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ples is studied. This material has been suggested as a good candidate to substitute silicon in
many applications, such as flexible electronics and solar cells. It is known that defects and dif-
ferent polymorphs are present in experimental samples, and therefore it is extremely important
to understand how realistic samples perform. We present how the electron-hole recombination
times are accelerated in presence of defects, as well as how the structural changes in sam-
ples that mix several phases of MoS2 affect their electronic structure. After that, rectangular
graphene nanoflakes are explored. As an application to finite systems, we show in rectangu-
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spectra and how this can be used for opto-electronic applications. Furthermore, the high har-
monic generation for different magnetic couplings is studied, showing how some harmonics can
be suppressed or enhanced depending on the underlying electronic structure. Finally, dif-fuse
scattering in SnSe is investigated in an experimental collaboration in order to understand how
phonon-phonon interactions affect the scattering dynamics, which may lead to profound insight
into its thermoelectric properties.

Raquel Esteban-Puyuelo, Department of Physics and Astronomy, Materials Theory, Box 516,
Uppsala University, SE-751 20 Uppsala, Sweden.

© Raquel Esteban-Puyuelo 2021

ISSN 1651-6214
ISBN 978-91-513-1179-1
urn:nbn:se:uu:diva-439069 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439069)



A mi familia, aquí y allí





List of papers

This thesis is based on the following papers, which are referred to in the text
by their Roman numerals.

I Role of defects in ultrafast charge recombination in monolayer

MoS2
Raquel Esteban-Puyuelo and Biplab Sanyal
arXiv:2103.13386 (2021), in revision in Phys. Rev. B

II Complexity of mixed allotropes of MoS2 unraveled by

first-principles theory

Raquel Esteban-Puyuelo, D.D. Sarma, and Biplab Sanyal
Phys. Rev. B 102, 165412 (2020)

III Tailoring the opto-electronic response of graphene nanoflakes by

size and shape optimization

Raquel Esteban-Puyuelo, Rajat Kumar Sonkar, Bhalchandra Pujari,
Oscar Grånäs, and Biplab Sanyal
Phys. Chem. Chem. Phys., 22, 8212-8218 (2020)

IV Graphene nanoflakes as a testbed for electronic structure analysis

through high harmonic generation

Raquel Esteban-Puyuelo, Biplab Sanyal, and Oscar Grånäs
Manuscript

V Visualizing nonequlibrium atomic motion and energy transfer in

SnSe

Amit Kumar Prasad, Raquel Esteban-Puyuelo, Pablo Maldonado,
Shaozheng Ji, Biplab Sanyal, Oscar Grånäs, and Jonas Weissenrieder
Manuscript

Reprints were made with permission from the publishers.



Comments on my contribution
Papers I-V are the result of close collaborations with the coauthors.

Paper I

I participated in the design of the project, performed all the calculations and
analysis and participated in discussions. I mainly wrote the manuscript and
handled its submission.

Paper II

I performed all the calculations and analysis. I participated in the discussions,
mainly wrote the paper and managed the replies to the referees.

Paper III

I participated in the design of the study and performed all the calculations (ex-
cept the NWChem benchmark done by RKS). I participated in the discussions
with the collaborators, mainly wrote the paper and managed the replies to the
referees.

Paper IV

Participated in the design of the project and performed the HHG calculations.
I contributed to the analysis of the results, and wrote the manuscript together
with OG.

Paper V

I performed the phonon and phonon-phonon simulations and participated in
the discussion, analysis and interpretations of the results. I contributed to the
writing of the manuscript.



Publications not included in this thesis

� Enhanced Gilbert damping in Re-doped FeCo films: Combined

experimental and theoretical study

Serkan Akansel, Ankit Kumar, Vijayaharan A. Venugopal,
Raquel Esteban-Puyuelo, Rudra Banerjee, Carmine Autieri, Rimantas
Brucas, Nilamani Behera, Mauricio A. Sortica, Daniel Primetzhofer,
Swaraj Basu, Mark A. Gubbins, Biplab Sanyal, and Peter Svedlindh
Phys. Rev. B 99, 174408 (2019)

� Structural phase transition in monolayer gold(I) telluride: From a

room-temperature topological insulator to an auxetic

semiconductor

Xin Chen, Raquel Esteban-Puyuelo, Linyang Li, and Biplab Sanyal
Phys. Rev. B 103, 075429 (2021)





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Theory and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Excited state dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 The full quantum problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Mixed Quantum-Classical Dynamics: Non-Adiabatic

Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 The electronic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Time-Dependent Density Functional Theory . . . . . . . . . . . . . . . . 21
2.2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Periodicity, basis sets and pseudopotentials . . . . . . . . . . . . . . . . . . 29

2.3 Non-equilibrium kinetic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Rate equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Defect and interface induced phenomena in monolayer MoS2 . . . . . . . . . . . . . . 38
3.1 Summary of Paper I: Charge recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Ground state properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Non-adiabatic dynamics: electron-hole recombination 39
3.1.3 Conclusions of Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Summary of Paper II: Coexistence of different phases . . . . . . . . . . . . . . . 43
3.2.1 Effect of strain in the band structures of the pure

phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Mixed phases: electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.3 Mixed phases: structural reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.4 Conclusions of Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 RT-TDDFT studies of graphene flakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1 Summary of Paper III. Shape and size dependent optical spectra

in magnetic GNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.1 Magnetism influences the optical spectra . . . . . . . . . . . . . . . . . . . . . . 50
4.1.2 Shape and size dependence on the optical spectra . . . . . . . . 52
4.1.3 Conclusions of Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Summary of Paper IV: High harmonic generation . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 Calculation of the HHG spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Harmonic yield dependency on the pulse duration and

the presence of resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



4.2.3 Conclusions of Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Diffuse scattering in SnSe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1 Summary of Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 Ab initio simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.2 Rate equations simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Conclusions of Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusions and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Popular science summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Populärvetenskaplig samanfattning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Resumen divulgativo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



1. Introduction

Sólo el que sabe es libre, y más
libre el que más sabe.
(Only the one who knows is free,
and freer the one who knows
more)

Miguel de Unamuno

We have been using tools even since before we became humans. Choosing
natural materials and modifying them to suit our needs is a part of the devel-
opment of our species, and tools have been evolving accordingly from stone
knives to plastic bottles and mobile phones. We are surrounded by electronics:
from the simplest digital watch to the Perseverance Rover from NASA that is
exploring Mars, our world depends on efficient electronic devices. For more
than a century, they have been successfully made from bulk semiconductors
such as silicon, and they have become smaller with time. However, miniatur-
ization and improvement in efficiency have reached a plateau, since quantum
confinement and thermal losses play an important role when three-dimensional
structures reach a small enough size. One of the routes towards smaller scales
is to build devices made from two-dimensional materials, since their surface
area to volume ratio is maximal. Graphene, a single layer of graphite, has been
theoretically studied extensively since the 1950s [1] but not until its first ex-
perimental realization in 2004 [2], it became a promising alternative to silicon-
based electronics. Despite its extremely interesting properties (extraordinarily
high electron mobility and flexibility, to name a few), graphene is a semimetal,
and the corresponding lack of energy band gap limits its usage in semiconduc-
tor devices. One option to overcome this issue is to functionalize graphene
in order to open up a gap, for example by introducing defects [3] that modify
its electronic structure, or by creating nanoribbons and nanoflakes [4]. These
nanostructures are highly sensitive to size and shape due to quantum confine-
ment, and multiple efforts have been made to predict and characterize their
properties, for instance looking at their optical signatures. Another trend has
been the investigation of other 2D materials beyond graphene, either 2D al-
lotropes such as borophene, silicene, germanene, stanene, or compounds like
hexagonal boron nitride and transition metal dichalcogenides (TMDs) [5, 6].
TMDs are bulk materials composed of single layers bound together via weak
van der Waals forces, which can be exfoliated. MoS2, one of the most studied
TMDs and an indirect band gap semiconductor of 1.29 eV in its bulk form,
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shifts to having a 1.8 eV direct gap in its most stable 2D phase. A direct gap is
more efficient, which is why it is a promising candidate to substitute silicon in
miniaturized electronic devices. Two-dimensional and bulk layered materials
have been investigated with other applications in mind, and one of which is
the exploitation of their capability to convert thermal into electrical energy.
Thermoelectric materials such as SnSe [7, 8] lead a way into environmentally
friendly power generation processes, and therefore studying their fundamental
properties at the atomic scale is crucial for the development of this field.

Many of the applications in which all these materials can be used are out of
equilibrium. In fact, most of nature’s phenomena occur far from the ground
state and are the response of a system after a perturbation. However, they have
been historically tackled with methods that are within the Born-Oppenheimer
approximation (decoupling of electron and ionic degrees of freedom), which
is strictly valid only in the ground state and some particular transient situa-
tions. The question of how to correctly study phenomena that involve excited
electronic states has been around for a long time, and the quantum chemistry
and experimental fields have done very important advances. Time-resolved
experiments such as transient absorption spectroscopy are extensively used to
study the relevant timescales and mechanisms [9], as well as excitonic prop-
erties [10]. Very accurate theoretical solutions exist for small systems such
as atoms and small molecules [11], but extended systems such as 2D mate-
rials and bulk solids still pose a challenge. Many approximations need to be
made, and the most important one is the neglect of the quantum nature of the
ions composing the material. These groups of methods, in which ions are
treated classically and electrons quantum-mechanically, are called semiclassi-
cal methods and they are the basis of what will be discussed in this thesis.
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2. Theory and methods

Why don’t you explain this to me
like I am five?

Michael Scott

The aim of this chapter is to provide a background on the theory and meth-
ods that serve as a basis for the projects that conform this thesis. I start in sec-
tion 2.1 with the full quantum mechanical description of the time-dependent
many-body problem, and then introduce the Mixed Quantum-Classical Dy-
namics by approximating the ionic motion as classical. I continue in section
2.2 by treating the electronic system in the effective framework given by Time-
Dependent Density Functional Theory, and finish the approximations path by
considering time-independent or ground state Density Functional Theory. Fur-
thermore, in section 2.3 I discuss lattice vibrations through the concept of
phonons, in order to introduce the rate equations that describe the transfer of
energy between the electronic and phononic system.

Atomic units are used in this text unless otherwise stated (e2 = �= me = 1),
so distances are measured in Bohr and energies in Hartree.

2.1 Excited state dynamics
2.1.1 The full quantum problem
To exactly calculate time-dependent properties of an isolated non-relativistic
many-body system, one needs to solve the time-dependent Schrödinger equa-
tion (TDSE), which can be written as follows:

i
∂Ψ(R,r, t)

∂ t
= HFΨ(R,r, t). (2.1)

Ψ(R,r, t) is a short hand notation for the total wavefunction Ψ(r1,r2, ...rN ,
R1,R2, ..., t), which depends on the positions of the electrons {ri} and the
ions {RI}, as well as the time t. The full Hamiltonian operator is defined as

HF = Te +Tnuc +Ve−n +Ve−e +Vn−n +Vext . (2.2)

The first two terms in (2.2) are the kinetic energies of the electrons and ions,
the third term stands for the Coulomb interaction between electrons and ions,
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the fourth and fifth terms represent the electron-electron and ion-ion interac-
tion and the last one is an external potential. More explicitly,

HF =−1
2 ∑

i
∇2

i −∑
I

1
2mI

∇2
I −∑

i,I

ZI

|ri−RI |+

1
2 ∑

i�= j

1
|ri− r j| +

1
2 ∑

I �=J

ZIZJ

|RI−RJ| +Vext , (2.3)

where mI is the mass of the Ith ion and ZI is the nuclear charge. Equation (2.3)
can be written in a more compact way grouping all terms except the nuclear
kinetic operator Tnuc into the electronic Hamiltonian:

HF = Tnuc +Hel . (2.4)

The total wavefunction can be exactly represented as a product of cou-
pled electron and nuclear wavefunctions without making any approximation,
through the Born-Huang/Born-Oppenheimer expansion:

Ψ(R,r, t) = ∑
j

ψ ′j(r)χ
′
j(R, t) = ∑

j
ψ j(r;R)χ j(R, t). (2.5)

ψ ′j(r) and χ ′j(R, t) are the electronic and nuclear wavefunctions in the dia-
batic representation, and ψ j(R,r) and χ j(R, t) are their counterparts in the
adiabatic representation.

The diabatic wavefunctions do not depend parametrically on the nuclear po-
sitions and are typically defined to be orthogonal

〈
ψ ′j(r)

∣∣∣ψ ′k(r)〉 = δ jk. This
means that when the diabatic expansion is inserted in (2.1), one can see that
the Hamiltonian matrix has only diagonal kinetic energy terms, and both di-
agonal and non-diagonal potential energy terms. The diagonal elements of the
potential

Hj j(R) =
〈
ψ ′j(r)

∣∣Hel
∣∣ψ ′j(r)〉 (2.6)

are the 3M-dimensional diabatic potential energy surfaces (PES), M being the
number of atoms.

