theory, thus allowing for a CS term given by

N∏
i=1

e−
πiκ2
ω1ω2

X2
i (8.31)

for a CS level κ2 ∈ Z. Furthermore, as there is a U(1) in the center of the
gauge group we also have an FI term

N∏
i=1

e
2πiκ1
ω1ω2

Xi (8.32)

parametrised by κ1 ∈ C. Then, the S3
b partition function as shown

in [90,92] is given by (and given in [89] for S3)

Z
Nf
S3
b

=
∫

(iR)N

N∏
i=1

dXi Z
cl
S3
b
(X)Z1−loop

S3
b

(X) . (8.33)

The integration variables Xi ∈ iR are Coulomb branch variables and
Zcl
S3
b
(X) is the classical contribution given by

Zcl
S3
b
(X) =

N∏
i=1

exp
(
− πiκ2

ω1ω2
X2
i + 2πiκ1

ω1ω2
Xi

)
. (8.34)

Then Z1−loop
S3
b

(X) is the product of 1-loop determinants

Z1−loop
S3
b

(X) =
∏

1≤k 6=j≤N

S2(Xk −Xj |ω)
S2(Xk −Xj +Ma|ω)

Nf∏
k=1

N∏
i=1

S2 (−Xi −mk|ω)−1 ,

(8.35)
given in terms of the double sine function S2(z|ω) defined in (5.9).

It can be noted that topologically S3
b can be obtained by gluing two

solid tori, i.e. two copies of D2 ×q S1. One can then give each half of the
sphere a label α = 1, 2 and imagine each such half to have a corresponding
D2 ×qα S1 theory with its own modular parameter qα given by

q1 = e2πiε , q2 = e−2πig·ε , (8.36)

for the gluing element g ∈ SL(2,Z). Upon identifying ε = ω/ω1 we can
write the two modular parameters as

q1 = e2πiω2
ω1 , q2 = e2πiω1

ω2 . (8.37)

This seemingly simple geometric picture has also been found to hold at the
level of partition functions, as shown in [27–29]. There, the S3

b partition
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function is found to take a factorised form into holomorphic blocks, in
other words the D2×q S1 partition functions introduced earlier. Recalling
(8.28), the compact space partition functions then decompose as

Z3d =
∑
`

∫ N∏
i=1

dxiΥ3d (w(x, `))1 Υ3d (w(x, `))2 (8.38)

for continuous variables {x1, . . . , xN} and discrete variables {`1 . . . , `N}
parametrising the localisation locus. This can also decompose further to

Z3d =
∑
{c}

(
B3d
c

)
1

(
B3d
c

)
2
, (8.39)

summing over supersymmetric massive vacua {c} and using the holomor-
phic blocks B3d

c in (8.28).
Finally, we remark that the object of interest from the gauge theory point

of view namely expectation values of Wilson loops, can be conveniently
obtained from expectation values of Schur polynomials using the above 3d
partition functions. We will elaborate on this statement in Section 9.1.6.

8.2.3 S3 × S1

We now consider the final case of interest, namely the 4d N = 1 gauge
theory on compact spaces of the form M3 × S1. For concreteness, we
consider S3×S1. The goal now is to not only evaluate partition functions,
but rather to be able to exactly compute more sophisticated observables.
In the 3d case we are interested in expectation values of Wilson loops. In
4d, Wilson loops cannot be generically defined. Therefore we will instead
consider the defect generating function, which can be thought to encode
expectation values of BPS surface operators on T 2 ⊂M3 × S1. This will
be explored in Chapter 10.

To begin with, the partition function for S3 × S1 is given by

ZS3×S1 =e−iπP3(ln(ζ))
∮
T |G|

N∏
j=1

dzj
2πizj

∆S3×S1(z) . (8.40)

Here we integrate over the maximal torus T |G| and the cubic polynomial
P3(ln(ζ)) encodes various gauge, mixed-gauge and global anomalies. Next,
∆S3×S1(z) is given by one of the following measures. It is either the N = 1
vector and chiral multiplets,

∆1 vec(z) =
∏
α6=0

1
Γ(zα; p, q) , ∆chi(z, ζ) =

∏
I

∏
ρ,φ∈RI

Γ((pq)RI/2zρζφ; p, q) .

(8.41)
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Here α are the roots of the Lie algebra, the product over I is over all the
chiral multiplets of the theory with RI being the R-charge, ρ, φ are weights
of the representation RI of the gauge and flavour groups and z and ζ are
the gauge and global holonomies in the Cartan tori. The parameters p
and q are the moduli parameters which are related to the S3 squashing
parameters ω1, ω2 by p = e2πiω2

ω3 and q = e2πiω1
ω3 , where ω3 is the inverse

S1 radius. The measure can also be the the N = 2 vector multiplet

∆2 vec(z) =
∏
α6=0

Γ(̂tzα; p, q)
Γ(zα; p, q) , (8.42)

with t̂ = (pq)
Rad

2 where Rad is the R-charge of the adjoint chiral, or the
hypermultiplet

∆hyp(z, ζ) =
∏
I

∏
ρ,φ∈RI

Γ((pq)1/2t̂−1/2zρζφ; p, q)
Γ((pq)1/2t̂1/2zρζφ; p, q)

. (8.43)

Finally we can have the N = 4 vector multiplet contribution

∆4 vec(z) =
∏
α6=0

Γ(̂tzα; p, q)
Γ(zα; p, q)

Γ(mzα; p, q)
Γ(̂tmzα; p, q)

, (8.44)

for the parameter m which can be associated with the N = 2∗ deformation.
The next idea we wish to introduce is the decomposition of the compact

space integrand onM3×S1 into two half-space integrands, i.e. integrands
on D2 × T 2 [28]. These two half-space integrands are then glued by an
element g ∈ SL(2,Z), as can be illustrated in Figure 8.1. More specifically,

T 2
σ T 2

σ

M3 × S1 =

−g·
D2
τ D2

τ

Figure 8.1. Illustration of the decomposition of M3 × S1 into two copies of
D2 × T 2 glued by the element g ∈ SL(2,Z) (as given in Paper I).

the compact space integrand ∆M3×S1(z, `, ζ, h), where ∆S3×S1(z) is one
example, can be given as

∆M3×S1(z, `, ζ, h) = e−iπP3(X,Ξ) Υ(w; τ, σ)(−g) Υ(w; τ, σ) (8.45)
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using the half-space integrands Υ(w; τ, σ) together with the cubic polyno-
mial P3(X,Ξ). Here, we used the disk equivariant parameter τ and the
torus modular parameter σ. The parameters z = e2πiX and ζ = e2πiΞ

give the gauge and background holonomies along S1 or T 2, whereas ` and
h describe gauge and background holonomies along non-contractible circle
S1 or fluxes through S2. The half-space integrands are then composed of
1-loop determinants for the vector multiplet or the chiral multiplet with
Neumann (N) or Dirichlet (D) boundary conditions, given by

Υvec(w) =
∏
α6=0

1
Γ(wα; qτ , qσ) , (8.46)

ΥN
chi(w) =

∏
I

∏
ρ,φ∈RI

Γ(wρξφ; qτ , qσ) , (8.47)

and
ΥD

chi(w) =
∏
I

∏
ρ,φ∈RI

1
Γ(qτw−ρξ−φ; qτ , qσ)

. (8.48)

Here we introduced the two parameters

qτ = e2πiτ , qσ = e2πiσ , (8.49)

and w, ξ which are elements of the maximal torus of the gauge and global
symmetry groups. As a final remark about the decomposition in (8.45),
the action of the operation (−g) is to involute the half-space variables using
the g ∈ SL(2,Z) element. In the case of S3 × S1 the gluing element is

g =
(

0 −1
1 0

)
. (8.50)

We now make two simplifying assumptions. The first is that we assume
the gauge and mixed-gauge anomalies to vanish. Then the polynomial
P3(X,Ξ) is a constant, and the decomposition in (8.45) simplifies such
that the integrand completely factorises according to

∆M3×S1(z, `, ζ, h) ∝ Υ(w; τ, σ)(−g) Υ(w; τ, σ) . (8.51)

The second assumption is that qτ and qσ are parametrised as

qτ = e2πi ω
ω1 , qσ = e−2πiω3

ω1 (8.52)

with ω = ω1 + ω2. The (−g) action then results in interchanging ω1 ↔ ω2.
Let us now make a final comment about the half-space integrands

Υ(w; τ, σ) appearing in (8.51). Assuming that for the theory on D2 × T 2

there are only isolated massive vacua, the decomposition can be taken a
step further. The whole S3 × S1 partition function then factorises into

ZS3×S1 ∝
∑

γ∈vacua
Bγ(ξ; τ, σ)(−g) Bγ(ξ; τ, σ) , (8.53)
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using the 4d holomorphic or anti-holomorphic blocks [28, 31–33]

Bγ(ξ; τ, σ) =
∮
γ

|Γ0|∏
a=1

Na∏
j=1

dwj,a
2πiwj,a

Υ(w; τ, σ) . (8.54)

Bγ(ξ; τ, σ) is then the integral representation of the half-space, or D2×T 2,
partition function. We will return to this factorisation in Section 10.3.1.
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9. 3d gauge theories and the q, t-deformation

In this chapter we discuss an application of the q, t-deformed matrix models
introduced in Chapter 6. The applications we have in mind are three
dimensional N = 2 supersymmetric gauge theories and more specifically
placed on the backgrounds D2 ×q S1 and the squashed three sphere S3

b ,
introduced in Section 8.2. The partition functions for such gauge theories
can sometimes be interpreted as q-deformed matrix models and we will
now make this interpretation more precise.

