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ScienceDirect
The gut epithelium prevents bacterial access to the host’s

tissues and coordinates a number of mucosal defenses. Here,

we review the function of epithelial inflammasomes in the

infected host and focus on their role in defense against

Salmonella Typhimurium. This pathogen employs flagella to

swim towards the epithelium and a type III secretion system

(TTSS) to dock and invade intestinal epithelial cells. Flagella

and TTSS components are recognized by the canonical NAIP/

NLRC4 inflammasome, while LPS activates the non-canonical

Caspase-4/11 inflammasome. The relative contributions of

these inflammasomes, the activated cell death pathways and

the elicited mucosal defenses are subject to environmental

control and appear to change along the infection trajectory. It

will be an important future task to explain how this may enable

defense against the challenges imposed by diverse bacterial

enteropathogens.
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Introduction
Salmonella Typhimurium (S.Tm) is a common foodborne

pathogen. It is closely related to other bacterial enteropatho-

gens infecting humans and animals, for example entero-

pathogenic Escherichia coli, Citrobacter rodentium or Shigella
flexneri. All these pathogens employ type III secretion sys-

tems (TTSS) to manipulate gut epithelial cells, express
$ Given his role as Guest Editor, Wolf-Dietrich Hardt had no involve-

ment in the peer-review of this article and has no access to information

regarding its peer-review. Full responsibility for the editorial process for

this article was delegated to Thirumala-Devi Kanneganti.
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lipopolysacchararide (LPS) on their surface, and appear to

interact with host cellular inflammasomes during the infec-

tion (Table 1). In spite of these similarities, some aspects of

the pathogens’ attack on the gut epithelium, that is, the

requirement  for flagella, the actin structures at the epithelial

surface, and/or the capacity for actin-based propulsion into

neighbouring epithelial cells may differ between these

enteropathogens. This may contribute to differences in

the pathogen’s host range, or aspects of the pathophysiology

of the infectious disease. Nevertheless, general principles

are emerging, including the basic function of epithelial

inflammasome defense. Here, we will focus on epithelial

inflammasome defense against S.Tm, while other entero-

pathogens are covered elsewhere in this issue.

Over the last decades, S.Tm has been extensively studied

in cell culture and animal infection models (reviewed in

Refs. [1,2]), which has substantially advanced our general

understanding of enterobacterial infection mechanisms.

This has revealed important inflammasome functions in

the complex setting of a gut infection. In our review, we

will discuss the experimental evidence from orogastric

mouse infections and selected data from human and

murine tissue culture models.

Murine models for studying Salmonella gut
infection
In order to interpret animal data, it is important to

consider the experimental details. In mice, colonization

resistance, that is, the ability of the complex gut micro-

biota to suppress S.Tm growth in the gut lumen, limits

enteric disease to a few percent of infected hosts [3,4].

Therefore, in vivo studies as a rule employ antibiotic pre-

treated mice and gnotobiotic mice associated with

defined microbiotas of reduced complexity, which permit

highly reproducible gut colonization and enteric disease

kinetics [5–9]. Shifts in food composition may provide

another option for enhancing the infection in mice with a

complex microbiota [4] (reviewed in Ref. [10]). The

associated changes in microbiota composition, metabolite

or vitamin concentrations may modulate the pathogen’s

virulence or mucosal immune response kinetics and could

explain subtle differences between data from different

studies [11�,12] (reviewed in Ref. [13]). Moreover, oral

infection models are vulnerable to confounding effects

from pathobionts present in the gut luminal microbiota.

Another review in this issue discusses this phenomenon

in depth. When studying mice with mucosal immune

system defects, the use of littermate controls is the best

way to avoid such confounding microbiota effects [14,15�]
www.sciencedirect.com
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(reviewed in Refs. [16–18]). By carefully controlling the

mouse infection and by exploring the immune responses

and their effects at different time points post infection (p.

i.), first important concepts have emerged. Given that

orogastric Salmonella infection models mimic key disease

symptoms observed in human gastroenteritis, including

epithelial erosion, crypt abscesses, and inflammatory

changes within the epithelium and the underlying lamina

propria [5,8,9], the concepts may also apply to the human

infection.