On the other hand, in the adiabatic representation, the electrons follow the
static or time-independent Schrödinger equation

Helψ j(R,r) = E j(R)ψ j(R,r), (2.7)

so that ψ j(R,r) and E j(R) are the eigenfunctions and eigenvalues of Hel , re-
spectively. The adiabatic PES are then the functions E j(R). Choosing to
solve the TDSE in the adiabatic basis is very common because the electronic
wavefunctions are naturally orthogonal to each other (since they are eigen-
functions), so that they can directly form a basis. Furthermore, most of the
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electronic structure methods are written in the adiabatic basis, so it is conve-
nient. The nuclear wavefunction evolves following the TDSE, which in the
adiabatic basis can be expressed as

[Tnuc +Ei(R)]χi(R, t)+∑
j

Vi, j(R)χ j(R, t) = i
∂
∂ t

χi(R, t). (2.8)

This was obtained by rotating the nuclear kinetic operator into the adiabatic
basis, or more explicitely, inserting the Born-Huang/Born-Oppenheimer ex-
pansion from (2.5) into (2.2) and multiplying by ψ∗i (r;R) from the left and
then integrating over the electronic degrees of freedom r. As mentioned be-
fore, Ei(R) are the adiabatic PES for the ith electronic state and the new term
resulting from the rotation, Vi, j(R), is the hopping term that allows transitions
between the ith and jth PES:

Vi, j(R) =−∑
I

[
1

2mI
GI

i, j(R)+2dI
i, j(R) ·∇I

]
. (2.9)

GI
i, j(R) = 〈i|∇2

I | j〉 is the scalar coupling vector in the braket notation and

dI
i, j(R) = 〈i|∇I | j〉 (2.10)

is the derivative coupling matrix, more often called nonadiabatic coupling
vector or NAC. It can be determined from the Hellman-Feynman theorem [12–
15]:

dI
i, j(R) =

〈i| [∇IHel(R)] | j〉−δi, j∇IEi(R)

E j(R)−Ei(R)
. (2.11)

In some limiting cases, the electronic and nuclear degrees of freedom of the
total wavefunction can be factorized into a single product. One of these cases
is what is called the Born-Oppenheimer approximation [16]. In the adiabatic
representation, this is translated into assuming that the NACs can be ignored
in (2.8). The expression in (2.11) can give us a hint of when this is a good ap-
proximation. For instance, if the energy difference in the denominator is too
large (the PES are very far from each other) then the NACs can be neglected.
Additionally, the numerator scales as a force term, so if the force on the nu-
clei is small enough (the nuclei are moving slowly enough compared to the
electrons) the NACs play a negligible role.

A visual representation of the full quantum dynamics corresponding the
exact solution to a problem beyond the Born-Oppenheimer approximation in
the adiabatic representation is shown in figure 2.1.

2.1.2 Mixed Quantum-Classical Dynamics: Non-Adiabatic
Molecular Dynamics

In the Born-Oppenheimer approximation, the nuclear wavefunction propa-
gates adiabatically on a single PES. Since this is not a good approximation
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Figure 2.1. Schematic illustration of the full quantum dynamics. The initial wave-
function propagates in the adiabatic excited state PES S1 and the final wavefunction
is a superposition of states in S1 and the ground state PES S0 after passing through
region with a high NAC. The horizontal axis indicates a general reaction coordinate.

for many time-dependent problems of interest, we need methods that go be-
yond the Born-Oppenheimer approximation, which is what methods like the
ones encompassed in the term Non-Adiabatic Molecular Dynamics (NA-MD)
do. Since solving numerically the nuclear TDSE scales exponentially with the
dimension of the problem, it is limited to very small molecules of less than 5
atoms. There are several ways of reducing the dimensionality by selecting the
important vibrational modes which are relevant for the problem, which can
allow for slightly bigger molecules, but approximations need to be made for
larger systems.

The mixed quantum-classical dynamics retains the quantum nature of the
electrons but makes the approximation that the nuclear degrees of freedom
can be described classically. The classical equations of motion scale linearly
with dimension (instead of exponentially), which reduces the complexity of
the problem substantially. The multiple spawning, and specially Ehrenfest
and surface hopping approaches, described in the following subsections, are
the most popular mixed quantum-classical methods and have been applied to
a very long list of materials and phenomena. More information about these
methods can be found in these extensive reviews [17–20].

Ehrenfest dynamics

The Ehrenfest method is a mean field approach that considers that the elec-
tronic and nuclear wavefunctions in (2.5) are uncorrelated:

Ψ(R,r, t) = χ0(R, t)∑
j

c j(t)ψ j(R,r). (2.12)

χ0 is a single Gaussian function (which is assumed to be highly localized
in space) and the c j(t) are complex coefficients. According to the Ehrenfest
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theorem the Newtonian laws are satisfied for mean values in quantum systems
with momentum p, mass m and under a potential V :

d〈r〉
dt

=
〈p〉
m

and
d〈p〉

dt
= 〈∇V 〉 . (2.13)

By using the Ehrenfest theorem and making the local approximation of Hel one
arrives to the equations of motion for the time-dependent nuclear quantities,
positions R and momenta P:

∂R

∂ t
= 〈Ψ| i [Hel ,R] |Ψ〉= P

M
∂P

∂ t
= 〈Ψ| i [Hel ,−i∇] |Ψ〉= 〈Ψ|∇Hel(R) |Ψ〉 . (2.14)

[A,B] is the commutator of A and B, and M is the mass of the nucleus. In
summary, in Ehrenfest dynamics the nuclei move in a single average PES, as
figure 2.2 shows.

Figure 2.2. Schematic illustration of the Ehrenfest dynamics. Trajectories run on a
mean field PES averaged over all the electronic states, weighted by their electronic
population. The horizontal axis indicates a general reaction coordinate.

It is interesting to note that the forces on the nuclei are averaged over many
adiabatic electronic states influenced by the nuclear motion and have the fol-
lowing form:

FEhrenfest =
∂
∂ r
〈Ψ|Hel |Ψ〉 . (2.15)

This expression should not be confused with the Hellman-Feynman forces that
are calculated in ground state methods

FGS =

〈
Ψ
∣∣∣∣ ∂
∂ r

Hel

∣∣∣∣Ψ
〉
, (2.16)
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where the partial derivative can be moved inside the expectation value because
it is a stationary case, unlike in (2.15).

One of the major assumptions taken in this method is that the nuclear wave-
function can be represented by a single Gaussian function, instead of a sum of
Gaussians or more accurate functions. This, combined with the classical treat-
ment of the trajectory, results in branching of the wavefunction not being pos-
sible, which would be allowed if the nuclear degrees of freedom were treated
fully quantum mechanically. Furthermore, this method is overcoherent, which
means that it is unable to describe the decoherence of electronic states, result-
ing in long-lived electronic excitations. However, Ehrenfest dynamics is able
to appropriately describe systems in which the nuclei are heavy and the range
of motion is small, and the electron-nuclear correlations are minimal. It has
been successfully applied to nanostructures, big molecules and other extended
systems to study processes that do not conserve energy.

Surface Hopping

In order to have a better description of the electron-nuclear correlation in
Eherenfest dynamics, Tully developed a surface hopping (SH) scheme based
on Molecular Dynamics (MD) [21]. In this family of methods, the nuclear
trajectory evolves in a single adiabatic electronic PES but is allowed to hop to
another surface, which is dictated by a probability, as figure 2.3 shows. The
main idea behind SH methods is to approximately recover the quantum be-
haviour of the nuclear trajectories by calculating multiple events of the same
trajectory, which, given the randomness included in the probability, generate
different outcomes.

Figure 2.3. Schematic illustration of the SH methods. An ensemble of trajectories
are propagated on the adiabatic BO PES and jumps are allowed between them. The
horizontal axis indicates a general reaction coordinate.

The most broadly used SH method is the Fewest Switches Surface Hop-
ping (FSSH), in which the population balance is maintained with the mini-
mum amount of hops possible. In its most popular implementation, the nu-
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clear system is treated classically via ab initio MD and the electronic wave-
function ψ(r,R, t) is represented in the basis of adiabatic electronic functions
φ(r;R(t)). They can be taken as Kohn-Sham (KS) orbitals if DFT is the
method of choice, as in the following expression:

ψ(r,R, t) = ∑
i

ci(t)φi(r;R(t)). (2.17)

The ci are the time-dependent expansion coefficients, and their evolution is
governed by a TDSE, which can be expressed as follows:

i
dci

dt
= ∑

j
(εiδi j− idi j)c j. (2.18)

εi is the diagonal part of the electron Hamiltonian and the off-diagonal di j
represent the NAC have already been defined in (2.10). The probability for
the transition from an electronic state |i〉 to a new state | j〉 in a small time
interval Δt = t = t ′ can be expressed as

gi→ j(t) = max(0,Pi→ j(t)) (2.19)

with

Pi→ j(t)≈ 2
Re

[
c∗i (t ′)c j(t ′) P

M di j(t)
]

c∗i (t ′)c j(t ′)
. (2.20)

These probabilities are compared to a uniformly distributed random number
to determine if the system is to remain in the current PES or hop to the next
one and nuclear velocities are rescaled to maintain the total energy. If that
rescaling is not possible then the hop is rejected.

In the original FSSH, the nuclear and electronic degrees of freedom are
completely coupled, so everything is updated on the fly at each time step.
However, the Classical Path Approximation (CPA) [22] can be used to further
reduce the computational cost by making the approximation that the classical
trajectory of the nuclei is independent of the electronic dynamics but the elec-
tronic dynamics still depends on the nuclear positions. In practice, this means
that the electronic problem can be solved on a series of pre-computed nuclear
trajectories, typically from ab initio MD. Since the feedback from the elec-
trons is not taken into account, this approximation is not valid if the electron-
nuclear correlations are crucial, such as in small systems like molecules. How-
ever, it is expected to produce reasonably good results for extended solids and
it is currently the most widespread method to tackle solid-state systems. In
FSSH-CPA, the hop rejection and velocity rescaling from (2.19) become

gi→ j(t)−→ gi→ j(t)bi→ j(t), (2.21)
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where the probability is scaled by a Boltzmann factor to account for the fact
that transitions to states high up in energy are less probable:

bi→ j(t)

{
exp

(
−E j−Ei−�ω

kBT

)
if E j > Ei +�ω

1 if E j ≤ Ei +�ω.
(2.22)

Here kB is the Boltzmann constant, T is the temperature, and �ω is the energy
of the absorbed photon in case of light-matter interaction, where � has been
included for clarity.

Same as with Ehrenfest dynamics, by having a classical description of the
nuclei, we miss the loss of quantum coherence within the electronic subsys-
tem that is induced by the interaction with the quantum-mechanical vibra-
tions. Surface hopping can develop non-physical coherences and this is why
decoherence-induced surface hopping (DISH) was developed. It accounts for
the branching of nuclear trajectories by allowing hops at the decoherence times
only, which are calculated within the optical response theory using the auto-
correlation function of the fluctuation of the energy gap between two electron
states, as described in [23].

Multiple Spawning

In the last MQCD method that I will discuss here, the Multiple Spawning
(MS) method, the nuclear wavefunctions are expanded as a linear combina-
tion of Gaussian functions that are propagated classically. It is common to
refer to it as ab initio Multiple Spawning when it is connected to an electronic
structure method. The main difference between MS and the previously de-
scribed methods is that the number of nuclear functions is not a constant, and
each function is allowed to bifurcate and produce two functions in regions of
the PES landscape in which the NACs are large, as figure 2.4 shows. These
are called spawning events and give name to the method.

In the theoretical case of an infinite basis, the MS is an exact theory, in
opposition to both SH and Ehrenfest dynamics. However, since the NACs
need to be calculated at each time step and the basis of the nuclear functions
can be large, MS is computationally very expensive. Therefore, compromises
need to be made to truncate the basis as well as making local approximations
to compute integrals, which reduces the applicability of MS on large systems
or long timescales, in favour of less accurate but more practical methods like
Ehrenfest or SH.

2.2 The electronic system
So far I have discussed how to treat the coupling between the electronic and
ionic degrees of freedom. In this chapter I will focus on the quantum-mechanical
approach to the electronic system, introducing an effective density framework
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Figure 2.4. Schematic illustration of the MS method. Classical trajectories are repre-
sented by single Gaussian functions. After the high NAC region, multiple Gaussians
can be created in different PES than the original. The horizontal axis indicates a gen-
eral reaction coordinate.

that reduces the degrees of freedom of the problem making it tractable. I will
first describe the general time-dependent case with Time-Dependent Density
Functional Theory (TDDFT) and then I will consider the special case of time-
independent or ground state Density Functional Theory (DFT).

2.2.1 Time-Dependent Density Functional Theory
I will start by assuming that the electronic system is non-adiabatic. We can
think about approaching the problem directly by solving the time-dependent
Schrödinger equation, but this is even more difficult than for the ground state
(which I will develop in 2.2.2) and it becomes extremely computationally ex-
pensive as the number of electron grows. However, inspired by ground state
DFT, we can try to develop a time-dependent DFT in order to reduce the num-
ber of variables in our problem. We will see in this section that Runge and
Gross proved the time-dependent equivalent of the KS theorem and I will give
an overview on the basics of TDDFT.

One-to-one correspondence and Time-Dependent Kohn-Sham equations

The evolution of the wavefunction describing N interacting electrons is given
by the time-dependent Schrödinger equation, which I have already shown in
(2.1) but choose to include here for clarity:

i
∂Ψ(R,r, t)

∂ t
= H Ψ(R,r, t). (2.23)

Since it is a first-order differential equation in time, it needs an initial condition
from the wavefunction at time 0 (Ψ(t = 0)). The Hamiltonian operator is

H = Te +Ve−e +Vext(t), (2.24)
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where I have now grouped in Vext(t) the potential the electrons experience due
to the nuclear attraction as well as any external potential applied to the system.
In general, it is a sum over all the electrons

Vext =
N

∑
i=1

vext(ri, t). (2.25)

The electron density (normalized to the number of electrons N) is given by

n(r, t) = N
∫

d3r2 . . .
∫

d3rN |Ψ(r1,r2 . . .rN , t)|2 (2.26)

and evolves with time from an initial point t = 0. Runge and Gross proved an
analog of the Hohenberg-Kohn theorem for time-dependent systems in what is
called the one-to-one correspondence [24]. This theorem, central in TDDFT,
states that the densities n(r, t) and n′(r, t) evolving from the same initial state
Ψ(t = 0) under the influence of two potentials vext(r, t) and v′ext(r, t) that are
Taylor expandable around t = 0 will eventually differ if the potentials differ
by more than a purely time-dependent function:

Δvext(r, t) = vext(r, t)− v′ext(r, t) �= c(t). (2.27)

What this means is that there is a one-to-one correspondence between one-
electron densities and potentials. This implies that we only need to know
the time-dependent density of a system evolving from a given initial state to
uniquely identify the potential that produced that density. The potential in its
turn completely determines the Hamiltonian, so (2.23) can be solved to obtain
all the properties of the system.