9.1 D2 ×q S1

9.1.1 Details of the theory
Let us now introduce the details of the gauge theory we are considering.
To begin with we consider the 3d N = 2 YM-CS theory on D2×q S1 with
a single unitary gauge group U(N), as described in Section 8.2.1. We
then have an N = 2 vector multiplet, an adjoint chiral multiplet of mass
t and Nf fundamental anti-chiral multiplets of masses {uk}. Lastly, we
introduce an FI contribution parametrised by κ1 ∈ C. Generalising the
result for the partition function given in (8.25) by introducing our familiar
time variables {ts}, we then obtain the generating function

Z
Nf
D2×qS1(t) =

∮
C

N∏
i=1

dλi
λi

N∏
i=1

λκ1
i

∏
1≤k 6=l≤N

(λk/λl; q)∞
(tλk/λl; q)∞

×

×
N∏
j=1

Nf∏
k=1

(qλjuk; q)∞ e
∑∞

s=1 ts
∑N

i=1 λ
s
i .

(9.1)

This can be interpreted as a q-deformed matrix model upon recognising

∆q,t(λ) =
∏

1≤k 6=l≤N

(λk/λl; q)∞
(tλk/λl; q)∞

(9.2)

as the q-deformed Vandermonde determinant in (6.16). The remaining
parts of the integral (9.1) is then viewed as a q-deformed version of
the classical potential V (λ) appearing in (2.21). This can be seen from
rewriting the contribution from the fundamental multiplets in (8.27) as

N∏
j=1

Nf∏
k=1

(qλjuk; q)∞ = exp
(
−
∞∑
s=1

ps(u)
s(q−s − 1)

N∑
i=1

λsi

)
, (9.3)
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using the power sum variables for the masses uk, ps(u),

ps(u) =
Nf∑
k=1

usk . (9.4)

Similarly to the classical potential in (2.12), (9.3) can be obtained by

ts 7→ ts −
ps(u)

s(q−s − 1) , (9.5)

hence the interpretation of (9.3) as a q-deformed potential.

9.1.2 The q-Virasoro constraints
The generating function in (9.1) satisfies q-Virasoro constraints, derived
by the vanishing of the q-variation of the integrand as outlined in Section
6.3. The main difference compared to there is that now we allow for a
generic number of anti-chiral fundamentals Nf together with an additional
deformation parametrised by r. Following the derivation in Section 6.3,
we obtain the equivalent of (6.35) for the D2 ×q S1 model,

(LHS) = (RHS) (9.6)

with

(LHS) =
∮
C

N∏
i=1

dλi
λi

N∑
i=1

[∑
n∈Z

(zλi)nGi(λ)
]
×

× Zcl
D2×qS1(λ)Z1−loop

D2×qS1(λ)e
∑∞

s=1 ts
∑N

i=1 λ
s
i

(9.7)

and

(RHS) =
∮
C

N∏
i=1

dλi
λi

N∑
i=1

M̂q−1,i×

×
[∑
n∈Z

(zλi)nGi(λ)Zcl
D2×qS1(λ)Z1−loop

D2×qS1(λ)e
∑∞

s=1 ts
∑N

i=1 λ
s
i

]
.

(9.8)

Upon evaluation we find for the (LHS)

(LHS) = 1
1− t

〈
exp

( ∞∑
s=1

z−s
(1− ts)

s

N∑
i=1

λ−si

)〉Nf
t

+

− tN

1− t exp
( ∞∑
s=1

zs
(1− t−s)

s

∂

∂ts

)
Z
Nf
D2×qS1(t) ,

(9.9)
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where we generalised the expectation value notation in (6.26) to also
include a superscript Nf . Then, for the (RHS) we find

(RHS) = q−κ1

1− t exp
( ∞∑
s=1

z−s(1− qs)
(
ts + ps(u)

s(1− q−s)

))
×

× exp
( ∞∑
s=1

zs
(1− ts)
sqs

∂

∂ts

)
Z
Nf
D2×qS1(t)+

− q−κ1tN

1− t exp
( ∞∑
s=1

z−s(1− qs)
(
ts + ps(u)

s(1− q−s)

))
×

×
〈

exp
( ∞∑
s=1

z−s
(1− t−s)
sq−s

N∑
i=1

λ−si

)〉Nf
t

(9.10)

using the power sum variables ps(u) in (9.4) together with the relation
between powers of the integration variables and the time variables in
(6.40). As before, we then consider the constraints at each order zn with
n ≥ −1 separately. However, at n = −1 we find the contribution

1− q1−κ1tN−1

1− t z−1
〈

N∑
i=1

λ−1
i

〉Nf
t

, (9.11)

which we cannot rewrite as a differential operator in the times acting on
the generating function. We therefore require this term to vanish, just
as in (6.61). Recalling t = qβ, the above vanishes upon imposing the
balancing condition

κ1 = β(N − 1) + 1 . (9.12)

It can be noted that this is in accordance with the choice of FI parameter
used in [26]. In order to generalise this balancing condition, we introduce
the balancing parameter ν defined as1

ν = κ1 − β(N − 1)− 1 , r = qν , (9.13)

where we also introduced the parameter r for convenience. Thus, when the
balancing condition is satisfied we have ν = 0. Allowing for a non-trivial

1The parameter ν here should not be confused with the classical determinant insertion
labelled by the same symbol.
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balancing parameter, the q-Virasoro constraints take the form

tN exp
( ∞∑
s=1

zs
(1− t−s)

s

∂

∂ts

)
Z
Nf
D2×qS1(t)+

+ r−1q−1t1−N exp
( ∞∑
s=1

z−s(1− qs)
(
ts + ps(u)

s(1− q−s)

))
×

× exp
( ∞∑
s=1

zs
(1− ts)
sqs

∂

∂ts

)
Z
Nf
D2×qS1(t) =

=
〈

exp
( ∞∑
s=1

z−s
(1− ts)

s

N∑
i=1

λ−si

)〉Nf
t

+

+ r−1q−1t exp
( ∞∑
s=1

z−s(1− qs)
(
ts + ps(u)

s(1− q−s)

))
×

×
〈

exp
( ∞∑
s=1

z−s
(1− t−s)
sq−s

N∑
i=1

λ−si

)〉Nf
t

.

(9.14)

In order to be able to expand the above constraints in powers of z, we
rewrite the shift in times (i.e. the contributions from the fundamental
multiplets) using coefficients Ak = Ak(u) defined via

exp
(
−
∞∑
s=1

(
q

z

)s ps(u)
s

)
=

Nf∏
k=1

(
1− q

z
uk

)
=

Nf∑
k=0

Ak

(
q

z

)k
. (9.15)

As can be seen from the Cauchy identity specialised to antisymmetric
Schur polynomials in (2.38), the Ak are nothing but antisymmetric Schur
polynomials in the power sum variables for the fundamental masses uk,

Ak = (−1)kSchur{1, . . . , 1︸ ︷︷ ︸
k

}(ps = ps(u)) . (9.16)

It should be noted that the summation on the right hand side in (9.15)
truncates to Nf . This is due to that antisymmetric Schur polynomials of
a degree higher than the number of variables are identically vanishing.

To then solve the q-Virasoro constraints in (9.14), we follow the proce-
dure outlined in Section 6.4. In particular, we assume the expansion of
the generating function in terms of the time variables

Z
Nf
D2×qS1(t) =

∑
ρ

1
|Aut(ρ)|cρ(u)

∏
µ∈ρ

tµ , (9.17)

summing over all integer partitions ρ. Here cρ(u) are the correlators,
which similarly to the classical case depend on the fundamental masses
u = {u1, . . . , uNf}. Let us now explore the solutions for the first few values
of Nf , which are obtained via a recursion similarly to that in Section 6.4.
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9.1.3 Nf = 1
Specialising to the case of Nf = 1, such that we only have the coefficient
A1 = −u1, we find the correlators

c{1}(u1) =
(
tN − 1

) (
qrtN − t

)
A1(t− 1)t c∅(u1)

c{1,1}(u1) =
(
tN − 1

) (
qrtN − t

)
A2

1(t− 1)2t3
×

×
(
qrt2N (q(t− 1) + 1)− tN+1(qr + t) + t2

)
c∅(u1)

c{2}(u1) =
(
tN − 1

) (
qrtN − t

)
A2

1t
3 (t2 − 1) ×

×
(
qrt2N (qt+ q + 1)− tN+1(qr + t)− t2

)
c∅(u1) . (9.18)

Here it can be noted that just as in the classical case in (3.70), all
correlators of degree 2 and higher are proportional to c{1}. Besides, the
correlators are rational functions of the parameters q, t, r and A1 = −u1.

Another result found in the case of Nf = 1 is one related to superinte-
grability as introduced around (2.52). As the formulas in the β-deformed
classical case involved Jack polynomials, it is natural to expect that the
q-deformed case would involve the Macdonald polynomials. For the Nf = 1
theory on D2 ×q S1 it can be observed that

〈Macdonaldρ(pk)〉Nf=1 =Macdonaldρ(pk = π̂
(N)
k )

Macdonaldρ(pk = δ∗k,1) ×

×Macdonaldρ(pk = π
(N)
k )c∅(u1) .