Mouse models have shed light onto the initial stages of

gut colonization by S.Tm, which have been reviewed

elsewhere [2,19,20]. Importantly, S.Tm expresses flagella

to navigate gaps in the mucus layer [21�,22,23]. When

arriving at the apical surface of the gut epithelium, the

pathogen remains flagellated and expresses a pre-formed

TTSS to dock, inject bacterial effector proteins and

invade intestinal epithelial cells (IECs) [21�,22–24,25�].
Thus, it arrives at the IECs ‘pre-loaded’ with PAMPs

(discussed, below) and elicits inflammation. The latter

limits pathogen tissue loads and also alters the gut luminal

nutrient pool, which may enhance pathogen growth

within the gut and promote transmission [26–32].

Here, we focus on the innate immune responses elicited

by IEC inflammasomes upon S.Tm gut infection. We

review the well-characterized inflammasome responses

that dominate during the first day of the infection, and

discuss recent findings suggesting how inflammasome

responses may change at later time points. We summarize

validated concepts and present hypotheses about the

epithelial cell death pathways triggered during S.Tm

infection.

Inflammasomes
Inflammasomes are signal processing machines executing

important sensor and signal transduction functions of the

innate immune system, that is, by surveying the host

cell’s cytosol for pathogen- or danger associated molecular

patterns (PAMPs, DAMPs respectively). They are exten-

sively reviewed elsewhere in this issue. Briefly, inflam-

masomes are divided into canonical and non-canonical

inflammasomes [33–35]. Canonical inflammasomes

include the NLRP family with NLRP1, NLRP3, the

NLRC family with its single member NAIP/NLRC4,

and the non-NLR family with pyrin and AIM2 inflam-

masomes. All these canonical inflammasomes share a

common signalling cascade: Upon sensing PAMPs or

DAMPs, a Caspase-1 activation platform is assembled,

leading to the recruitment and processing of pro-Caspase-

1 into its active form. Activated Caspase-1 cleaves down-

stream targets such as pro-inflammatory cytokines pro-

IL-1b and pro-IL-18 and Gasdermin D (GsdmD).

GsdmD forms pores in the cell membrane leading to

pyroptosis - a specific type of cell death featuring cell

membrane lysis and pro-inflammatory cytokine secretion
Current Opinion in Microbiology 2021, 59:86–94
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into the extracellular space. The Caspase-11 inflamma-

some in mice and its human orthologue, the Caspase-4/5

inflammasome, do not follow this common signalling

pathway and are therefore dubbed non-canonical inflam-

masomes. Caspase-4/5/11 can directly sense cytosolic

lipopolysaccharide (LPS), which is a common outer mem-

brane component of gram-negative bacteria, including S.
Tm cells when invading the host’s IECs. Subsequently, it

can cleave GsdmD, which induces membrane damage

similar to canonical inflammasomes. While most of this

knowledge is based on studies in macrophages, IECs have

also been shown to employ inflammasome signalling [36–

39]. However, in IECs only the canonical NAIP/NLRC4

inflammasome and the non-canonical Caspase-4/11

inflammasome are thought to significantly affect the S.
Tm infection. We discuss these inflammasomes, and their

interconnection, in detail below.

NAIP/NLRC4 and Caspase-11 inflammasomes
appear to work sequentially during S.Tm
murine gut infection
In 2006, it was shown that Caspase-1 deficient mice are

more susceptible to orogastric S.Tm infection than WT

mice [40,41]. This included shortened time to death and

increased pathogen loads in the mesenteric lymph nodes

and spleens of the Caspase-1 deficient mice (which were

later found to also lack Caspase-11; [42,43]). This patho-

gen control deficiency of mice lacking Caspase-1 has been

confirmed by independent follow-up studies

[44,45��,46,47]. Similar observations were made in

NLRC4 inflammasome deficient mice [48,49], which

suggested a NLRC4/Caspase-1 dependent restriction

of systemic S.Tm spread. At this time, it remained

unknown at which stage of the infection, in which cell

type, and how NLRC4/Caspase-1 signalling can restrict S.
Tm. The following years unveiled that the NAIP/

NLRC4 inflammasome (partially including Caspase-1)

in IECs is responsible for S.Tm restriction [37,39]. Lit-

termate controlled experiments with bone marrow chi-

meras and IEC-specific knockout mice revealed that

epithelial NAIP/NLRC4 promotes the expulsion of

infected IECs during the first day of infection (Figure 1).