Now, knowing that finding functionals of the density is a difficult task, I will
turn to the Kohn-Sham system, a fictitious system of non-interacting electrons
that reproduce the density of the interacting electrons. All the real properties
can be obtained from the effective density of the KS system, which is time-
dependent:

ne f f (r, t) =
N

∑
j=1

∣∣φ j(r, t)
∣∣2 . (2.28)

The KS orbitals φ evolve according to the time-dependent KS equation:

i
∂
∂ t

φ j(r, t) =
[
−∇2

2
+ vKS

[
ne f f ;ψ(0)

]
(r, t)

]
φ j(r, t). (2.29)

This vKS (parametrically dependent on the initial state) is unique and can be
decomposed in three terms:

vKS
[
ne f f ;Ψ

]
(r, t) = vext(r, t)+ vH(r, t)+ vxc(r, t). (2.30)
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vH(r, t) is the usual Hartree potential and the exchange-correlation potential
vxc(r, t) is a very complicated quantity, even more than in the ground state
because it is a functional of the entire history of the density, the initial inter-
acting wavefunction ψ(0) and the initial KS wavefunction φ(0). In ground
state DFT, the exchange-correlation potential is the functional derivative of
the exchange-correlation energy, which is not so simple in TDDFT. A first at-
tempt to deal with time-dependent exchange-correlation functionals is to use
the Adiabatic Local Density Approximation (ALDA), even if it neglects all
nonlocality in time. More sophisticated functionals with memory effects have
been proposed [25–27].

Response functions and time-propagation in TDDFT

Many interesting physical quantities are the reaction of a system to an external
perturbation and can be expressed as a response function. More explicitly, if
an external field F is applied to a many-electron system, the system responds
and this can be measured as a change in a physical observable P as a functional
of F :

ΔP = ΔPF [F ]. (2.31)

Its exact form can be very complex, but if F is weak, the response can be
written as a power series of the field strength. The first order response is called
the linear response of the observable. For example, the first order response of
the dipole moment to an external electric field is the polarizability and the first
order response of a magnetic moment to a homogeneous magnetic field is the
magnetic susceptibility.

There are different methods to calculate response functions from TDDFT:
real time propagation (RT-TDDFT), Sternheimer [28, 29], and Cassida meth-
ods [30]. Here I am going to focus on the first one, which consists of propa-
gating the electronic density in real time according to the TD-KS equation in
(2.29) using the so-called adiabatic approximation. Therefore, the KS Hamil-
tonian is a functional of the instantaneous density, not the whole history. If no
perturbation is present, the evolution of the KS wavefunction is

φ j(t) = φ j(0)e−iε j(0)t , (2.32)

where ε j is the eigenvalue of the jth KS wavefunction. However, if there is an
applied time-dependent perturbation with a frequency ω and a strength λ of
the general form

vext(r, t) = λ (r)cos(ωt)+λ (r)sin(ωt), (2.33)

then we can obtain the evolution of the wavefunctions from (2.29) and thus all
the response functions. For instance, we can calculate the dielectric properties
of our systems with RT-TDDFT by studying its dynamical response to the per-
turbation created by a weak external electric field by monitoring the evolution

23



of the electrical dipole moment p j,k, which is calculated through

p j,k(t) = Tr
[
Dkn(t)

]
, (2.34)

where j and k indicate the directions of the applied field and measurement
respectively, and the transition dipole tensor operator is defined as

Dk
μν =

〈
ϕμ |êk · r|ϕν

〉
, (2.35)

where ϕ are the basis functions in the electronic structure method of choice.
D is related to the polarizability tensor α(t) by

p j,k(t) =
∫ t

−∞
α j,k(t− t ′)E j(t ′)dt ′, (2.36)

with E j being the jth spatial component of the external electric field. If we
apply an instantaneous delta pulse

E(t) = E0δ (t− t0)ê j, (2.37)

it yields the following after Fourier transforming:

α j,k(ω) =
p j,k(ω)

E0
. (2.38)

The absorption cross section can be obtained via

σ j,k(ω) =
4πω

c
Im

[
α j,k(ω)

]
, (2.39)

which leads to the optical absorption spectra (strength function)

S(ω) =
1
3

Tr [σ(ω)] . (2.40)

In RT-TDDFT higher-order responses (hyperpolarizabilities) are included.
The linear response regime can be achieved by applying a weak enough elec-
tric field, as the nonlinear contributions to the response function will be neg-
ligible. This capability of RT-TDDFT to explore phenomena that go beyond
the first, second or third order in perturbation theory result in it being a great
tool to study phenomena such as High Harmonic Generation (HHG). HHG is
the process by which a target system is illuminated with a laser frequency of
a certain frequency ω and it emits light in frequencies that are multiples of ω
(harmonics), as figure 2.5 presents.

HHG is relatively well understood for atoms and small molecules [31, 32],
but its fundamentals are still under discussion for extended systems such as
solids, monolayers and large molecules [33–37]. Many theoretical studies
rely on perturbation theory and therefore are limited to the second or third
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Figure 2.5. Schematic illustration of the high harmonic generation in a graphene flake.
The red wave indicates the incoming laser, the outgoing waves are the high harmonics
generated by the target.

harmonic order [38], and the few that use RT-TDDFT, although they report a
good matching with experiments, are quite inconclusive in terms of giving an
explanation for the mechanisms behind the phenomenon [39–41].

There is currently a discussion whether the spectral function S(ω) is pro-
portional to the dipole, its velocity or its acceleration. It has been shown that
for an atomic system, the HHG response is proportional to the dipole veloc-
ity [42]:

S(ω) =
1

4ε2
0 c2 |ṗ(ω)|2. (2.41)

Therefore, because RT-TDDFT provides the dipole in the time domain, the
HHG spectra is calculated as the following Fourier transform of its velocity:

HHG j,k(ω) ∝ FT
[∣∣ṗ j,k(t)

∣∣2] . (2.42)

2.2.2 Density Functional Theory
I will now consider a special case: if the time-dependence of the ionic sys-
tem influences the electronic system only through the Born-Oppenheimer ap-
proximation and there are no external fields that give a time dependency to
the Hamiltonian, then the first order differential equation (TDSE) can have a
time-independent solution multiplied by an integrating factor that carries the
time-dependency. This is exactly what the Born-Oppenheimer approximation
means in practice, that we can solve the electronic problem in each snapshot
of frozen ions. Therefore, we can focus on the time-independent part of the
problem and discuss Density Functional Theory (DFT).
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With all these considerations, the wavefunction can be written as a sim-
ple product of time-dependent and time-independent parts, which leads to the
time-independent Schrödinger equation:

H Ψ(r1,r2, ...rN ,R1,R2, ...) = EΨ(r1,r2, ...rN ,R1,R2, ...). (2.43)

Equation (2.43) can only be solved exactly for the case of the hydrogen
atom, and approximations need to be introduced already for the helium atom,
which has 3 particles. If we restrict ourselves to stationary or ground state
properties, the already introduced Born-Oppenheimer approximation can be
used relying on the fact that the ions are much heavier than electrons and
therefore can be considered as frozen, so that they become a static term in the
external potential that the electrons feel. Within the BO approximation, the
electronic Hamiltonian has a simpler expression:

H =−1
2 ∑

i
∇2

i −∑
i,I

ZI

|ri−RI | +
1
2 ∑

i�= j

1
|ri− r j| . (2.44)

Even with this approximation, a many-body equation for a system of N
interacting particles needs to be solved. The first simplification came with
the introduction of the Thomas-Fermi-Dirac approximation [43–45], when the
many-body wavefunction was substituted by the electron density n of the sys-
tem. The foundations of DFT were established on this approximation, from
which follows that electronic properties can be calculated using n(r) and that
the total energy of the system is a functional of this density, E[n(r)].

The formulation of DFT is based on the two Hohenberg-Kohn theorems
[46], which shift the attention from the ground state many-body wavefunction
to the one-body electron density, a function of only three variables and thus
more manageable. The theorems are:

Theorem 1. For any problem of interacting particles in an external poten-
tial Vext(r), there exists a one-to-one correspondence, except for a constant,
between this potential and the ground state electronic density n0(r).

Theorem 2. For any applied external potential in an interacting many-body
system, the total energy can be written as a functional of the density. Then, the
exact ground state electronic density is the one that minimizes the total energy
functional.

Once we solve the eigenvalue problem, the full many-body wavefunction
(from which all other properties can be calculated) is completely determined,
because the Hamiltonian is known, except for a shift in energy. This is not
possible for realistic systems due to the size of the variable space. The first
theorem implies that this can be achieved through the ground state electronic
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density, from which the wavefunction can be calculated. However, it does
not specify how to get the ground state density, which is what the second
theorem states. This second theorem means that any property of an interacting
system can be obtained from the ground state electron density n0(r) via the
minimization of the total energy functional, now E[n0(r)].

The Kohn-Sham ansatz

Even if these theorems state that the many-body problem can be solved via the
density, they do not provide an expression of the total energy as a function of
this density. For that we turn to the Kohn-Sham (KS) formalism [47], which
has the task of finding an auxiliary non-interacting system (having the non-
interacting part of the kinetical energy) exposed to an effective potential Ve f f
that results in the same density that the interacting system with an external
potential Vext has. The non-interacting system has the effective Hamiltonian

He f f =−1
2

∇2 +Ve f f (r), (2.45)

and the effective density can be calculated in terms of the single-electron KS
orbitals φ

ne f f (r) =
N

∑
i=1
|φi(r)|2. (2.46)

The kinetic energy is given by

Te f f =−1
2

N

∑
i=1
〈φi|∇2 |φi〉 , (2.47)

and the classical Coulomb energy of the electron density interacting with itself
(or Hartree energy) is defined as

EHartree =−1
2

∫
drdr′

ne f f (r)ne f f (r
′)

|r− r′| . (2.48)

The Kohn-Sham ansatz replaces the Hohenberg-Kohn ground state energy
functional with

EKS = Te f f +
∫

drVext(r)ne f f (r)+EHartree[ne f f ]+Exc[ne f f ], (2.49)

where Vext is any external potential including the one due to the nuclei. The
many-body effects of exchange and correlation are grouped into the exchange-
correlation energy Exc.
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The Kohn-Sham equations

The ground state of (2.49) is found by minimizing the energy with respect to
the φ using Lagrange multipliers, which results into the Schrödinger-like KS
equation:

He f f (r)φi(r) =

[
−1

2
∇2 +Ve f f (r)

]
φi = εiφi(r). (2.50)

Ve f f includes the potential due to the nuclei, the Hartree potential and the

exchange-correlation potential Vxc =
δExc[ne f f ]

δne f f [r]
. Solving the KS equation in

a self-consistent way yields the eigenvalues εi, which are not unique and have
no physical meaning [48]. However, the total energy that can be calculated
from the KS orbitals is a physical quantity:

E =
N

∑
i=1

εi− 1
2

∫
drdr′

ne f f (r)ne f f (r
′)

|r− r′| −
∫

drVxc(r)ne f f (r)+Exc[ne f f ].

(2.51)

The Exchange-Correlation functional

The explicit form of the exchange-correlation functional is unknown so we
must make approximations to it. Just to mention some, the Local Density
Approximation (LDA) and the Generalized-Gradient Approximation (GGA)
are introduced next.

In the Local Density Approximation (LDA) [46,47] the exchange-correlation
energy is fitted to that of a uniform electron gas, where electrons move on a
positively charged background distribution so that the local ensemble is elec-
trically neutral. This is translated into the form

ELDA
xc [n] =

∫
n(r)εxc[n(r)]dr, (2.52)

where εxc is the exchange-correlation energy per particle of a uniform electron
gas with density n and can be separated into two terms:

εxc[n(r)] = εx[n(r)]+ εc[n(r)]. (2.53)

The first term is commonly taken as the Slater exchange and has an analytic
form, but there is no exact expression for the correlation part. However, var-
ious εxc have been constructed based on highly accurate numerical quantum
Monte Carlo calculations.

In an attempt of improving the agreement with experimental results, the
Generalized Gradient Approximation (GGA) [49] considers not only the den-
sity at a certain point but also its gradient, including the non homogeneity of
the true electron density:

EGGA
xc [n(r)] =

∫
n(r)εxc[n(r),∇n(r)]dr. (2.54)
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εxc can also be separated into the exchange and the correlation parts. Both
LDA and GGA can easily be generalized to include spin polarization in the
calculations.

2.2.3 Periodicity, basis sets and pseudopotentials
We have been able to replace the solution of a many-body Schrödinger equa-
tion for an interacting system using the complete wavefunction by self-con-
sistently solving the non-interacting KS equation expressed in a chosen basis.
In this thesis I am going to describe two different basis sets: plane waves (PW)
and numerical atomic orbitals (NAO).

Before that, I am going to assume that we are working in a periodic system,
which mathematically means that any function describing it obeys the Born-
von Karman boundary conditions. In an ideal infinite solid, the number of
electrons is also infinite, but this can be overcome due to the fact that it is a
crystal, thus periodic (if impurities and defects are neglected). Ve f f in (2.50)
can be chosen to have the periodicity of the underlying Bravais lattice, so
Ve f f (r+R) =Ve f f (r), where R is a translation lattice vector.