(9.19)

Here we have defined the combinations of parameters

π
(N)
k = t

k
2N − t− k2N

t
k
2 − t− k2

,

π̂
(N)
k = r

k
2 q

k
2 tk(N−1) r

k
2 q

k
2 t

k
2 (N−1) − r− k2 q− k2 t− k2 (N−1)

t
k
2 − t− k2

(9.20)

together with

δ∗k,1 = uk1

t−
k
2 − t k2

. (9.21)

For consistency purposes, one can explore the semi-classical limit t = qβ,
r = qν , u1 = −(1− q−1)a1 and q → 1. In this limit, we find

π
(N)
k → N , (9.22)
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π̂
(N)
k → β−1(ν + β(N − 1) + 1) , (9.23)

and

δ∗k,1 = (−1)k+1q−
k
2

(q 1
2 − q− 1

2 )k

t
k
2 − t− k2

ak1 → β−1a1δk,1 . (9.24)

Since Macdonald polynomials degenerate to Jack polynomials the formula
(9.19) coincides with that for Jack polynomials in (2.53). Finally, in the
limit β = 1 we obtain the average of Schur polynomials given in (2.54).

9.1.4 Nf = 2
One can then perform a similar analysis for the case Nf = 2 as for the
Nf = 1 case above. The first correlators are given by

c{1}(u1, u2) = −A1
(
tN − 1

)
A2(t− 1) c∅(u1, u2)

c{1,1}(u1, u2) =
(
tN − 1

) (
A2(q − 1)(t− 1)tN + A2

1t
(
tN − 1

))
A2

2(t− 1)2t
c∅(u1, u2)

c{2}(u1, u2) =
(
tN − 1

)
A2

2t (t2 − 1)
(
A2
(
(q + 1)tN + (q − 1)tN+1 − 2t

)
+

+ A2
1t(tN + 1)

)
c∅(u1, u2) , (9.25)

where we again can note that the correlators are rational functions of the
parameters q, t, A1 = −(u1 + u2) and A2 = u1u2. In the case of Nf = 2
we find the superintegrability result,

〈Macdonaldρ (pk)〉Nf=2 =
Macdonaldρ

(
pk = (−1)kt k2N (uk1+uk2)

1−tk

)
Macdonaldρ

(
pk = (−1)kt k2 (u1u2)k

1−tk
) ×

×Macdonaldρ
(
pk = π

(N)
k

)
c∅(u1, u2) ,

(9.26)

with π(N)
k as in (9.20). To then see the semi-classical limit, we again let

t = qβ , but now we need to establish u1 and u2 as functions of a1 and a2.
To do so, we require that in the semi-classical limit q → 1, or q = e~ with
~→ 0, u1 and u2 scale non-trivially with ~ at the same time as the shift
in times in (9.5) is well-defined. One such parametrisation is

u1 =
(1− q)a1 +

√
(1− q) (a2

1(q − 1) + 2a2(q + 1))
2q

u2 =
(1− q)a1 −

√
(1− q) (a2

1(q − 1) + 2a2(q + 1))
2q ,

(9.27)
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(up to a permutation u1 ↔ u2) which implies that A1 and A2 behave as

Ak = ak~ +O(~2) , k = 1, 2 . (9.28)

With this parametrisation, the arguments of the Macdonald polynomials
in (9.26) become in the semi-classical limit

(−1)kt
k
2N

(
uk1 + uk2

)
1− tk → (−1)kβ−1(a1δk,1 + a2δk,2) (9.29)

and
(−1)kt

k
2

(u1u2)k
1− tk → β−1a2δk,1 , (9.30)

such that we again recover the β-deformed classical result for Jack polyno-
mials in (2.55) and when β = 1 the result in (2.56) for Schur polynomials.

9.1.5 Comments about Nf ≥ 3
As was discovered in paper IV, the cases Nf ≥ 3 cannot be determined
uniquely using the methods outlined in the sections above for Nf = 1 and
Nf = 2. This resembles the classical case of p = 3 mentioned in Section
3.2.2 in which we find that the correlators can only be determined up to
dependence on the coupling a1. What happens for Nf ≥ 3 is that one
needs to supply more initial conditions in order to solve the constraint
equations, which originates from the kernel of the q-Virasoro constraints
being infinite dimensional. Although it appears that the recursion relation
still can be used to evaluate correlators in this case, the dependence on
the mass parameters {uk} becomes more involved and the semi-classical
behaviour is also not straightforward.

9.1.6 Final remarks about D2 ×q S1

Upon comparing the above gauge theory construction in terms of a q-
deformed matrix model to the classical β-deformed matrix model in (2.21)
with potential (2.16), one can find the matching between the parameters
of the theories as given in Table 9.1. The first matching between the
β-deformation introduced in (2.21) and the adjoint mass t in (8.27), is
through identifying the adjoint mass as the parameter t = qβ. Next, the
matching between the degree of the classical potential p in (2.16) and the
number of fundamental anti-chiral multiplets Nf in (8.27), originates from
the interpretation of the fundamental multiplets as a q-deformed potential
as discussed around (9.3). Also the third matching between the classical
coupling constants ak and the masses of the anti-chiral fundamental
multiplets uk comes from this q-deformed potential picture, where the ak
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can be non-trivially related to the uk. Finally, the determinant insertion
ν in the classical picture can be related to the effective FI parameter via
the balancing parameter r in the quantum model.

Classical β-deformed matrix model Quantum matrix model
β-deformation β t Adjoint mass

Degree of potential p Nf Number of fundamentals
Coupling constants ak uk Fundamental masses

Determinant insertion ν r Balancing parameter

Table 9.1. Matching the parameters of the classical β-deformed matrix model
and the quantum matrix model describing the gauge theory on D2 ×q S1.

To conclude, we comment on the physical meaning of the correlators
found for the above gauge theory on D2 ×q S1. From the gauge theory
perspective, the interesting objects to compute are gauge invariant quanti-
ties such as Wilson loops. On the q-deformed matrix model side, averages
of Wilson loops correspond to averages of Schur polynomials. One can
therefore in the D2 ×q S1 gauge theory compute normalised expectation
values for Wilson loops along S1 in representation ρ via

〈WLρ〉 = 1
c∅

〈
Schurρ

(
pk =

N∑
i=1

λki

)〉Nf
. (9.31)

As an example, we can consider the q, t-Gaussian model with the particular
choices of Nf = 2 and masses u1 = q(1− q)1/2 and u2 = −q(1− q)1/2. We
then find the normalised expectation values for Wilson loops〈

WL{1,1}
〉

=
(
t2N

( −3q − 1
2(q − 1)(t− 1) + 3q + 5

2(q − 1)t −
2

(q − 1)(t+ 1)

)
+

+ tN
( −3q − 5

2(q − 1)t + 3q + 5
2(q − 1)(t− 1)

)
+

− 2
(q − 1)(t− 1) + 2

(q − 1)(t+ 1)

)
,

〈
WL{2}

〉
=
(
t2N

( −5q − 3
2(q − 1)t + 5q − 1

2(q − 1)(t− 1) + 2
(q − 1)(t+ 1)

)
+

+ tN
( −5q − 3

2(q − 1)(t− 1) + 5q + 3
2(q − 1)t

)
+

+ 2
(q − 1)(t− 1) −

2
(q − 1)(t+ 1)

)
. (9.32)
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9.2 S3
b

9.2.1 Details of the theory
Let us move on to the 3d N = 2 YM-CS theory, now instead living on
the squashed 3-sphere S3

b . Similarly to the D2 ×q S1 case, we consider
the N = 2 vector multiplet, an adjoint chiral multiplet of mass Ma,
Nf fundamental anti-chiral multiplets of masses {mk} for k = 1, . . . , Nf

together with an FI contribution parametrised by κ1. We also allow for
a non-vanishing CS term parametrised by κ2. This condition arises as a
technical, rather than physical, requirement from writing the q-Virasoro
constraints as a differential operator in the time variables acting on the
generating function. More specifically, we require

Nf = 2κ2 . (9.33)

Then, using the partition function as shown in [90,92] and as written in
(8.33), upon introducing dependence on the time variables we find that
the generating function for S3

b is given by

Z
Nf
S3
b

(t) =
∫

(iR)N

N∏
i=1

dXi Z
cl
S3
b
(X)Z1−loop

S3
b

(X)
∏
α=1,2

exp
( ∞∑
s=1

ts,α

N∑
i=1

λsi,α

)
.

(9.34)
Here we introduce the following exponentiated variables to ease notation,

qα = e
2πiω
ωα

tα = e
2πiMa
ωα

uk,α = e
2πimk
ωα

λi,α = e
2πiXi
ωα ,

(9.35)

recalling the labels α = 1, 2 for the holomorphic block, k = 1, . . . , Nf for
the fundamental anti-chirals and i = 1, . . . , N for the integration variables.
Here we also used ω = ω1 + ω2. Finally, we have the complex parameter
β = Ma/ω, so that tα = qβα is consistent with earlier discussions. We then
recall from Section 8.2.2 that Zcl

S3
b
(X) is the classical contribution given by

Zcl
S3
b
(X) =

N∏
i=1

exp
(
− πiκ2

ω1ω2
X2
i + 2πiκ1

ω1ω2
Xi

)
, (9.36)

and that Z1−loop
S3
b

(X) is the product of 1-loop determinants given by

Z1−loop
S3
b

(X) =
∏

1≤k 6=j≤N

S2(Xk −Xj |ω)
S2(Xk −Xj +Ma|ω)

Nf∏
k=1

N∏
i=1

S2 (−Xi −mk|ω)−1 .

(9.37)
The double sine function S2(z|ω) is defined in (5.9). We now view∏

1≤k 6=j≤N

S2(Xk −Xj |ω)
S2(Xk −Xj +Ma|ω) (9.38)
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as the q-deformed Vandermonde, whereas the other contributions to (9.34)
are considered a q-deformed version of the classical potential V (λ).