The lack of this host response resulted in up to 100 times

elevated S.Tm cecal tissue loads at 18 hour pi. [39].

These findings were later confirmed by an independent

study [50], and protection against systemic S.Tm spread

was also assigned to the gut epithelium [45��]. Barcoded

S.Tm strains, mathematical modelling and epithelium-

specific NAIP1-6-ablation established that NAIP/

NLRC4, which is highly expressed in IECs [35,51,52�],
prevents pathogen access to the mucosal tissue and

thereby reduces subsequent pathogen dissemination to

the mLN [45��]. In contrast, during the first day of

infection, there was no discernible contribution of

NAIP/NLRC4 in immune cells, in spite of the role of

phagocytes in systemic S.Tm dissemination [53]. This

can be explained by the fact that S.Tm has to express
Current Opinion in Microbiology 2021, 59:86–94 
PAMPs such as flagellin and the TTSS to invade IECs,

but downregulates these PAMPs within the host tissues

to evade recognition by the NAIP/NLRC4 inflamma-

some (reviewed in Ref. [54]).

The non-canonical Caspase-4/11 inflammasome can elicit

a similar response as NAIP/NLRC4 in S.Tm infected

epithelial cell lines, and this may have implications in vivo
[36]. Similar to NAIP/NLRC4, intracellular S.Tm (as well

as LPS and extracellular E. coli infection) induce epithe-

lial Caspase-4/11 signalling in infected IECs and WT

mice showed lower mucosal pathogen loads compared to

Caspase-11 deficient animals at day 7 p.i. While littermate

controls were lacking, a recent follow up study expanded

these findings [55��]. After exposure to IFNg, which is

expressed in copious amounts in the infected gut [56–58],

IECs upregulate pro-Caspase-11 and shift towards Cas-

pase-11 dependent expulsion of S.Tm infected cells

[55��]. Accordingly, Caspase-11 can limit mucosal patho-

gen loads in S.Tm infected mice by days 3–7 p.i. [36,55��].
Notably, independent work showed that other pro-

inflammatory cytokines such as TNF can also induce

pro-Caspase-11 expression in intestinal epithelial orga-

noids (enteroids) [52�] and that IFN signalling can influ-

ence Caspase-4/11 activation through GBPs [59,60�,61�].
Taken together, it seems plausible that gut inflammation

provides multiple signals to optimize defense. In the

murine gut, this may shift the response driving infected

IEC expulsion from NAIP/NLRC4 dependence at �day

1 p.i. towards Caspase-11 dependence at �days 3–7 of the

infection (Figure 1).

NAIP/NLRC4-deficient mice show a delayed onset of

inflammation during the first 12�18 hour p.i. with

reduced levels of pro-inflammatory IL-18, which is

known to induce IFNg production [30,39,50]. Thus, it

is reasonable to speculate that NAIP/NLRC4 drives

initial IEC expulsion and generates an inflammatory

environment fuelling Caspase-11 dependent IEC expul-

sion as observed later in the infection (Figure 1). This

would be in line with the observed negligible Caspase-11

dependent restriction of S.Tm within the first day of

infection [39,45��], but elevated gut tissue loads in Cas-

pase-11 deficient mice at later time points (>1 day p.i.)

[36,55��]. Thereby, Caspase-11 dependent IEC expulsion

might partially rely on NAIP/NLRC4, that is, through

NAIP/NLRC4-inflammasome elicited IL-18, IFNg, and/

or TNF signalling. In mice, Caspase-11 dependent IEC

expulsion may hence be regarded as a complementary

defense system. However, this remains to be formally

tested. One should also quantify the relative contribu-

tions of the canonical and non-canonical triggers of

infected IEC expulsion during later phases of the infec-

tion. Time-resolved littermate-controlled infection

experiments in single and double knockout mice should

provide interesting answers. Importantly, NLRC4 as well

as Caspase-11 contribute to restricting systemic S.Tm
www.sciencedirect.com
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Figure 1
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Epithelial NAIP/NLRC4 and Caspase-11 inflammasomes may sequentially contribute to S.Tm restriction in mice.