Bloch’s theorem [50] states that the eigenstates ψ of the one-electron Hamil-
tonian H =−1

2 ∇2+Ve f f (r), where Ve f f (r+R)=Ve f f (r) for all R in a Bravais
lattice, can be chosen to have the form of a plane wave times a function with
the periodicity of the Bravais lattice as

ψnk = eik·runk(r), (2.55)

for which unk(r+R) = unk(r). Exploiting the periodicity of unk, it can be
expressed in a Fourier series:

unk(r) = ∑
G

cn,GeiG·r. (2.56)

G is the reciprocal lattice vector and the cn,G are plane wave expansion coef-
ficients. Thus, any periodic wavefunction can be expanded in a set of plane
waves with the periodicity of the lattice:

ψn,k = ∑
G

cn,k+Gei(k+G)·r. (2.57)

Therefore, the problem of having an infinite number of electrons has been
solved because the number of k points needed to calculate the electronic prop-
erties is a finite number and can be limited to the irreducible Brillouin zone.
However, the sum in (2.57) has infinite number of terms and can not be per-
formed computationally. Consequently, the series must be truncated at a cutoff
value |G| (corresponding also to a cutoff energy), which introduces an error.
The cutoff has to be chosen as a compromise of the computational effort and
the accuracy of the calculation.
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It needs to be mentioned that a periodic implementation is not only limited
to infinite bulk solids. The concept of the supercell was introduced to extend it
to systems that break the periodicity, such as semi-infinite systems (surfaces,
two-dimensional materials, ribbons, wires...), as well as systems with defects.

However, the implementation of the single-particle KS equation is still not
an easy task, since the electronic wavefunctions behave very differently in
different regions of space. Near the core region they oscillate wildly while
they are basically free-electron like in the valence region, so a complete basis
that is able to capture these behaviors is needed. There are several possible
choices and some are better suited than others for specific tasks. In this thesis
I am going to focus on plane waves (PW) as implemented in the Quantum
Espresso [51, 52] and VASP [53–55] codes, and numerical atomic orbitals
(NAO) as in the SIESTA software [56].

Plane waves

Using a basis set of plane waves has a very strong advantage since it is rel-
atively easy to develop and implement methods based on k-space representa-
tion, where operations such as derivatives and Fast Fourier transforms can be
performed almost effortlessly. Furthermore, plane waves are the solution of
the Schrödinger equation of a free particle and, although this is not the case
of the electrons in solids where nuclei and electrons interact strongly via the
Coulomb potential, the Fermi Liquid theory shows that excitations near the
Fermi level in metals can be treated as independent quasi-particles [50].

Using plane waves for the valence electrons wavefunctions far from the
nuclei is justified, but they fail to describe the electrons inside the core radius
rc. They are strongly bound and oscillate heavily because they adopt the form
of the atomic wavefunctions. Also, the valence wavefunctions oscillate in the
core region due to orthogonality. Trying to expand such wiggling functions
would require an enormous amount of plane waves, which is computationally
not feasible. A way to overcome this challenge is to use a pseudopotential [57],
a new softer potential Vpseudo acting only on the valence electrons and which is
identical to the real potential outside of the problematic region. Additionally,
its ground state wavefunction ψpseudo is equal to the all electron wavefunction
but nodeless in the core region (see fig. 2.6). With this, the core states and the
nodes of the valence wavefunctions in the core region are removed. Therefore,
ψpseudo varies smoothly and can be represented with a low number of plane
waves. By doing this frozen core approximation some information is lost and
core electrons can not be studied. However, in most of the applications the
region of interest is r > rc, where chemical bonding happens.

Numerical Atomic Orbitals (NAO)

The use of pseudopotentials is not strictly necessary with atomic basis sets,
but it is convenient to get rid of the core electrons and to have a smooth charge
density that can be expanded in a spatial grid. NAOs are strictly confined

30



Figure 2.6. Sketch of the actual Coulomb potential and wavefunctions (dashed line),
compared to the softer pseudopotential and the nodeless pseudofunction related to it
(solid line). The real and pseudo-functions are the same beyond the core radius rc.
From [58].

atomic orbitals, which means that they are zero beyond a certain radius. Inside
said radius, they are products of a numerical radial function and spherical
harmonics, which, for an atom I sitting in RI have the following form:

ϕIlmn = ϕIln(rI)Ylm(r̂I). (2.58)

The angular momentum (l,m) can be arbitrarily large and there will be differ-
ent orbitals (n) with the same angular momentum but different radial depen-
dence (multiple ζ basis). For example, the minimal single-ζ (SZ) basis set
has one radial function per angular momentum, a double-ζ has two and so on.
More details on this can be found in [56].

2.3 Non-equilibrium kinetic theory
2.3.1 Phonons
Atoms in a crystalline lattice vibrate around their equilibrium positions with
an amplitude that depends on the temperature. The vibrations can be studied as
collective modes corresponding to excitations of the lattice, which are called
phonons. Phonons are bosonic particles and their bosonic states can be popu-
lated, just like electronic ones. Each vibrational mode that composes a phonon
excitation corresponds to an energy (or a vibration frequency), and the group
of energies associated with each vibrational mode form the phonon spectra or
phonon band structure, as it is often visualized in reciprocal space. Because
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phonons represent ionic vibrations, understanding phonon spectra is important
for multiple phenomena that rely on the crystalline lattice vibrations, such as
superconductivity or thermal conductivity.

The potential energy Φ of the phonon system can be written as a Taylor ex-
pansion in terms of the deviations of each ionic position from its equilibrium,
or atomic displacements u:

Φ = Φ0 +∑
lκ

∑
α

Φα(lκ)uα(lκ)+
1
2 ∑

ll′κκ ′
∑
αβ

Φαβ (lκ, l′κ ′)uα(lκ)uβ (l
′κ ′)+

1
3! ∑

ll′l′′κκ ′κ ′′
∑
αβγ

Φαβγ(lκ, l′κ ′, l′′κ ′′)uα(lκ)uβ (l
′κ ′)uγ(l′′κ ′′)+ . . . . (2.59)

l is the label of unit cell, κ are the atoms in each unit cell, and α , β and γ
are the Cartesian coordinates. The expansion coefficients Φ0, Φα , Φαβ and
Φαβγ are the 0th, 1st, 2nd and 3rd order force constants respectively. If the
displacements are small, the problem can be solved up to 2nd order in the
harmonic approximation, and the higher order terms can be treated within
perturbation theory.

The second order force constant matrix has elements given by

Φαβ (lκ, l′κ ′) =
∂ 2Φ

∂uα(lκ)uβ (l′κ ′)
=−∂Fβ (l′κ ′)

∂uα(lκ)
, (2.60)

where Fβ are the ionic forces in the Cartesian direction β .
The phonon spectrum can be obtained by solving the following eigenvalue

problem:

D(q)eq j = ω2
q jeq j. (2.61)

The dynamical matrix is

Dαβ
κκ ′ = ∑

l′

Φαβ (0κ, l′κ ′)√
mκmκ ′

expiq·[r(l′κ ′)−r(0κ)], (2.62)

where r are the equilibrium positions, q is the wave vector, j is the branch
index, ωq j is the phonon frequency and eq j is the polarization vector of the
phonon mode labeled by {q, j}. By solving (2.61), the phonon spectrum or
band structure and the density of states can be calculated.

Once the phonon spectrum is known, the total energy of the phonon system
can be calculated in the canonical distribution

Eph = ∑
q j
�ωq j

[
1
2
+

1
exp(�ωq j/kBT )−1

]
, (2.63)

where I have included � for clarity, kB is the Boltzman constant and T stands
for temperature. All other thermodynamic quantities such as heat capacity,
entropy and Helmholtz free energy can be calculated from the energy.
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In order to calculate the lattice thermal conductivity for solids at tempera-
tures around room temperature we need to go beyond the harmonic approx-
imation, since it is governed by phonon-phonon scattering. To achieve good
agreement with experimental results it is necessary to include third order force
constants in our calculations, which are used to compute the imaginary part of
the self-energy, as reported in [59].

The fourth term in (2.59) can be expressed as a sum of three-phonon colli-
sions in terms of creation aλ and annihilation operators a†

λ :

Φ3 = ∑
λλ ′λ ′′

Φλλ ′λ ′′(âλ + â†
−λ )(âλ ′+ â†

−λ ′)(âλ ′′+ â†
−λ ′′). (2.64)

λ and −λ are a short-hand notation for the phonon modes (q, j) and (−q, j),
respectively. The imaginary part of the self-energy is then calculated from
(2.64) to second order using many-body perturbation theory and is related to
the phonon linewidths. The phonon lifetime of mode λ can be calculated as
an inverse of its linewidth:

τλ =
1

2γλ (ωλ )
. (2.65)

Finally, the lattice thermal conductivity is written as

κ =
1

NV0
∑
λ

Cλ vλ ⊗vλ τλ , (2.66)

where N is the number of phonon modes, V0 is the volume of the unit cell, Cλ
is the mode-dependent heat capacity, and vλ is the group velocity.

In practice, within the DFT formalism we can calculate the force constants
using finite differences of the total energy with respect to atomic displace-
ments in a supercell, as it is described in [59, 60].

The third order force constant is

Φαβγ(lκ, l′κ ′, l′′κ ′′) =
∂ 3Φ

∂uα(lκ)uβ (l′κ ′)uγ(l′′κ ′′)
, (2.67)

and in this framework it can be obtained as

Φαβγ(lκ, l′κ ′, l′′κ ′′)�−
Fγ [l′′κ ′′;u(lκ)u(l′κ ′)]

uα(lκ)uβ (l′κ ′)
, (2.68)

with Fγ [l′′κ ′′] as the atomic force measured at position r(l′′κ ′′) under a pair of
displacements u(lκ) and u(lκ ′). The harmonic force constant in (2.60) can be
similarly approximated as

Φαβ (lκ, l′κ ′)�−
Fβ [l′κ ′;u(lκ)]

uα(lκ)
, (2.69)

where Fβ [l′κ ′;u(lκ)] is the atomic force measured at position r(l′κ ′) under a
displacement u(lκ).
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2.3.2 Rate equations
In this section I am going to introduce a theory that describes the energy ex-
change between two systems in contact, which in our case will be the phonon
and the electronic systems. The two temperature model will set the founda-
tions for the more advanced development that includes phonon-phonon inter-
actions.

Two temperature model

I start by discussing the two-temperature model (2TM), which is often used to
describe the out of equilibrium dynamics of the energy transfer between two
systems that are in contact, typically after a laser excitation. I will consider
these two systems to be the lattice, which I will describe in terms of phonons,
and the electrons, and will follow the derivation in [61].

The 2TM assumes the two subsystems to be internally and separately in
equilibrium and connected by the electron-phonon coupling. Furthermore, it
is based on energy conservation: the energy that the laser introduces into the
system goes primarily to the electrons, which then transfer it to the phonons,
so that the change in time of the electronic energy Ee must be equal to the
negative change in time of the lattice energy El:

∂Ee

∂ t
=−∂El

∂ t
. (2.70)

The lattice, as I have mentioned, can be described in terms of phonons, so that
the lattice energy is given by

El = ∑
Q
�ωQnQ, (2.71)

where Q stands for a combination of the phonon branch index ν and reciprocal
space vector q, ωQ are the phonon frequencies, and nQ is the phonon popu-
lation. The electronic energy is in its turn expressed in terms of the electron
Bloch energy εk and the electron population fk as

Ee = 2∑
k

εk fk, (2.72)

with k being short hand notation for the electron band index n and the recipro-
cal space vector k. Since I assume the electronic system to be in equilibrium,
fk can be taken as a Fermi-Dirac distribution with temperature Te(t)

fk(t) =
1

e
εk−εF (Te)

kBTe(t)
+1

, (2.73)

with εF being the chemical potential or Fermi energy and kB the Boltzmann
constant. The phononic system is also in equilibrium at the lattice temperature
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Tl(t), and since they are bosinc particles, their population can be taken as a
Bose-Einstein distribution:

nQ(t) =
1

e
�ωQ

KBTl (t)
−1

. (2.74)

The 2TM assumes that the distribution functions change in time only due to
electron-phonon scattering. Fermi’s golden rule for scattering theory can be
used to obtain the exact expressions for ḟk and ṅQ, also known as the Bloch-
Boltzmann-Peierls formulas [62]:

ḟk = ḟk|scatt.
e−ph =

− 2π
�

∑
Q
|Mkk′ |2{ fk(1− fk′) [(nQ +1)δ (εk− εk′ −�ωQ)+nQδ (εk− εk′+�ωQ)]

− (1− fk) fk′ [(nQ +1)δ (εk− εk′+�ωQ)+nQδ (εk− εk′ −�ωQ)]} (2.75)

and

ṅQ = ṅQ|scatt.
e−ph =

− 4π
�

∑
k
|Mkk′ |2 fk(1− fk′) [nQδ (εk− εk′+�ωQ)− (nQ +1)δ (εk− εk′ −�ωQ)] .

(2.76)

Mkk′ is the electron-phonon scattering matrix element, and I have considered
all first order the Feynman diagrams for electron-phonon scattering only. In
this step, the perturbation given by the electron-phonon coupling has been
considered to be small. Further conditions for this step to be valid are that
the system is Markovian and that it can be described by individual partition
functions, so that correlations are ignored.

Using the conservation of energy (2.70) becomes

2∑
k

ḟk|scatt.
e−ph +∑

Q
�ωQṅQ|scatt.

e−ph = 0. (2.77)

Now making the approximation that temperatures are small and we can
focus on energies around the Fermi energy, we can write

∂Ee

∂ t
= 2∑

k
ḟk|scatt.

e−ph =−∑
Q
�ωQṅQ|scatt.

e−ph =

∑
Q

γQ

∫ ∞

−∞
dε

∫ ∞

−∞
dε ′ [( fk′ − fk)nQ− fk(1− fk′ ]δ (−εk + εk′+�ωQ), (2.78)

with γQ the phonon linewidth. Performing a Taylor expansion around Te for
(2.73) and introducing the lattice and electronic specific heats Cl and Ce, re-
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spectively, we obtain the final rate equations that define the 2TM

Ce
∂Te

∂ t
=−G(Te−Tl), (2.79a)

Cl
∂Tl

∂ t
= G(Te−Tl), (2.79b)

with G = ∑Q γQCQ and CQ the phonon mode-dependent specific heat.