9.2.2 Modular double construction revisited
Let us now recall the idea of the factorisation of the S3

b partition function
in terms of D2 ×q S1 partition functions as given in [29] and reviewed in
Section 8.2.2. Extending this idea, it has been explored in [26] that the S3

b

generating function in fact satisfies two independent copies of q-Virasoro
constraints. Each copy then corresponds to the q-Virasoro constraints of
the corresponding D2×qα S1 theory and consequently one can then use the
solution on D2×q S1 to read off that on S3

b . Referring to this factorisation
property of the S3

b theory, the construction in [26] has been called the
modular double. We will also refer to the two commuting copies of the
q-Virasoro algebra as chiral sectors, similar to usual CFT terminology.

What this modular double construction implies more concretely, is that
upon letting one set of the times to be zero in the S3

b generating function
for instance {ts,2} = 0, we recover the D2 ×q S1 generating function,

Z
Nf
S3
b

(t)
∣∣∣
{ts,2}=0

' Z
Nf
D2×qS1(t) . (9.39)

Here it should be noted that the equivalence holds at the level of the two
objects satisfying the same set of q-Virasoro constraints, not at the level
of explicit integral representation.

9.2.3 The q-Virasoro constraints
Let us now review the method to derive the q-Virasoro constraints in the
case of S3

b . This is very similar to the derivation in Section 6.3, with the
difference being from the modular double construction that we have two
sets of constraints for the generating function labelled by α = 1, 2.

We begin with generalising the q-differential which then takes the form

dq−1
α ,i,α = M̂q−1

α ,i,α − 1 (9.40)

using the q-shift operator M̂q,i in (4.2), where we introduced a dependence
on the additional parameter α = 1, 2 labelling the two sets of constraints.
M̂q−1

α ,i,α then shifts each set of variables separately, such that

M̂q−1
α ,i,αλj,α′ =

{
q−1
α λj,α′ if i = j and α = α′ ,
λj,α′ otherwise . (9.41)

101



Alternatively, recalling the definitions of the exponentiated variables in
(9.35), we find that when the q-shift acts on variables Xi we have

M̂q−1
1 ,i,1f(X) =f(. . . , Xi − ω2, . . .) ,

M̂q−1
2 ,i,2f(X) =f(. . . , Xi − ω1, . . .) .

(9.42)

To then generalise the insertion in (6.32) required to generate the con-
straints, this becomes

N∑
i=1

dq−1
α ,i,α

[∑
n∈Z

(zλi,α)nGi,α(λ) . . .
]
, (9.43)

with . . . denoting the integrand as before, and where now

Gi,α(λ) =
N∏
j=1
j 6=i

1− tαλi,α/λj,α
1− λi,α/λj,α

. (9.44)

We then proceed similarly to Section 6.3, to find the q-Virasoro constraints

tNα exp
( ∞∑
s=1

zs
(1− t−sα )

s

∂

∂ts,α

)
Z
Nf
S3
b

(t)+

+ r−1
α q−1

α t1−Nα exp
( ∞∑
s=1

z−s(1− qsα)
(
ts,α + ps(u)

s(1− q−sα )

))
×

× exp
( ∞∑
s=1

zs
(1− tsα)
sqsα

∂

∂ts,α

)
Z
Nf
S3
b

(t) =

=
〈

exp
( ∞∑
s=1

z−s
(1− tsα)

s

N∑
i=1

λ−si,α

)〉Nf
t

+

+ r−1
α q−1

α tα exp
( ∞∑
s=1

z−s(1− qsα)
(
ts,α + ps(u)

s(1− q−sα )

))
×

×
〈

exp
( ∞∑
s=1

z−s
(1− t−sα )
sq−sα

N∑
i=1

λ−si,α

)〉Nf
t

,

(9.45)

for α = 1, 2. These constraints are identical to those on D2×q S1 in (9.14)
up to the index α. Similarly to (9.13), we also introduce the balancing
condition for S3

b parametrised by ν and rα,

ων = κ1−ω−Ma(N−1)+ω

2
Nf

2 +
Nf∑
k=1

mk

2 , rα = e
2πiω
ωα

ν = qνα . (9.46)
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Again we find that for the n = −1 constraint we must require the balancing
condition ν = 0, in order to not have any contributions from expectation
values of negative powers of λi,α.

To then solve the above constraints, we assume as before that the
generating function can be expanded in terms of the time variables as

Z
Nf
S3
b

(t) =
∑
ρ

∑
σ

1
|Aut(ρ)|

1
|Aut(σ)|cρ;σ

∏
a∈ρ

ta,1
∏
b∈σ

tb,2 , (9.47)

with the correlators cρ;σ given by

cρ;σ =
[∏
a∈ρ

∂

∂ta,1

∏
b∈σ

∂

∂tb,2
Z
Nf
S3
b

(t)
]∣∣∣∣∣
t=0

. (9.48)

To see how the factorisation of the S3
b generating function into two copies

of D2 ×q S1 appears, we review the logic outlined in paper III. From the
q-Virasoro constraints in (9.45), we can obtain a recursion similar to that
in (6.72). The starting point is the observation that this recursion treats
the two copies separately. Then one assumes that correlators of a certain
order d (in for instance the first set of times, i.e. |ρ| = d) factorises as

cρ;σ = cρ;∅ · c∅;σ
c∅;∅

, (9.49)

where cρ;∅ is a correlation function of only the variables {λi,1} and vice
versa. If one then considers another correlator cρ′;σ of order |ρ′| = d+ 1,
then all the correlators in the right hand side of the recursion equation
(similar to that in (6.72)) are of order d as they are of one order lower.
Then, from our assumption, all the correlators in the right hand side
factorises as (9.49) since they are of order d, such that the dependence
on the second copy can be extracted into an overall common factor of
c∅;σ. After dividing by this factor, the left hand side of the recursion is
therefore proportional to the ratio cρ′;σ/c∅;σ. The right hand side can then
be written entirely in terms of correlators cρ̃;∅ for some partition ρ̃ of order
d or lower. This implies that the correlator on the left hand side of order
d+ 1 is also forced to factorise according to the assumption in (9.49).

To complete the induction argument, we finally need that the first step
of the recursion factorises, i.e. the empty correlator c∅;∅. This correlator
corresponds to an overall choice of normalisation, which we can choose as

c∅;∅ = 1 , (9.50)

which therefore factorises. Thus by induction, it follows that all the corre-
lators cρ;σ factorises. Additionally, using the physical picture described
around equation (9.31), the factorisation also holds for the expectation
values of the Wilson loops. In other words,〈

WL(1)
ρ WL(2)

σ

〉
=
〈

WL(1)
ρ

〉〈
WL(2)

σ

〉
(9.51)
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for any partitions ρ, σ, where the superscript α for a Wilson loop WL(α)
ρ

labels the copy in the modular double construction α = 1, 2.
Using the above logic we then find that the correlators factorises as

desired according to (9.49), which in turns implies that also the generating
function factorises as

Z
Nf
S3
b

(t) = Z
Nf
S3
b

(0)
[∑

ρ

1
|Aut(ρ)|

cρ;∅
c∅;∅

∏
a∈ρ

ta,1

] [∑
σ

1
|Aut(σ)|

c∅;σ
c∅;∅

∏
a∈σ

ta,2

]
,

(9.52)
where we used the fact that the empty correlator is nothing but the parti-
tion function, c∅;∅ = Z

Nf
S3
b

(0). Thus, each half of the generating function
for S3

b satisfies its own set of q-Virasoro constraints and corresponds to
one of the two constituent D2 ×q S1 theories. The above factorisation of
the generating function in (9.52), then gives a more precise meaning to the
equivalence between the D2 ×q S1 and S3

b generating functions in (9.39)
motivated from the modular double construction. We therefore conclude
that all the results for the S3

b theory can simply be obtained from those
of the D2 ×q S1 one.
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10. 4d gauge theories and the
q, t, q′-deformation

We now proceed to discuss an application of the second type of quantum
matrix models, namely the q, t, q′-deformation as described in Chapter 7.
The applications of this elliptic model that we would like to discuss are four
dimensional supersymmetric gauge theories on compact spacesM3 × S1.
In the 3d picture, it has been shown in [26] that there is a correspondence
between the 3d N = 2 unitary quiver gauge theory and the trigonometric
Wq,t(Γ) algebra for any quiver Γ of [67]. In paper I we therefore explored
if this correspondence could be extended to 4d supersymmetric theories
and the elliptic Wq,t;q′ algebra. Another motivation can be found from
the property that partition functions of 4d supersymmetric gauge theories
are related to important quantities like the superconformal indices in the
particular case whenM3 = S3 [93, 94].