In mice, S.Tm invasion into IECs promotes NAIP/NLRC4 driven expulsion and soluble mediator release, which may generate an inflammatory

environment fueling IEC expulsion by Caspase-11 and involving GBPs. Thus, Caspase-11 dependent expulsion may partially rely on NAIP/NLRC4,

that is, through IL-18, IFNg, and/or TNF signalling. In particular, IFNg and TNF increase the expression of Caspase-11 and GBPs, which may

facilitate activation of the Caspase-11 inflammasome. IFNg is also known to promote mucus secretion by goblet cells.
burden at later time points (based on systemic infection

studies; [62–65]). This warrants a careful assessment of

epithelial and systemic protection alike, while studying

NLRC4 and Caspase-11 defenses at >1 day p.i.

IEC inflammasomes – epithelial cell state and
species-specific differences
The relative importance of different inflammasomes in

naı̈ve IECs might vary dependent on the growth and

differentiation state of the epithelium. Inflammasome

expression varies substantially between immortalized/

transformed cell lines and primary epithelial cells

[52�,66��]. Therefore, inflammasome signalling at early

and late infection could be further influenced by the IEC

differentiation status. It is plausible that increased IEC

proliferation observed during S.Tm infection might lead

to poorly differentiated cells and thereby affect the rela-

tive expression and contribution of NAIP/NLRC4 or

Caspase-11 inflammasomes. A recent study moreover

observed considerable interspecies variations [66��]. In

particular, non-canonical inflammasome signalling seems

more important in human than in murine IECs, as dem-

onstrated in enteroid culture infections. In contrast, Cas-

pase-1/5 seemed to be dispensable. Based on these find-

ings it is important to acknowledge potential cell-state
www.sciencedirect.com 
and species-specific differences in IEC inflammasome

signaling when interpreting experimental data.

Inflammasome signalling within IECs upon S.
Tm infection
While non-canonical inflammasome signaling employs Cas-

pase-4/11 as both the sensor and executor, NAIP/NLRC4

signaling is organized in a more complex cascade. The NAIP/

NLRC4 inflammasome integrates signals elicited by several

different PAMPs. This hinges on the respective receptors. In

murine immune cells, this includes NAIP1-2 recognizing the

TTSS and NAIP5-6 recognizing flagellin [67–72]. Similarly,

flagellin delivery into the IEC cytosol is a potent trigger of the

NAIP/NLRC4 inflammasome [50]. NAIP1-6 receptors are

highly expressed in IECs [35,39,45��,51,52�], and permit the

epithelial NAIP/NLRC4 inflammasome to also integrate

multiple PAMP signals (Figure 2). Early studies suggested

that S.Tm effectors such as SipB or SopE may also induce

Caspase-1 dependent defenses [47,73]. However, it remains

unclear if this is indeed the case in vivo. Alternatively, SipB

and SopE-driven enhancement of host cell invasion [9,25�,74]
may determine the dose of TTSS or flagellar proteins arriving

in the IEC’s cytosol, thereby indirectly fueling IEC inflam-

masome signaling. Further work will have to conclusively

address this question.
Current Opinion in Microbiology 2021, 59:86–94
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Figure 2
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Epithelial inflammasome signalling and potential crosstalk upon S.Tm infection leading to apoptotic and/or lytic IEC expulsion.

S.Tm invading into IECs can be sensed by the NAIP/NLRC4 and the Caspase-4/11 inflammasomes. NAIP1-2 recognize the TTSS and flagellin is

sensed by NAIP5-6. Caspase-11 is activated by cytosolic LPS. While Caspase-11 serves as both the sensor and executor, NAIP receptors

activate the NAIP/NLRC4 inflammasome, leading to an interconnected downstream Caspase signaling. This may result in apoptotic and/or lytic

cell death and expulsion. SCV - Salmonella containing vacuole.
In murine epithelia, NAIP/NLRC4 induced IEC expul-