Introducing phonon-phonon interactions

The 2TM does not consider phonon-phonon scattering, but it can be included
(see figure 2.7) to have a more accurate description of the phonon population
dynamics.

2

2

2

2

Figure 2.7. Treatment of the electron-phonon dynamics. The 2TM model describes
the transfer between the electronic and phononic systems as a whole (gray arrow).
When phonon-phonon interactions are included, energy transfer between the phononic
subsystems is also considered (green arrows).

In this section I will arrive at an analogue of the rate equations in (2.79),
following a similar derivation to the one I followed in the previous section. I
will consider 3-body processes, so that two phonons scatter into one or vicev-
ersa. By considering these contributions in the scattering Fermi Golden Rule,
new terms appear in ṅQ

ṅQ|scatt.
ph−ph =−

2π
�

∑
kk′
|ΦQkk′ |2 [(nQ +1)(nk +1)nk′δ (ωQ +ωk−ωk′)+

(nQ +1)(nk′+1)nkδ (ωQ +ωk′ −ωk)−nQnk(nk′+1)δ (ωQ−ωk′+ωk)−
nQnk′(nk +1)δ (ωQ +ωk′ −ωk)+(nQ +1)nknk′δ (ωQ−ωk′ −ωk)−
nQ(nk +1)(nk′+1)δ (ωQ−ωk′ −ωk)] , (2.80)

where ΦQkk′ is the anharmonic force constant. By defining the phonon linewidth
due to phonon-phonon scattering ΓQk, assuming T k

l ≈ T k′
l and introducing

T kk′ =
2T k′

l T k
l

T k′
l +T k

l
, I arrive to the following expression after Taylor expanding
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around small temperature changes:

ṅQ|scatt.
ph−ph = ∑

k
ΓQkCQ(T

Q
l −T kk′

l ). (2.81)

T Q
l is the temperature of each phonon branch. This expression determines

the changes of phonon population due to phonon-phonon interaction and it
depends on the phonon mode and branch.

Combining this with the terms given by the electron-phonon interaction that
I considered in the 2TM I reach to the analogous rate equations:

CQ
∂T Q

l
∂ t

=−GQ(T
Q

l −Te)
[
1+ J(ωQ,T

Q
l )(T Q

l −Te)
]
−∑

k′
ΓQk′CQ(T

Q
l −T k′

l ),

(2.82a)

Ce
∂Te

∂ t
= ∑

Q
GQ(T

Q
l −Te)

[
1+ J(ωQ,T

Q
l )(T Q

l −Te)
]
. (2.82b)

Comparison to experiments: diffuse scattering

X-Ray diffuse scattering (DS) is an experimental technique that measures the
inelastic scattering caused by lattice vibrations, phonons (see figure 2.8). In a
scattering experiment, phonons that are scattered elastically form sharp peaks
in the reciprocal space, called Bragg peaks. DS is the background signal that
appears between Bragg peaks as well, and can be used to determine phonon
dispersion relations. The DS scattering in reciprocal space can be written
as [63]

I(q) ∝ ∑
ν

1
ων(q)

[
nν(q)+

1
2

]
|Fν(q)|2, (2.83)

where ων(q) is the frequency of a phonon with mode ν and wave vector q,
nν(q) is the phonon occupancy number and Fν(q) is the structure factor. An
example of an experimental and theoretical work where this has been studied
can be found in [64].

Figure 2.8. (a) Elastic scattering producing Bragg peaks, (b) diffuse scattering due to
lattice vibrations.
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3. Defect and interface induced phenomena in
monolayer MoS2

Las cosas podían haber sucedido
de cualquier otra manera y, sin
embargo, sucedieron así.
(Things could have happened any
other way and yet they happened
like this)

Miguel Delibes

This chapter summarizes the results of Papers I and II. Two-dimensional
(2D) transition dichalcogenides, and specially MoS2 have been extensively
investigated due to their multiple applications as candidates to substitute sili-
con in electronic devices [65,66]. Although mechanical and chemical exfolia-
tion are nowadays standard techniques to obtain 2D MoS2 from bulk samples,
these monolayers are not perfect. Multiple defects have been reported to ap-
pear, as well as different phases of the material coexisting in one single sam-
ple [67]. Studying the implications of these deviations from a perfect MoS2
monolayer is extremely important in order to be able to understand the prop-
erties of realistic samples. We have approached this challenge in two different
ways. In Paper I we investigated the effect of point defects on the electron-hole
recombination in the most stable phase of MoS2, using time-dependent ab ini-
tio non-adiabatic molecular dynamics. This is relevant because charge recom-
bination is one of the most important phenomena hindering charge separation,
the basic principle of solar cells. In Paper II we studied the coexistence of
several phases of monolayer MoS2 focusing on the effect of geometric recon-
structions, which happen near and far from the interfaces, has on the electronic
properties of the compound samples, using density functional theory.

3.1 Summary of Paper I: Charge recombination
Even if we theoreticians often think about perfect solids and surfaces, the truth
is that experimental samples have finite size effects and often defects. In paper
I we studied how point defects affect electron-hole recombination times using
NA-MD, in particular FSSH (see section 2.1.2 for the theoretical description).
As we have mentioned, charge recombination is one of the main channels
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for energy and carrier losses that reduce the material’s efficiency. Therefore,
understanding these phenomena in more realistic samples is the path towards
going from research to industrial applications.

3.1.1 Ground state properties
We used DFT to obtain ground-state properties like atomic positions and eigen-
values. Since we introduced defects, we needed to consider supercells that
were large enough to avoid interaction between the defects and their periodic
images. Furthermore, monolayer MoS2 is a direct band gap semiconductor
and its conduction band minimum (CBM) and valence band maximum (VBM)
are located at the K high-symmetry point of the Brillouin zone. We used Γ-
point calculations, and in order to achieve correct band-folding of the K point
to Γ, the size of the supercell needs to be commensurate with the coordinates
of K. That means supercell sizes need to be multiples of 3, and we chose
6×6×1 as a compromise between computational efficiency and accuracy.

We studied S vacancy (vac-S), S interstitial (int-S), Mo vacancy (vac-Mo)
and Mo interstitial (int-Mo), which are shown in figure 3.1. We identified the
energy levels that correspond to the CBM and VBM in pristine by visualizing
their charge densities. The CBM are completely undistorted in all the defected
systems, but the VBM in int-S and vac-Mo is slightly distorted by out of plane
components of the charge density. This is shown in figure 3.2 and we will see
that it has an effect in the recombination dynamics.

3.1.2 Non-adiabatic dynamics: electron-hole recombination
We performed the NA dynamics calculations by following the methodology
introduced in section 2.1.2. For each system we selected the energy levels that
can participate in the recombination in order to form the active space in which
the DISH algorithm will be applied. Some eigenvalues are degenerate and we
needed to consider all the possible transitions between them. For instance, in
the pristine system the VBM and CBM are doubly degenerate so the active
space is formed by 4 orbitals and we considered excited states corresponding
to the CBM→ VBM transition, where the depopulation of the excited state is
expected to decay to the ground state. To obtain the recombination timescale
τ we fitted the population increase in the ground state with an exponential
function of the form

P(t) = 1− exp
(−t

τ

)
, (3.1)

so that it reaches the normalized value of 1 at infinite time. In the defected
systems, the mid gap defect levels introduce alternative recombination mech-
anisms to the direct one, and all the intermediate transitions need to be con-
sidered. A scheme of the active space and possible transitions is shown in
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 3.1. Supercells of the studied MoS2 systems. S atoms are represented in yellow
and Mo atoms in violet. (a) and (b) show top and side views of the pristine supercell
respectively. (c-f) show the defected structures with the defect site marked with a red
circle. (c) is int-S, (d) is vac-S, (e) is vac-Mo and (f) is int-Mo. Reproduced with
permission from Paper I.

(a) (b)

(c) (d)

Figure 3.2. In red, charge density of pristine VBM (a), pristine CBM (b), and the
distorted VBMs in int-S (c) and vac-Mo (d).

figure 3.3. Unoccupied defect levels (dashed green lines) act as electron traps
because excited electrons coming from the CBM can fall in these defect levels
before recombining with the holes in the VBM. In the same way, occupied
defect states (dashed red lines) act as hole traps.

We consider all the transitions with all the intermediate steps and the over-
all recombination time is calculated as the fastest of all the combinations, a
summary of which is shown in table 3.1. The details of the intermediate tran-

40



CBM

VBM

D

1 2

(a) int-S
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(b) vac-S
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D1
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(c) int-Mo

CBM

VBM

D3

D2

D1

1 2 3 4 5 6 7 8

(d) vac-Mo

Figure 3.3. Scheme of the active space and possible transitions in (a) int-S, (b) vac-S,
(c) int-Mo and (d) vac-Mo. Red and green lines indicate occupied and unoccupied
levels, respectively. Defect states inside the gap are shown with a dashed line.

Table 3.1. Summary of the fastest pathways in each of the studied systems. The
numbers in parentheses are related to the transitions in Figure 3.3. Reproduced with
permission from Paper I.

System Processes
pristine Direct (1)

int-S Hole trap (2)
vac-S Electron trap (2)

int-Mo Hole trap 1 (3), double hole trap (5), electron and hole traps 1 (6)
vac-Mo Hole trap (4), and hole and electron traps 1 (6)

sitions (timescales and active space) for all the studied systems are included in
the paper.

We found out that all direct recombination times are affected by the pres-
ence of defects, which results in an acceleration of the timescales. This is
more noticeable in the systems whose CBM is more distorted, int-S and vac-
Mo (see figure 3.2), which have a direct recombination time that is 1/3 and 1/2
of the pristine one, respectively. However, for the defected systems, there is
always an alternative mechanism involving a defect state that is faster than the
direct recombination.

Our results match qualitatively with experiments, although in order to match
quantitatively we would need to go beyond the single-particle picture to in-
clude the excitonic effects that MoS2 shows, which are known to accelerate
the recombination dynamics [68, 69]. However, since we studied the lowest
lying excited states, this has been shown to be a fair approximation [68, 70].
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We have observed that the results are very sensitive to many simulation
parameters in the method, and are going to discuss some of them here. As
mentioned before, we chose to include decoherence via DISH, but this is not
the only method available. We performed a test in which decoherence was
treated within the simplified decay of mixing (SDM) [71], which is an energy-
based decoherence correction. We found that our timescales changed rather
drastically when using SDM instead of DISH, as table 3.2 shows. It is not
clear which scheme is better in general, as both include decoherence in an ad
hoc manner, and therefore further studies are required. We did several tests to
understand what the inclusion of more energy levels in the active space would
do, and we concluded that this has a rather weak effect. This is also included
in table 3.2.

Table 3.2. Effect on the active space and decoherence scheme to the non-radiative
electron-hole recombination time in pristine MoS2.

Active space size Decoherence scheme τ
4 (2 in VBM, 2 in CBM) DISH 70 ns
5 (3 in VBM, 2 in CBM) DISH 50 ns
5 (3 in VBM, 2 in CBM) SDM 300 ps

Furthermore, the computational method that we used does not enforce that
the wavefunctions have the same phase at consecutive time steps, needed for
NAC calculations. This influenced the quality of our results, as it has been
pointed out in [72]. The phase inconsistency has been addressed in a re-
cent development of Libra [73]. Regarding the carrier density, having single-
electron excitations in a 6×6×1 supercell produces a carrier concentration of
2.75×1013 cm−2, which is higher than present in experiments but lower to the
one in previous studies [74, 75], which partially explains our disagreement.
Additionally, the 5×5×1 supercell considered in [74, 75] might not be able to
capture the K point due to band folding, which means that different vertical
transitions were considered.

3.1.3 Conclusions of Paper I
In this paper we presented how the recombination rates and pathways in MoS2
are affected in presence of defects using NA-MD. While the method is very
promising and one of the few available options to study the phenomena stud-
ied in the paper, certain improvements should be addressed. However, the
reported description of the alternative recombination mechanisms introduced
by different kind of defects can still be useful to understand the problem in a
qualitative way.
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3.2 Summary of Paper II: Coexistence of different
phases

Two dimensional transition metal dichalcogenides are known to exist in sev-
eral different phases. In particular, chemically exfoliated MoS2 is known to
have a semiconductor ground state phase (1H) and several metastable poly-
morphs that have a controversial electronic structure, with experiments claim-
ing metallic, semimetallic and small-gaped semiconductor phases. A recent
survey on the topic can be found in [67]. The difficulty to study these meta-
stable phases in experiments arises because they appear as small patches in
a majority of ground state 1H phase, and obtaining information about pure
metastable phases is beyond the experimental resolution. Often the reported
conclusions are the result of indirect observations. Of course, the theoretical
route has been explored as well, although the vast majority of the studies treat
the pure isolated phases. In Paper II we studied the effect of the coexistence of
the ground state phase 1H with the two lowest energy metastable phases: 1T
and 1T′, using DFT.

3.2.1 Effect of strain in the band structures of the pure phases
As mentioned before, the ground state of monolayer MoS2 is a semiconductor
with a direct gap of 1.8 eV at the high symmetry point K [76]. This phase,
called 1H is formed by sandwiching a Mo atom between two S atoms in an
A-B-A stacking, so that S atoms are on top of each other and six S atoms are
bonded to the central Mo atom in a trigonal coordination, as figure 3.4 (left)
shows. Its band structure is shown in figure 3.5 (a). Higher energy polymorphs
are very common as small patches inside the 1H matrix and have an A-B-C
stacking with octahedral coordination of S atoms around the central Mo. The
1T phase, which is dynamically unstable, is shown in the center panel of figure
3.4. It is formed by a gliding displacement of one of the S planes in 1H. The
1T′ phase, which is the lowest energy metastable state, appears after the 1T
undergoes a Jahn-Teller distortion via the dimerization of the Mo atoms, as it
can be seen in the right panel of the same figure.