10.1 Details of the theory
Here we consider the 4dN = 1 gauge theory onM3×S1. More specifically,
we provide the example of S3 × S1 and we choose a 4d gauge group given
by G =×a U(Na) together with the gauge and matter content as given
in Section 8.2.3. Generalising the partition function in (8.40), the defect
generating function for S3 × S1 is given by

ZS3×S1({ta0,α, taα}) =e
∑

α=1,2N0({ta0,α})
∮
T |G|

∆S3×S1(z)
|Γ0|∏
a=1

Na∏
j=1

dzj,a
2πizj,a

×

× exp

− ∑
α=1,2

|Γ0|∑
a=1

Na∑
j=1

∑
n6=0

tan,αz
n
j,a

n(1− qnα)

 (10.1)

encoding all possible observables which can be computed via localisation.
∆S3×S1(z) is then the measure as indicated in Section 8.2.3 and it should
be noted that the time variables {tan,α} are labelled by α = 1, 2 mirroring
the modular double structure or holomorphic blocks. We also recall the
quiver construction in Section 7.1. The motivation behind studying this
object is that it is precisely the object which we can recover from theWq,t;q′

algebra side, as we will see in Section 10.2. As a final remark, similar
to the 3d cases we can view ∆S3×S1(z) as giving rise to the elliptically
deformed Vandermonde and a deformed version of the potential.
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10.2 Elliptic modular double construction
We now move on to discuss how the idea of the modular double, as
introduced by [26] and reviewed in Section 9.2 in the case of S3

b , also can
be applied to the case of 4d backgrounds. Similar to the 3d case, the
idea mirrors the factorisation properties of 4d gauge theory observables
[28,31–33]. In short, one creates a modular double version of the elliptic
Wq,t;q′ algebra (introduced in Chapter 7) by taking two commuting copies
of the algebra and combining them into a bigger algebra upon imposing
that the two are related by SL(2,Z) transformations. We then denote the
resulting algebra by W g

q,t;q′ labelled by the element g ∈ SL(2,Z).
Similarly to the modular double in the 3d case in Section 9.2.2, we use

the index α = 1, 2 to denote the two chiral sectors of the algebra. For each
of the two commuting elliptic algebras Wq,t;q′(Γ)α we have the screening
current Sa(w)α defined by the relation

[T an,α, Sb(w)α′ ] = δα,α′δa,b

(
Ob
n(qαw)α − Ob

n(w)α
(qα − 1)(w)α

)
, (10.2)

generalising (7.15). We then parametrise the integration variables as

(w)α = e
2πi
ωα
X , (10.3)

and combine the two screening currents into the operator Sa(X) given by

Sa(X) = Sa(w)1 ⊗ Sa(w)2 = ⊗
α=1,2

[Sa(w)α]−[Sa(w)α]+[Sa(w)α]0 . (10.4)

Here, we let [ ]±,0 denote the positive, negative and the zero mode parts
respectively. In general, Sa(X) does not commute with the generator T an,α
up to a total difference. For instance when α = 1 we find

[T an,1,Sb(X)] = δa,b

(
Ob
n(q1w)1 − Ob

n(w)1

(q1 − 1)(w)1

)
⊗ Sb(w)2 , (10.5)

which cannot be written as a total difference and therefore Sa(X) is not
suitable as a screening current for neither of the two Wq,t;q′(Γ)α algebras.
However, for the particular choice of deformation parameters given by

qα = e2πi ω
ωα , q′α = e−2πi ω3

ωα , tα = e2πiβ ω
ωα , µe,α = e2πiMe

ωα , (10.6)

with ω = ω1 +ω2 (where again we refer to Chapter 7 for details), together
with the replacement of the zero mode part in (10.4) given by

[Sa(w)α]0 −→
Θ((w)α q−s0,a,α

α ; qα)
Θ((w)α; qα)Θ(q−s0,a,α

α ; qα)
, (10.7)

we indeed find that Sa(X) is a good screening current.
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To make a connection with the earlier introduced parameters τ and σ
we can re-parametrise these as

τ = ω

ω1
, σ = −ω3

ω1
, (10.8)

such that the g ∈ SL(2,Z) action corresponds to interchanging ω1 ↔ ω2.
Similarly, the action of g can be extended to the other deformation
parameters of the two chiral sectors, as summarised in Table 10.1. Again
we specialise to the case S3 × S1 and for other backgrounds we refer to
paper I.

α = 1 W g
q,t;q′(Γ) α = 2 W g

q,t;q′(Γ)
q1 e2πiτ q2 e−2πig·τ = e2πi τ

τ−1

q′1 e2πiσ q′2 e−2πig·σ = e2πi σ
τ−1

t1 e2πiβ1τ t2 e−2πiβ2g·τ = e2πiβ2
τ
τ−1

µe,1 e2πiMe µe,2 e−2πig·Me = e2πi Meτ−1

(w)1 e2πiXe2πi` (w)2 e−2πig·Xe−2πig·` = e2πi X
τ−1 e2πi(1−`)

Table 10.1. The g ∈ SL(2,Z) action on the parameters of the two chiral
sectors of the S3 × S1 theory.

Proceeding similarly to Chapter 7, we can also construct a matrix model
using the modular double ellipticW g

q,t;q′ algebra. Using the operator Sa(X)
introduced in (10.4) we consider the state

Z|α〉 =
∫ |Γ0|∏

a=1

Na∏
j=1

dXa,jSa(Xa,j)|α〉 . (10.9)

Comparing to (7.28) we then have the matrix model

Zg({ta0,α, taα}) = e
∑

α=1,2N0({ta0,α})
∑
`

∫ |Γ0|∏
a=1

Na∏
j=1

dXa,j ∆g(X, `)×

× exp

 ∑
α=1,2

|Γ0|∑
a=1

Na∑
j=1

(
V (a)
α (Xa,j , `a,j)−

∑
n>0

tan,α(wna,j)α
n(1− q′nα )

)
(10.10)

for a potential
V (a)
α (Xa,j , `a,j) = α̂a ln(wa,j)α , (10.11)

where we defined

α̂a = αa + β

|Γ0|∑
b=1

C
[0]
abNb − (Na − 1)C

[0]
aa

2 −
|Γ0|∑

a>b,b=1
C

[0]
abNb

 (10.12)

107



for later convenience. Finally, making use of the g-action on the deforma-
tion parameters as given in Table (10.1), we can identify

∆g(X, `) = ∆q,t,q′(w)(−g)∆q,t,q′(w) (10.13)

with ∆q,t,q′(w) as in (7.27). As a final remark, mirroring the discussion for
the 3d modular double in Section 9.2.3, the matrix model above satisfies
two sets of elliptic Virasoro constraints which are related by g ∈ SL(2,Z).

10.3 The gauge theory and Wq,t;q′ algebra correspondence
In paper I we explored the following two correspondences between the
elliptic Wq,t;q′ algebra and certain gauge theories. Firstly between the
chiral elliptic Wq,t;q′(Γ) matrix model and the generating function of
a gauge theory on the half-space D2 × T 2. Secondly, we can match
the modular double elliptic W g

q,t;q′(Γ) matrix model to the generating
function of the gauge theory on M3 × S1. Furthermore, the M3 × S1

is created from gluing two D2 × T 2 using an element g ∈ SL(2,Z), i.e.
M3×S1 ' [D2×T 2]∪g [D2×T 2]. We now explore the two cases in more
detail.

10.3.1 Half-space/chiral matrix model
Let us start with the correspondence between the half-space gauge theory
and the chiral Wq,t;q′ matrix model. We take for simplicity unitary gauge
groups so we have an overall gauge group given by G =×a U(Na). We
then consider an N = 2 gauge theory content. As mentioned in Section
8.2.3, holomorphic blocks in four dimensions can be seen as gauge theory
partition functions on D2 × T 2. In other words they are given by

Bγ(ξ; τ, σ) =
∮
γ

|Γ0|∏
a=1

Na∏
j=1

dwj,a
2πiwj,a

Υ(w; τ, σ) , (10.14)

where the integration contours γ are along middle dimensional cycles
γ ⊂ (C×)|G|. The essence of the correspondence is then given by the
identification between the total integrand of the half-space gauge theory
Υ(w; τ, σ) given in the holomorphic block above and the measure of the
elliptic matrix model ∆q,t,q′(w) in (7.27). In other words we identify

Υ(w; τ, σ) = ∆q,t,q′(w) . (10.15)

In order for this correspondence to hold, we are required to identify the
dictionary between the parameters as given in Table 10.2.
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Gauge theory Wq,t;q′(Γ) matrix model
Fibration moduli qτ q Algebra deformation
Fibration moduli qσ q′ Algebra deformation
Adjoint mass ta t = qβ Algebra deformation

Half-space integration wa,j wa,j M. M. integration
Bifundamental mass ξe µe Cartan matrix deformation
Bifundamental mass ξe/ξ̄e p = qt−1 Algebra deformation

Table 10.2. Matching the parameters of the gauge theory and the chiral
Wq,t;q′(Γ) matrix model.

a

Γ quiver

Na

4d quiver

Adjoint

Bifundamental

Figure 10.1. Illustration of a part of the quiver Γ (left) and its corresponding
4d N = 2 gauge theory quiver (right) (following Paper I).

In addition to the above dictionary, one can also identify the number of
screening currents Na with the rank of the gauge group associated to the
respective node a ∈ Γ0. This can be illustrated as in Figure 10.1. Next,
to each node a ∈ Γ0 we associate one U(Na) vector multiplet and one
adjoint chiral multiplet, i.e. an N = 2 vector multiplet,

Υ(a)
vec(wa) =

∏
1≤j 6=k≤Na

Γ(tawa,j/wa,k; qτ , qσ)
Γ(wa,j/wa,k; qτ , qσ) . (10.16)

Then, for arrows Γ1 3 e : a → b or e : b → a between different nodes
(a < b), we associate a pair of bifundamental chiral multiplets, i.e. one
N = 2 bifundamental hypermultiplet,

Υ(e:a→b)
bif (wa, wb) =

Na∏
j=1

Nb∏
k=1

Γ(ξewb,k/wa,j ; qτ , qσ)
Γ(qτ ξ̄ewb,k/wa,j ; qτ , qσ)

,

Υ(e:b→a)
bif (wa, wb) =

Na∏
j=1

Nb∏
k=1

Γ(ξ̄−1
e wb,k/wa,j ; qτ , qσ)

Γ(qτξ−1
e wb,k/wa,j ; qτ , qσ) .