sion is only partially dependent on Caspase-1, suggesting

Caspase-1 dependent and independent downstream sig-

nalling [39]. This finding was confirmed by an indepen-

dent report [50]. Moreover, by using a toxin fusion protein

that delivers flagellin into the host cellular cytosol, it was

shown that epithelial NAIP/NLRC4 signalling can acti-

vate either Caspase-1/GsdmD or ASC/Caspase-8 result-

ing in pyroptosis or apoptosis, respectively [50,75]. How-

ever, this has left unanswered if both pathways are fully

engaged during S.Tm infection and if pyroptosis, apopto-

sis or a mixed cell death response dominates. Notably,

recent studies using macrophages as the main assay

system suggest that cell death signalling can be highly

interconnected. This has given rise to a new concept

called ‘PANoptosis’ (discussed in another chapter of this

issue). Caspase-1 can activate apoptosis associated targets
Current Opinion in Microbiology 2021, 59:86–94 
such as Caspase-3 and Caspase-7 [76–80] and Caspase-3

and Caspase-8 can under some conditions trigger pyrop-

tosis [81–84]. It is therefore reasonable to speculate that a

similar crosstalk as in S.Tm infected macrophages [85]

might occur downstream of epithelial NAIP/NLRC4,

resulting in a mixed cell death and expulsion response

(Figure 2). Along these lines, a recent publication

observed increased S.Tm susceptibility in epithelial Cas-

pase-8-deficient mice at day 3 p.i. [86]. The PANopto-

some response concept of epithelial defense should be

probed in time-resolved and littermate-controlled S.Tm

using in vivo infection series.

Complex control of the inflammatory output of
S.Tm-mediated IEC inflammasome activation
Epithelial inflammasome signalling leads to eicosanoid

and IL-18 secretion, promoting diarrhea, and eliciting
www.sciencedirect.com
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inflammatory pathology in the intestinal mucosa

[30,36,39,50,66��]. In naı̈ve streptomycin pretreated mice,

IL-18 was shown to be dispensable for IEC expulsion

[39], but important to elicit a number of defenses includ-

ing NK cell recruitment, IFNg production by NK-cells,

T-cells and IEL, as well as perforin-dependent enterop-

athy [30]. IFNg in turn can activate phagocytes and

triggers mucus secretion by goblet cells [58]. Considering

that the colonic mucus layer can reduce mucosal S.Tm

invasion by as much as 10-fold [21�], this hints towards a

complex array of defenses that are elicited by IEC

inflammasomes. Moreover, these defenses appear to be

regulated in response to chemical cues derived from the

food or the microbiota. Vitamin feeding experiments and

infections in mice with retinoic acid-signaling deficient

IECs suggest that vitamin A not only controls epithelial

maturation, but also modulates IL-18 and IFNg
responses to an acute S.Tm infection [11�]. In these mice,

IL-18 supplementation might for instance shift the epi-

thelial response to S.Tm towards caspase-3 dependent

cell death. Thus, careful control of the experimental

conditions is warranted when studying the epithelial

inflammasome functions in vivo.

Conclusions and perspectives
Research over the last years has identified epithelial

inflammasomes as key coordinators of the defense against

infection. Since IECs are at the very frontline of host-

pathogen interactions, it makes intuitively sense that they

take active part in the early immune response against S.
Tm. We have just begun to understand certain aspects of

IEC inflammasomes during S.Tm infection. Further

research will be needed to gain a comprehensive under-

standing of the IEC inflammasomes at different stages of

infection and the diversity of the triggered responses.

Single cell techniques described elsewhere in this issue

will help to decipher the diversity of the responses on how

this contributes to defense. Much of this knowledge will

also apply to other closely related enteropathogenic bac-

teria like C. rodentium, enteropathogenic E. coli and S.
flexneri, which are known to trigger, and are subject to

control by, epithelial inflammasomes (Table 1). The

recent advances in ex vivo culture of primary epithelial

enteroids and colonoids will help to dissect the underly-

ing molecular mechanisms and the immediate down-

stream effects of IEC inflammasome signalling. Interest-

ing discoveries in this field of research can be anticipated

in the near future. This will contribute to our general

understanding of enteropathogen-elicited host responses

and may help to prevent acute gut infections as well as

chronic mucosal inflammation, which can occur in the

aftermath of such disease [87].
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