There is consensus on the fact that the 1T phase is metallic, as the band
structure in figure 3.5 (b) shows. The controversy is in whether the 1T′ has a
small gap or is semimetallic. We found that it is a semimetal with bands cross-
ing at only one reciprocal point in the Brillouin zone, at the lattice parameter
that minimizes the total energy. However, as these two metastable polymorphs
are found as patches in the 1H matrix, they are subjected to a planar compres-
sive strain that affects their electronic properties. Since the 1H and 1T lattice
parameters are very similar, the strain that the 1T patches feels is very small,
which explains why their band structure is not significantly changed. How-
ever, due to their larger lattice mismatch, the compressive strain that 1T′ feels
when placed in the 1H matrix is enough to open up a small gap.
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Figure 3.4. Three different phases of monolayer MoS2: the ground state trigonal
1H and the two octahedral polytopes, 1T and 1T′. Mo atoms are shown in purple
in 1H and blue in 1T and 1T′, while S atoms are yellow in 1H and green in 1T and
1T′. Different colors have been used to distinguish the mixed phase structures in the
discussion.
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Figure 3.5. Electronic band structure of the studied phases of MoS2. (a) 1H MoS2
in its optimized (equilibrium) lattice parameter. (b) and (c) show the effect of strain
on the band structure of the octahedral phases: Band structure of 1T (b) and 1T′ (c).
The green solid line represents the band structure of the cell that minimizes the total
energy with respect to the variation of the lattice parameter in each of the phases. The
dashed (solid) red line depicts the band structure of the 1T (1T′) under the strain that
the 1H equilibrium lattice parameter imposes.

3.2.2 Mixed phases: electronic structure
We constructed mixed phases supercells of the ground state 1H as a matrix and
a patch of one of the two octahedral polymorphs (1T or 1T′). We considered
three different sizes of the supercells but kept the spatial region of 1H between
the periodic images constant. The structures were named 1H-1P X −Y , 1P
being the octahedral phase type (1T or 1T′) that we start with, X being the size
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of the 1H supercell matrix, and Y being the size of the octahedral phase patch,
in units of a hexagonal 1×1 unit cell. An example is represented in figure 3.6.

Y=3X=6

1H-1T’ 6-3

Figure 3.6. An example of a supercell containing two phases: the 1H matrix is a 6×6
supercell, making X = 6, and the octahedral patch is 3× 3, so that Y = 3. Since the
patch is in this case 1T′, this structure is named 1H−1T ′ 6-3.

We performed geometry relaxation in each of these structures in order to
minimize the total energy in each case. We observed large structural recon-
structions, which will be discussed in the following section, so that the final
structures are not composed of the perfect pure phases they started with. The
results of this energy minimization are summarized in table 3.3, where we can
see the lowest energy structure for each size, together with the gap in brack-
ets. We found that 6-3 and 12-9 1H-1T have lower energy than their 1H-1T′
counterparts, but it is the other way around for size 9-6.

1H-1T 1H-1T′
6-3 -770.40 (84) -770.01
9-6 -1729.82 -1730.08 (167)
12-9 -3070.11 (85) -3068.48

Table 3.3. Total energies (in eV) and values of the gap of the mixed phases. Bold
indicates the lowest energy structure of each size, which opens up a gap, included in
parenthesis (in meV). Reproduced with permission from Paper II.

When plotting the density of states of these systems (figure 3.7), we ob-
served a gap opening for the structures that have lower energy, while the high
energy ones from each size remain metallic. There are two interesting points
to make here: the gap opening occurs only after relaxation, and, even if the
states that are closer to the gap belong to atoms from the interstitial region and
to the patch, their wavefunctions are very far from being localized.
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Figure 3.7. Contribution to each atomic type to the DOS of the six structures close to
the Fermi energy. (a), (b) and (c) represent the 1H-1T 6-3, 9-6 and 12-9 composites,
respectively. Panels (d), (e) and (f) represent the 1H-1T′ 6-3, 9-6 and 12-9 composites,
respectively. The gray filled curves are the peaks from the total DOS of each structure,
and the solid lines are the partial DOS of selected Mo and S atoms belonging to bulk
1H (purple and yellow, respectively), the interfacial region (orange and light blue,
respectively) and the bulk region of the patch, either 1T for the left panel or 1T′ for the
right one (dark blue and green). Gap opening happens for (a), (c) and (e). Reproduced
with permission from Paper II.

3.2.3 Mixed phases: structural reconstruction
As mentioned before, all the electronic structure changes are due to a large
structural distortion after geometric relaxation, which we observed not to be
limited to the boundary between the phases. Figures 3.8 and 3.9 present the
details for the lowest energy structures, which show a gap opening.

The final atomic positions and bonds are overimposed to the starting ones,
shown in grey, and show a clear displacement of the atoms. This differences
are larger for the cells that started with a 1T patch, compared to the starting
1T′ patches. We observed large reconstructions in the corner atoms, specially
S, as highlighted in figure 3.8 (e) and (f) for 1H-1T, but also present in 1H-
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d)

e) f) g) h)

b)a) c)

Figure 3.8. Structural reconstruction in the 1H-1T low energy composites (6-3 in
(a) and 12-9 in (b)). Overlapping atomic positions before (grey) and after relaxation
(following the color coding described in figure 3.6). c) Side view of the dashed purple
rectangle in (b). d) Side view of the 1H-1T 9-6 in which the arrows point at the Mo-
Mo dimerization features. (e-h) Zoomed regions enclosed by colored circles in (a)
and (b). The arrow in (e) highlights a large atomic displacement, and the arrows in (h)
show the direction of the Mo relaxation towards its dimerized positions. Reproduced
with permission from Paper II.

d)

c)b)a)

Figure 3.9. Structural reconstruction in the 1H-1T′ 6-3 composite. a) Overlapping
atomic positions before (grey) and after relaxation (following the color coding de-
scribed in figure 3.6). (b-c) Zoomed regions enclosed by colored circles in (a). d)
Lateral view of (a) with arrows highlighting the features of Mo-Mo dimerization. Re-
produced with permission from Paper II.
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1T′. The 1H regions also suffer distortions: the S atoms in the 1H phase shift
laterally in the 1H-1T composites (figure 3.8 (g)), but this is less evident in
1H-1T′. In general, smaller cells (6-3) are more distorted because they have
a larger interface effect. However, the structural changes are also present in
the center of the larger patches (12-9) as evident in figure 3.8 (h) and figure
3.9 (c), in which we see a clear tendency towards Mo-Mo dimerization after
relaxation, which is characteristic for the 1T′ phase. We found that this was
the reason why 1H-1T structures have larger reconstructions, since the cells
starting with 1T′ were closer to the resulting positions. The dimerization of
Mo atoms goes hand in hand with a vertical shift of the S atoms so that the S
atoms in a long Mo-Mo bond come closer to the center of the layer and the
ones in a short Mo-Mo bond go further away (see figure 3.8 (d) and figure
3.9 (d)). This tendency towards a 1T′-like phase in the patches of the mixed
supercells can be explained by the relative stability of their pure phases, since
1T′ has a much lower energy than the unstable 1T.

In order to look for more evidence on the preference of 1T′, we plotted his-
tograms for the nearest neighbor (NN) distances of Mo atoms (either S or Mo)
in figure 3.10. If only pure phases were present, the histogram would have
counts only at the characteristic NN distances of each pure phases. However,
we observed that this was not the case, and that a dome around the 2.73 Å
of the Mo-Mo short bond is present in all the cases. This means that even
the supercells that had a starting 1T patch rearrange themselves favouring this
dimerization. Given that the pure strained 1T′ phase is a small gap semicon-
ductor, the tendency of the mixed structures to open a gap after relaxation can
be explained.

3.2.4 Conclusions of Paper II
In this project we studied the effect of the coexistence of different polymorphs
of MoS2 using density functional theory. We showed that the reconstruction,
which is not limited to the interface between two phases, is essential to explain
the gap opening of the resulting structures, and can not be explained solely
by the behavior of pure phases. We found that the reorganization inside the
octahedral patch results in a dimerization of the Mo-Mo bonds, which shows
a tendency towards a 1T′ structure. In this way, we explained that the small
gap observed in some experiments is due to the interaction between different
phases, rather than to a new pure metastable phase of MoS2.
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1H-1T 1H-1T'

6-3

9-6

12-9

(a)

(b)

(c) (f)

(e)

(d)

Figure 3.10. Probability normalized histograms of the Mo-X distance, X being a Mo
nearest neighbor atom (Mo or S). (a-c) 6-3, 9-6 and 12-9 1H-1T, respectively. (d-f) 6-
3, 9-6 and 12-9 1H-1T′, respectively. The vertical lines denote the pure phases nearest
neighbor distances (red dashed for 1H, blue dotted for 1T and green dash-dotted line
for 1T′).
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4. RT-TDDFT studies of graphene flakes

La duda es uno de los nombres de
la inteligencia.
(Doubt is one of intelligence’s
names)

Jorge Luis Borges

This chapter summarizes the results of Papers III and IV. Graphene has
been studied since its experimental realization in 2004 [2] and it has shown
to have many interesting properties [77–80]. However, it is a semimetal and
therefore it is not a good candidate for transistor-based technology. One of the
proposed ways to open up a gap in graphene to achieve a large on-off ratio is
realizing nanostructures such as nanoflakes [81, 82]. In Papers III and IV we
explored the optical properties of graphene nanoflakes using RT-TDDFT. In
the first one, we focused on how the magnetic coupling of the edges and the
corresponding optical properties can be tailored by the size and shape of the
flakes, and in the second one, we explored their high harmonic response.

4.1 Summary of Paper III. Shape and size dependent
optical spectra in magnetic GNF

In graphene nanoribbons, zigzag edges are antiferromagnetically coupled and
armchair edges are non-magnetic [83], as figure 4.1 (a) and (b) depict. In Pa-
per III, we focus on rectangular graphene nanoflakes (RGNF) because both
zigzag and armchair edges are simultaneously present, raising the possibility
of controlling the magnetic ground state of the nanostructure by modifying its
size and shape. We denote RGNF following the convention used for nanorib-
bons [4, 83]: we classify them by the number of horizontal zigzag chains Nz
and vertical armchair dimer lines Na, and they are identified by Na×Nz-RGNF
(see Figure 4.1).

4.1.1 Magnetism influences the optical spectra
In this paper, we considered two different magnetic alignments of the parallel
zigzag edges: ferromagnetic (FM) and antiferromagnetic (AFM), as shown in
figure 4.2 (b) and (c). We then calculated the optical absorption spectra of each
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Figure 4.1. (a) Armchair graphene nanoribbon, the circles signal the parallel armchair
edges being non-magnetic. (b) Zigzag graphene nanoribbon, the red and green circles
show the parallel edges having opposite magnetic moment in an antiferromagnetic
fashion. (c) Naming of the proposed rectangular graphene nanoribbons in terms of the
number of armchair dimers Na and zigzag chains Nz.

Figure 4.2. (a) Optical absorption spectra and magnetization densities for (b) ferro-
magnetically and (c) antiferromagnetically coupled edges in the 17×6-RGNF. The red
(green) color represents positive (negative) magnetization density with an isovalue of
0.002 μB/Å3. In the inset of (a), an expanded view of the optical absorption spectra
at lower energies is shown. Reproduced with permission from Paper III.

flake using the method described in section 2.2.1, which is plotted in panel (a)
of the same figure. As it can be seen, the higher end of the spectrum looks
very similar for both FM and AFM flakes, but there is a clear shift of about 0.2
eV in the lowest energy peak. This is very interesting, because it means that
the opacity of the flake to light of that energy range is different depending on
the magnetic alignment of its zigzag edges.
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We compared the total energy of the structure after atomic relaxation with
AFM and FM coupling of the edges for RGNF with dimensions 17xNz, with
Nz ∈ {2,4,6,8} with parallel zigzag edges in its longer dimension. With this,
we systematically studied the conditions of stability for the magnetic ordering,
as the armchair length remains constant while the distance between the zigzag
edges varies. The results are collected in table 4.1, where we can see that
the AFM state is more favourable than the FM, but that energy difference
decreases when the distance between the zigzag edges increases.

Table 4.1. Energy differences between AFM and FM ordering, ΔE = EAFM−EFM for
four different ratios of zigzag to armchair. To facilitate comparison with both GNRs
and different kind of flakes, both the total energy and the energy per zigzag edge atom
is specified. Energy units are in meV. Reproduced with permission from Paper III.

Size ΔE ΔE/Zigzag edge atom ΔE/atom
17×2 -133.42 -16.678 -2.471
17×4 -80.11 -10.014 -0.871
17×6 -71.45 -8.931 -0.550
17×8 -16.71 -2.089 -0.099

To understand the energy differences, we assumed that the dynamics of the
edge magnetism is well described by a Heisenberg model, which we found
to be a very good approximation for the larger flakes. Then the total energy
difference is, to first order, given by the exchange coupling

ΔE = JEx = EAFM−EFM, (4.1)

where the sign of J depends on the convention used in the spin Hamilto-
nian. In order to achieve a switching between the ground state AFM state
and the FM state, an external magnetic field needs to provide a Zeeman en-
ergy which is larger than the energy difference between the two states. As it
is already known for ZGNR, this energy decreases monotonically with the in-
creasing distance between the zigzag edges [84]. However, RGNF have about
half of the coupling strength compared to ZGNR of the same width, which
makes them more suitable for applications because smaller magnetic fields
are needed. We attribute this smaller coupling in RGNF to the competition
between zigzag edges’ preference to be AFM and armchair edges to be non-
magnetic, together with the magnetic frustration that happens in the center of
the flake for the AFM case and is not present in the FM case (see figure 4.2).