(10.17)
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Next, for arrows starting and ending on the same node – i.e. loops – given
by Γ1 3 e : a→ a, we associate a pair of adjoint chiral multiplets, i.e. one
N = 2 adjoint hypermultiplet,

Υ(a)
ad (wa) =

∏
1≤j 6=k≤Na

Γ(ξawa,j/wa,k; qτ , qσ)
Γ(qτ ξ̄awa,j/wa,k; qτ , qσ)

. (10.18)

Then, for each U(1) factor one can have an FI contribution given by

Υa
FI(wa) =

Na∏
j=1

wκaa,j (10.19)

and fundamental/anti-fundamental chiral pairs of the form

Υa
f (wa) =

Na∏
j=1

∏
f≥1

Γ(wa,j/ξ̄a,f ; qτ , qσ)
Γ(qτwa,j/ξa,f ; qτ , qσ) . (10.20)

We then have the correspondence between the gauge theory FI parameter
κa and the parameter α̂a in (10.12) on the matrix model side.

As a final remark for the half-space discussion, we can include time
variables to obtain the defect generating function on the half-space,

Bγ({ta0, ta}; τ, σ) =

= eN0({ta0})
∮
γ

|Γ0|∏
a=1

Na∏
j=1

dwj,a
2πiwj,a

Υ(w; τ, σ)
|Γ0|∏
a=1

exp

− Na∑
j=1

∑
n6=0

tanw
n
j,a

n(1− qnσ)

 .

(10.21)

We can then identify the defect generating function from (10.21) with the
matrix model in (7.28)

Bγ({ta0, ta}; τ, σ) ' Z|α〉 ' Z({ta0, ta}) . (10.22)

10.3.2 Compact space/modular double matrix model
Moving on to the correspondence between the compact spaceM3 × S1

and the elliptic W g
q,t;q′(Γ) matrix model, we then have the identification

between the gauge theory integrand ∆ M3×S1(z, `) and the matrix model
measure ∆g(X, `) given by

∆ M3×S1(z, `) ∝ Υ(w; τ, σ)(−g)Υ(w; τ, σ) =
= ∆q,t,q′(w)(−g)∆q,t,q′(w) = ∆g(X, `) .

(10.23)

Let us now review how the correspondence is achieved using the steps in
the above relation for the case of S3 × S1, and in particular understand
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how the factorisation (. . . )(−g)(. . . ) with g ∈ SL(2,Z) works. For other
4d backgrounds of the formM3 × S1 we refer to [28]. Let us consider the
S3 × S1 partition function for the gauge theory associated to the quiver Γ
with gauge group G =×a U(Na)

ZS3×S1 =
∮
T |G|

|Γ0|∏
a=1

Na∏
j=1

dza,j
2πiza,j

∆S3×S1(z) . (10.24)

Here the integrand ∆S3×S1(z) is made up of the contributions
∆S3×S1(z) = ∆2 vec(z)∆ad(z)∆bif(z)∆FI(z) (10.25)

which are respectively given by

∆2 vec(z) =
|Γ0|∏
a=1

∏
1≤j 6=k≤Na

Γ(̂tza,j/za,k; p, q)
Γ(za,j/za,k; p, q) ,

∆ad(z) =
|Γ0|∏
a=1

∏
e:a→a

∏
1≤j 6=k≤Na

Γ(µeza,j/za,k; p, q)
Γ(pqµ̄eza,j/za,k; p, q) ,

∆bif(z) =
∏

1≤a<b≤|Γ0|

∏
e:a→b

Na∏
j=1

Nb∏
k=1

Γ(µezb,k/za,j ; p, q)
Γ(pqµ̄ezb,k/za,j ; p, q)×

×
∏
e:b→a

Na∏
j=1

Nb∏
k=1

Γ(µ̄−1
e zb,k/za,j ; p, q)

Γ(pqµ−1
e zb,k/za,j ; p, q) ,

∆FI(z) =
|Γ0|∏
a=1

Na∏
j=1

zκaa,j . (10.26)

Now, we aim for this integrand to be of the form Υ(w; τ, σ)(−g)Υ(w; τ, σ) in
order to recover the desired modular double structure. Since we specialised
to the case S3 × S1 we have the parametrisation

q = e2πiω1
ω3 , p = e2πiω2

ω3 , (10.27)
and

za,j = e
2πi
ω3
Xa,j , t̂ = e

2πi
ω3
T̂
, µe = e

2πi
ω3
Me , µ̄e = e

2πi
ω3
M̄e . (10.28)

As indicated in Section 10.1, this precise form of the parametrisation
enables the interpretation of the g-gluing as the exchange of parameters
ω1 ↔ ω2. Using this, we employ the modular property of the elliptic
Gamma function given in (5.7), which can be rewritten as

Γ
(
e

2πi
ω3
X ; e2πiω1

ω3 , e2πiω2
ω3

)
=e−

iπ
3 B33(X|ω)Γ

(
e

2πi
ω1
X ; e2πiω2

ω1 , e−2πiω3
ω1

)
×

× Γ
(
e

2πi
ω2
X ; e2πiω1

ω2 , e−2πiω3
ω2

)
.

(10.29)
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This means that each Gamma function in the integrand ∆S3×S1(z) in
(10.25) can separately be written as a product of two Gamma functions.
Rewriting all of the contributions to ∆S3×S1(z) using (10.29), the entire
integrand ∆S3×S1(z) can be cast as (. . . )(−g)(. . . ). As a final step, we
need to make either of the two assumptions

Na∑
j=1

Xa,j = 0 or C
[0]
ab = 0 (10.30)

for a 6= b. The reason for these assumptions is to remove the cubic
polynomial P3 given in (8.45). As it consists of mixed-gauge anomalies
we require them to vanish for the theory to be sensible. Upon these
assumptions, the correspondence takes the simple form

∆S3×S1(z) = ∆g(X) , (10.31)

i.e. we precisely recover the modular double measure given in (10.13).
We can then create a table of identifications similar to Table 10.2, where
we match the parameters of the gauge theory and the modular double
W g
q,t;q′(Γ) matrix model. This is shown in Table 10.3, where we recall the

parametrisations in (10.27) and (10.28).

Gauge theory W g
q,t;q′(Γ) matrix model

Moduli q e2πiω1
ω3 S3 squashing ω1

Moduli p e2πiω2
ω3 S3 squashing ω2

Adjoint chiral mass T̂ βω S3 squashing ω

Compact space integration Xa,j Xa,j M. M. integration

Adjoint chiral mass Me Me Cartan matrix def.

Adjoint (anti-)chiral masses Me − M̄e ω(1− β) S3 squashing ω

FI parameter κa/ω3 α̂aω/ω1ω2 M. M. potential

Table 10.3. Matching between the parameters of the gauge theory and the
modular double W g

q,t;q′(Γ) matrix model.

10.4 Relations between classical and quantum models
So far we have considered the Hermitean matrix model, the β-deformed
Hermitean matrix model, the 3d gauge theories on D2×q S1 and S3

b given
by q, t-deformed matrix models and now lastly the 4d gauge theories on
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D2 × T 2 andM3 × S1 given by q, t, q′-deformed matrix models. Let us
therefore conclude these chapters on applications of the quantum matrix
models with a summary over the relations between these models and the
classical ones. This is illustrated in Figure 10.2.

Gauge theory on D2 × T 2

q, t, q′-model
Gauge theory on M3 × S1

q, t, q′ modular double

Gauge theory on D2 ×q S1

q, t-model
Gauge theory on S3

b

q, t modular double

Hermitean Matrix Model
with β-deformation

Hermitean Matrix Model∫
[DM ] e−TrV (M)

×2

q′ → 0 q′-deformation

×2

q-deformationSemi-classical limit
t = qβ, q → 1

β-deformationSchur limit
β → 1

Figure 10.2. Relations between the classical and quantum matrix models.
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11. Hirota equations versus Virasoro constraints

As a final application we explore the connection between the classical
Virasoro constraints and the so-called Hirota equations. This connection
arises when the generating function satisfying the Virasoro constraints
also is a τ -function of an integrable hierarchy. Being a τ -function, the
generating function satisfies a set of bilinear equations called the Hirota
equations. However, for any solution of the Virasoro constraints, it is
by no means guaranteed that the generating function satisfies the Hirota
equations. One example of a class of models which do satisfy both the
Virasoro constraints and the Hirota equations and therefore exist at the
intersection of the two moduli spaces are the classical matrix models
solutions. However, the exact relation between the two set of equations is
not fully known, which was the motivation for paper V.

11.1 Reviewing the Hirota equations
Integrability and its relation to matrix models has been reviewed in
for instance [35, 41]. Informally, integrability can be thought of as the
property of dynamical systems that all the dynamical characteristics can
be determined completely. Examples of systems which falls into this class
are two dimensional CFT’s and eigenvalue matrix models as introduced in
Chapter 2. Having been originally expressed through non-linear dynamical
equations, the bilinear Hirota equations was later introduced to describe
some integrable systems, where the generating function satisfying these
equations was then the τ -function as a function of time variables τ(t).
One can from this recursively obtain a family of equations, where such a
set of equations is usually referred to as an integrable hierarchy.

Let us now summarise how such Hirota equations are derived, while for
a review we refer to [36,95, 96]. We begin with introducing free fermionic
operators ψs and ψ∗s for s ∈ Z satisfying the anti-commutation relations

{ψs, ψr} = {ψ∗s , ψ∗r} = 0 , {ψs, ψ∗r} = δs,r , (11.1)

and generating an infinite dimensional Clifford algebra. Collecting the
operators into fermionic generating functions, ψ(z) and ψ∗(z), we have

ψ(z) =
∑
s∈Z

ψsz
s− 1

2 , ψ∗(z) =
∑
s∈Z

ψ∗sz
−s+ 1

2 . (11.2)
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Introducing a vacuum state |0〉 this satisfies

ψs|0〉 = 0 , s < 0 ,
ψ∗s |0〉 = 0 , s ≥ 0 ,

(11.3)

such that |0〉 is a “Dirac sea” with all negative mode states being empty
and all positive mode states being occupied. Therefore, ψs<0 and ψ∗s≥0
are annihilation operators and ψs≥0 and ψ∗s<0 are creation operators with
respect to the vacuum |0〉. One can then use the fermionic creation
operators to create a charge k vacuum given by

|k〉 =
{
ψk−1 . . . ψ1ψ0 |0〉 , k > 0
ψ∗k . . . ψ

∗
−2ψ

∗
−1 |0〉 , k < 0 .