4.1.2 Shape and size dependence on the optical spectra
Changing the size and shape of the flakes can, besides tailoring the strength of
the magnetic coupling, change the position and structure of the peaks present
in the optical spectrum. Therefore, in this part of the paper we explored the
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possibility of having different hexagonal shaped flakes as well as changing the
size of the RGNF in a systematic way.

One might be tempted to think that zigzag edges are the ones responsible
for the magnetism in GNF, but we constructed two hexagonal flakes with only
zigzag edges (coronene and its larger analogue C130H28) and found them not
to be magnetic, in line with what has been reported for hexagonal and trian-
gular shapes in [85]. However, we can observe the size effects in their optical
absorption spectra, which is shown in figure 4.3, together with their structure.
In the total spectrum (a) we see that the the coronene peaks are present in
C130H28, only shifted to lower energies due to quantum confinement, and that
the large flake has multiple peaks at lower energies. Furthermore, the triple
peak structure at around 6 eV in the x-direction is present in both systems as
well.

Figure 4.3. C130H28 and coronene normalized optical spectra. (a) shows the total
optical absorption spectra, (b) shows the relaxed structures for both molecules, with
carbon (hydrogen) atoms represented in brown (white).

To study the contribution of zigzag and armchair edges in RGNF in a sys-
tematic way and their effect on the optical spectra we built two series of RGNF,
as shown in figure 4.4. The starting point is a 7×6-RGNF which we extend in
the x and y direction separately: constant armchair flakes in (a) are constructed
by increasing its size by two vertical dimer lines, while constant zigzag flakes
grow by adding two horizontal zigzag lines. In figure 4.4 (c-d) we plot the
directional dependence of the optical absorption spectra for each of the flakes,
where we observe the expected trend in closing the gap for smaller sizes (due
to quantum confinement and as it was shown for the hexagonal flakes). The
green trend line is a guide for the eye that follows the position of the highest
peak, and shows that with increasing flake size the main peak position shifts
to lower energies only in the direction parallel to the applied electric field (see
panels (c) and (f)), while applying an electric field parallel to the edge that is
kept constant shows no peak shift (see panels (d) and(e)).
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Figure 4.4. Size effect on the optical spectra of RGNF. Panel (a) shows the structures
of the rectangular flakes with constant armchair edge and flakes with constant zigzag
edge are shown in (b). In both (a) and (b), carbon atoms are represented in brown
and the passivating hydrogens are not drawn for the sake of clarity. (c-f) contain
the rectangular flakes’ in-plane optical spectra for different sizes and electric field
directions (x-direction is parallel to the zigzag edge and y-direction is parallel to the
armchair edge), obtained from TDDFT calculations. Panel (c) shows the x-component
of the optical spectra for the flakes with constant armchair edge, panel (e) shows the y-
component for the same flakes. (d) contains the x-component for the constant zigzag-
edged flakes and finally (f) shows their y-component.

4.1.3 Conclusions of Paper III
In this paper, we used RT-TDDFT to show that the magnetic exchange cou-
pling between zigzag edges can be tailored by optimizing the size and shape
in rectangular graphene nanoflakes. We observed as well that there is a possi-
bility of altering the optical response of the flakes (their opacity) via switching
between two magnetic states (AFM and FM coupling of the zigzag edges)
using magnetic fields. Therefore, we have proposed a route to design energy-
efficient optoelectronic devices by choosing the size and shape of the flakes to
fit the desired purposes.
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4.2 Summary of Paper IV: High harmonic generation
In Paper IV, we studied the HHG of a 17×6 rectangular graphene nanoflake
that was introduced in Paper III using RT-TDDFT. We showed that the differ-
ent electronic structure (and thus linear optical absorption spectrum) given by
ferromagnetic and antiferromagnetic coupling of the zigzag edges has a clear
effect on the harmonic yield.

4.2.1 Calculation of the HHG spectrum
As shown in (2.42) of section 2.2.1, we calculated the HHG spectrum from
the dipole velocity, following the derivation in [42]:

HHG j,k(ω) ∝ FT
[∣∣ṗ j,k(t)

∣∣2] . (4.2)

Several publications [39–41] follow the acceleration theorem and therefore
obtain:

HHGacc
j,k (ω) ∝

1
ω2 FT

[∣∣p̈ j,k(t)
∣∣2] . (4.3)

If the dipole was used directly, the equation would read:

HHGdip
j,k (ω) ∝ ω2FT

[∣∣ṗ j,k(t)
∣∣2] . (4.4)

We compared the spectra resulting from these 3 equations and found that
the position of the peaks is the same, and that the low order curves are quite
similar. However, the dependence on ω induces a slope on the curve, which is
visible at high order but also in the depth of the valleys between peaks already
at low order. This is shown in figure 4.5 and is consistent with what was
reported in [42].
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Figure 4.5. HHG for a RGNG with FM coupling of the zigzag edges. Comparison of
the spectrum resulting from the velocity of the dipole in red (see equation (4.2)), the
dipole in grey (see equation (4.4)) and its acceleration in green (see equation (4.3)).
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Figure 4.6. (a) Optical absorption spectra for both magnetic configurations. The inset
shows an expanded view of the first peak. The green dashed lines mark the energies
of the 3rd and 9th harmonics corresponding to the HHG spectrum in (b). (b) Har-
monic yield as a function of time, where time represents the duration of a rectangular
envelope.

4.2.2 Harmonic yield dependency on the pulse duration and the
presence of resonances

In order to investigate the contribution of the bound states beyond the ground
state to the HHG we studied the case where the third harmonic coincides with
a peak in the linear absorption spectrum. We fixed the pump frequency to be
1/3 of the first peak in the FM linear absorption, which is not a resonance in
the linear spectrum for the AFM flake (see figure 4.6 (a)). This pump fre-
quency is below the optical gap and therefore no linear processes are present,
so it is a good tool to evaluate how the excited bound states affect higher order
processes. With the help of a wavelet-transform analysis, we studied the har-
monic yield for different pulse duration and the results are shown in figure 4.6
(b). Focusing on the third harmonic peak, which is allowed by symmetry, we
observed that for short pulses the yield is very similar for both AFM and FM
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flakes, but that it is suppressed for long pulses in the AFM case. The intensity
is approximately 5 times higher in the FM flake at 240 fs pump duration. It is
interesting to see that the 9th harmonic yield is similar for both magnetic con-
figurations, and this is given by the fact that it falls very close to a resonance
at 3 eV which is not significantly shifted.

We then explained this behaviour with a model of superposition of coupled
oscillators. We can assume that the linear absorption spectrum is a sum of
direct dipole transitions, and that they interact through the electromagnetic
field. The superposition of the linear resonance and the third harmonic can
produce beatings and have a phase mismatch, which depends on the damping
and the frequency matching. This analysis confirms that the 3rd harmonic
yield is quenched in the AFM coupling due to destructive interference, which
becomes more apparent for long pump pulses.

4.2.3 Conclusions of Paper IV
In Paper IV we used RT-TDDFT to study high harmonic generation, a non-
linear phenomena, in the rectangular graphene nanoflakes that were introduced
in Paper III. We showed that different magnetic configurations (ferro- and an-
tiferromagnetic coupling of the zigzag edges) have an effect on the high har-
monic generation. This can be explained by the interference of the harmonic
field and the fundamental one, depending on the distinct underlying electronic
structure.
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5. Diffuse scattering in SnSe

One never notices what has been
done; one can only see what
remains to be done.

Marie Skłodowska Curie

5.1 Summary of Paper V
In paper V, we combined ultrafast photoinduced diffuse scattering (PSD) with
rate equations simulations following the methodology described in section
2.3. We studied the non-equilibrium energy transfer between electrons and
phonons after a photoexcitation in order to understand the thermalization dy-
namics of SnSe.

5.1.1 Ab initio simulations
We calculated the phonon band structure and phonon-phonon scattering ma-
trices for bulk SnSe from ab initio methods. The crystal structure of SnSe
and its high symmetry points in the Brillouin zone are shown in figure 5.1.
Its phonon band structure along a high symmetry path and phonon density of
states, which agree with previously reported studies [86], are shown in figure
5.2.

The figure of merit zT for a thermoelectric material is a measure of how
high the thermoelectric conversion energy is. It is defined as

zT =
S2σT

κ
, (5.1)

where S is the Seebeck coefficient, σ is the electrical conductivity, T is the
temperature and κ is the thermal conductivity (sum of electronic and lattice
contributions). Therefore, a material with a high figure of merit needs to have
a low lattice thermal conductivity and high electrical conductivity. SnSe has
been proposed as a good thermoelectric material due to its remarkably low κ
[7]. From our simulations, we obtained lattice thermal conductivities of 1.669,
0.987 and 0.683 W/mK at 300K, for the a, b and c directions respectively,
which agrees quite well with the experimental results. Since phonons are the
main energy carriers in SnSe, we studied the phonon scattering dynamics in
order to better understand the thermal properties of this material.
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Figure 5.1. (a-b) Crystal structure of bulk SnSe. Se atoms are green and Sn atoms
are grey. The black lines show a unit cell. (c) First Brillouin zone and high symmetry
points of the Pnma space group, to which bulk SnSe belongs.
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Figure 5.2. Left: Phonon spectrum of SnSe along high-symmetry points in the Bril-
louin zone. Right: total phonon density of states in shaded grey, and projection to the
Sn and Se atoms in red and green lines, respectively.

5.1.2 Rate equations simulations
The ab initio phonon frequencies and phonon-phonon scattering matrix ele-
ments have been used as input for the nonequilibrium kinetic simulations that
describe the energy flux between the electronic and phononic systems as de-
scribed in section 2.3. Our collaborators in KTH performed time-resolved
ultrafast electron diffraction experiments in order to obtain the photoinduced
diffuse scattering dynamics of SnSe samples. As mentioned in section 2.3.2
diffuse scattering occurs due to non-elastic scattering events mediated by the
lattice vibrations, and studying its time dependence provides information on
phonon dynamics. The comparison of the theoretical and experimental results
is given in figure 5.3. Here, the electron-phonon coupling was taken as a fit-
ting parameter to the experimental data, and more details about that are given
in the supplementary information of Paper V. In the future, the q-dependent
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electron-phonon coupling will be calculated from ab initio theory to have a
more profound comparison with experiment.

The complex dynamics observed for four different q points in the reciprocal
space can be explained by the competition between different energy transfer
channels, and an increase or decrease of intensity is related to an imbalance
between the incoming and outgoing energies at that q point. The experimental
and theoretical data are in good agreement regarding the general dynamics as
evident in figure 5.3. From our simulations, we found that the three acoustic
branches and the lowest three optical branches are the ones that contribute
most to the dynamics. The photoinduced diffuse scattering intensity of each
phonon mode is proportional to its energy and population, which means that
that the higher energy phonons are populated faster than the low-lying ones.
Therefore, increase of intensity seen in figure 5.3 for all the four cases after
photoexcitation is due to the energy flow from the electrons to the high energy
phonon branches. After this high electron-phonon transfer in the early time
scale, the energy redistributes via phonon-phonon scattering channels among
different phonon modes, first with a decrease followed by an increase in a
non-trivial manner.

5.2 Conclusions of Paper V
In Paper V we used rate equations to study the phonon dynamics in SnSe,
a good thermoelectric material. We showed that the non-trivial dynamics at
selected points in the reciprocal space can be explained by a complex energy
transfer between the electronic and phononic systems. Our results agree rea-
sonably well with the time-dependent diffuse scattering experiments.
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Figure 5.3. Temporal evolution of photoinduced diffuse scattering in SnSe for four
different q points. These points are (a) q = (1/8,1/8,0), 12.5% along Γ[020]−X +
Γ[011], (b) q= (1/4,1/4,0), 25% along Γ[020]−X−Γ[011], (c) q= (3/8,3/8,0), 37.5%
along Γ[020]−X +Γ[011] and (d) q = (1/2,1/2,0), 50% along Γ[020]−X +Γ[011] (the
positions of the Bragg peaks given by [xyz] correspond to figure 2 in Paper V). Black
points are experimental data and the red line is the theoretical model. Figure produced
by Amit Kumar Prasad.
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6. Conclusions and Perspectives

For even the very wise cannot see
all ends.

Gandalf the Grey

This thesis is an overview of some of the theoretical methods available to
study electronic excited state dynamics in extended systems, and how to walk
from the full quantum treatment to the different flavours of Mixed Quantum-
Classical methods, which are based on Density Functional Theory. With those
at hand, I have tried to answer, together with my collaborators, several ques-
tions about time-dependent processes in two-dimensional systems like MoS2,
graphene flakes and bulk SnSe. The detailed conclusions we reached in each
project can be found in their respective chapters and papers, but I would like
to discuss what could come next. What can be done to continue the investiga-
tions in those systems? Can we do better? I believe there is always room for
improvement and I will try to address this in the next paragraphs.

In Paper I, we could look into the back-reaction of the electronic dynamics
onto the ionic motion if we did not work with precomputed ionic trajectories.
We could even wish to go beyond the one-particle picture to be able to include
excitonic effects, which can be important in MoS2. However, both ideas are
far from being computationally feasible for the systems’ size and length scales
of the dynamics we studied. Instead, I would tackle the problem using the
recent developments that correct the phase of the wave function at each time
step in order to get more correct non-adiabatic coupling matrix elements for
obtaining more accurate dynamics. In Paper II, we tried to understand the
behaviour of samples that mix different phases of MoS2. We could look into
more interface structures between the phases and explicitly study the possible
atomic diffusion at the boundaries using Molecular Dynamics or the Nudged
Elastic Band method to have access to the diffusion energy barriers.

Paper III investigates the coupling between magnetic and optical properties
in graphene nanoflakes. Of course, RT-TDDFT is not necessary to calculate
optical spectra, as linear response methods are often enough. Nevertheless,
those would allow for the use of better time-dependent exchange correlation
potentials beyond the adiabatic one we used. However, this project opened
the door to Paper IV, in which we study high harmonic generation (HHG) in
the same systems. Being a higher order process, HHG could not have been
observed using the methods that could have improved the first paper. A con-
tinuation of Paper IV would be trying to better understand our observations,
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possibly in a simpler system for which we could analyze the phase of the
wavefunction in a systematic way.

Finally, in Paper V, we used rate equations to understand the experimental
results of diffuse scattering in SnSe. As a first improvement, electron-phonon
coupling could be extracted from ab initio calculations, just as we did with
phonon-phonon scattering matrix elements. At a higher level, the theory could
be improved by considering that the electron system also consists of subsys-
tems that interact with each other, so that the energy flow would be between
electron-electron, phonon-phonon and electron-phonon systems.

As it can be seen, this is an exciting field with many paths to explore!
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Popular science summary

Technology is forever.

Hedy Lamarr

Figure 6.1. Evolution of the electronic materials from bulk Si to the future suggestions
discussed in this thesis. In the red panel: bulk Si crystal structure, a vacuum tube from
the beginning of electronics, and modern integrated chips. In the green panel, from
top to bottom: monolayer MoS2, layered SnSe and a rectangular graphene flake.

We have been using tools even since before we became humans. Choosing
natural materials and modifying them to suit our needs is a part of the devel-
opment of our species, and tools have been evolving accordingly from stone
knives to plastic bottles and mobile phones. We are surrounded by electronics:
from the simplest digital watch to the Perseverance Rover from NASA that is
exploring Mars, our world depends on efficient electronic devices. They are
based on a class of materials called semiconductors, which allow turning them
"on" and "off". For more than a century, bulk silicon has been the go-to semi-
conductor because it is cheap and has the right properties. As technology
advanced, electronic devices have become smaller with time. However, their
miniaturization can not continue forever because when three dimensional ma-
terials reach a small enough size, heating and quantum effects become prob-
lematic. One of the routes towards smaller scales is to build devices made
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from two-dimensional materials, because their thickness is the smallest we can
think of, just one or few atoms. The most famous of these monolayer materials
is graphene, a single layer of graphite, which is what the inside of pencils are
made of. Its discovery was a revolution because it opened the door to study
two-dimensional materials. However, graphene is not a semiconductor, be-
cause it is very difficult to distinguish between its "on" and "off" states, which
limits its use as a silicon substitute. This can be improved in different ways,
and a large part of this thesis focuses on alternative two-dimensional materials
to graphene that are semiconductors. One way is to cut pieces of graphene in
the shape of flakes, and another one is to go to other materials that can also be
made two-dimensional. One of them is monolayer MoS2 (molybdenum disul-
fide) which is a good semiconductor. Besides being promising candidates to
substitute silicon in electronics, 2D materials and bulk materials that are made
from layers have been investigated with other applications in mind, one of
which is the exploitation of their capability to convert thermal into electrical
energy. Thermoelectric materials such as SnSe (tin selenide) lead a way into
environmentally friendly power generation processes, and therefore studying
their fundamental properties at the atomic scale is crucial for the development
of this field.

Most of nature’s phenomena are processes that are far from equilibrium,
they are changes from one state to another. The question of how to study such
processes is still open, because it is a very complex one. With the develop-
ment of state-of-the-art experimental techniques, nowadays it is possible to
study many physical phenomena in an atomistic and electronic scale, even the
dynamics in an ultrafast time scale. However, the experimental observations
need advanced theoretical and computational methods to analyze the data in
order to have a proper understanding. In this thesis, we dig into this field
and try to study out-of equilibrium processes from a theoretical point of view.
There are relatively accurate solutions to these kind of problems for very small
systems such as atoms and small molecules but extended systems such as 2D
materials and bulk solids still remain a challenge. Atoms are formed by their
nucleus, which we could consider to be ions, and electrons, and both follow
the laws of quantum mechanics. However, solving the necessary quantum-
mechanical equations for both electrons and ions is an impossible task. Many
approximations need to be made, and the most important one is the neglect of
the quantum nature of the ions composing the material. These groups of meth-
ods, in which ions are treated classically and electrons quantum-mechanically,
are called semiclassical methods and they are the basis of what is discussed in
this thesis. We use them in order to understand non-equilibrium processes in
the materials that have been discussed in the previous paragraph, in order to
progress in the quest towards smaller and more efficient electronic devices.
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Populärvetenskaplig samanfattning

Figur 6.2. Illustration av utvecklingen av elektroniska material från bulk-Si till framti-
da förslag som diskuteras i denna avhandling. I den röda rutan: bulk-Si-kristallstruktur,
ett vakuumrör och moderna integrerade chip. I den gröna rutan (uppifrån och ner):
monolager MoS2, skiktad SnSe och en rektangulär grafenflinga.

Vi tillverkade och använde verktyg redan innan vi blev moderna människor.
Att välja naturmaterial och modifiera dem för att passa våra behov är en del
av utvecklingen av vårt art, och verktyg har utvecklats därefter från stenknivar
till plastflaskor och mobiltelefoner. Idag är vi omgivna av elektronik: från den
enklaste digitala klockan till Perseverance Rover från NASA som utforskar
Mars, vår värld är beroende av effektiva elektroniska enheter. De är baserade
på en klass av material som kallas halvledare, vilket gör det möjligt att slå på
och stänga av dem. I mer än ett sekel har bulk kisel (Si) varit den mest använda
halvledaren eftersom det är billigt och har rätt egenskaper. I takt med teknikens
framsteg har elektroniska enheter blivit mindre, men dess miniatyrisering kan
inte fortsätta för alltid, för när tredimensionella material når tillräckligt liten
storlek blir värme- och kvanteffekter problematiska. Ett alternativ för att möj-
liggöra ännu mindre enheter är att tillverka dem av tvådimensionella material,
eftersom deras tjocklek är den minsta vi kan tänka oss, bara en eller några få
atomer. Det mest kända av dessa enskiktsmaterial är grafen, som består av ett
enda lager grafit, vilket är vad insidan av pennor är gjorda av. Upptäckten var
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en revolution eftersom den öppnade dörren för att studera tvådimensionella
material. Grafen är emellertid inte en halvledare, eftersom det är mycket svårt
att skilja mellan dess “på” och “av” -tillstånd, vilket begränsar dess använd-
ning som ersättningsmaterial för kisel. Detta kan dock förbättras på olika sätt,
och en stor del av denna avhandling fokuserar på alternativa tvådimensionella
material till grafen som är halvledare. Ett sätt är att skära bitar av grafen i form
av flingor, och ett annat är att vända sig till andra material som också kan göras
tvådimensionella. Ett av dem är monolager MoS2 (molybdendisulfid) vilket är
en bra halvledare. Förutom att vara lovande kandidater för att ersätta kisel i
elektronik har både 2D- och bulkmaterial som tillverkats av lager undersökts
med andra applikationer i åtanke, varav en är utnyttjandet av deras förmåga
att omvandla termisk till elektrisk energi. Termoelektriska material, som SnSe
(tinselenid), leder en väg mot miljövänliga kraftgenereringsprocesser, och där-
för är det viktigt att studera deras grundläggande egenskaper på atomnivå för
utvecklingen av detta fält.

De flesta av naturens fenomen är processer som befinner sig långt ifrån jäm-
vikt, de innebär förändringar från ett tillstånd till ett annat. Frågan om hur man
studerar sådana processer är fortfarande öppen, eftersom den är mycket kom-
plex. Med utvecklingen av toppmoderna experimentella metoder är det nume-
ra möjligt att studera många fysikaliska fenomen på atomära och elektroniska
längdskalor, inklusive dynamiska tidsförlopp. De experimentella observatio-
erna behöver dock avancerad teori samt beräkningsmetoder för att analysera
data och på så sätt få en korrekt förståelse för det studerade förloppet. I denna
avhandling fokuserar vi på detta ämnesområdet och försöker studera proces-
ser utanför jämvikten ur en teoretisk synvinkel. Det finns relativt noggranna
lösningar på denna typ av problem för mycket små system såsom atomer och
små molekyler, men utökade system som 2D- och bulkmaterial är fortfarande
en utmaning. Atomer består av deras kärna, som vi kan betrakta som joner,
och elektroner, och båda följer kvantmekanikens lagar. Att lösa de nödvän-
diga kvantmekaniska ekvationerna för både elektroner och joner är dock en
omöjlig uppgift. Många approximationer måste göras, och den viktigaste är
försummelsen av jonernas kvantegenskaper. Dessa grupper av metoder, där
joner behandlas klassiskt och elektroner kvantmekaniskt, kallas semiklassis-
ka metoder och de är grunden för vad som diskuteras i denna avhandling. Vi
använder dem för att förstå icke-jämviktsprocesser i materialen som har dis-
kuterats i föregående stycke, för att gå vidare i strävan efter mindre och mer
effektiva elektroniska enheter.
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Resumen divulgativo

Figura 6.3. Evolución de los materiales usados en electrónica desde el silicio hasta
los materiales del futuro que se proponen en esta tesis. En el recuadro rojo: estructura
cristalográfica del silicio en 3D, válvula de vacío usada en los inicios de la electrónica
y chip integrado moderno. En el recuadro verde, de arriba a abajo: MoS2 monocapa,
SnSe en capas, copo rectangular de grafeno.

Hemos usado herramientas desde antes de convertirnos en humanos. Esco-
ger materiales que nos ofrece la naturaleza y modificarlos para cubrir nuestras
necesidades es parte del desarrollo de nuestra especie, y las herramientas han
ido evolucionando desde cuchillos de piedra de la prehistoria hasta las botellas
de plástico y los teléfonos móbiles de hoy en día. Estamos rodeados de elec-
trónica: desde el reloj digital más simple al robot Perseverance de la NASA
que está explorando Marte, nuestro mundo depende de aparatos electrónicos
eficientes. Están basados en una clase de materiales llamados semiconducto-
res, que permiten que puedan estar apagados y encendidos. Durante más de
un siglo, el silicio ha sido el semiconductor más común porque es barato y
tiene las propiedades adecuadas. A medida que la tecnología ha ido avanzan-
do, el tamaño de los aparatos electrónicos se ha ido reduciendo. Sin embargo,
su miniaturización no puede continuar para siempre porque cuando materiales
en tres dimensiones se vuelven lo sufiencientemente pequeños, se calientan
demasiado y aparecen otros efectos de origen cuántico que son problemáti-
cos. Uno de los caminos para conseguir reducir el tamaño pasa por fabricar
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aparatos con materiales bidimensionales ya que tienen el grosor más pequeño
que podemos imaginar: tan solo uno o pocos átomos. El grafeno es el más
conocido entre ellos, y está compuesto por una sola capa atómica de grafito,
el material de las minas de los lápices. Su descubrimiento fue una revolución
porque abrió la puerta a un nuevo campo de investigación. No obstante, el gra-
feno no es un semiconductor, lo que hace que sea muy difícil distinguir entre
sus estados de apagado y encendido, así que no es un buen candidato para
substituir al silicio. Esto se puede mejorar de diferentes maneras, y una gran
parte de esta tesis está centrada en materiales bidimensionales alternativos al
grafeno que sí son semiconductores. Una opción es cortar trozos de grafeno en
lo que se llaman copos, y otra es considerar otros materiales que también son
bidimensionales. Uno de ellos es MoS2 (disulfuro de molibdeno) bidimensio-
nal. A parte de ser buenos candidatos para substituir al silicio en la electrónica,
tanto materiales bidimensionales como otros en tres dimensiones pero que es-
tán formados por capas atómicas se han investigado con otras aplicaciones en
mente. Una de ellas es aprovechar la capacidad que tienen algunos para con-
vertir energía térmica en eléctrica. Materiales termoeléctricos como el SnSe
(seleniuro de estaño) abren el camino a procesos de generación de energía que
sean respetuosos con el medio ambiente, y es por eso que estudiar sus pro-
piedades fundamentales a nivel atómico es crucial para el desarrollo de este
campo.

La mayoría de los fenómenos naturales están lejos del equilibro y son cam-
bios de un estado a otro. La cuestión de cómo estudiar este tipo de procesos es
muy compleja y está aún abierta. Con el desarrollo de técnicas experimentales
punteras es posible estudiar muchos fenómenos físicos a nivel atómico y elec-
trónico, incluso su dinámica ultrarápida. Sin embargo, se necesitan métodos
teóricos y computacionales para analizar los datos experimentales y entender-
los debidamente. En esta tesis nos adentramos en este campo e intentamos
estudiar procesos fuera del equilibrio desde un punto de vista teórico. Existen
soluciones relativamente precisas para sistemas muy pequeños como átomos
y moléculas pequeñas, pero son todavía un desafío para otros más extensos
como materiales bidimensionales o sólidos tridimensionales. Los átomos es-
tán formados por su núcleo, también llamado ión, y electrones, y ambos se
comportan según las leyes de la mecánica cuántica. Sin embargo, resolver las
ecuaciones cuánticas necesarias para iones y electrones es imposible. Son ne-
cesarias muchas aproximaciones y la más importante es omitir la naturaleza
cuántica de los iones. Este grupo de métodos en los que los iones se tratan
de forma clásica y los electrones de manera cuántica, se llaman métodos se-
miclásicos y son la base de lo que se describe en esta tesis. Los usamos para
entender procesos fuera del equilibrio en los materiales que se han mencio-
nado en el párrafo anterior, con el objetivo de progresar en la búsqueda de
aparatos electrónicos más pequeños y eficientes.
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