(11.4)

From the fermionic operators we then construct Heisenberg oscillators αs

αs =
∑
r∈Z

: ψrψ∗r+s : , (11.5)

with s ∈ Z, which satisfies the commutation relations

[αs, αr] = sδs+r,0 . (11.6)

We also specify the fermionic charge operator α0 given by

α0 =
∑
r∈Z

: ψrψ∗r : . (11.7)

The charge k vacuum |k〉 then satisfies

αs|k〉 = 0 , if s > k ,

α0|k〉 = k|k〉 .
(11.8)

Collecting the Heisenberg oscillators into the current α(z), we have

α(z) =
∑
s∈Z

αsz
−s = : ψ(z)ψ∗(z) : . (11.9)

Next, we introduce the bosonisation map ΦN with N > 0 defined by

ΦN = 〈N |e
∑∞

s=1 tsαs . (11.10)

Upon bosonisation, we have the mapping of the Heisenberg oscillators to
operators in the time variables {ts} given by

ΦNαsΦ−1
N = ∂

∂ts
, ΦNα−sΦ−1

N = s ts, ΦNα0Φ−1
N = N

ΦN iqΦ−1
N = t0 ΦN (|k〉) = ekt0 ,

(11.11)
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where iq will appear shortly. Furthermore, under this map a vector
|τ〉 = g|N〉 in the fermionic Fock space with g ∈ GL(∞,C) transforms as

|τ〉 ΦN−−→ τ(t) . (11.12)

In other words, the τ -function τ(t) results from

τ(t) = ΦN |τ〉 = 〈N |e
∑∞

s=1 tsαs |τ〉 . (11.13)

As a next step, we introduce firstly operators E±(z)

E±(z) = exp
(
±
∞∑
s=1

z∓sα±s
s

)
(11.14)

and secondly the unitary operator Q = eiq which satisfies

Qψs = ψs+1Q, Qψ∗s = ψ∗s+1Q, Q|k〉 = |k + 1〉,
[α0, Q] = Q, Q† = Q−1 .

(11.15)

Using E±(z) and Q, we can express the fermionic generating currents as

ψ(z) = zα0− 1
2QE−(z)−1E+(z)−1 ,

ψ∗(z) = Q−1z−α0+ 1
2E−(z)E+(z) .

(11.16)

As the final part needed to obtain the Hirota equations, we introduce the
Sato Grassmannian. It is defined as the GL(∞,C)-orbit of the k-vacuum

Grk(C∞) ∼= GL(∞,C) · |k〉 (11.17)

as a submanifold of Λ∞k C∞. The Plücker relations on Sato Grassmannian
then arise from the condition on an element |τ〉 ∈ Λ∞k C∞ to be in the
orbit of the vacuum with charge k. This is true if and only if∮ dz

z
ψ(z)|τ〉 ⊗ ψ∗(z)|τ〉 = 0 , (11.18)

which are the Plücker relations. Here, the integral over z is such that
we extract the z−1 contribution in the Laurent series expansion of the
integrand. Recalling the operator Q, this is invertible such that the above
relation can be rewritten as∮ dz

z
Q−1ψ(z)|τ〉 ⊗Qψ∗(z)|τ〉 = 0 . (11.19)

Then, we use (11.16) to observe that

Q−1ψ(z) = zα0− 1
2E−(z)−1E+(z)−1 =

= zα0− 1
2 exp

( ∞∑
s=1

zsα−s
s

)
exp

(
−
∞∑
s=1

z−sαs
s

)
(11.20)
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and

Qψ∗(z) = z−α0+ 1
2E−(z)E+(z) =

= z−α0+ 1
2 exp

(
−
∞∑
s=1

zsα−s
s

)
exp

( ∞∑
s=1

z−sαs
s

)
.

(11.21)

Using this, (11.19) can be rewritten as the bilinear Hirota equations

∮
dz exp

( ∞∑
s=1

zsα−s
s

)
exp

(
−
∞∑
s=1

z−sαs
s

)
|τ〉⊗

⊗ exp
(
−
∞∑
s=1

zsα−s
s

)
exp

( ∞∑
s=1

z−sαs
s

)
|τ〉 = 0 .

(11.22)

Using the mapping in (11.11), the Hirota equations take the form

∮
dz exp

( ∞∑
s=1

zs(ts − t̃s)
)

exp
(
−
∞∑
s=1

z−s

s

(
∂

∂ts
− ∂

∂t̃s

))
τ(t)τ(t̃) = 0 .

(11.23)
Here it should be noted that there are two sets of time variables {ts} and
{t̃s} due to the product of two vectors in (11.22). Upon a redefinition of
the variables using the new time variables {us} and {vs},

us = ts + t̃s
2 , vs = ts − t̃s

2 (11.24)

we can rewrite this as the integral identity

∮
dz exp

(
2
∞∑
s=1

zsvs

)
exp

(
−
∞∑
s=1

z−s

s

∂

∂vs

)
τ(u+ v)τ(u− v) = 0 ,

(11.25)
with u ± v denoting us ± vs for s ≥ 1. Again we view this integral
as extracting the z−1 component of the Laurent series of the integrand
and when this residue is vanishing then τ is a τ -function. The above is a
compact way to express the relation at the level of generating functions τ(t).
As we are now interested in studying the intersection of the solutions to the
Virasoro constraints and the Hirota equations, the τ -functions in (11.25)
can therefore be identified with the classical generating function Z(t; a).
Next, we wish to rewrite the above Hirota equations as constraints on the
correlators cρ. To do so, we first use the Cauchy identity for symmetric
Schur polynomials Schur{m}(ps) in (2.37) in order to rewrite the above
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identity as∮ dz
2πiz

∞∑
k=0

∞∑
l=0

z1+k−lSchur{k} (ps = 2svs)×

× Schur{l}
(
ps = − ∂

∂vs

)
τ(u+ v)τ(u− v) =

=
∞∑
k=0

Schur{k} (ps = 2svs)×

× Schur{k+1}

(
ps = − ∂

∂vs

)
τ(u+ v)τ(u− v) = 0 .

(11.26)

The shifted τ -function can then be expanded as a power series in the vs
around the times us as

τ(u± v) =
∞∑
d=0

[τ(u± v)](d) =
∞∑
d=0

[∑
λ`d

1
|Aut(λ)|τλ(u)

∏
l∈λ

(±vl)
]
, (11.27)

where [τ(u ± v)](n) is used to denote degree n in vs and λ ` d denotes
that λ is an integer partition of d. Here we also use the notation τλ(u) =∏
a∈λ

∂
∂ua

τ(u). Substituting this expansion in (11.26) and projecting onto
the degree d part in vs we obtain

d∑
k=0

Schur{k} (ps = 2svs)Schur{k+1}

(
ps = − ∂

∂vs

)
×

×
d+1∑
l=0

[τ(u+ v)](l)[τ(u− v)](d+1−l) = 0 .
(11.28)

Notice that for degree 0 ≤ d < 3 this equation is trivially satisfied, while
for d = 3 we have the first non-trivial condition on the τ -function and its
derivatives. Another remark we can make here is that for each degree in
(11.28) there will be an independent equation. Consequently we have an
infinite set of equations which the τ -function has to satisfy.

Finally, to make the connection to correlators as mentioned earlier, we
set all times u = 0 in (11.28) and use the expansion of the generating
function in terms of correlators in (2.48) which implies

τλ(u)|u=0 = cλ , (11.29)

such that the Hirota equations then become bilinear constraints on the
correlators. For instance in degree d = 3 we find

3c2
{1,1} + 3c∅c{2,2} − 4c∅c{3,1} − 4c∅c{1,1,1}+

+ c∅c{1,1,1,1} − 3c2
{2} + 4c{1}c{3} = 0 ,

(11.30)
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and for degree d = 4

3c{1,1}c{2,1} + 2c∅c{3,2} − 3c{1}c{2,1,1} + c∅c{2,1,1,1} + 3c{1}c{4}+
− 3c∅c{4,1} − c{2}c{1,1,1} − 2c{2}c{3} = 0 .

(11.31)

In degree d ≥ 5 there are several bilinear equations and more specifically
the number of equations is equal to the number of partitions of size d.
However, all such equations might not be independent. For instance at
degree d = 5 there are 4 independent equations.

11.2 Relation between Virasoro and Hirota
As mentioned at the beginning of this chapter, the relation between the
solutions of the Virasoro constraints and that of the Hirota equations
is still not fully known and is the motivation behind paper V. More
concretely, we wish to determine if the solutions to the classical Virasoro
constraints for β = 1 given in (3.14) (i.e. the correlators) also satisfy the
Hirota equations. As can be seen from the form of the Hirota equations
in (11.28), this will be verified degree by degree.

Let us begin with reviewing why matrix models with β = 1 can provide
a solution to the Hirota equations. The generating function for matrix
models can be written as a determinant of an N ×N symmetric matrix.
This can be derived from what has been called Andréief’s integration
formula in [97], where for a review we refer to [98]. The restriction to
β = 1 is then due to the fact that this derivation fails precisely when
β 6= 1. We will therefore in this section assume that β = 1, in which case
Andréief’s integration formula takes the form

τN (t; a) = det
1≤i,j≤N

[(
∂

∂t1

)i+j−2
τ1(t; a)

]
, (11.32)

where we introduce a label N and a dependence on the couplings a of
the τ -function. If the τ -function is of the form (11.32), together with
satisfying

∂

∂tk
τ1(t; a) =

(
∂

∂t1

)k
τ1(t; a) , (11.33)

then the τ -function is a solution to the Hirota equations [36,99]. Thus we
express the rank N matrix integral as a determinant of the rank 1 integral

τ1(t; a) =
∫

Γ
dx e−V (x)+

∑∞
s=1 tsx

s

, (11.34)

for a contour Γ. We then recall the form of the potential in (2.16),
which implies the additional constraint in (3.73). We can therefore trade
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derivatives with respect to t1 with derivatives in the coupling constants a1
in (11.32). Upon subsequently setting all time variables to zero, we find

τN (0; a) = c∅(a) = det
1≤i,j≤N

[(
− ∂

∂a1

)i+j−2
τ1(0; a)

]
(11.35)

where
τ1(0; a) =

∫
Γ

dx e−V (x) . (11.36)

Let us now summarise the cases of p = 1, 2, 3 recalling the findings from
Section 3.2.3, where the results are collected in Table 11.1. For p = 1 we
choose the contour Γ along the positive real line, whereas for p = 2 it is
along the entire real line. For both p = 1 and p = 2 it can be shown that
upon insertion of the correlators and restricting to β = 1 that the Hirota
equations are satisfied. Furthermore, it can also be checked that the empty
correlators for p = 1 and p = 2 given in (3.80) and (3.83) respectively,
can be recovered from the determinant representation in (11.35) up to
constants kN,β,ν1 and kN,β2 when β = 1.

However, in the case p = 3 the Hirota equations are not immediately
satisfied. To see this, we begin with recalling that correlators can only
be determined up to correlators c{1,...,1}(a1, a2, a3) as shown in paper IV
and reproduced in equation (3.72). Therefore, one needs to replace such
correlators using the additional constraint (3.73),

c{1, . . . , 1}︸ ︷︷ ︸
k

(a1, a2, a3) =
(
− ∂

∂a1

)k
c∅(a1, a2, a3) . (11.37)

The Hirota equations are then not directly satisfied, but one instead finds
the constraint at degree 3

a2
3

(
c∅∂

4
a1c∅ − 4

(
∂3
a1c∅

)
(∂a1c∅) + 3

(
∂2
a1c∅

)2
)

+

+ (a2
2 − 4a1a3)

(
(∂a1c∅)

2 − c∅∂2
a1c∅

)
− 2a3c∅∂a1c∅ + a2Nc

2
∅ = 0

(11.38)
where we let c∅(a1, a2, a3) = c∅ and ∂

∂a1
= ∂a1 to ease notation. To simplify

this, we now apply the solution for c∅(a1, a2, a3) in (3.90) to find

2(zg′(z)2 − 8g′′′(z)g′(z) + 6g′′(z)2) + g(z) (g′(z)− 2zg′′(z) + 4g′′′′(z)) = 0
(11.39)

for the function g introduced in (3.89) and with z as in (3.95). The
meaning of (11.39) is that for a generic choice of the function g(z), the
Hirota equations are not satisfied, even upon choosing β = 1. Specialising
to the case N = 1 for p = 3, we however find that for the solution in (3.98)
the Hirota equations are satisfied. Another solution in the case of generic
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N is the one given by matrix models, although identifying the explicit
form of g(z) by matching the integral and the generating function might
not be straightforward. For instance in the case of N = 1, we can make
the change of variables x = (a−1/3

3 x′ − a2/2a3) to obtain

τ1(0; a1, a2, a3) =

=
∫

Γ
exp

(
−1

3a3x
3 − 1

2a2x
2 − a1x

)
dx

= exp
(
a1a2

2a3
− a3

2
12a2

3

)
a
−1/3
3

∫
Γ′

exp
(
−x
′3

3 +
(
a2

2 − 4a1a3

4a4/3
3

)
x′
)

dx′ .

(11.40)
Upon comparing the above to (3.90) we can identify g(z) as

g(z)|N=1 =
∫

Γ′
exp

(
−x
′3

3 + z

2x
′
)

dx′ , (11.41)

where for an appropriate contour Γ′ we recover a linear combination of
Airy functions. It can then be deduced from the Airy equation that the
above solution for p = 3 and N = 1 satisfies the Hirota equations, i.e.
(11.39).

p c∅(a) Hirota equations

1 kN,β,ν1 a
−N(ν+β(N−1)+1)
1 3

2 kN,β2 a
− 1

2N(β(N−1)+1)
2 exp

(
Na2

1
2a2

)
3

3 exp
(
Na1a2

2a3
− Na3

2
12a2

3

)
a
− 1

3 (1−β(N−1))N
3 g

(
a2

2−4a1a3

2a4/3
3

)
7

N = 1 :

exp
(
a1a2
2a3
− a3

2
12a2

3

)
a
−1/3
3

[
kA Ai

(
a2

2−4a1a3

4a4/3
3

)
+

+kB Bi
(
a2

2−4a1a3

4a4/3
3

)]
3

Table 11.1. Summary of the empty correlators for p = 1, 2, 3 together with
indication if this solves the Hirota equations or not.

The q-analogue of the Hermitean matrix models, which can be given in
terms of Jackson q-integrals, can also be written in determinant form using
Andréief’s formula. Consequently, such q-deformed models satisfies both
the q-Virasoro constraints and the Hirota equations. These generalisations
of the Hermitean matrix model therefore provide possible directions for
further investigations.
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13. Svensk sammanfattning

Världen runt omkring oss beskrivs idag på kvantnivå med hjälp av ett
ramverk som kallas Standardmodellen. I den delas samtliga universums
partiklar upp i två klasser: bosoner och fermioner. Bosoner är de partiklar
som förmedlar de fyra fundamentalkrafterna i universum. Med andra ord
ger de upphov till de starka och svaga kärnkrafterna samt den elektro-
magnetiska kraften. Bosonen som ger upphov till gravitationskraften är
dock ännu inte experimentellt bevisad. Fermioner är de partiklar som
utgör all den materia som finns omkring oss. Det som skiljer de två
klasserna åt är en egenskap som heter spinn, där bosoner har heltaligt
spinn medan fermioner har halvtaligt spinn. Det finns dock problem
med Standardmodellen. Ett sådant problem är något som kallas hierarki-
problemet. Det handlar om den stora skillnaden mellan storleken på
den svaga kärnkraftens styrka och gravitationskraftens styrka. Ett annat
problem handlar om föreningen av kopplingskonstanterna. Denna förening
av de svaga och starka kärnkrafterna samt den elektromagnetiska kraften
måste ske vid höga energinivåer för att en så kallad storförenad teori ska
kunna existera. En lösning på dessa problem är supersymmetri. Detta
är en symmetri mellan de två typer av partiklar som tidigare nämnts.
Mer specifikt så är supersymmetri en teori där varje partikel har en
motsvarande antipartikel, med samma egenskaper som partikeln förutom
spinn. Varje boson har därför en supersymmetrisk partner som är en
fermion och vice versa. Supersymmetri resulterar därför i en utökad
version av Standardmodellen. Supersymmetrins existens har dock ännu
inte bekräftats av experiment och nuvarande partikelacceleratorer, som
exempelvis LHC vid CERN i Schweiz, behöver komma upp till högre
energinivåer för att ha möjlighet att kunna upptäcka supersymmetri.

Standardmodellen är formulerad i ett matematiskt språk som kallas
kvantfältteori och mer specifikt så beskrivs den genom gaugeteorier.
Förutom att supersymmetri löser de tidigare nämnda problemen relaterade
till hierarki och föreningen av kopplingskonstanter, så kan supersymmetri
även underlätta uträkningar i gaugeteorier. I supersymmetriska gauge-
teorier är man ofta intresserad av att beräkna olika typer av observabler.
Under de senaste tio åren har sättet att beräkna sådana observabler på
genomgått en metamorfos, i och med utvecklingen av en metod vid namn
supersymmetrisk lokalisering. När denna lokaliseringsteknik används,
resulterar den i att observabler reduceras till en enklare form och ibland
till vad som kallas för matrismodeller. Dessa kan delas upp i två kategorier:
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klassiska (eller odeformerade) samt deformerade matrismodeller. De de-
formerade matrismodellerna kan ses som en generalisering av de klassiska
modellerna, där man i den enklaste typen av deformerade modeller intro-
ducerar en ny parameter, vanligtvis q, som ger upphov till deformationen.
Båda dessa typer av matrismodeller har förekommit i olika lokaliserings-
uträkningar. Klassiska matrismodeller kan ses som en lösning på en
differentialekvation som kallas Virasoro tvång och det är dessa tvång samt
dess q-deformerade motsvarighet som är centrala i våra utforskningar.

I artikel V studerar vi klassiska matrismodeller och undersöker dess
Virasoro tvång. Vi undersöker även hur Virasoro tvång relaterar till ett
annat område inom teoretisk fysik, nämligen integrabla system, med andra
ord sådana system som kan lösas exakt. Vi undersöker sedan i artikel II hur
man kan lösa q-deformerade Virasoro tvång och ger exempel på konkreta
lösningar. Vi jämför sedan i artikel IV klassiska och deformerade modeller
och inkluderar mer generella deformerade modeller än de studerade i artikel
II. Slutligen, i artiklar I och III studerar vi olika typer av deformerade
matrismodeller som har uppkommit som ett resultat av den tidigare
nämnda lokaliseringstekniken.
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